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ABSTRACT

The primary objective of this study is t derive a structural and
dynamic characterization of Hebbian celleassemblies in terms of a par=
ticular class of models of neural networks V{g Within these models,
Hebb's postulate of synapse-growth occupies a pivotal positionav The net-
works of the given class of models may, together with any appropriate
environments, be simulated by means of a digital computexr program,
€onseqtiently; hypothesés about the behavior of such networks can be
subjected to a rigorous test. The simulated networks, then, are to be
used to test the formation and development of cell-assemblies, The
advantages of the simulation are two-fold: (1) in some cases, it allows
difficult mathematical calculations to be by-passed (e.g., the distance-
bias case below); (2) it allows "rolling=back'" (via use of auxiliary
storage devices such as disk, magnetic tape, etc,) to am earlier point in
an experiment, modifying some parameter, then continuing from that point on,

A number of subsidiary goals immediately became apparent, however,
First of all, it was found necessary to characterize stable, steady-state
behavior of a network (lo Next, the role of negative connections in such
a network needed clarification, Finally, the problem of guaranteeing
localization of certain neural events arose.

To meet these goals, a steady-state stability calculus relating the
essential network parameters. N (number of neurons iJzKD, the threshold
curve, and p (density of connections inH&) was worked out, This was done
first for the case that positive equal connections only are present in V@
This calculus was then modified to include the case that positive and
negative connections (inhibitory connections) are present in r& The in-

hibitory connections are shown quantitatively to be essential to ensure



the negative feedback necessary to sustain steady-state. Again, relation-
ships for the "mix" of positive versus negative connections and the re-
lationship of these quantities to the threshold curve are given.

Finally, modification of this calculus to include a distance-bias on
the connection density p was considered, Unfortunately, even for the
relatively simple distance-bias selected, the calculations are quite di f-
ficult, It was found, however, that calculations from the preceding case
(distance-bias absent) could be used as crude initial approximations.

A series of experiments were performed (using the above calculations
as a guide in setting the network parameters) with networks of progress-
ively greater complexity. A number of stable networks are exhibited,
Then, using one of these stable networks with N = 400, p = 55 (this o dec=
composible into positive and negative components), R = 6 (distance-bias
radius), simple closed cycles (candidates for cell-assemblies) were formed
as a consequence of appropriate training stimuli, An imbalance in the
fatigue mechanism of the model was uncovered at this point, This was
corrected adequately in the current work, but points to the need for mod-
ifying the steady-state calculus to include this mechanism. In the con-
cluding experiment, an embryonic cross~-inhibiting pair of such closed
cycles was formed by applying alternating periodic stimuli to two dis-
joiht input areas of KKG

Hebb's basic theory (especially the synapse-growth law) is thus vindi-
cated in terms of the given models. There certainly appears to be every
reason to expect the more advanced portions of his theory (e.g. phase
sequences) to be put to the test using the larger and faster computer

hardware emerging today.

xXiv



1. INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

A class of models of neural networks is given purporting to repre-
sent, admittedly in an approximate fashion, a fragment of the mammalian
cortex. A model may be visualized in an environment together with appro-
priate sensory and motor apparati., This allows, for example, detection
of objects and movement in the environment. The main problem is to deter-
mine whether the models presented have the capacity to learn, in the sense
that, as a consequence of feedback from the environment to the model,
certain internal changes occur in the model with a resulting {eventual)
improvement in behavior.

The given class of neural network models has at least one distinctive
feature: it is interpreted directly into a computer program. This results
in a rigorous expression of (the particular interpretation of) the class
of models, from which any specific model is obtained merely by specifica-
tion of certain parameters. Inasmuch as any program is a formal expres-
sion of certain formal operations, analogous to the specification of
a list of functions used in the definition of partial recursive functions,
some of the advantages found in the study of formal systems are present.
On the other hand, there also is the advantage that any analytically
derived property of the models may be subjected to a well-defined test in
the interpretation afforded by the computer program.

Because of the relative ease with which operations of the models
are interpreted into sets of digital computer operations, the computer
simulation of such models is lifted out of the realm of a mere program=

ming application. In a sense, the program itself is a model, Study it



= 1,e,, 1ts behavior — and you are studying the model.

1.2 BASIC PREMISES AND THEORY: RELATION TO NEUROPHYSIOLOGICAL FACT

The original source for the specification of this class of neural
net models and of the neural as well as behavioral processes involved
in learning stems back to the theory which was developed by D, O, Hebb
[ 9], later modified somewhat by P. M, Milner [10]. The theory, which
integrates knowledge of neural events, taking place in time intervals of
up to a hundred milliseconds or so, with behavioral events, taking place
in time intervals of seconds on up, has as its basis the proposed mecha-

nism of the cell-assembly. Informally characterized, this is a system of

cortical (association layer) neurons which are capable of acting as

a closed autonomous functional unit for a brief period of time. These
neurons are anatomically diffuse, but functionally connected. The func-
tional unity of the cell-assembly results from the initial existence of
proper inter-connections among the neurons of the system together with

a particular (i.e., selective) sequence of cortical events forcing these
neurons to act briefly as a unit., This, in turn, results in a growth of
synaptic strength at the connections such that after a period of time
the assembly may be activated by appropriate excitatory stimuli.

The cell-assembly is a hypothetical structure; its physiological
existence has not been demonstrated —— on the other hand, the concept does
not conflict with current neurophysiological knowledge. Moreover, the for-
mation of a cell-assembly rests upon three main premises: (a) the initial
existence of the proper inter-connections among the neurons of the system,
(b) an initial selective sequence of cortical events that forces the neu-

rons of the system to act briefly as a unit, and (c) a law of growth in



synaptic strength between neurons. This latter premise is taken by Hebb
as his basic neurophysiological premise. Stated more fully, it reads;
When an axion of cell A is near enough to excite cell B

and repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in one or both

cells such that A's efficiency as one of the cells firing B,

is increased [ 9].

While there is evidence that is very suggestive, the validity of this
hypothesis has not yet been demonstrated neurophysiologically; again, it
does not conflict with known properties of neurons. It was conclusively
demonstrated shortly after the appearance of Hebb'’s book (for example,
Eccles [ ©]) that some neurons send out inhibitory as well as excitatory
connections. Milner {l10] argues effectively for the inclusion of inhibi-
tory connections, subject to the same synapse growth law (c) and his
suggestion is adopted here.

It should be noted here, that many properties of cortical neurons are
inferred from the known properties of peripheral neurons. There seems to
be no reason, at this time at least, for not doing this as it may be some
time before techniques are evolved allowing the fine, detailed study on
the cortical neuron that has been carried out on neurons in the spinal
ganglia, etc, This is obviously one area where new knowledge will be of
the greatest interest in the study of models such as the one developed here.

There is one other premise which, although not explicit in the above
formulation of the cell-assemply, is in some respects the most important
cf all, That is that the system of neurons under consideration be suffi-=
ciently large and the inter-connections among these neurons be sufficient-
ly dense such that the probabilities of existence of "the proper inter=
connections'" in premise (a) above be of a magnitude such that celi-assem-

blies may actually come into existence. Here the evidence from neuro-



anatomy is encouraging: the human cortex has of the order of 1010 neurons;
(peripheral) neurons have been observed with approximately 1500 synaptic
endings on them (i.e., 1500 input lines). Moreover, a given cortical
neuron (association layer) seems to send out connections to all points in
the spherical region surrounding it with radius approximately one milli-
meter,

Hebb®’s theory is in some respects a stimulus-response theory, where
"response' does not necessarily mean immediate (muscular) response. This
is reflected most strongly in premise (b), where the "initial selective
sequence of cortical events" refers to the "priming'" of the initial skele-
tal pathway assumed in (a) by massive "training'" stimuli together with the
stimulus which alone is to activate the assembly later on. The massive
"training" stimuli may result from a sensation, e.g., hunger, from some
environmental feedback, the action of other, already established assemblies,
etc,

Referring back to the statement of the problem given above, the main
problem then reduces to that of testing the role of the cell-assembly in
learning —— i.e., Hebb's theory =— via the digital computer simulation
of the models involved. One of the objects of this study is to give =—
in terms of the model — a precise characterization of the formation and
development of cell assemblies in some rudimentary learning process. It
is hoped that this will serve as the basis of a more detailed and pro-
found study in the future. It will be seen, however, that just to achieve
this modest goal, several fundamentally difficult problems must be solved.

A final observation on the character of cell-assemblies and phase

sequences of cell-assemblies is in order: That is, that they allow one



to discuss learning and associated problems at a 'molar' level (as Hebb
puts it) == i.e.,, in terms of aggregates of neurons, their statistical
properties, etc, — just as, for example, in statistical mechanics one
works with aggregates of point masses, with little if any attention being

paid to the individual bodies of the system,

1,3 THE CORTICAL NEURON AND SYSTEMS OF CORTICAL NEURONS

The advent of the micro-electrode and associated probing techniques
in the last fifteen years have allowed physiologists to detemrmine electri-
cal properties of neurons from direct inter-cellular readings. Consequent-
ly, a wealth of knowledge has been gained about the electrical behavior
of neurons, axonal propagation of pulses, etc, Most of this knowledge
has been gleaned from studies on non-cortical neurons, e.g., neurons in
the spinal ganglia, etc. A good, though slightly outdated, account of
this is given in Eccles [ 6], It is assumed that the properties of non-
cortical neurons carry over to those of the cortex. Histologically, the
cortical neuron is a neuron; while direct electrical studies on the cor-
tex are hard to interpret, they tend to support this assumption.

It is manifestly impossible to simulate the real neuron in all its
complexity. In fact, even if it were possible to do so, it would probab-
ly be unnecessary, as some of the properties of the neuron most likely
are unessential to the problem at hand. As in any science, simplifying
assumptions have to be made, albeit with great care, while trying to
retain the most essential properties of the object described. The neuron

to be simulated in this study is described in the following sections.

1.3.,1 Structure

The gross-structure of the physiological neuron is as follows,



The main part of the organ is the cell body or soma, S, which sends
out one fiber caliled the axon, A, which may later branch out quite profuse-
ly. A number of axons from other cells impinge on the soma of the body,
sometimes on extensions of the soma —= which often are quite profuse =
called the dendrites, of the given cell. The point of contact of an in-
coming (afferent) axon with the soma or dendrites is the synapse and is
usually characterized by a nodal swelling or button-like ending. There
is a very narrow gap between this ending and the cell body, called the
synaptic gap. Neurons have been observed with of the order of 1500 synap-
tic endings on their soma. A given incoming axon:may make contact several
times with a given soma. The afferent or incoming axons are, in effect,
input lines; the axon sent out from the soma, an output line. Thus the
neuron is a multiple input, single output device.

There are neurons of different structure than this, but their use in
the nervous system seems to be specialized and not of relevance here
(e.g., bipolar neurons in the optic nerve). It should be noted that in
the cortex there are neurons with very complex dendritic branching and
small — if any == axons as well as neurons with dendritic branching and

quite long axons.

1,3.2 Input and Output, Threshold

The axon of a neuron is capable of transmitting a pulse of electric
potential (called the action potential) with no significant decrease in
amplitude throughout its length. The pulse originates in the soma of
the nerve cell as a consequence of input-pulses on the incoming fibers
(synapses) to the cell and spreads down the cell’s axon to its various

endings. A cell is said to fire when it sends out such a pulse




The neuron (and its axon) is a threshold device: As a result of summation
of its inputs (at the synapses), depending on the length of the time inter-
val since the last firing, it either fires completely or not at all,
"Firing completely' means that the amplitude of the outgoing pulse is
independent of the magnitude of the input pulses,

The total input to the cell at a given time is determined by the
number of impulses present at the synapses at that time and the level of
activity (recall hypothesis (¢), 1.2 above) at these synapses. Actually
summation of this potential activity over a brief interval of time prob-
ably takes place. The inputs thus sum, in a fashion as yet unknow, spa-
tially and temporally. In the model, the inputs (see below) are added.

If the summed stimuli exceed the threshold at that time, the neuron fires
== if not, it does not fire.

Once the neuron fires, it cannot be made to fire again for a period

of time called the absolute refractory period. After that period of

time, it maintains a high threshold which gradually decreases to its qui-
escent or resting value. The time interval, after the absolute refractory
period, required for recovery to the quiescent state is called the rela-
tive refractory period. Thus, the neuron has the following threshold

characteristic:

P

\/*‘

absolute
refractory
period



The time intervai since the last fiilag oi the neuron is called e

In the model, time is quantized, t = 0, 1, 2, ... where a unit of
time corresponds approximately to one millisecond. A neuron fires at
time t + 1 depending upon
(1) whether it fired at time t. If it did, then it cannot be made
to fire until time t + k, where k, a positive integer and
a parameter of the system, represents the absolute refractory
period.
(2) whether the sum of the inputs exceeds the threhold at time t + 1.
If so, it fires at t + 1; otherwise it remains refractory.

(3) a spontaneous firing mechanism which is explained below.

1.3.3 Synapses

The exact nature of transmission across the synaptic gap and summa~
tion of the incoming pulses is as yet unknown. Here, it is assumed that
each input line has an associated synapse level, A. This synapse level
in turn is used to determine the synapse value, S(A), for that line, usual-
ly by a table giving the value of S(A) for each value of A. If there are
n active input lines, then the total input at time t is iglsi(t) where
Si(t) is the synapse value corresponding to the i-th line at time t.
Notice that in general there will be negative values of the synapse
values: these correspond to inhibitory connections.

According to the hypothesis (c¢), Section 1.2, the synapse levels are
subject to a synapse-growth law as follows: suppose there is a synapse
from neuron A to neuron B —~ i.e., neuron A sends, via its axon, one

connection to neuron B. Then, if A fires at time t and B fires at t + 1,



the synapse level from A to B. AABS is increased by a uniform amount §a.
If A fires at t and B does not fire at t + 1, MB is decreased by 6i;
otherwise no change in XAB is made: symbolically,

A(t) § B(t+l) = AAB > )‘AB + S8\
A(t) § B(t+l) = AMp > Aap = A

A ranges in value from 0 to a maximum, .In addition to the law stated
above, there is a probabilistic mechanism in the model that serves to
"slow 'down' the A change. Essentially, if A is to be changed (i.e.,
either A(t) & B(t+l) or A(t) § B(t+1) ), then a probability particular
to that level is consulted: if it exceeds a certain amount, then the
change takes place, otherwise no change occurs. This mechanism can be

used to bias the direction of synapse-=level change,

1.3.,4 Fatigue, Spontaneous Firing

In addition to the threshold function, there is a long term mechanism
which delays full-recovery, called fatigue. The evidence for this from
neuro-physiology, in the case of peripheral neurons, is fairly definite.
The fatigue function and its implementation will be discussed at length
in a later chapter. The effect of fatigue is one of the subgoals of this

study, as is that of spontaneous firing. There is also fairly good evi-

dence that cortical neurons fire spontaneously (see, for example,
Sharpless, S. K. and Halpern, L., M., [12]). In the model this is defined
as follows: if the recovery state of a neuron exceeds a certain value,
then the neuron fires with a certain probability. Spontaneous firing,
though not used in this study, may act as a form of drive if it is a func-
tion of some ''reward" or ''punishment'', etc., i.e., a non-specific global

disturbance. As the mechanisms of fatigue and spontaneous firing can be
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defined very exactly in the model. their effects can be studied under

tightly controlled conditions.

1,3.5 Systems of Neurons

The mammalian cortex consists of several layers of neurons of dif-
ferent structure. The outer layer, for example, consists of neurons
with axons which spread out horizontally over large distances; the inner
layers consist of neurons with very complex axonal branching in the imme-
diate vicinity of the cell; axons from within the cortex and perhaps those
from subcortical structures descend up through all the layers and back
down again, probably with complex branching along the way, etc., (see, e.g.,
Eccles, ibid., pp. 229-331).

Moreover, there are regions of the cortex, into which sensory input
is projected (e.g., the visual cortex) and other regions from which motor
control is effected.

These features can be simulated to some degree in the model, First
of all, a neighborhood relationship for a group of neurons may be defined
that determines the neurons to which the neurons of the given group are
connected and the density of connections sent out by these neurons,

This neighborhood relationship thus pemmits structuring several layers

of neurons with different connections for the different layers as well

as inter-layer connection. For example, in the figure below, layer 1 may
have very dense local connections, similarly for layer 2, while layer 3
may be more diffuse, neurons sending out connections over greater dis-
tances; layer 1 may connect to layer 2 in an approximate one-one fashion,

while layer 2 may send out diffuse connections to layer 3, etc,
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From the discussion so far, it is evident that there are many para-

meters and functions that can be varied in the given class of models;
threshold function, fatigue, spontaneous firing. neighborhood relation,
density of interconnections, etc. Moreover, the relationship between
the various possible choices may be complicated and subtle. Hence, the
great value of the simulation approach; hypotheses, such as those des-
cribed in 1.5, concerning such relationships can be tested ~=— hypotheses
whose validity (in the models) simply may not be rigorously demonstrable

a priori,

1,4 PREVIOUS NEURAL NET STUDIES

This study is not the first in its field, Rochester, Holland, et al,
[11] experimented first with a "discrete-pulse model," using a simulation
program for the IBM 701, then with an "FM model, using a simulation pro-
gram for the IBM 704. In the first case, they exhibited "diffuse rever-
beration,” a phenomenon somewhat akin to the sustained activity discover-
ed in isolated cat cortex by Burns [1 ], but could not demonstrate any
tendency on the part of the neurons to form cell-assemblies. While the
"diffuse reverberation," in the authors’ eyes, might serve as a mechanism
for short term memory, they felt that additional structure must be imposed
upon the net to allow formation of cell-assemblies. They conferred with

Milner and followed his suggestion [10] of introducing negative synapse



values into their model. At the same time, taking advantage of the larger
and faster IBM 704 computer, they reprogrammed their model so that the
detailed firing history of the neurons was lost, being replaced by a fre-
guency of firing for each neuron. This frequency varied with the time,
hence the term "FM model.'" They simulated a net of 512 neurons with six
inputs each. In their experiments with this model they observed the for-
mation of cell-assembly-like structures, i.e., sets of neurons such that
within each set the connections between the neurons had large, excitatory
synapse values while between the various sets themselves the interconnec
tions had large inhibitory synapse values. They also observed phenomena
somewhat like the fractionation and recruitment of neurons, as required

by Hebb’s theory. On the other hand, the cell-assemply=-like structures
they observed could not arouse one another, as liebb's theory again requires.
+hat i1s. their model was too environment-dependent.

in later studies with this model, Holland and Rochester demonstrated
binary learning (Holland =—— personal communication). However, for a vari-
ety of reasons, the project was abandoned and not resumed by any of its
originators It was continued, however, at the Logic of Computers Group
at the University of Michigan, under the supervision of John H Holland.
by J W Crichton [ 5],

Crichton and Holland [ 5] proposed a new method of simulating neural
nets which took advantage of the increased storage of the IBM 704 computer
and which would allow simulation of up to 2000 neurons with about 150 in-
puts per neuron. This gives rise to the so-called 'variable-atom' model,
in which all neurons with the same characteristics (i.e., firing history
threshold, fatigue, etc.) are lumped together into an "atom.'" Computation

of the number of active inputs to a neuron is performed by reference to



appropriate Poisson tables.

This model was never simulated on the IBM 704, The availability of
an IBM 709 computer, a machine representing a considerable advancement
over the IBM 704, possessing much improved input=output equipment and pro-
cedures and new powerful operation codes, caused a major change in plans
and the model was to be reprogrammed for the IBM 709, taking advantage of
its new features, Crichton was joined by Finley at this point.

Crichton and Finley modified the model, programming it for simula-
tion on the IBM 709 [4 ]. Early experiments with this model revealed
the distressing fact that the model was not capable of sustained activity
such as Burns observed [l ], Stimulated "slabs' would not maintain activ-
ity indefinitely, but in fact died down rather rapidly. Marked epileptic
behavior resulted — that is, intense activity alternated with low activ-
ity, leading rather quickly to "death,” i.e,, no activity at all. No modi-
fication of network parameters seemed to produce a cure for this behavior
and we were forced to re-appraise the whole model. This lead to the dis-
covery that the statistical techniques used in the model contained a fatal
flaw, basically that it would not allow a small number of neurons to pro-
duce a sufficient stimulus to fire a single neuron. Several modifications
of the original technique were tried with little success. This forced us
back to basic principles and led to the implementation of a new technique
aimed at introducing greater statistical disuniformity into the model.
Unfortunately, this model too was discovered by the current author to be
defective. The variable atom concept was discarded, being replaced by
a straightforward neuron-by-neuron simulation. The latter method, although
perhaps slower and more memory consuming than the former, lends itself

quite well to detailed statistical analysis.



1 5 Scope of This Study

In Chapter 2, a detailed formal description of the class of models
is given. This is followed in Chapter 3'by a summary account of some
simple experiments involving networks without €ycles (i.e.,, no feedback).
The object of these experiments was to determine how well the behavior of
a single isolated neuron of the model would correlate with various patterns
of inputs presented to it. In reality, this chapter summarizes results
obtained in the early stages of this work, In some respects it is not
that relevant to the hard core of the later stages. It 1s included here
primarily for historical reasons. A detailed description may be found in
Finley [ 7].

In Chapter 4, a comprehensive discussion is given of the analysis and
operation of networks with cycles (i.e., feedback present). This is easi-
ly the most important chapter of this work. The discussion proceeds from
the simplest types of networks with cycles (uniform random distribution
case) to more complex networks (distance-bias). The important concept of
"steady-state behavior' is developed, with an analysis that may be used
to determine the threshold curve parameters in terms of other basic¢ net.
work parameters. The role of the simulation as a means of bypassing
tedious (if not impossible) mathematical calculations is repeatedly empha-
sized. Finally, an attempt is made to characterize simple cell-assemblies
that might arise as a consequence of certain training stimuli (single
periodic stimuli and alternating periodic stimuli).

The discussion of Chapter 4 is a semiformal and heuristic exposition
of certain hypothesis. The remaining chapters deal with the experimental
verification of these hypotheses

Chapter 5 is a descriptive essay on the experimental methodology
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peculiar to experiments involving networks with cycles. Chapter 6 is
devoted exclusively to stimulus-free or steady-state behavior of networks
with cycles, Chapter 7 to networks with periodic stimuli.

The chief results of Chapter 6 center about successfully producing
stable, steady-state behavior in networks with a sufficiently complex
¢yclic structure that cell-assemblies might be expected to form when
patterned external training stimuli are introduced into them. This means
that the networks may contain sufficient information capacity to allow
cell-assembly formation (development of learned responses) as a result of
"training’ stimuli from the enviromment. For appropriate setting of cer-
tain network parameters, this is not too hard to accomplish,

Chapter 7 contains two main results. One is the formation of a simple
cell-assembly (closed cycle). The essential role of the synapse-growth
law is clearly brought out here. The second result is the partial forma-
tion of competing cell-assemblies-partial, since computer funds dictated
cessation of experimentation. Partial though the evidence is, it seems
to suggest that a more complete experiment would be entirely successful.

Several appendices are included that are concerned with some of the
behind-the-scenes aspects of the simulation, e.g,, random number genera-
tion, testing statistical distributions, etc. In point of fact —— as is
perhaps true of all experimental work —- perhaps 90% of the effort in-
volved in this work was concerned with '"behind-the-scenes” problems, such
as programming special-purpose 1/0 routines, statistical tests, reprogram-
ming the network simulation routine, etc. Such tasks are the analog in
simulation of the design and check-out of physical apparati in, say,

Physics or Chemistry.



2. FORMAL DESCRIPTION OF THE MODELS

2.1 INTRODUCTION

In this chapter, the structure and operation of models of the class
being considered are defined formally  The notions of run and experiment
are clarified and, using the network equations, the abstract prototype
for all experiments is given. Recursive equations are given for the vari-
ous network functions, such as threshold, fatigue, etc. Following this,.
in the next section, an attempt is made to clarify the role of the various
functions and to display possible functional forms for them, though no
attempt is made at this point to give formal derivations. Finally, a note
is given on the network simulation program, followed by a reference list

of symbols used in this chapter.

2.2 THE NETWORK EQUATIONS

A neural networkaﬂl , of the class of models considered in this study.
consists of a set of N elements called neurons with a set of specified
directed connections between these neurons. 'Directed" implies, for
example, that neuron A may send a connection to neuron B, but not con-
versely, i.e., there is a connection A-to-B, but not B-to=A  Such a con-
nection is referred to as the output of A, the input to B. A neuron of
the model may have many inputs, but it always has only one output. This
output, however. may branch and go to several neurons. including the
source neuron. as inputs or go to the environment. All that is external
to the network itself but which influences, and is influenced by, the net-
work, 1s called the environment. In general the environment will supply
input to selected neurons of the network and receive output from selected
neurons. Included in the concept of environment would be, for example,

reflex mechanisms, a simulated biological environment, a human observer,

16



etc.
Time is quantized in these models, t = 0, 1, 2, 3, .. . At any

time t, the state of the network, S(t), is determined by the functions
(see below) performed by the model; likewise the state of the environment,
E(t), is determined. From S(t) plus the input, I(t), to the network at
t from the environment is determined the state at time t + 1, S(t+l).
Also, S(t) determines the output at t to the environment, O(t).
Symbolically,

S(t+l) = F (S(t),I(t)) (t=0,1, 2, ...,
where F is the state-transition function for the network. (In general,
F is far too complicated to define explicitly, however it is defined
implicitly by the metwork equations given below.) Likewise, E(t+1), the
state of the environment of time t + 1, is determined by E(t) and 0(t):

E(t+l) = FE(E(t)BO(t)) (t=0,1, 2, ¢00)e
Since I(t) = g(E(Y)), for some function g, then

S(t+l) = F (S(t),I(t))

Fo[S(t),g[Fg(E(t),0(t))]].

This is a recursive equation for S(t); S(0) and E(0) form the initial con-
ditions for the network and the environment respectively. Given S$(0) and
E(0), and a starting signal, the network and environment proceed automati-
cally over the time steps t = 0, 1, 2, ... until a stopping condition,
determined in the environment, is reached. Notice that the cycle, net-
work -+ environment -+ network, forms a closed feedback loop. The procedure
of running the system <<yetwork, environmenﬁ) *, given S(0) and E(O),bfrom
t=0ort= to(g 0) down to a terminal time step te will be called a run.
The sequence of outputs 0(0) (or O(tp))9 teog O(tf) form the behavior of

the network. However, the term 'behavior' will be used in the broader
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sense of reaction of the network to the environment. The specification
of a network-environment pair, the initial conditions, and a set of hypo-
theses about the behavior of the network constitutes an experiment.

Thus, the abstract prototype of all experiments has the following

structure:

(Given: Behavioral Hypotheses, S(0), E(0))

Compute E(t) = F,(E(t-1),0(t-1)) !

H

Compute S(t)
t+1>5t I

By (S(t-1),I(t=1))

Does stopping criterion

hold? —S5 3 Stop

No

As mentioned, the state-transition function is too complicated to
be defined explicitly and must be defined implicitly. This is done as
as follows; At any time t, a neuron may fire or not fire. If it fires,
it puts a 1 at its output, if not = a 0. The set of neurons that fire
at time t. together with input from the environment, will determine the
set that fire at t + 1. The condition for the firing of the i-th neuron
at time t + 1 is given as a recursion relative to the real-valued func-
tions R, F, S, and I which in turn are defined relative to recursions on
Jri(‘c'),‘9 li(t) and Aji(t) by the functions V, ¢, S, and I. Once these
functions are given, then the behavior of the network is determined for
all t from the initial states. This condition is
T.(t): [6,(t+1) = 1] if and only if [R, (t) + F,(t}éz? S..(t)s.(t) + I.(t)]

i i. i i 731 i i

Ci=1,2 - Nj
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where &§.(t) = 1 means ‘neuron i fired at t.'" Thus, T says that neuron i
it

fired at t + 1 if and only if the condition

Ri(8) + Fi(t) <3, 5.,(2)6;(t) + 1, (1)

=
holds. Ri(t) and Fi(t) are the threshold and fatigue values of neuron i
at time t respectively. Sji(t) is the weight or synapse value of the
directed connection from neuron j to neuron i at time t. For neurons j
which do not send connections to neuron i, Sji may be considered as equal

to zero. Ii(t) is input to neuron i at t from the environment; it will be

referred to as the pre-stimulus to neuron i. R, F, S, and I are all real

numbers; R and F > 0, S and I either » or < 0. Negative values of S are
called inhibitory inputs, positive values are called excitatory. They
are defined recursively as follows;

R, (t) = V(r, (t))

where V, the threshold function, is a real-valued function of ri(t);
ri(t) is the recovery-state of neuron i at t defined as follows:
S0 if 5i(t) =1
ri(t) = ri(t=l) + 1 if Gi(t) = 0

k Toax if §,(t) =04 r,(t-1) = Toax ©F rmax:I

For ri(t) =0, ..., L V(ri(t)) =T, is the absolute refractory
period; i e., if 6i(t) = 1, then neuron i cannot fire again until t + L
Note that the function V is the same over all neurons of the net.

Fo(t) = 0(2, (1))
where ¢, the fatigue function, is a real-valued function of Zi(t); zi(t)

is the fatigue-level of neuron'i at t defined as follows:
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( zi(tal) + Az if ai(t) = 0

[} if 6.(t) = 0 and 2. (t=1) = &
li(t) =j‘ max i | i max

zi(t~1) » Al if éi(t) =1

gmin if 6i(t) = ] and Qi(t=l) = zmin

where A1 > A2 >0, A1 and A2 are extremely important parameters, deter-

mined from the system background firing rate, fb’ by the relation

Sji(t) = mjiS(Aji(t))

where S is the synapse-value function, taking positive, negative, and zero
values, mji is the multiplicity of the connection j » i, while Aji(t) is
the synapse-level of the connection j -+ i at time t. Fb is the expected
number of neurons of?ga firing at t whent;L s operating in steady-state
(see Chgpter 4). It is defined as follows:

S Aji(E=1) + 1A 5 (e-1)
Aji(t) =<

A..(t=1) = 1 iff &, (t-=1
j1 (1) = 1 A£F 5 (t-1)

4]
i

1 and 6i(t) 1 and pi(t) > U(Aji(tal))

]
i

1 and Gi(t) 0 and pi(t) > D(Aji(tsl))
Aji(t:l) otherwise.

pi(t) is a number drawn randomly and independently for all i and t from

the open interval (0,1). U(X) and D(A) are the probabilities of change up

and change down of synapse-levels respectively; notice that U and D in

general vary with A, If A = xmax9 then U(A) = 053 if A = A then

min’
D(A) = 0. The condition pi(t) > U(Aji(tal)) says simply that Aji(t=1) is

incremented by 1 with probability U(Aji(tul)) at t. As with Al and By

U and D are extremely important quantities, and relate to the system back-

ground firing rate fb as follows:

F
£ o= D) =....z., (for all A),

b T(X)y +D(1)



The law for incromenting or decrementing i 1s the implementation in the
models of Hebb's synapse growth law
The multiplicity m],i of the connection j + i determines the density

of the connection mii =0, 1, 2, = 0 corresponds to the case

m..
ji
of no connection from j to i. Specification of the set of mji”s for all
i. j determines the connection scheme for a given network
Thus, with these recursive definitions in mind, the flow-chart given
above representing the abstract prototype of all experiments takes on the

following more specific form

(Given: Behaviorai Hypotheses, ri(O)i ;li(())a in(O) for all 1,j = 1, 2,

Start
SN, 7 A
—~ [t = 0}
(a) ——
\ N _,l
1: 1, » N(1)
B )
\L(
Compute Ri(t=1) = V(ri(t=1))
Fi(t=1) = o8, (t-1))
| Tor j . 1, . N(Ly .,

IS..(t-1)8,(t=1 %
1853 (6165 (+-1) |
Deietmine Ii{t:l)
5/ vvvvv —
Is 8.(t) = 1; i.e. .
yes i o
{'—"" Is Ri(t—:ljFia‘t«l) < gf’ji“‘t:le {(t=1) + Ii(t“'l) ? ; !‘
! ] S
\/ — o W
> [ > =]
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In this diagram, the notation "A»B" means that the value of A is replaced
by the value of B; "i = 1, "5 N(1)" means that the computation from

the occurrence of this statement down to the point B is first done for

i = 1, then repeated for i = 2, i = 3, ..., down to i = N. (This is just
a "loop" on the index i in increments of 1.) Pl(t) is the condition for

incrementation of Aji(t) given earlier, Pz(t) that for decrementation.

2.3 THE NETWORK FUNCTIONS R, F, AND S

In the preceding section, a formal characterization of the functions
R, F, and S was given, with no attention being paid to their specific ana-
lytic forms. As was mentioned in the Introduction, the study of these
forms is a subgoal of this paper, since prior to this there has not been
a rigorous demonstration for any one of these functions assuming a given
functional form. Since these functions may be specified as one wills,
they in fact are parameters of the network. Given values of these param-
eters and values of N =7§tg m.., i,j =1, .., Ny, a specific network is

ji
determined.

2.3.1 Control of Firing Rate

From the network equations Ti(t) one can see that the function of
the threshold value Vi(t) of a neuron, as modified by the additive quanti-
ty Fi(t)9 is to determine whether or not neuron i of the network fires at
t. If the combined input to neuron i is at least as great as the product
of Ri(t) and Fi(t)9 then it fires, otherwise it does not. The function V,
which determines R, then controls the firing rate of the neurons of the
networkﬂﬁkt Immediately after neuron i fires, V is infinite and i cannot
fire. After a few time steps (ra —= the absolute refractory period),

it "'recovers" slightly, that is a very large input stimulus can cause it
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to fire, after a few more, less stimulus is required, down to the point
where -— if it has not yet fired, a minimal stimulus is required to cause
it to fire. This point is called the resting or quiescent value of V,

Vq‘ The function ¢ which determines Fi(t) modulates the control of V in
the sense that if the firing rate of neuron i is high, then ¢ is large,
hence larger stimulus is required to cause i1 to fire. If the firing rate
is low, the magnitude of ¢ is small (close to 1) and less stimulus, depend-

ing upon the value of V, is required.

2.3.2 The Threshold Function

From 2.2 one sees that the threshold value, Ri(t)D of neuron i 1is
that value which corresponds to the recovery state L of neuron i; that
is, r, = the number of time steps since neuron i fired. Each neuron 1 of
the network has associated with it a value of T:s depending on its immedi-
ate firing history. Thus, if éi(t) =1 (i.e., neuron i fired at time t),
then ri(t) = 0; if 5i(t:10) = 1, and Si(th) = 0, ooy Gi(txlj = 0,
jsi(t) = (0 (i.e., neuron i fired at t-10 and did not fire again up to and
including time t), then ri(t) = 10, Each time neuron i fires, Ty is set
to zero., Each time it fails to fire, it i1s incremented by 1, i.e.,
ri(t) = ri(t=1) + 1, T, has a maximum value T further incrementation
fails to change it — i.e., o+ 1 1s the same as L The function V(ri(t))
which gives the value Ri(t) is the same for all neurons ofwgty Because,
at any given time t, these neurons may have distinct values of r(t), they
will usually have distinct threshold values.

The absolute refractory period or period of infinite threshold is
T,o That is, if Gi(t) = 1 (neuron i fires at t), then i cannot fire

again until t + L {until T, = ra)b The total number of time steps to
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quiescence, that is. the resting values of threshold, is rqe Thus, if
neuron i fires at t, it is fully recovered (has reached the resting value)

at t + rqb In general in this work, r_ = 3, rq = 16, and r, = 64

a
There are three important aspects of the threshold curve. The first

is its value at r = L the second is its quiescent value =— i.e.,

Vq = V(rq)a and the third is its functional form (i.e., exponential, qua-

dratic, linear, etc.,) especially in the mid-recovery range

r=r1, ¢+ (rq - ra)/z. A procedure for determining the form of V(r) will

(e given in Chapter 4. Note that the reciprocal of the recovery state for

a given neuron i, l/ri? averaged in some appropriate fashion, will corre-

spond to the firing-rate of neuron i. For example, if a neuron fires on

the average once every five times, its "average" recovery is r = 5 and

its firing rate = 1/5 = 1/T,

The threshold curve, then, has the following form, where Vm = the max-

imum value (for r = ra)9 Vq = the quiescent value (r = rq)z

V(r) V= ‘
(threshold) N

r=r q
The functional form of this curve, the quantities Vm and Vq as well as
the initial values of r for each neuron of the net, will be specified

for each experiment. The quantity Vq is important because it defines

the least amount of input stimulus (synapse-value) which may fire .
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the neuron,

2,3.3 The Fatigue Function

As already mentioned, the fatigue value Fi(t) serves to modulate
the threshold value Ri(t) of neuron i and hence modulates the firing rate
of i. The desired effect of the fatigue function is as follows: given
the neuron in a fully recovered state, that is, the threshold value is
near Vq and the fatigue value is 0. Suppose inputs are presented to the
neuron so as to cause it to fire at a fairly high rate (above the back-
ground rate fb)j Then, gradually over a period of a large number of con-
secutive time steps the fatigue value, i.e., ¢(2), of the neuron increases
in such a fashion as to force the firing rate of the neuron to drop down
to fb on even lower, keeping it there as long as the given inputs are
present. Suppose next the inputs themselves drop off so that at the most
they would cause the neuron to fire at fbo Then, the fatigue value, ¢(2)
decreases slowly back to 0 so as to preserve approximately the average
firing rate of fb” Intense activity of the neuron, that is, firing at
near maximal rates, produces more abrupt increases in ¢, whereas sudden
drop-off in activity, that is, firing at very low rates (<fb) produces
a more abrupt decreases in ¢.

The fatigue value Fi(t) of neuron i is determined by the fatigue func-
tion ¢ from the fatigue level li(t) of neuron i at time t, Fi(t) = ¢(2i(t))_
The function ¢ is the same for all neurons of the network&iwr Similar
remarks for the variation in threshold values among the neurons of the
network apply to the fatigue values as well. The fatigue value is used,
as has been indicated, as an additive factor of the threshold value for
the given neuron, ¢ is a monotonically decreasing function of & with

¢ 2 1, The larger the ¢, the larger the sum R + F, Thus, neuron i may be
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fully recovered, ri(t) = rq, and Ri = V(rq(t)) = Vq’ but ¢ may be so large
that Ri(t) + Fi(t) = Vq + ¢(2i(t)) is much greater than Vm' Fatigue is
rendered ineffective by setting ¢(2) = 0 for all 2. Then Ri(t) + Fi(t)
always equals Ri(t). Note that the fatigue value has no effect on the
absolute refractory period (¢ + ®» = =),

The quantity 2 for a given neuron varies incrementally from 0 to zm
with 1/2,m as the smallest possible increment, The manner of variation is
the following: Suppose the neuron has fatiguc level 20 at time t., Then,
if the neuron fires at r, 20 is decremented by a quantity Al’ i.e.,

10 > 20 - Al. If it does not fire at t,, then it is incremented by

a quantity AZ’ i.e., 20 > 20 + Az. This is illustrated below:

\\\\ neuron fired at t
7

o(2) N

neuron failed to fire
at t

In generali, A, > 0, 4, > 0, and 4, > b,. Decrementation below 0 and incre-

1

mentation above lm have no effect, i,e., 0 - Ao, = 0, nm + A, =2,

1 2 m

A1 and A2 are extremely important numbers since in terms of them is
expressed a crucial parameter of the net, namely the firing rate at which
a neuron experiences no net change in fatigue level. If a neuron is firing
at this rate - call it fb — then over an interval of length T time steps,
say, there is no net change in the & for that neuron. Recalling that be
is the expected number of times a neuron will fire in the given interval
and (l-fb)T the expected number of non-firings, this means that

Albe - Az(l-fb)T = 0.
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Solving for fb gives

2.5
b A1 + A2 N

This quantity, fbg already mentioned, is called the background firing
rate or the ''mominal system average.' Tt will be treated in detail later
on. Note that given fbg one can determine Al and AZ (up to a constant

multiple k > 0 which may be chosen as 1) and, conversely, given A, and A

1 2°

fb is uniquely determined. fb plays an important role in Crichton’s
theory [ 2].

The functional form of the fatigue curve, the numbers A1 and b, (or,
fb)9 as well as the initial value of 2 for each neuron of the net, will be
specified for each experiement., The form of the curve is clearly of the
greatest importance since it, together with the numbers A1 and Azp deter-
mine the recovery rate of a neuron as well as its fatiguing rate. The
desired properties of this curve have been outlined above. The rationale

for these will be given in the next chapter. In general, A, and A, are

1 2
functions of 2. This allows greater flexibility in creating ¢(%). For
example, ¢ may be made into a hysteresis function

In contrast with the case of the threshold, no convenient analysis

g
relating ¢ (%) to the other network parameters N =B1

[

»p (see Chapter 4),
V(r), etc. was developed in the current work. See Chapter 7 for a further

discussion of this

2.3.4 The Synapse Value Function

Suppose a neuron j sends one directed connection to another neuron i.
From 1.3.3, recall that to each such directed connection at time t is
associated a positive number, the synapse level, Aji(t)c Just as with

the recovery states and fatigue levels, A is used to determine a value,
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the synapse value, S, by means of a functional relationship.  has
a range from 0 to Ap: It is incremented according to the synapse-growth
law as follows. suppose the connection j > i has the synapse level i.

Then, if j fired at t - 1 and i fired at t, A, = A, + 1, with probability

0 0

Otherwise, A, » A, — i.e., no change. If XO = 0, no further

U(a 0 0

o)
decrementation is allowed; if AO = Am’ no further incrementation is allow=
ed. The statement “XO »'AO + 1 (k0~1) with probability U(AO)(D(kOJ)“

means that if AO is to be increased (decreased) =— depending upon whether
j fired at t - 1 and 1 at t, etc. — then the incrementation takes place
with probability U(XO)(D(AO)){ Note that U(km) = 0 and D(0) = 0. The in-
crementations with probability U(AO) or decrementations with probability
D(AO) form independent trials, e.g., if the synapse level from j to i is
AO and that from k to & also equals X,, where both neurons j and k fired
at t - 1, and both i and & fired at t (hence Aji and Akl are both cand=
idates for incrementation), then the probability U(xo) is consulted inde=
pendently in each case.

The numbers U and D are of great importance, especially in light of
the theory developed by Crichton mentioned above. Like the numbers A1 and
AZ of the preceding section, U and D are related to the nominal system
average, fb“ The reason is quite simple: Assume that the rate of change
up of a synapse is proportional to U, say = kU, likewise that the amount
of change down is proportional to D, say = kD. fb is again defined as
that firing rate for which no net change in A between A and B will occur,
assuming for the moment that neurons A and B are firing randomly and
independently at the rate fbc If this is the case, then fg will represent

the probability that the firing of A at t - 1 is fillowed by the firing

of B at t ("success'"), likewise fb(lcfb) is the probability that a firing
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of A at t - 1 is followed by a non-firing of B at t ("failure™), féT is

the expected number of "successes" over a time interval of length T,
fb(lmfb)T the expected number of "failures." kaiT is the expected net
increase in the interval of length T; kbe(1=fb)T the net decrease. By

assumption, the difference of these is zero and

UE) = D(1-£,)f,
or
F
f = D =m}3e

Recall that the firing or non-firing of a neuron is determined by
a comparison of the sum of the synapse values on the active inputs (that
is, those connections coming from neurons which fired the preceding time
step) with the sum R + F (which is infinite if the neuron has fired at
one of the previous r, = 1 time steps). If this sum is less than R + F
the neuron does not fire, otherwise it does. No restriction has been
placed on synapse values, However, synapse values for small A's are
assumed to be negative, large A's == positive. The negative synapse
values for active input lines correspond to inhibitory inputs to the neu-
ron. S is assumed to be some monotonic increasing function of A. Since
U and D are both functions of A, it is possible to vary the rate of change
of S(A) over the range of A. This feature may be introduced to tend to
"trap" values of A (hence S(A)) in certain ranges. For example, it might
be desirable to bias the change of A away from values corresponding to

S(A) = 0 + ¢ (¢ small, positive), etc.

2.4 NOTE ON THE SIMULATION PROGRAM
A diagram representing the operation of the network, given an environ-

ment, the initial conditions. and the behavioral hypothesis was given



earlier. A program was written for the IBM 7090 computer which simulates
the operations indicated in that diagram  This program consists of four
basic parts: (1) the lists whi:n describe the state of the network at
each time step. The ::sts are s block of reference information for (2)
below and in turn consist of two parts: (a) a permanent part which 1s
never changed in the course of a run, and (b) a volatile part which may

change; (2) the network program which computes at each time step the vari-

ous functions required by the model, referring to the lists for parameter

values and making appiopriate changes to the lists; (3) the executive and

environment routine, a supervisory program which performs two functions:

(a) it monitors pertinent network parameters, running time of the program,
etc., and handles the appropriate output editing and (b) simulates the
environment of the model — i.e,, computes input and output functions,

making any necessary changes to lists; (4) input-output editing and other

special-purpose routines, usually ancillary to the executive routine.

The network program seldom ever will be varied: the executive and
environment routines will vary from experiment to experiment and often from
run to run. Parameters in the lists will vary from run to run in general,
while those lists particular to a given experiment will vary from experi-
ment to experiment. It is the lists that determine the structure of
a given net; i.e., neuron inter-connections, density of connections, etc.

Note that the executive routine contains provisions for experimenter
intervention in an experimental run. The experimenter, while watching
a real-time display of selected functions of the network, may at any time
change the display, modify parameters, store the entire state of the sys-
tem for future back-up purposes, etc.

Diagrams giving the overall structure of the program and the flow of
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control are given below:

Structure of Program

) Lists [
r— — (Storage) |
~l T Reference Paths
Network - - - '““]
Prqgram — — ——1
T l Control Paths I l
. 3
Executive and Environment Ancillary
Routines Routines
—_— — P . .

Flow of Control

Start

N

¥
I Executive and Environment || Ancillary

Routines F&—~————~—ﬂ——- Routines

Network Program
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Symbols Used in Section 2.2

a neural network

=i

the number of neurons in E\ .

S(t) state of the network at time t

E(t) state of the environment at time t

I(t) input to the network from the environment at time t

0(t) output from the network to the environment at time t

FN’ FE state transition function of the network and the environ-

ment, respectively

Gi(t) =1 the statement 'meuron i fired at time t"

Ti(t) the condition for Gi(t) = 1

Ri(t) threshold-=value of neuron i at time t

Fi(t) fatigue-value of neuron i at time t

Sji(t) synapse=value of the connection from neuron j to neuron i
at time 't

Ii(t) input to neuron i at time t from the environment

ri(t) recovery state of neuron i at time t

Zi(t) fatigue-level of neuron i at ‘time t

Aji(t) synapse=level of the connection from neuron j to neuron i
-at time t

V(ri(t)) threshold function, gives Ri(t) as a function of
r,(t), Ry () = V(r,(t))

¢(2i(t)) fatigue function, gives Fi(t) as a function of zi(t),
Fi(t) = o(2,; (1))

S(Aji(t)) synapse-value function, gives Sji(t) as a function of

lji(t)s Sji(t) = S(Aji(t))



pi(t) random number associated with neuron i at time t
1 fatigue-level change if Gi(t) =1
2 fatigue-level change if éi(t) =0
fb nominal system frequency or average background
frequency
V.
FB expected number of neurons of()L_firing at t
U(Aji(t)) probability of change for synapse-level kji(t)
D(Aji(t)) probability of change down for synapse-level Aji(t)
mji multiplicity of the connection from neuron j to
neuron i
Symbols Used in the Flow-Diagram
i=1, ..., NQ) "loop" to B N times, starting at i T 1, incrementing
i by 1 each time; i.e., first i = 1; then i = 2, 3,
«oc, €tc, through i = N.
A->B replace the value of A by the value of B
Pl(t) the condition for incrementing Aji(t)

Pz(t) the condition for decrementing Aji(t)



3., CORRELATION EXPERIMENTS, CYCLE-LESS CASE

3,1 INTRODUCTION

In the implementation of Hebb's theory, several questions may be
isolated in an attempt to elucidate the nature of the cell-assembly.
Perhaps the first of these concerns identification of cell-assemblies,
that is, in terms of the given models, what are the criteria for cell-
assembly-ness? This question is aimed at a static, structural condition
and may be paraphrased as follows: suppose a model is given in which it
is suspected that cell-assemblies have formed. How, then, are they iden-
tified? The second question (which, causally speaking, should be first)
is concerned with the formation of cell-assemblies: 1i.e., in terms of
the given models, how does a cell-assembly like structure come into exis-
tence? This question is aimed at dynamic, structural changes and goes
hand-in-hand with a third: what are the stability conditions, in the
given models, for cell-assemblies? To make this last question more mean-
ingful, the informal description of cell-assembly given in 1.2 is augment-
ed as follows; One may regard a cell-assembly as a union of a large
number of reverberatory circuits (in the Lorente de Ng sense of the temm),
any several of which may be active for a very brief period of time and
interrelated so that while any one of the circuits may be rapidly extin-
guished (within 1/100th of a second in the physiological situation), yet
for a much greater period of time (several seconds or longer) the struc-
ture as a whole is active in the sense that at least one of the component
circuits is active. That is, within a given cell-assembly there are
a number of alternate pathways which perform the same function. There-
fore, the stability question for such a structure is absolutely crucial,

This character of the cell-assembly accounts for the fact that the loss

34
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or damage of part of a fully developed cell-assembly need not impair its
overall function, thus for the seemingly small effect in some cases of
brain damage upon learning ability and memory. (This is part of Hebb's
dual trace memory mechanism and accompanies his postulate of synapse
growth since the reverberatory activity would assist to retain memory
temporarily while at the same time it would facilitate the long-run
growth changes necessary for permanent memory (see [ 9], pages 60-78, in
particular, p. 62).

The cell-assembly is, therefore, not strictly dependent upon indi-
vidual neurons for its functioning. For its growth and development, it
does depend upon the synapse-growth law (Hebb's neurophysiological postu-
late) and upon the availability of neurons which can be "'recruited” to
the assembly when they 'cooperate' with it and likewise which can be
dropped out of the assembly (fractionation) when they fall into disuse.

The ability or non-ability of the models to allow recruitment of
neurons to an assembly or fractionation of neurons away from it, then
poses a fourth question which is taken as the starting point of this
study: do the neurons of the models have the ability to be recruited into
an assembly when presented with the same input patterns and, dually, to
fall away through disus¢ 7 This question leads, as shall be shown in the
next section, to simple networks which are extremely useful for studying
the behavior of single neurons and small groups of neurons,

Crichton, in the appendix to his thesis [ 2] has discussed the sta-
bility of cell-assembly-1like structures, called by him '"'semi-autonomous
subsystems.' Some results of his analysis will be used later. Questions
of stability and structure of cell-assemblies are considered in Chapter 4.

The results of this chapter form the basis of the design of the U(A) and
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D(A\) tables used in the experiments of Chapters 6 and 7.

3.2 CORRELATION

The behavior of a neuron of the model depends upon its input history
(which includes synapse value changes on ‘the input lines) and upon its in-
ternal state changes (threshold, fatigue). To determine the response of
a given neuron to a particular input pattern, one has to take into consid-
eration the effect of this pattern upon the internal state changes of the
neuron and the relationship of this pattern to any other inputs the neu-
ron may have, Basically, therefore, the behavior of a neuron may be
regarded as being determined by some function over the totality of its
inputs.,

Consider now a situation in which recruitment might occur. Let C be
an uncommitted neuron of the system and suppose it is presented with
a patterned input from a source A of neurons. (A might be, for example,
a set of neurons of area 17, reflecting a direct sensory input from the
retina,) Lump all the other inputs to C into a group B, Now it might be
that A directly affects a system of neurons D, which may form part of
a cellaassembly/fho The synapse values from the neurons of A to C will

be, by assumption, low initially.




Likewise, the synapse values from A to D are assumed to be high. If, as

a result of repeated application of the input from A, the synapse values
from A to C rise and become high, then the neuron C is a good candidate
for recruitment into the cellaassemblyc%ka Whether it is recruited or

not depends, of course, upon its relationship to other neurons of the
system, specifically, upon how i's output affects some of the successor
neurons to D, It may merely continue to operate in parallel to the assem-
bly 049 In fact C could become part of a system of neurons which would
tend to suppress, via inhibitory connections. an antagonistic assemblyf\fc
In any case, the question of when C would "correlate" with A in its firing
arises. Here ''correlate’ means that the synapse values of A to C are high
and that C tends to follow the same firing pattern as do the neurons of A,
Therefore, whether C correlates with A or not depends critically upon the
relationship between the firing patterns of A and B, The conditions under
which correlation occurs are essential to the formation of cell-assemblies,

as shown by the experiments of Chapter 7,

3.3 EXPERIMENTAL CONFIGURATIONS FOR CORRELATION STUDY
3.3.1 Overview
The general configuration of neurons that is to serve as the basis

for the first part of this study is the following:
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A and B are sets of neuron, C is a single neuron., Each neuron of A and
B sends a connection to C. There are no other connections between neurons
of A and Band C = i.e., no cycles. The neurons of A and B are assumed
to be driven from stimulus sources A' and B'. From the patterns on the
input lines A to C and B to C and the initial states of C, the output 0.
may be determined.
The sizes of the sets A and B, the particular patterns which they

supply to C, the initial states, the net parameters — all these are to
be specified by the particular experiment at hand. Thus, A and B may con-
sist of a single neuron each or A may have N neurons and B have none, etc,
One can readily see then how it is possible to study the behavior of A
as a function of a wide range of possible inputs and at the same time
study the response of C '"in isolation," as it were, given different set-
tings of the basic net parémeters”

"Amodel situation of concern in this chapter is that in which group
A essentially provides "back-ground noise'" to C, while group B provides
patterned inputs of various types. One example of this is the case in

which the neurons of B fire within a periodic envelope as follows:

Input I
Stimulus ]
—
0 neurons of neurons of
B firing B quiescent

Questions such as what are the lengths of the '"on" and the "off" periods
in relation to neuron parameters, what are suitable firing rates of the
neurons of B in the '"on'" and the "off'" periods, etc., immediately arise

and become of the greatest importance. The next step would be to have
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both A and B providing similar patterns such as this but out of phase,

then to ask how C depends upon the phase difference, etc.

3.3.2 Network Structure

The models of interest consist of N = 2M + 1 neurons (where N is
the size of the network). The N neurons are partitioned into two groups
of M neurons each and one group of one neuron, The former two groups
will be designated by A and B respectively, the single neuron by C  Each
neuron of A and B respectively sends exactly one directed connection to
neuron C, C, therefore, has 2M inputs. The output of C goes to the in-
vironment., The environment provides the neurons of A and B with inputs

of the following type: Letting a cooy Oy be the neurons of A and

19
Oe1s 000 So be those of B, then to each a, is associated a probabilis-

tic stimulus Xa,(t)° At time t, independently of Xa,(t+k) for all

k=21, 2, ooot and with probability faag Xaa(t) = ;; with probability

1-f ,X (t)=0 IfX (t)=0, neu;on az is not effected, If
Xan(t)1= lalai is provided ;ith an input stimulus (Iae(t) in the network
eq:ations Taa(t)) which is always greater than Ra,(t)1+ Fu'(t) unless, of
course, o, i: absolutely refractory (i.e., if 6a_tt=l) = 1lor 6a°(t=2) = 1).
a has no other inputs. Notice that the probabi;ity fu. approxi;ates the
actual firing rate of o, fa, » T is the expected numbzr of firings of

@, over a time interval of le:gth T. Specification of the probabilistic

vector Xag(t)p i=1, ¢o., 2M, then determines the "vector" of firing
frequenci;s fan of the neurons oy which comprise the total input set to
neuron C. In ;ny particular experiment, the vector Xa‘(t) must be
specified in complete detail, '

The connection-scheme, complete with the input vector Xu (t), has
i
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the following form:

M
X (v)
qM+1
B :
X, (t) g
, t )} ——————0"
%M

The distinction between A and B is only for the purpose of allowing two

subvectors of xa (), i=1, ..., 2M to be applied, i.e.,
i

X (t), ce0, X (t) and X (t), cocp, X

% %y “M+1 %M

obtained by specifying the my ‘s, i =1, ..., 2M, to be 1's and all others
i

(t). (Note: This network is

to be zero out of the set of N° possible interconnections within the given

set of N neurons.)

3.3.3 Network Functions, Initial Conditions, Environment

The threshold, fatigue, and synapse-value functions together with
the parameters associated with them, such as Al” A2” U and D, etc., were
varied with the experiments performed.

The initial conditions comprise specification of the following values:

Lo, (@,i=1, ..., M

1
2. rai(O)D i=1, .., M and 1.(0)
3. 2, (0, i=1, co., 24 and 2.(0)
i
4, 1 (0, i=1, ..., M

1
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The Ia (0)"s are assumed to be all equal and constant over all time., and
i
so large that except when the a, are absolutely refractory, they always

cause a, to fire when X“i = 1, Thus, the initial values rai(O) and lai(O)
are not so important. Y;t the initial values of L and lc clearly are
important for, for example, if ZC(O) 1s at the minimum, then neuron C
starts out fully fatigued and may fail to respond to initial inputs for
some period; whereas if it is fully rested, that is ZC(O) is near the
maximum, then C will most likely respond to the initial inputs.

The function of the environment in these experiments is, at each
time step, to operate the probabilistic vector Xaw(t)g i=1, ..., 2M and
to observe the output of neuron C. '
3,4 Summary of Experiments
3.4.1 Experimental Hypothesis

Consider the network of the preceding section, Relabel the 2M neurons
of A and B as Alg AZ” csoyp AM and Bl” Bzg cooyg BM respectively. The cor-

B and fA respectively for
i i
i=1,2, ..., M. In general, the neurons of each group will be fired at

responding stimulation rates will be f

the same rate, i.e., fAi = fA and an = fB fori=1, 2, ..., M,

Divide the interval (0,00) into subintervals U, of length &

k
[2k&, (2k+1)2] (k = 0, 1, 2, ...) and the complementary subintervals,

U; = [(2k+1)2,(2k+2)2] (k = 0, 1, 2, ,..):

Rates
fA or
f
B
£y f‘m fp /fa'
fA A Vv
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In intervals U , £ . > f,; in intervals U;” f

k® "B A
one cycle (interval of lenth 22) is, in general, fB/Z = fA = fbe The neu-

g < an The average of fB over

rons of A are stimulated then randomly and independently at rate fA = fb;

the neurons of B are stimulated randomly and independently at rate

fB > fA for t ¢ ng k=0,1, ... and at rate fBU < fA in the intervals

Uzs k=0,1, ... - The intervals Uk are called the "high" or "on"

periods of stimulation of B; the U; -— the "low" or "off" periods,

Correlation Hypothesis

For appropriate selections of the network functions V, ¢, and S to-
gether with certain initial conditions, neuron C will tend to correlate

with group B in the sense that as t becomes sufficiently large,

and for i =1, ..., M,
SB.(t) = 1 implies that Gc(t+1) = 1 a.a.
GBT(t) = 0 implies that Gc(t+1) =0 a,a.
where fB >1fA for t in the intervals ng fB < fA otherwise. fA = fb
is the background rate of the system. AKC and xﬁc represent averages of
the kA.C and XBQC respectively. "a.a.'" means "almost always' -—— i.e.,
i i

with very high probability, but not probability one. This leaves room

for occasional occurrences of the complementary events

[

1 and 6. (t+1)

6B.(t) 09
1

8y (1)
i
The hypothesis merely states that group B eventually gains control

0.

1 and 6. (t+1)

over neuron C while group A loses control. Group B may be regarded as
the information bearing lines, group A a continuous source of background
noise. Hopefully, C will correlate with the information bearing source

and not with the noisy one. For example, over the rapid staccatto of
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a pneumatic hammer operating out-of-doors, a human being might well hear

a periodic knocking on the door.

3.4.2 Some Theoretical Considerations

In the appendix to his thesis [ 2], Crichton discusses the stability
of systems of neurons which he calls "semi-autonomous subsystems,'" These
are networks of neurons which may correspond in a limited way to the cell-
assemblies of Hebb's theory. In his development, he makes a number of
assumptions, two of which are relevant to the experiments of this chapter:
(1) the neurons of the system fire aperiodically, randomly and independent-
ly of one another, and (2) all neurons tend in their firing to a common
average rate fb‘ This fb he calls the "nominal system average.' From his
arguments he derives some bounds on the threshold curve (to be discussed
later) and some important relationships between the fatigue increments,
Al and Azg and the probabilities of synapse-level change, U(A) and D(A).
These have already been used in Chapter 2, The gist of his argument is
this; that the role of the fatigue function must be to drive the neurons
of the system to the frequency f, ; thus, if a neuron falls below fb in
its firing rate, then the fatigue should decrease so as to bring the rate
back down to fbo Firing at the rate of iby there is no net change in
fatigue, This last condition implies that fb = Az/(Al#Az) since then
beAz = T(lmfb)A1 must be zero, where T is the length of the time-inter-
val under consideration (see 2.3.3), Similarly, the condition for no net
change in synapse-level becomes fb = D)/ (UQM)+D())-

One further relation that he gives is useful: Consider two neurons
A and C with a connection going from A to C, where A and C fire aperiodi-
cally at the rates fA and fC respectively. The expected rate of increase

in AAC per time step is fA ° fC” and the expected rate of decrease is
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fA(1=fC)U Recalling that D/ (U+D) = fb from which U/D = (l=fb)/fba it
follows that U = K(lsz)9 D = be for some constant K > 0. U and D
correspond to the rate of increase and the rate of decrease of a connec-
tion and fAfC K(lwfb) to the expected rate of increase in Apc Per time
step, fA(lst)be to the rate of decrease in XAC per time step. There-
fore, the expected net rate of increase in kAC per time step is

fAfCK(lafb) = fA(lsz)be = KfA(fC=fb) (F)
This is positive, i.e., AAC is increasing, if fC > £ (fA9 fc9 and fb are
all assumed positive or zero), negative, i.e., AAC is decreasing, if

fc < fb and zero if fA = 0 or fC = f This relation (F) Crichton gives

b
as the fundamental formula for trends in synapse-levels.

These relationships provided very useful guides and were used in
the correlation experiments. However, a few points should be noted:
(1) In the current experiments, the assumption of independence of firing
of the neurons does not hold, As N increases, however, one would expect
it to become more plausible. The validity of Crichton's analysis there-
fore increases with N in the present situation. (2) Although his theory
yields fruitful relations between Al9 AZD U(A), and D(A) and i1s useful in
analyzing trends in synapse-levels, yet, beyond the bound mentioned it
says nothing about the form of the threshold, fatigue, and synapse-value
functions. The analysis of Chapter 4 does yield information about the

former.

3.4.3 Summary of Experimental Results

Just the general conclusions obtained together with one prototype
experiment will be mentioned here. For further details the reader is
referred to Finley [ 7].

The hypothesis was successfully demonstrated for a variety of
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functions V, ¢, and S (U(i) and D(A)). Several observations arec note
worthy, however:

(a) The rate of decay of fatigue was. in general, too fast. It
appeared that a slight hysteresis effect would be desirable. This would
allow "trapping" neurons in lower fatigue states (higher fatigue values).
For all the correlation experiments, Al and Az were not functions of 2,
as they were defined in Chapter Z. The correlation experiments directly
inspired the modification to make them so.

(b) The synapse-levels required a fairly strong positive bias (re=
flected on the values of U(A) and D())) to allow proper growth of the
AB.C“sf The setting of this '"bias'" (via setting U and D) is very critical.

i

Below a certain setting, the synapse levels A tended rather rapidly to

BiC
values giving negative synapse values, while the AA.C become larger

(S(AA.C) more excitatory) - the very opposite behaiior predicted by the
hypot;esis, In this case, the recruitment of neurons, an essential proper-
ty of the networks to guarantee cell-assembly formation, would be impossible
(see Chapter 7)., Once again, inclusion of a "trapping' feature seemed
desirable.

(c) The results seemed excessively dependent upon the form of the
threshold curve.

The results of one of the correlation experiments are summarized in
Figure 3.1 together with the network functions and parameters.

At this point it was decided that, rather than pursue experiments with
these cycle-less networks any further, it would be of greater profit to
introduce cycles into the networks and increase the network sizes substan-
tially. Immediately a wide range of problems arise of a far more difficult

and subtle nature than any encountered in the correlation experiments.

The remaining chapters of this work are devoted to networks with cycles.
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4  NETWORKS WITH CYCLES

4.1 Forword

. N .
Consider a network  _ in which the output of a neuron may act as

input to several neurons, perhaps cycling back as input to itself. In
general, such a closed path in which the terminal and initial vertices
coincide will entail a chain ot k intervenining neurons, where

r, £ k £ K The lower bound is determined by the absolute recovery
period, since an output of a neuron i e\§\ will have no effect if it re-
turns to i in fewer than r, time steps  The upper bound %; determined by
the density of connections inijl and the size of EW » N =Ei‘z

The intention is to introduce intolju sufficient cyclic complexity
that it will allow formation of closed, self-reexciting chains of neurons
Such chains of neurons, sometimes called reverberatory circuits, were
suggested by Lorente de Né as a mechanism for memory. This suggestion was
partially adopted by Hebb [ 9] to explain the formation and operation of
the cell-assembly (Hebb's "dual trace'" mechanism, see Chapter 3, Section
3.1)

However, once such complexity is present, several major problems have
to be resolved before cell-assembly formation can be studied These prob-
lems center about the notion of stability. more specifically of stable,
background behavior of‘ﬁ_ The first part of this chapter (Sections 4 2
and 4 3) is devoted to the development of this concept. Some problems
that arise on this development are: (1) The choice of a network density
function p = p(r) giving the expected number of connections received by
a neuron ofzf; within a disk of radius r In the first case considered

(uniform random distribution case), r = », In the second (distance-bias

case), 0 < r < =  the proper choice of r is a subproblem (2) Given

47
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the density function p = p(r). develop an analysis relating the threshold
curve and other network parameters ot ﬂi so that stable-steady-stable
behavior is guaranteed. (3) Modifty this analysis to determine the effects
on stable behavior of external stimuli.

It will be seen that a fairly complete steady-state calculus can be
developed for the case P is not a function of distance. This calculus
covers the case in which negative (inhibitory).connections are present in
TQLQ In fact, it is later shown that such connections are absolutely
necessary to ensure the desired stability conditions:.

For the distance-bias case, development of a steady-state calculus
presents formidable obstacles. However, the uniform random calculus may
be applied fruitfully as an approximation. In both cases, ultimate "proof"
rests on the simulation.

The latter part of the chapter (Sections 4.5 and 4.6) is concerned
with (1) development of the concept of cell-assembly, (2) structural iden-
tification of a cell-assembly, and (3) dynamic characterization of cell-
assemblies. Finally, an attempt is made to explore the interaction of
two cell-assemblies.

The developments of this chapter are semiformal and heuristic in
nature. In fact, they constitute something of an existential hypothesis
of the form: "There exist networkszq (with certain parameters specified)
with such-and-such properties ' The existence proof 1s then thrown back
onto the simulation. While the conceptual developments may be heuristic,
the simulation is not. As mentioned in Chapter 1, Section 1.1, a computer
program itself constitutes a type of formal system, allowing rigorous
testing of hypothesis such as the one above.

At the end of the chapter (Section 4.6), a brief summary of the main
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results is given. A list of terms and symbols introduced in this chapter
is appended at the end of the summary. Chapters 6 and 7 contain the ex-

perimental verification of the claims of this chapter.

4,2 Distributions of Connections

In the notation of Chapter 3, Section 3.2, networks 67_of N neurons
shall be considered in which for any pair of neurons (j,i), the multipli-
city mji of the connection from neuron j to neuron i, i.e., j » i, is
assigned initially by some rule, The set {mji | i, 3 =1, 2, 5., N} Of

all such mji“s constitutes a distribution gﬁﬁconnections over the network,

If mji = 0, there is no connection j =+ i; if mji = 1, there is exactly

one connection j - i; if mji = k, neuron j sends exactly k connections
to neuron i, etc. Exactly how this assignment is carried out is to be
discussed-in the next few sections, for the moment it is only assumed
that it can be done. What is important is that an assignment scheme can
be devised that will introduce a great variety of cyclic structure into
the models, especially if the total number of connections and the number
of neurons of‘K? are large,

As, in general, different neurons will receive and emit different
numbers of connections, some averaging process must be used to estimate
the count of the number of connections a neuron receives or emits: this
will constitute the expected number of connections received or emitted
by a given neuron., As will be evident shortly, these two quantities will
be identical, allowing definition of an extremely important parameter of

connections received or emitted by a neuron of the network, p will be

called the network density parameter or simply the density.

It is now necessary to examine the two theoretical models of networks
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with cycles used in this study together with the associated connection-
assignment schemes, then to contrast briefly the resulting networks.

The first models to be examined are those of networks with uniform ran-
dom distributions of connections, in which any neuron of )1.has the same
probability of being connected to any other neuron in 0[: The second
class of models are those of networks with a distance bias on the distri-
bution of connections, allowing neurons to be connected or not 'depending
upon the distance between them. It will be seen that the latter class of
models offers some definite advantages for this work, as well as great
difficulties for attempts at analytic study. Note that as in the case of
the models of Chapter 3, the problem of assigning the initial state of
the networks must be examined very carefully, i.e., the initial assign-
ments of the Aji?sg the ri’s the zi"s and likewise the selection of the

network functions V, S, and ¢.

4.2.1 Networks with Uniform Random Distributions of Connections

In this section the class of networks with uniform random distribu-
tions of connections are characterized. From this characterization
an efficient algorithm is extracted for evaluating the distribution {mJ
for any particular network\jL Note that a network with uniform random
distribution of connections conforms to one's intuitive picture of
a randomly connected network of neurons,

The Underlying Model (Urmodel)

Suppose a network,U! , of N neurons is given and a total of M con-

Ay

Ul. Let the ordered pairs of neu-
2

nections are given to distribute over
’ L

rons of lg i.e., the elements of 6biul‘be numbered from 1 to N

Associate with the pair of index v a counter Cv which is set to zero

initially. Now perform M trials as follows; select a number v at random
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with probability 1/N2 from the given set and increment the counter C

by 1 each time v is selected. The number in the counter Cv correspond-
ing to the ordered pair (j,i) is interpreted as the number of connections
neuron j sends to neuron i. This is a sampling with replacement model
where essentially a random draw of an ordered pair out of an urn of N2
such pairs is made, assigning a connection and putting it back., After M
such samplings, the distribution of the number of connections assigned to
pairs is binomial, i.e., the probability Pk that a given pair receive
exactly k connections is given by the binomial probability

B, (M,1/N%) = (ﬂ)(iigk(1=é39M“k which, if the mean of the distribution
N N

Po = M/N2 is moderate in magnitude, while M is large and l/N2 is small,
=Po Pk
may be approximated by the Poisson probability pk(po) =e ° ,%,5
k

Variant gi)Urmodel

This model may be viewed somewhat differently as follows: . scan
through the list of ordered pairs, letting Pv denote the number of pairs

and Fv the number of connections remaining after processing the v-th

pair as described below, For v =1 (the first pair), P1 = M2 and Fl = M.

Now, for each v, make Fy, throws with probability l/Pv of "success'" where
success means that a connection is assigned to pair v. Then reduce Fv
by the number of connections assigned Cv and proceed on to the next pair,

v + 1 with Fv+1 = FV = CVQ Now, it is easy to see by induction that the

expected value of the Cvg E(Cv)9 equals Py = M/NZ: For v = 1, C1 is by

definition M/qu For v = £ observe that the expectation of C

2 . . .
Flwl/Pzal = Fg=1/N = (=1) = o by the induction hypothesis, Now

g.1 is

2 2
o : Fyy _ F, N - -] - F,_, _ Fy_q[N :z]= ety
3 21 PN =

N - (2-1) N° - (2-1) N - (2-1)

and E(CQ) = Fl/N2 - 4 = Po’ Therefore, again G connections are expected
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to be assigned per pair v and the M connections are expected to be distri-
buted binomially over the network (or, to a very good approximation.
Poisson).

The advantage to this variant of the ummodel is that the random
sampling of neuron pairs has been replaced by a systematic scansion of
the ordered pairs of (\‘\\@m However, per pair v, Fv samplings must be

done. These considerations lead to the following:

Approximation to the Urmodel

Again scan the ordered pairs, however this time performing M experi-
ments per pair with probability 1/N2 of success (connection is assigned).
The expected number of connections assigned per pair is still M/NZ;.
however, the total number M’ of connections is a random variable whose
expectation is M, i.e., E(M') = M. Once more an expected binomical dis-
tribution of connections over neurons results. The procedure is readily
translated into a reasonably efficient programmable algorithm with the
mean o of the connections a neuron expects io receive from another
neuron as parameter. Only pk(po) (= e;po 2279 that are numerically sig-
nificant are calculated. A random number generator is used to simulate
drawing a number, n, at random from the unit interval 0 g n g 1; selecting
0, 1, ..., k connections depending upon whether po(po), po(po) + pl(pO)g
po(oo) + pl(po) + L * pk(po) exceed n or not (see Chapter 5, Sections
51 and 5. 2)
Flow Charts

To bring out more graphically the structure of the three different
algorithms outlined above, the corresponding flow charts are given in
the next few pages. The same conventions are observed as in the flow

chart given in Chapter 2, Section 2.2, representing the prototype of all

experiments, q.v..
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Flowchart 4.1 Algorithm for the Urmodel, The ordered pairs

\AV\ \A
(G,1) € BLQQCl_ are numbered from v = 1 to Nzo For each v, the counter

C, contains at the termination of the algorithm the number of times the

v-th connection was selected., The Cv”s are assured to have been set to

zeroes initially,

Start

u=19 ig u009M

Select a v e {1, 2, ..., NZ}

with replacement with probability

1/N*
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Flowchart 4.2 Algorithm for Variant of Urmodel. Ordering and indexing

of connections as in Flowchart 4.1. Note that E(Cv) = for all

Po

vell, 2, ..., Nz} (see text for proof). The sequence {1, 2, ..., v}
is a variable length sequence beginning with {1, 2, ..., Nz} and ending

with {1}. The C,'s are set to zero initially.

Start

veos N

u=13 23 coc g Fl

Select an.n ¢ {1, 2, ..., v} with replacement
with probability 1/P .

Is ne=v ? no
yes Vl
Cv = Cv + 1
Fl = Fv
vel Fo = €
Pv+1 = Pv -1
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Flowchart 4,3 Ideal Algorithm for ConnectionsAssignment Procedure,

v and Cv are as in Flowcharts 4.1 and 4.2, The actual number of connec-
tions assigned is a random variable M' with E(M') = M. See text., The

Cv's are set to zeroes initially.

Start

Select an ne {1, 2, ..o, NZ}
with replacement with probability
1/N°

| >

no
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Flowchart 4.4 Implementation of Subprocedure A of Flowchart 4.3. The

ideal selection procedure of Flowchart 4.3 is replaced by this procedure.
See text for thedefinitions of the pK(po)a In any given case, a Kmax must

be specified, assuming that the p (oo) are negligible for 2 > Km
Kmax

Consequently, for the algorithm to work, I pg(po) must equal unity.
2=0

Drawing of the random number " e (0,1) is affected by the generator

ax’

of Appendix B.
Ve

(For a given pair (j,1i) € K{F\\
y

Draw a random number n
from (0,1)

whose index is V)

no

L
Is n - hZ pplog) <0 2 —> ©
=0

Exit t of Flowchart 4.3




The Network Density o

In terms of the above discussion, define the quantity p = Nmpo, that
is, the expected number of connections a neuron receives from the whole

net, as the network density parameter, or simply the density, By symmetry,

this is also the expected number of connections a neuron emits to the
entire network.

Uniform Random Distributions

By now it is clear that, whichever of the above procedures be adopted,
in no way is any subset of neurons of\gt favored or not favored. The prob-
abilities and expectations apply uniformly over all neurons of glc An-
other.way of phrasing this is that _there is no'bias on‘the.density param=
eter p. Were this not the case, that is, if the definition of the assign-
ment scheme included some definite criterion for including or excluding
certain neurons of‘E\(from the point of view of being connected to a given
neuron) , then in some sense a neighborhood structure would have been im-
posed over the network, resulting in some form of geometry over\ﬂlo This
idea is explored in the next section, but first a few more observations
about the uniform case are in order.

\
Connections between Subsets gﬁgg;

(f great interest in the sequel will be questions of the following
type: given two subsets A and B of‘?\, what is the expected number of
connections A receives from B and conversely? This is easily resolved
in the present situation: Denote the cardinality of a set S by %land
assume that f and %gare given., Let X (A»B) and XA (B+A) denote respective-
ly the expected number of connections B receives from A and conversely.

The expected number of connections sent out to the network from A is Kba

where p is the network density. Consequently, the expected number of
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:"\4
. ! : '
connections that an arbitraruly picked neuron ot uk recelves is AgsN

\

since | is a random network Iherefore, the expected number ot connec-

tions received by the entire subset B is (Ap/N)B minus the overlap

=

(A{\Bb/N)f (as these would be counted twice otherwise) and

A(A+B) = (Ap/N)B = .(A/\Bp/N)A = ”ﬁf[B'A’\B!-
Similarly, - (1)

A(B+A) = = [A-ANB]
A second and related question now is also easily answered: suppose A
and B are subsets of neurons randomly and independently distributed over
T?lg their exact magnitudes not known, but where f;and %zrepresent the
expected sizes of A and B respectively. What form do A (A+B) and A (B-A)
take now? Clearly, the basic formulas (I) above still hold, now the car-
dinality of the intersection A/AB may be estimated by (%%VNZ)N since
the probability that a neuron ofxﬁﬂ lie in both A and B is

(f?N)(%?N) = ﬁinz and N such neurons exist. Therefore

A(A+B) = A(B-A B)p/N
==

= AB =
= A (A) (B-5p) = Ay (A)B(1-

=

Zi >

) -

Similarly, (I1)
A(B>A) = A (B)A(1-B/N)

where A(S) is the expected number of connections that an arbitrarily

chosen neuron of 6\ receives from S’;‘\&l .

Comment about Notation and Derivations

Perhaps the obvious has been belabored in this section, especially
in deriving formulas (I) and (II) which are, after all, rather trivially
deduced from elementary probability theory, but these procedures tend

very often to be taken for granted. Hence, it was the intention here to
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make them explicit so that the principles underlying later calculations
may be quite clear. It also is of interest to contrast the marked sim-
plicity of the unifomm distribution case with the distance-bias case to
be discussed in the next section,

An apology is definitely in order to the mathematically sophisticat-
ed reader for the mixing of symbol fonts to denote objects that belong to
the same class of objects, eﬁguiglg A, B, etc, to denote sets. However,
the guiding maxim has been that one, familiar to all programmers, that
goes: ''use symbols that are convenient and have mnemonic value.'" In
this paper, the intention is to apply mathematical analysis where possible
and to the extent that it is fruitful, not on developing a mathematical

theory per se.

4.2.2 Networks with Distance-Bias

In the previous section, networks were considered with connections
distributed in a very simple way with the result that certain neurons may
not be isolated a priori and the claim made that they do not receive or
transmit connections from or to certain other neurons of the network.
In a word, there is no provision for neighborhoodness in those models.
Suppose then that a network 6L has a function d = d(j,1) defined over it
so that for any two pairs of neurons (j,i), d is the distance between
j and i. Furthermore, assume that the connections are assigned to neuron
pairs (j,i) with probabilities p(j,i) that are functions of the distance
d(j,i). If the p(j,i) are, say, inverse square functions of the d(j,i),
e(d) = K/d(jai)z9 then the density of connections is the greatest for
small d(j,i) and the smallest for large d(j,i). Considering the univer-

sality of inverse square laws in the physical sciences, this does not
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seem to be an unnatural assumption  Some special assumptions must be
made as d(j,i) tends to zero. of course but as shall be seen later
(Section 4 3.4}, this presents no real problem although it does it does
pose some interesting questions about the density of connections in actual
cortical networks in the immediate vicinity of a neuron, perhaps to be
tested by future neuro-physiological experiments.

The distribution yielding o(d) = K/d(jai)z does not necessarily
insulate distal parts of Kk; it merely lowers the probabilities of two
neurons in separate, but distal, areas being connected., The favoritism
excluded in the case of uniform distributions is therefore allowed:; neigh-
borhoodness is defined.

In general, p(d) will be a monotone decreasing function of d. tending
to 0 as d»=. One possibility, to be discussed in more detail in Section
4.3.4, is to set (d) = o = constant for d I R for :some fixed R and
p(d) = 0 for d » R, using the basic technique of Section 4.2.1 for deter-
mining the connections received by a neuron within the neighborhood with
radius R. This gives a distribution that is "flat" — i.e., uniform and
random in the neighborhood d Z R of a given neuron and zero elsewhere.

The advantage to such a distribution is thatigl may be regarded from the
point of view of Section 4 2.1 in sufficiently small regions. Clearly,
this procedure may be generalized to that in which the distribution 1is
uniform in the neighborhood d £ R with density 015 uniform in the neigh-
borhood R <« d £ R. with density CPY uniform in the neighborhood

2

R2 < d s R3 with density Py, etc. The latter type of distribution may

be used as an approximation to the inverse-square distribution by appro-

priate settings of the disk d f R and the annuli Rk L < d £ R

_ s R k= 1.2

together with the corresponding densities I
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o

R \
Connections between Subsets 2£:az

Just as in the case of networks with uniform random distributions
of connections, it is necessary to calculate the expected number of con-
nections, A(B»A) that a subset A ofzn receives from another subset B.
It will be seen that this is no longer such a simple chore.

Pass over for the moment to the continuous case as an approximation
to the discrete networks of the model. Consider U} to be a closed and
2 and let d be the usual metric over E2c

Of course, the discrete case may always be re-obtained by appropriate

bounded subset of the real plane E

choice of grid size, Let A and B be subsets of\n\ and assume the inter-
section AAB = 0. A and B are of arbitrary shapes. The density function
p(d) now takes the form p{(w,z), the expected number of connections received
at point w from a unit of area about point z, Then, if w ¢ A, z ¢ B, the
expected number of connections received from an element of area about
the point 2 € B by an elemént of area about the point w is
bA(w)p (w,2)AB(2)
and from all of B is, '
BAG) | (w,2)dB(2)
~JzeB
and, therefore, all of A expects to receive:
A(B»A) = & dA(w) ﬁ p(w,2z)dB(z). (IIT)
WEA ZEB
For arbitrary configurations of A and B, such an integral will be tedious
to evaluate, In fact, integrals of form (III) are similar to those aris-
ing in physics in attempting to evaluate the electrostatic force field
about a charged body of arbitrary shape, the difficulties encountered in
their calculations are expected to be similar, Approximations to (III)

shall be considered later (Section 4.3.4) for particularly simple forms

of A and B, Moreover, the simple disk-type distribution will be seen
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to be perfectly adequate for the present study, thereby avoiding some of

the computational problems of the inverse-square type of distribution.

4.2,3 Brief Contrast of Uniform and Distance-Bias Distribution

It has already been remarked that in the case of networks with unifomm
distributions of connections, there is no notion of neighborhoodness except
in the trivial sense that any neuron of a network K{ is equally like to be
a neighbor of any other neuron. This means that no localization of pheno-
mena may be expected if the assignment scheme is reasonably random. Yet,
with all the physiological results of Burns [ 1] and others in mind, as
well as the considerations of Hebb's theory, localization is intuitively
exactly the sort of thing required in the models. Therefore, rather
naturally the distance-bias case arises in which activity may occur in one
part of the network without immediately affecting another (distal) part.
It will be seen, both experimentally and theoretically, in the sequel, just
how important this consideration really is. Because of their inherent
simplicity, however, networks with uniform distributions are chosen as
the starting point. The results obtained will be used as a basis for
analyzing networks with distance-bias of the simple disk type outlined

above.

4.3 Stimulus-Free Behavior in Networks with Cycles

In Chapter 3, the response of certain networks to various types of
stimulus patterns was studied. As there was no feedback among the neurons
of those networks, they were completely stimulus dependent and there was
no question of stimulus-independent activity. In the case of networks
with cycles, however, whichever of the two basic types discussed above be

chosen, it is entirely possible that a network, once certain neurons have
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been made to fire at t = 0, maintain an activity independently of external
stimuli for a large number of consecutive time steps: the number of neu-
rons firing at time t, F(t), does not become zero until t becomes very
large. This, of course is due to the feedback present in such models.

The following considerations illustrate the nature of this feedback

together with several other important factors of interest at this time,

4,3,1 Steady-State Behavior

The sequence of firings of neurons of k;L .
F(0), F(1), F(2), ..., F(t), F(t+l), ... will be called the behavior of
YY\ that occurs as a consequence of F(0) neurons being caused to fire at
t = 0. It is necessary to determine how this behavior depends upon the
initial set of neurons fired, FO” and the network parameters

T.

T 1., i=1; ooy Ny A,.;, i,j =1, ..., N together with the network

i? ji

functions V, S, and ¢.

Example of a Simple Cycle

Suppose FO consists solely of one neuron i, and also that the assign-

1

ment of connections over\ﬁ\ is such that there is a cycle
\p
L. L ! . .
11»12+13?°?1k»11 of neurons oféﬂ_b Assume, for simplicity, that these
neurons have no other inputs. What happens after stimulation of i1 depends

critically upon the parameters and functions listed above. For example.

if Ai i is such that the synapse value from i1 to 12 is less than the
172

effective threshold of izg then i2 will not fire at t = 1 and F(1l) will,

of course, be zero. Likewise for i2 to 139 ve g ikol to ikb On the other

hand, if the synapse-values and effective threshold values are appropri-=

ately set, then the firing of il at t = 0 will cause i2 to fire at

t =1, c00y ik=1 firing at t = k - 2 will cause iy to fire at t = k = 1.
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The firing of 1 at t = k - 1 now will cause 11 to fire at t = k provided

that the effective threshold of 1, has recovered sufficiently from the

1

firing att t = 0. Similarly, i, will cause i, to fire at t = k + 1 if i2

1 2
has recovered sufficiently, etc. Hence. for appropriate initial settings
of the recévery and fatigue states, the synapse-levels, and the functions
V, §, and ¢, a ''pulse’ may be caused to circulate around the closed cycle
i.»iz*aq¢*ikﬁilv If the length k of the cycle is equal or greater than
the fatigue period, it will continue to circulate indefinitely, but if k
is short with respect to the fatigue period {the usual case). the fatigue
values of the neurons will increase until at some point the firing of one
of the neurons is suppressed and the pulse is extinguished.

This simple example illustrates the basic ideas very well: the choice
of network parameters and functions must be made judiciously to insure

that pulses may circulate about in a network with cycles.

Cycles of Subsets

Now let &{ be a network with density p (which may be a function of
distance) and ¢ > 1. There may then be many cycles involving any particu-
lar neuron and the situation is not as simple as above, However, the same
general conclusions may be drawn as follows:

Let F(t) denote the subset of neurons oft}k that fire at time t,
where F(0) is the set of neurons caused to be fired at t = 0. Let S1 be
the subset of neurons of z] that receive one or more connections from
F(0), F(l)C: SlL Whether or not a neuron oi o fires. 1.e.. is a neuron
of F(1) as well. depends upon its effective threshold and the total
number of inp&:; it receives from F(0). Likewise, if Sk"_1 is the subset

of neurons of c\ that receive one or more connections from F(k), then

a neuron in Sk+1 fires, i.e,, is in F(k+1), as determined by
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its effective threshold and total input. Therefore, the following general

process is obtained:

F(0) ~ S1
L)
F(1) »’SZ
F(2) » 53
iy
v/
F(S) *. oo .
where the notation F(k) - Sk+1 means that Sk+1 is the subset of '

receiving connections from F(k). The successive SiVs need not be mutually
disjoint: in general, Sk!\ Sj # 0 for j,k=0,1, 2, ... . However,
since a neuron cannot fire in its absolute. refractory period, the F(i)'s
will be disjoint up to at least the raml“th successor:
F(i) N F(i+l) = 0 = F(i) A F(i+2) = ..., = F(i) A F(i+ra=1) for i =1, 2, ... 3
but it may occur that
F(i) "~ F(j) # 0 for j 2 i + L

To avoid %?t) going to zero as t increases, the initial choice of the
Aji“sa riosg etc, must be made very carefully, Assuming such a choice is
possible (see next section), the successor sets Si will exhaust M[ after
some number kO time steps., Likewise, tracing the suc??ssor sets F(i),
after a certain number kl time steps, every neuron ofky\ would be expected
to occur in some F(i).

This does not mean that an exact cycle of subsets
F(0) » F(1) » F(2) » ...F(k) » F(0) will be obtained, since, for example,
F(2) may overlap F(0) for some O < % < k and the neurons in spccessive

F(i)'s become very shuffled, Hdwevera it may be that after F(k) fires,



a large part of the original F(0) fires plus some new neurons, say F(0)-
Likewise, F(0)' may cause a set F(1)' to fire where F(1)MN F(lj' # 0, etc.
A quasi-cyclic firing of subsets would be obtained:

F(0) » F(1) » ... F(k) = F(0)' » F(1)' > ... F(k)' = F(O)" - F(L)" »
Exactly how far this quasi-cyclic sequence deviates from the purely cyclic
one depends upon the size of Ei'and the density p, the network parameters
and function settings. in particular the threshold curve and the distribu-

tion of positive versus negative connections in

Implication of a Stable. Steady-State Behavior

These considerations point to the possibility of a stable. steady-
state behavior. that is, a sequence F({0). F(1), ... F(t), ... where
the expected values of the %kt) are the same for all time. 1.e
E(%kt)) = constant = F for all t  Each neuron of Ki_Will then fire at
an expected rate f_, the background rate of the network.

Motivation for Considering Steady-State Behavior

The concept of stable, steady-state behavior is intimately connected
with the basic objective of this study, namely, the formation and develop-
ment of cell-assemblies. A cell-assembly is to come into existence, as
a result of appropriately applied stimulus to the network, via the mecha-
nism of the synapse-level growth law. A cell-assembly may be regarded as
a learned response to the given stimulus. The precise physical identifi-
cation of a cell-assembly is a difficult matter and forms the goal of
Sections 4.4, 4 5, and 4 6 below. For now it is sufficient to note that
a given cell-assembly is identified structurally by means of conditions
on the synapse-levels of connections among the neurons of the assembly as
well as between the neurons of the assembly and the remainder of the net-

work: letting C be the neurons of the assembly, then the structure of C
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is determined by a set T, of conditions on Aji for all j,1 € C and on

A for k e C, 1 C, ork ¢ Cand 1 € C,

kl

Since permanent learniﬁg of the model resides in the synapse-levels, the
primary condition on steady-state behavior is that it not perturb exist-
ing synapse-levels so that the conditions TC no longer obtain, therefore
possibly disrupting an existing cell-assembly, nor that it give rise to
any new cell-assemblies. In other words, steady-state should act to pre-
serve the status quo of the network, structurally speaking. This is

essentially the reason behind the derivation of the equation

£, = DA)/[UM) + D(N)]
in Section 2.3.4 which relates the nominal system average oxr background
firing rate fb of ER to the probabilities U(A) and D(X). Since the firing
rate of a neuron is determined by the threshold and fatigue functions,
thgse two functions must be adjusted to preserve an overall firing rate
of fba Thus, for a network to operate at steady-state with a background
firing rate fb 9 conditions are imposed on all the network functions
V, ¢, and S,

The next question is: what should Fb be? The answer to this brings
out yet another facet of steadymstate behavior. It is clear that Fb can-
not be 0: Suppose a networkjﬁk has been quiescent for several hundred
time steps, say, F(t) = 0 for t = 0, 1, ..., 200, All neurons will be

completely recovered with respect to threshold and fatigue: for all

i efp\, LR - and zi =L ox For simplicity, assume all synapse-



68

levels are set to a common value AO so that S(AO) is moderately positive

and that Vq = S(AO) (quiescent value of threshold).

\

Al .
If a stimulus is presented at t = 201 to a subset 20 ofg\k causing
AR A

all neurons of I, to fire, then every neuron of ||| - 20 that receives

0

connections from Ly will fire at t = 202. Denote the set of such neurons
by Zlo In general, 21 will be larger than 200 Likewise, 21 will cause
a set 22 of neurons to fire at t = 203, 22;:?" = ZO - Zl" Again, 22 will
nge_larger than 21; etc. The sets Zig i=0,1, 2, ... will continue to
grow in cardinality until sz = Iy = I = I, = .oo is exhausted; there
exists a k0 such that

F o<F < < ¥

ZO = Zl = cor = Zko
and a k12 kO < k1 such that

T 2%, .z2...2%

k0 = k0+1 = e E k1 ‘

The numbers kO and k1 depend upon N, p, the threshold curve and ZOO

Generally, k, = 1

1 ¥ "max °

This is an extreme case: the same principle holds true, however, if
the synapse-levels vary over a range of values (provided there are some
positive values, of course). The presence of negative connections merely
tends to increase li

Therefore, the following general principle may be stated: steady-
state behavior in a network\pl must be such that large groups of highly
recovered neurons do not come into existence., Otherwise, the possibility
of a violent oscillation or a series of such oscillations in F(t) exists.
Worse still, such oscillations, as the example shows are usually fata;
F(t) goes to 0.

These violent oscillations are undesirable from many points of view:

first of all, they may be fatal. Secondly, if they arise as a consequence
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of application of stimulus to the network (presumably operating up to
that time in steady state), thev could act to make ﬁt insensitive to

N

future stimulus. in this case.l) is deprived of opportunities for

<

further learning.

The condition of violent oscillations in a network?{[ will be referred
to as "epilepsy" in analogy with the neuro-pathological condition found in
human beings., It is interesting to note the similarities of the sequences
{F(t)} with an electroencephalogram of a patient undergoing an epileptic
seizure.

To summarize:; the functions of steady-state behavior are two:

(1) to preserve the status quo of any existing structures and, likewise,
not to give rise to any new structures in the network, (2) to preserve

a distribution of neurons over recovery states so that large groups of
highly recovered neurons do not evolve. From these, certain conclusions
may be drawn, to be made more precise in the sequel; (3) Fb (=E(%}t))

must not be too small; (4) %(t) cannot vary too far from Fb; (5) a single
application of a moderate sized stimulus to a network operating in steady-
state must not produce epilepsy.

It will be seen that the effect of stimulus upon a network operating
in steady-state is similar to modulation of a carrier wave by an informa-
tion bearing signal in AM radio transmission.

Notice that the symbol F(t) is now used to denote the set of neurons
firing at, now for the cardinality of this set (strictly, i?(t))ﬁ Since

it will always be clear from context which is meant, only F(t) will be

written from now on,

4.3.2 The Threshold Curve and Steady-State Analysis

The purpose of this section is to display the role of the threshold
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curve in determining steady-state behavior. A simple computational scheme
is given whereby the behavior of a given network with uniform random dis-
tribution of connections may be predicted as a function of the size N,
density p, distribution of synapse values, the form of the threshold
curve V(r), and the number of neurons firing at t = 0, F(0). This scheme
allows computation of the expected value of F(t+l) as a function of F(t),
t=0,1, 2, ... . While it is tedious to perform the calculations of
the F(t)'s by hand for more than about twenty time steps, yet within this
relatively short time span, tendencies toward oscillatory or stable behavior
are readily discerned. Using the network parameter values thus obtained
for a stable case, the actual behavior of the corresponding model may be
tested and compared with the predicted behavior. Gross deviations of the
experimentally obtained behavior from the predicted would indicate either
statistical anomalies in the model or the malfunction of some network func-
tion. An example of the first case would be a skewing in the connection
distribution. In the second case, the calculations might indicate that
a given network should be stable, but the experimentally obtained behavior
might develop fatal oscillations after, say, several thousand times steps.
While a statistical deficiency in the model might explain this, the long
period of stable behavior suggests the cumulative effect of some network
function such as fatigue or the synapse-level growth law that has little
effect on behavior over relatively short time intervals, but might well
have a deleterious effect over longer intervals. if not properly adjusted
initially.

The scheme is presented first in its simplest form in which the dis-
tribution of synapse-values over connections is uniform, i.e,, all the

Sji”s are equal. It is then modified to comprise progressively more
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complicated distributionsU“The importance of negative synapse-values
as a so;fce of negative feedback is emphasized., This scheme is modified
in Section 4.3.4 to treat networks with distance-bias.

Consider a network bl of size N and density p, p not a function of
the distance. Let V(r) be the threshold function ofEY‘ where r, and rq
are the absolute refractory period and the quiescent value of the recovery
respectively, Let the initial assignments of the Aji(O)"s be
A..(0) = A, = constant for all j,i =1, 2, 3, ..., N such that

ji 0
(0)

> 0, The threshold curve is

1]

S(Aji(O)) = S(%O) = XO where V

554 0

expressed in terms of VO $ V(ri) = m(ri)Vop i=1,2, .00, No The fatigue

0 for

i

function is assumed to be constant for the moment, ¢(zi(t))
i=1, ..., Ny V(ri) is then the effective threshold of neuron i.
The quiescent value Vq will be taken as Voa V(rq) = VOa In other words,

a fully recovered neuron may be fired by a single synapse of level Aoo
A
Define Rr(t) as the set of neurons of d\ that have recovery state
r at time t; Ro(t) will be the set of neurons that fire at t, Ro(t) = F(t).,

The set ﬁr will be regarded as the union of all the Rr°s for r 2 r_ since
q B}
a neuron need not fire when it recovers tor , R_ =R R..- soo R_
qQ’ T T r +] T
q "q q m
The set

R(t) = R(t) 1 =0, 1, conp 1)

is the distribution of neurons over recovery states at time t, Given
®(0), one may computer successively the expected values of

R(1), R(2), oo., R(t), R(t+l), ... as follows:
Suppose Ro(f) neurons fire at time t., The expected number of neurons
of ([» Nk(t)D that receive at least k connections, k > 0, from Ro(t) may

be computed from the equation:

R, (t)

gﬁk(t)=Nﬂk(>\(t)) where  A(t) = —g— 0.
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A(t) is the expected number of connections received by a neuron of
from Ro(t)i;lgl and ﬂk(k(t)) is the probability that such a neuron receive
at least k connections from Ro(t)» i=0,1, 2, 4%,

m (t) = Eﬁ e5A(t)L&$§ll}z

2=k 2

From the threshold curve and R(t), for & =1, 2, cco, ONE cCan determine
the subsets Mi(t):ﬁgt of neurons requiring at least k connections to
fire. The probability that a neuron lie in Nk(t) and Mk(t)p i.e., that
it receive at least k connections from Ro(tj and require at least k con-

nections to fire may be approximated for large N by

N, (t) <M, (t)

ﬂmﬁumﬂjﬁmﬂ%
N
and the expected size of Nk(t)ﬂ\\Mk(t) is

N (t)oM, (t) N, (t)eM, (t) .
k k k k't =
NS - - = T (A (2) F ()

Then, the expected set of neurons firing at t + 1 is given as

8

= | ‘ -
R, (t+1) ! N (£) 7 My (2)

—

k=1

and the new R 's, r 2 1, are given by

- _ p* :

Rr(t+1) = chl(t) Rr=1(t) (expected values)
where R:(t) is the set of neurons of Rr(t) that are expected to fire at t,
* = -
Rr(t) R.(E) Nk(t.)
In the preceding section it was noted that in-steady-state behavior,

the expected value of F(t) is constant for all t. F(t) = constant = Fb‘
Gross deviation in F(t) from Fb tend to produce fatal oscillations.

The problem is to design the threshold curve so that such deviations do
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not occur under conditions of no stimulus to the network. This is now
readily done using the scheme developed above.
Suppose the initial distribution ®(0) is such that

0) = ... = Rr (0) = ¢co = Rr
q m

Now make the following assumptions:

(1) the parameters p and Rr (0) are chosen such that
& R, (0) F
Y _ . - 0 - “p
TTk(>\(0))qu(0) =F 5 2(0) TP = ey Pe

Notice the set Rr (t) is identical to Ml(t)c
q
(2) the threshold curve is such that
% N
Rk(r) =0 forr = Ts ra+1g cooy rq=13 k(r) = values determined by
the curve.

From (1) it follows that ?O(l) = nk(x(O))E’:r 0 =F,.

q
Moreover,

R.(1) £
A1) = L p = =2 p = A(0)

From (2) it follows that
R(l)=Fb91‘=19 29 0o p rq=1c

and that

W
=l

Rr (l) T
q q

(0).

Therefore, by (1) again,

=ik
P
[\ ®]
L —
1]

nk(x(l))Rr 1) = Fb
q
and by (2),

~
~
N
~—’
i

Fbg r = 19 29 20 90 9 rq"l
with

R =R () = ?r (0.
q q q
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By induction, it is clear that for t = 0, 1, 2, ...,
ﬁb(t) = Fb (expected number of neurons firing at t)

and

~
~
(a4
~—s
i
11
2]
1}
[
©
[\

¢ ¢ 0 1‘=1
¢ 0

where

To summarize:; pick a threshold curve with the property that the only
fireable neurons at time t will be those in ﬁr (t). Choose p, N, and
ﬁr (0) so that precisely Fb neurons of ﬁrq(t) are expected to fire at
time t., Figures 4.1, 4.2, and 4.3 illustrate the concepts of this section.

There is an interesting consequence of this analysis: since the ex-

pectations of

Ry(t), Ry(t), ..., qual(t)
are equal to Fb“ then
r x F, = N
m D

From Figure 4. 1. it is seen that a neuron is expected to fire in the

recovery range rq R i T The expected firing rate is N/Fb =T It

is convenient to regard this expectation as another variable fq and take

N/F

b r_, where ;q relates to the actual limit on recovery by the bounds

q 4; L The purpose behind this is that it allows greater freedom

is setting the bounds T, and r_ used in determining Rr (t) =M (1)
q

([ -]

r

WA

Therefore, in place of the quality above, the following shall be used for

relating F. and N:

b

This analysis is based on the computation of expected values. As

such, it proved a very effective guide to correct setting of network
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parameters. In practice, of course, there is a variation in the ;T_lfr(t),9
forr =0, ..., ;q’ and neurons of Mz(t), Ms(t)9 .o, may fire, Within
certain limits in the variance of F(t), no hamm will result. It is impor-
tant to note, however, that no mechanism has yet been presented for damp-
ing out significant transient deviations of F(t) from Fbo In other words,
to obtain steady-state with the techniques given thus far, the network
parameters have to be very precisely tuned with little room for variation.
This will be the subject of the following Section 4.3.3,
A sample steady-state calculation follows, In general it was' found

sufficient to perform the calculations for about thirty time steps: that
is, if the calculations to that point had not produced violent oscilla-

tions, then the simulated network would be stable.

Sample Stability Calculation

This calculation is given in some detail in order that the techniques
used in Chapters 5 and 6 may be perfectly clear. Consider the threshold
curve of Figure 4.4, r, = 3, rq = 16, T, = 19 and rq =T, and V0 =1,
There are eight distinct sets Mk(t)‘ k=1,2, .,,., 8 The network is
assumed to contain 400 neurons, N = 400, Since there are twenty basic

units of recovery (all the recovery classes are expected to have equal

cardinality in steady-state), Fb will be chosen as

N 400
F‘b—?‘:-mﬁ‘_ 20,

For this network, p = 6 and the number of neurons that are forced to fire

at t = 0 is twenty, F(0) = 20, These neurons are assumed to come from

0).

=

r
q

The calculations are presented in Table 4.1, They are carried out
to t = 30, Notice that a few neurons enter R0 from MZ“ the predominant

part, of course, coming from Mla The values of nk(x(t) are taken from
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standard tables of the cumulative Poisson distribution. For the range

of A(t) involved here, nk(A(t)) is negligible for k > 2.

R, (t) Rp(t)

- N L q
b 4

Y neurons
. o of this set
<i?~ fired neuyons of qu(t) become R fired at t
_l- ) [ \ ]
L] L] 1 1
(a) 012 T r el oL T T r
) a q q m
V(r) \\\\\
= m(r)v0 ‘
AN
\\ .
¢ N
kvo -
~
VO B O
1 | (I
T T 1
{b) g1z ... r_ ... T r+l T by T
a q q m

Graph of R(t) (a) vis=a=vis V(r) (b).. Interpretation:
Graphs (a) and (b) are drawn relative to the same scale on the
abscissa. 'In (a), the ordinate Fb represents the expected size of

the Rr(t)“sc In (b), V(r) is assumed to be infinite for

WA

0srs r =1, V(r) is expressed in terms of multiples of V In

OIv
the current discussion, it is assumed that

V(r) 2 Vo‘9 r=0,1, ..., L

Burington, R. S. and May, D. C., Handbook of Probability and Statistics
with Tables, Handbook Publishers, Inc., Sandusky, Ohio, pp 263-266,
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Rr(t)
r I 2t :1
Jk+l(t) MK(t) kal(t) s 1Et)
| \\ .
4 \ . : o
Fo i Ry i |
! !
|
!
(a) 012 ... T, Ty coo Tpyp oo rq
|
|
/ V(1) v (1)
(K+1)VO L N
vy 0 B U N —_ N
(K-1)V e T —X-————— -
0 l \\\
|
2V | :
VO ; e
- A b o} } T ]
i [ | IR A AN
(b) o1z ... Yoo e Teal Tk Teo1 Tke2 rq

Figure 4.2. Graph of ®(t) with the M, (t) (a), vis-a-vis
V(r).(b). Interpretation: In (b), a continuous curve V(r)
is approximated by a step-function V*(r) so that V*(r) = kVO,
k an integer, for r ¢ [rk+1,rk](_;. [O,rm], k=1, 2, ... ,
The corresponding points in (a) determine the boundaries of

M, (t) : ﬁk(t) = (1,1 - TWJF, (expected value).
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R(t) M (8)
F, A
R, (t) ,

AN biK(t)r\ N, ()

Figure 4.3. Stylized Graph Indicating Relationship of Mk(t)
and Nk(t) vis-a-vis €(t). Interpretation; The set Nk(t) spans
recovery sets Rr(t), therefore it is shown at the hatched area
above., The ordinate does not indicate the cardinality of the

Rr(t)f\ Nk(t)a rather represents a stylized set boundary.

M

M

M

M

My

) 3
T T

3 4 5 6 7 8 91011 12 13 14 15 lg 17 18 lg

0 1

S = N W s N Oy OO
{

q m
Figure 4.4. Threshold Curve for Sample Calculation. Interpre-

t
2
Ta
4,
tation: Initially, neurons are distributed randomly and inde-
pendently over recovery states so that E(ﬁ;(O) = 20,
= =
r=0,1, ..., r, and E(R. (0) = 80. Clearly, E(M8(O)) = 20,

- q =
E(,(0) = E(M(0)) = ... = EM,(0) = 40 and E(M, (0)) = 80.
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4,3,3 Negative Feedback

The logic of the computational scheme presented above for determining
steady state hinges upon the set ﬁr remaining constant in expected size,
i.e., E:§; ) = constant = R for allqtt Should ﬁr (t) decrease below R
for a few consecutive time steps, F(t) correspondingly would decrease below

54

Fb As F(t) decreases, ﬁ? (t) gradually increases. Unless F(t) went to

zero, F(t) would then increase. Since E; (t) might increase to a value
greater than R, F(t) may increase to a va?ue greater than Fb. This again
would tend to deplete ﬁr (t) and again F(t) would be expected to decrease.
Within a certain vagiance in F(t), this is precisely the behavior
one would expect: F(t) tends to oscillate about its mean Fbc However,
under certain circumstances, a transient deviation in F(t) may be ampli-
fied so that fatal oscillations occur. Suppose as ?; (t) decreases in
one of the '"ebb" periods, hence resulting in a decrease of F(t), the sets
Rr ml(t)g Rr mz(t)g coop Rr ‘l(t) corresponding to the sets of neurons

that fired during a previous "ebb' periods. (r1 is the length of the

H

transient decrease of F(t) from Fb)e Then, Rr =1(t)9 ceey %; _ (t), are
1
less than their expected values. This tends to decrease R, (t) even

further. Likewise, as ﬁr (t) increases in one of the 'flow'" periods,

q
resulting in an increase of F(t), the sets Rr =1(t)” 055 p Rr = 2(t) may

correspond to sets of neurons that fired during a previous flow period

(rz is the length of the transient increase of F(t) and Fb during that

3 = g o
period) . Rr el(t)g soey Rr _ (t) are greater than their expected values,
= q 2
and Rr (t) increases above R,
q

Thus, a transient deviation in F(t) from Fb may result in successive
undamped amplifications of the deviation, eventually leading to fatal

oscillations. Whether this occurs or not depends upon the phase
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relationship between ﬁr (t) and the sets Ri =_1(1‘.) and the sets
R (t), eoop R (t) or R . (t), ocop R ()5 if R (t) is
rqul | rq 1 rq 1 rq T, rq |
increasing, but, Rr al(t)g sob g Rr =1~(t) correspond to a previous "'ebd",
= q 1
the effect of the increase in Rr (t) may be cancelled out. Similarly if

==
~

q
(t) is decreasing. This phase, of course, is a function of 1. and rt,.
T ? 1

2
In general, howevéra the transients do not appear to cancel out, The
chief reason for this is that the lengths i3 and T, are not constant,
Thus, for one transient 'ebb", say,T; = 1™, but for the next ''ebb"
T = ™ + 3, The next time the corresponding fired sets arrive at rqs
the decrease in E; (t) is even greater than before, causing a further
increase in-ria sa; T = 1" + 5, etc. Likewise, during transient "flows",
as F(t) increases above Fbg it robs the sets Rr ,1(t)s Rr sz(t)g coe OF
more than the expected number of neurons requirgd for steady-state. This
prolongs the transient, increasing Tos and incidentally making the follow-
ing "ebb'" the more severe, since fewer neurons will be available to fire.
The principles of the above paragraphs are illustrated by a continua-
tion of the computation of Table 4.1, Notice that the oscillations become
more and more severe until F(t) goes to zero at t = 91, Interestingly
enough, as will be discussed in Chapter 5, the corresponding simulated
network turned out to be stable. This is related to the fact that both
N and p were relatively small, p not a function of the distance, and
fatigue was present,
To conclude: while the scheme of Section 4.,3.2 will tolerate small
deviations in F(t), there is the definite possibility that a small tran-
sient deviation will eventually result in fatal oscillations, We wish

now to examine some mechanism or combination of mechanisms that will

counteract the effect of such transients. That is, we wish to implement
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some source of negative feedback in the model.

Negative-Feedback Mechanisms

(a) The Egpi&gg‘Mechanism

Since the fatigue function effectively raises the threshold of
a neuron firing at a rate above Fb* or conversely lowers it if the firing
is at a rate below Fb° we might expect some assistance from this direction.
That is, the neurons of an "ebb'" period tend to fall below Fb’ those in

a "flow', above F Conceivably, the fatigue might be sensitive enough

b*
to lower or raise the corresponding threshold quickly enough that large
oscillations do not occur  However, the fatigue is designed to be effec-
tive over longer time intervals than are involved here and to take effect
rather slowly:; it is a cumulative, relatively long range function. What
is needed here is a function that will be effective over relatively short
time periods, in fact. fractions of a recovery period. The fatigue mech-
anism, therefore, is rejected for this purpose, although it will be useful

over longer time intervals,

(b) Negative Connections

In the analysis of Section 4 3 2, it was assumed that the synapse-
levels were all set to a common value koa corresponding to a positive
synapse value, This, of course, can be weakened to a distribution of
positive synapse values (synapse-=levels) about the mean S(AO)(AO) It is
now of interest to observe the effect of the presence of negative synapse-
values on the network’s behavior. It will be seen that this provides
the negative-feedback desired.

To illustrate the principle involved, consider the simple scheme of
Figure 4.5 S1 and 52 are two subsets of a network LLL Suppose the

synapse values from neurons of Sl to those of S, are as shown below

2
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bi‘\AD, = ‘1'} b(kAE) = "’2% S(AAF) = ':2
Sthgp) = =1 5wy = -0 Sligey = -1
Slhgpt =t gt 2

and supposc ar the times steps of interest, 1 or more synapses will be
segquired o Lire a neuron of 5). If neurons A. B, and C fire at t, oniy
one neuron of oo namely Do il five vhe wost time step.  If neurons B
and € five, then & and F fire at t ¢ | ¥inally, if neuron C alone fires,
then D, E. and  {1r2 at ¢t + i This suggests the following generai con-
clasion: for c¢ertain distributions of synapse values over connections.
the presence of negative connections suppresses firing of certain neurons
at v + 1 if F(t; > Pb and "'frees' certain neurons for firing at t + 1| if
Fit) « Fb’ If F(t) = Fb“ then F(t+l) = Fb“ Thus, the desired homeostatic
mechanism is obtained. It remains to express it quantitatively for the
general «<ase of networks with uniform random distributions of connections.

Suppose the network density o is given as a sum

. . o~ § 23 -+ + + b PR 3
- S0 s Pls o+l Pt Pt s
= t) J 1
where 5, and s, are positive integers and Py is the expected number of

connections received (or emitted) by a neuron of})\ with synapse-value s.
For now, 5 will be assumed to be an integer. although the analysis can be
modified to compnrize fractional s A synapse-value assignment scheme can

be designed to vield this decomposition of » into Sy * sy * 1 independent

distributions of svnapse values s. s = SR I, oo, =1, 0, #1, . =
J @
The analvsis of Section 4.3.2 requires the probability wk\k(t)i,
the probability that a neuron receive ; k connections from Ro(t)% the :¢v

of neurons firing at t. With positive and negative valued connection.
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present, m becomes a function of all the A's,

(A o (B, X
k —so h50+1,

> = ps
before, As(t) = RO(t) = S = =S

(), ccc; Axl(t)g Al(t), socy Asl(t)) where, as
0° o Sp¢ P: is the probability that
the sum of all incoming synapses to the given neuron is 2 k., Again,

*

k

time step t. Since 0O-valued connections do not affect the firing of

| ﬁl(t) is the expected number of neurons of Mk(t) that will fire at
a neuron and the different synapse-value distributions are assumed to be
independent, the presenge of O-valued connections will be ignored in the

analysis. The role of these connections will be discussed in Chapters 6

and 7.
S *S )
Let Ak and Ak denote the following events:
Ai ¢ "a given neuron receives exactly‘k connections with synapse-
value s."
s . . . .
A; ¢ "a given neuron receives 2 k connections with synapse-=value
s."

Clearly, A;S = \“J A; o
i=k

Denote the probability of an arbitrary event A by P(A). Since the events

Ai, K=0,1, 2, ..., are mutually exclusive, by the law of total probabil-

ity
P(AC) = PCLJ AD) = 2L P(A)).
=k SE
*S

By the multiplication law, for arbitrary A’ and Azt

k

*S &t
k M)

We now give estimates for the probabilities P; for various values of k,

P(A = P(ASY) p(A;t)f

50 and 51'

k=1

The sum of incoming synapses to a given neuron is +1 or greater if
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the event E occurs where

Eq. 4.3.1 E=1 | E
z=1

where E represents the event '"the neuron receives 2 g positive synapses

and I %-1 negative synapses." The E's are given by expressions of the
form:
= a*l, aw2 *sy , ,-1 =SQ
El - Al AO LR AO AO [ ) AO
_ *1 . *S] ra=1 -1, = =S
E2 = [A2 A \,A A ] A o A0 [A0 v A1 ]AO 56 A
_ xl %2 %1 . *3 *S) =1 =1, =2 -2 =1 =S
Es - [Al A2 \: AS ] 0 oooA [[A Al N\, A2 ]AOV Al AO ] 000 AO
2. %2 *s =1 -1 =1, ,.=2 -8
B, = (% 7% sty sl o liagh ATl ashy A 1as Aty ATIAR
Attention will be restricted in this discussioﬁ to two cases: 5o = s1 =1
and Sp = 8 = 2. For the fommer,
& . 1,-1 1. .-1 =1 ¥l =1 -1 =1
Eq. 4.3.2 E ‘_[A}AO ] v [AZ(AO VA v (A, (Ag” v A" v A)]
For the latter,
6
Eq. 4,3,2 E=1\)E
i=1
where
%1
E1 = A0 AO [A A1 ]
- *2 *1
B, = AT LAY Ayl
_ ra=1l,-2 -1 =1 *2 *1
E3 = [A0 A1 v (AO v A1 \% A )A ]A 1
_ =1 =1 =1 =1, =2 =1 =1, .22 %2 *2 1 *]1
E4 = [[A0 v A1 v A2 v A3 ]A0 v [AO v A1 ]A1 ][Az v A1 A2 v A4 ]
=1 =1 -1 =1 =1, =2 =1 =1 =1, =2 =1,=1
ES [[A0 v A1 VATV A3 v A4 ]A0 v [A0 \% A1 v A2 ] A1 v AO A, ] x
*2, %] *2 x1 *]
[A2 A1 v A A A5 ]
s L =1 =1 =1 =1 -1 =1,,-2 . =1 =1 -1 =1, ,=2
h6 [[A0 v A1 v A2 v A3 v A4 v A5 ]A0 v [A0 v A1 \ A2 v A3 ]A1
=1 =1 *2 *2, . *1 *2 ] *1
v [A0 v A1 ][A3 v A2 A2 v A1 A4 v A6 ]



Then, for Sy = 51 7 1, by the law of total probability and Boole's in-

equality and noting that P(ASS) = P[\“}Asﬁj = 1,
k=0

. * N 1 =1, _ 1 =1 =1
Eq. 4.3 4 Pl = P(E) = P(A1)P(AO ) = P(AZ)[P(AO ) + P(Al )
*1 =1 -1 =1
+ P(A3 )[P(AO ) + P(Al ) + p(Az )]'5
For s, = s. = 2,
0 1 6 6

Eq. 4.3.5 Pj = P(E) = P(\ | E.) = "'P(E.),

. 1 o 1

i=1 i=1
where the Ei are those of Equation 4.3.3. Some observations concerning

the computation of PI for various values of the A;s; especially for the

= 2. will be made later It is interesting to note that

case SO = Sl
*S .
P(Ak ) = nk(xs) s = “Sgp cees sl
since
PAAST) = Pl A = Pl
j=k 0 jek
k =2

The sum of incoming synapses to a given neuron is +2 or greater if

the event E occurs where

Eq. 4.3.6 E = 9251
where E1 represents the event ''the neuron receives Z ¢ positive and
2 % - 2 negative synapses.' The Eis are given by expressions of the fomrm

_ *2o *1 *1 %2 %5 =1 =2 =50
E2 = [A1 A0 \ A2 A0 | AO AO A0 coe AO
X *2 %] *S =1 =1 -2 -5

= c l O
bs [Al A1 | A0 [AO v A1 ] AO e AO
Co- a2 sl w2 %1 *1 %2 “Sq sloa=loa=1y,=2 =1 =20 =3 =5
E, = [A2 AO vA1 A2 1% A4 A0 ]gtgAO [[AO vA1 VA2~]AO vAO «Al ] AO \ffAO
Attention will be restricted to the case So = 8; = 2. For this case, E
may be approximated by

8
E=1 |E
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where
. *2 *1, ,=1,=2
Ez = (A1 v A2 ) AO A0
*2 %] -1 =1 =2
E3 = A1 A1 (A0 v A1 )A0
*¥2  *2 *1 *] =1 =]l =1 =2 =1 w2
54 = (A2 VAI A2 vA4 )[(A0 vA1 vA2 )AO vA0 A1 ]
*2 . *1  *2 *] *] =1 =1 =1 =1  «2 =1 =l _ =2 =2
Es = (A2 A1 vA1 A3 vA5 )[(A0 vA1 vA2 vA3 )A0 v(A0 vA1 )(A0 vA1 )]
_ *2 *1  *2 =1, ,=2 . =1 -1 ,=2
56 = (A vA2 A2 vA1 A A )[(A ch4 )AO v(A0 VeoaVAz )A1 0 Ay ]
. *2 %1 *2 *2 %2 *] -1 =1, =2 . =1 «l, =2 =2
E7 = (A3 A1 vA2 A3 vA1 A5 )[(AO vcgvas )AO v(A0 v - vA3 )(A0 vA1 )
=1 =1, =2 =2 .2
v(AO vA1 )(A0 vA1 vA2 )]
. *¥2  *¥2 *1 %2 *] =1
ES = (A4 vA3 A2 vA2 A4 )[(AO vV - vA )A v(A v = vA )(A vA1 )
-2 =1 -
v(A vA vA )(A A vA ) A 3 ]
*
Then, for P2 we get
p* = P(E) = P(k')E )
i=2
Eq. 4.3.8
s SZ:P(B ).

i=2

For Ag (s =2, -1, 1, 2) in the range .1 to 1.0, Equation 4.3.8 will be
approximated by

Eq. 4.3.8(a) P = P(E) . P(ABI)P(ASZ)(P(AIZ) . P(Azl))

-1 =2 *2 x1 *2
+ PATIP(A) (PATIP(AT) + P(AYT))
=1 -2 *2 *1
+ P(ASIP(ATD) (P(A,) + P(A,))
-1 =2 *2 *1
+ PAIP(AS) (P(A)) + P(A,)
For }‘1 and Az in the range 0.6 to 2.5 and )\_1 and ’\_.2 in the range 1.2

to 5.0, Equation 4.3.8 will be approximated by

Eq. 4.3.8(b) = P(E) ¥ Py + P, + P+ Py
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where
I S SRR S| N N
P = PPN PADP AP (AT LU-Pa; 1P D (1P ) (pias 2
2, .20 1 2.0 h o1
P6 = [P(A3)+I(AZ)P(A2)+P(A1)P(A4)+FQAé)]
xra-pag eagtisapay e e aghipmgd)
2.1 2. 1. 2.1
P7 = [P(AS)P(AI)#P(AZ)I(A3)+P(A1)I(A5)}
x=1_. =2, 1., yra k2 C pra*=1 w2
X [(l:P(A6 ))P(AO )%(l:P(A4 ))(l“P(AZ ))*fle(Az ))(1=P(A3 i)
P = (PP esh e Py 1 x (a-pd et pea )
x (@-Pag e a-pay ) a-pd s hrasd)

In Equation 4.3.8(b), an attempt has been made to eliminate the overlap

of events Esg = E8 by replacing A;Q by A? where appropriate. Events

529 E39 E4 are ignored since, for the given range of As (s =-2,-1,1, 2),
the P(A;)“s and P(A;Z)“s are negligible.

k=3, 4 and So = 51 = 2‘

Precisely the same reasoning as for the preceding cases may be

carried out for this case., We give only the’approximations for P; and

P: for Xs in the range .1 to 1.0:

g P} P(Aél)PcAgz)[P(A§2)+P(A;1>+P(A§2)?(Agl)]+P(A;1)P(A52)P(A§2)
Eq. 4U3:91
% _ =1 =2 *2 #1
Py = PUAGIPAN) [P(A )P (AT )]

From Equations 4.3,8(a) and 4.3 8(b) emerges the following general
principle: to compute PE (k =1, 2,3, .. ), examine the expansion of

P(E) = P({J Ei) For a given range of the A;s (8 = =sg, ... s only
i=]

1)?
a few of the Ei are such that P(Ei) is not essentially 0. For these Eig
attempt to reduce the overlaps as much as possible: that is, attempt to

make the Ei"s mutually exclusive so that the law of total probability
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applies (Note that Boole's inequality
P(YJE)D = TP

provides a useful upper bound).

The effect of negative connections upon P; can typically be seen
from examination of the expressions P59 P6, 6609 P8 comprising Equation
4.3.8(b)., Each Pi consists of two factors, one a sum of products of
the general form P(A?)P(A;)‘or P(A;S)P(A;t)9 s, t positive, the other
a sum of products of the form P(A;S)(lap(A;t))o For small A__ and small
j» %, the latter is moderate in size, decreasing as A=s increases, At
the same time, for small Asg the former is small, increasing as As
increases., Since As(t) = %;(t)£%=varies directly with the number of neu-
rons fired at t, P and N being fixed parameters of the network, this
suggests that the parameters N, o, Pgo S = =845 oo S1» may be adjusted
so that as %;(t) increases above a certain amount Fy» P; decreases and as
ﬁz(t) decreases below Fb” P; increases. This gives exactly the negative
feedback characteristics desired, This reasoning holds as long as %z(t)
does not vary too greatly from Fb0 For larger variations of Ro(t)g higher
order terms ignored above come into play and eventually the P; may increase

again with increasing ﬁ;(t) or decrease with decreasing %;(t)g

*

1
using the network parameters for one of the network of Chapter 6. Notice

In Figures 4.6 and 4.7, sample calculations are given for P. and P;

that for this network, to obtain the desired negative feedback, F, should

b
be set to approximately 35 (or correspondingly, if Fb is set to any other

value, the psos should be adjusted to yield the same results).
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Figure 4.6. Variation of P1 and l2 as a Function of RO(“)
PI and P; are plotted as functions of R(t) in (a) and (b)

respectively. Equations 4.3.5 and 4.3.8(a) for the case

S, = §. = 2 were used.

1 = 7 and p =

B = 14,

N = 400, p, = o o,

2
p=0o 5+ Pyt Py py = 42 (exclusive of the po term used in

Chapter 6).
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2
plotted as a function of RO(t)L Equation 4.3.8(b) for the

. s s % . .
Figure 4.7. Variation of P2 as Function of Ro(t), P, is

]
wn

case s = 2 was used. N = 113, pl =0, = 7, Pp=P o=

0
p= Py Pyt Py * Py = 42. For each value of Ro(t)g the

values of A_ (s = =2, =1, 1, 2) are also given. The dotted
curve represents a continuation of the computation, but using
Equation 4.3.8(a). At the point %;(t) = 10, the results of

*

both equations were added to give the value P2 = .17,

14,
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Conclusion

A mechanism involving negative synaptic connections has been devised
that tends to surpress variations of ?;(t) from FbU Letting
éRo(t) = Ry(t) - F_, it works as follows. For a certain range of |<SRO(t')|,7
if GRO(t) > 0, then Ro(t+1) is decreased, i.e., Ro(t) = Ro(t+1) >0. If
GRO(t) < 0, then RO(t+1) is increased, i e., Ro(t) - RO(t+1) < 0. Whether
this occurs or not depends upon the '"mix' of positive versus negative con-

s
nections , that is upon p = :%i Pgs and the value of F

S==5
- 0

The analysis of Equation 4.3.2 remains unchanged, except that the

bf:

probabilities nk(A(t)) are replaced by the probability
Py = nk(Acso(t)» veos Xsl(t))a

Throughout this section, and indeed the entire chapter, statements
such as the following appear: '"event A occurs if quantity X remains with-
in certain bounds (is not too large, is not too small)" and more precise
quantitative information is not given. In general, such information is
nof easy to derive and one is forced to be more qualitative than quantita-
tive. This unfortunate situation, however, is considerably relieved by
the simulation itself. For example, for the statement above, '"for a cer-
tain range of GRO(t), etc.'" can be modified, on the basis of experimental
findings alone, to the following: "if GRO(t) is no greater than approxi-
mately Fb/29 then ... . For larger variations, generally fatal oscilla-

tions develope.,"1 Thus, much awkward and unwieldy analysis can be

\

1Recall that»Fb = E(F(t)) is the expected number of neurons of ;L that fire
at t and l/rq is the expected frequency of firing of neurons in steady-

state. Fp and l/fq are related by Fp = N/r,. The statement concerning
the absolute variation SRp(t) could be replaced by one in temms of the
. - o F(t)an 1 1 N
: 2 3 o &% = . = = o = e,
relative variation: § Ro(t) 5 163 ~— where r(t) F(t)

Tq
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by passed by the simulation  Once initial trends are established by
the analysis, and estimates obtained for the network parameters, a series
of control experiments may be executed to further refine the initial

estimates,

4,3.4 Networks with Distance Bias

Geometry of Networks with Distance-Bias

Specification of a particular distance-function d = d(j,i) over a net-
work K\_implies the existence of some geometry overzyt and conversely,
For a criterion to determine which are the desirable geometries forzﬂ it
is necessary to recall briefly the fundamental objective of this studys
to study the formation and development of cell-assembly-like structures in

N

the given class of networks ﬂlu The outstanding feature of these networks
is the absence of any particular a priori: structure. Rather structure is
to evolve through the synapse-growth law, in response to certain condi-
tions or patterns of stimulus. This seems to imply a basically uniform
locally isotropic geometry. Such a geometry places the responsibility
for development of structure squarely upon the shoulders of the synapse-=
growth law and the stimulus, without the assistance of any intrinsic spa-
tial variations. Therefore, excluded are such spatial anomalies as
"warps'" (arising in non-Eudidean geometries) or poles and essential singu-
larities (arising in complex function theory),

In the ideal case, several geometries appear to be plausible:
(a) the infinite two-dimensional plane with the usual Eudidean metric,
(b) ordinary three-dimensional Eudidean space, (c) the surface of
a cylinder extending to infinity in either direction of its central axis
together with the appropriate metfic, (d) the surface of a sphere. (Geo-

metrics (b) and (d) will not be considered here, primarily because of
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difficulties arising in their implementation). These geometries all
have the desired qualities of isotropy and uniformity: (a), (b), and (c)
may be taken as approximations to fragments of the cortical association
layer. (c) in fact may be regarded as an infinite strip in the plane
folded so that its edges caincide. For this, the simple Eudidean metric
may be retained.

For the simulation, of course, it is necessary to reduce the infinite
unbounded geometries to finite bounded ones. From (a), a simple square
may be taken; from (c), a finite cylinder, The continuous geometry must
then be approximated by a finite, discreet geometry. Points of these geo-
metries are neurons of the model.

Unfortunately, reduction of the infinite geometries (a) and {:) to
finite bounded geometries violates the principle of isotropy needed, for
the spaces are not uniform at their boundaries, For sufficiently large
networks (N =;@L‘very large) this perhaps poses no serious problems, since
then the space of Ii‘may be considered essentially infinite. However,
for N relatively small (N = 200 - 900) as in the present study, the
presence of boundaries may cause serious anomalous perturbations of the
behavior of &lg Consider, for example, the square of Figure 4.8, Suppose,

along one of its boundaries, E, fo neurons fire at t = t The width

0°
of the '"swath" along the boundary (Area 1 of Figure 4.8) is a function of
p(d). If fO chanced to be sufficiently large, by the reasoning of

tion 4.3.3 (assuming negative corrections present), few, if any, neurons
in Area 1 would fire at tO + 1. Let Area 2 be the set of neurons not in
Area 1, but receiving connections from Area 1. By the same reasoning,

the firing of neurons of Area 2 at tO + 1 might be increased if fo were

not too large (limits determined by synapse value distribution), Suppose
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Area 1. fO neurons fire

at t = t

0
Area 2. f1 neurons
fire at Area 3. f2 neurons fire
t = t0 + 1 at t = tO + 2

Area k+l, fk neurons

fire at

t = tO + k

Figure 4.8 An Example of a Boundary Problem. See text for

explanation,

fl neurons fire at t_  + 1 in Area 2. Likewise, at t_ + 2, most neurons

0 0

that fire will be in Area 3, since the neurons of Area 2 would be inhibit-
ed while most of those of Area 1 are refractory or inhibited. Similarly
for tO + 3, tO +4, ..., tO + k. In effect, a 'wave'" has been sent

across the network, leaving an abnormally large number of highly refractory
neurons in its wake. In particular, the number of neurons fireable at

tO + k + 1 may be nil. Thus, the possibility arises of violent oscilla-
tions in F(t).

Admittedly, this is an extreme case. However, less violent but
equally undesirable effects may be obtained. For example, if fo above
were of moderate magnitude, the wave sent out from E may reflect off the
opposite side El and come back to E, reflect off E, back to El, etc.,
creating a standing wave phenomenon, The behavior of the network would

be locked into a particular pattern, with the result that the network's

response to stimulus would be erratic, That is, stimulus may produce no
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0
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Figure 4.9. Quasi-Torus

effect or may cause fatal oscillations. (This is especially true if
the number k is less than fqg If k >> fq, such phenomenon as the above
would appear to be less likely to occur since the wave would tend to
break up as it travels from E toward Elq)

The difficulties arising from bounded geometries may be resolved by
the ""quasi-torus." Consider the geometry of Figure 4.9, The edges E1
and Ei are identified, making the square a cylinder. Then, 52 and Eé
are identified, bending the cylinder into a torus. Throughout this pro-
cess, however, the Eudidean metric of the square is preserved. It is as
though the square were iterated on all sides (Images 1 - 8 on the figure).
For example, point a has neighbors with a circle of radius R within

areas 1, 2, 3, 4 as shown. These areas may be considered on the one

hand as the intersect of circles with centers at the virtual images
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A, 4. and o' respectivody wLlth thw soudre x;.l ;;!F o, il g
hand, they may be considered as The interscctions ol oo oivels wige
center at o with the irzoes 1, 2. 3 resnectivelv., ‘the noin: | has its

neighbors within a circle of radius R in Area 5 as shown, fh:z =~re

7
-
1

vation of the metric in the iterated cells distinguishes the geometry
from the actual toroidal geometry, although some essential aspects of
the torus remain, e.g., in Figure 4.10 the lines A, A' intersecting Ei

wrap around at El’ likewise B, B' intersecting E2 wrap around at Ez,
Note that the points B f\Eé and B F\E2 are identical as are A' N E] and
A'NE!}, AI’\Ei and A/\Ei, etc.

The geometry of the quasi-torus is finite and isotropic, the met»ic
is particularly simple, and boundary problems do not exist. It may be
regarded as a crude approximation to the highly convoluted cortical geon-
etry, or it may be regarded merely as a convenient artifact which pre-
serves the basic property of isotropy and allows exploration of Hebb's
thesis. Again, as N + =, the geometry tends to that of the infinite
plane. Throughout the remainder of this paper, all discussions of networks

with distance-bias will assume this quasi-toroidal geometry as the under-

lying space.

1
A' \ \LA continueld
continued
]
EZ —> B continued -—5—3; EZ
BI
continue B!
Al J/A
)
E1

Figure 4,10, Properties of the Quasi-Torus,
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Steady-State in Networks with Distance-Bias

The characterization of steady-state behavior in networks with uni-
form random distributions of connections took the following simple form:
""the expected number of neurons firing per time step is Fbo" From this
condition the conditions of Sections 4.3.2 and 4.3,3 on the threshold
curve and synapse-value distribution were derived. Conceivably, on
the basis of the principles outlined in those sections, a complete mathe-
matical stability theory could be developed for neural networks with uni-
form random distributions of connections. Unfortunately, a comparable
theory for networks with distance-bias seems to be beset by a multitude
of difficult problems from the outset. Consequently, the role of the
simulation as a means of by-passing tedious mathematical analysis is all
the greater for such networks. However, certain useful principles still
may be developed and used as guides to designing effective experiments,

The statement ''the expected number of neurons firing per time step
is Fb" by itself is not an adequate condition for steady-state in net-
works with distance-bias, For consider the situation depicted in Figure
4011’Fb neurons fire at t09 but these neurons are entirely contained in
the circular area A, Suppose Fb - A, Then, at tO + 1, neurons in the

annulus A', determined by p = p(d), will fire. At t_ + 2, neurons in

0
the annulus A" plus a few in A’ will fire, etc. This yields a series of
gradually dissipating, expanding concentric rings of activity with a re-
fractory core in AIVA'Y A"y, ... . Several ills might occur in this
situation: (1),@q = (AyA'U AU ...) may be essentially exhausted,
that is, not enough fireable neurons are available to maintain stable-
steady-state, F(t) would then tend to zero, (2) Enough neurons in

\

the compliment ([ = (ACA" VAW ,..) are left to maintain activity,
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but the neurons in AU A'W) A"U,,. become hyper-recovered. This violates
the second function of steady-state listed in Section 4.3.1. Consequent-
ly, the danger of violent, possibly fatal, oscillations arises, and some
qualification on the condition is needed. What is needed clearly is
some condition on the spatial distribution of neurons firing in steady-
state.

The following provides the necessary spatial distribution of neurons:
the Fb neurons are distributed randomly and independently over brl like,
for example, the flying-bomb hits on London in World War II, bacteria on

a Petri-platel, etc. Let F

A the expected number of neurons firing in

area A, then
Fb _
Eq. 4.3.10 F(A) = —N-K

(1/% )-A
1 R q /v

since ¥— N = Fb; l/rq is the probability that a neuron of Ol will fire
at t. If N is sufficiently large so that the geometry may be regarded

as continuous, this is equivalent to saying that

F(A) = %; A (MA" the area of A)

1

AT =2~
///r"‘\\\\
('t L2 X
\ )l
\\\\\ //lA
oo~ - - s,/

\:~—- ///RAHO

Figure 4.11, Anomalous Steady-State in a Network with Distance-Bias

|
ISee, for example, Feller, W. An Introduction to Probability Theory and

Its Applications, Vol. I, Wiley, pages 150-152,




and

Eq. 4.3.10(b) dF (A)/dA = l/fq,

In other words, 1/fq may be regarded as the rate of change in firing per
unit area.

Equation 4.3.10(a) will therefore be accepted as a necessary condi-
tion for steady-state in networks with distance-bias. It is, of course,
an approximation, since, in principle, the firing pattern at t + 1 can
always be uniquely determined from the firing pattern at t. The condi-
tions for the firing of a neuron of \f at t are sufficiently complex and
variable that it may be regarded as a "random" event (the usual condition
for applications of elementary probability theory). The equation essen-
tially limits the expected activity of neurons in any given area. F(A)
is an expectation, therefore the question of its variance arises; just
as it did in Section 4.3.3 for F(t). Again, as the example above shows,
too large a variance can lead to catastrophic results, Recalling the
moral stated at the conclusion of Section 4,3.3, it will be assumed that
var F(A) remains within certain bounds, these bounds being determined by
the simulation,

Conventions of Distance-Measure

The quasi-toroidal geometry of‘xt takes the following specific form:
Let N = e29 the network being laid out as a square on a two-dimensional
grid with e neurons per side (see Figure 4,10), Neuron i will have
coordinates (xigyi) where X, is the number of units from (0,0) to the
projection of i on the x-axis, Y5 the numben of units from (0,0) to the
projection of i on the y-axis. Given another point (neuron) j, the prob-
lem is to define uniquely d(j,i), the distance from i to jo If j has

coordinates (xjgyj)g it would be tempting to define d(j,i) as



since an Eudidean metric has been promised.

Figure 4.12 indicates that this definition is inadequate:

A 2
d(Jll) = [(xi-xj) + ()'I‘YJ)
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2]1/2

However, a glance at

The point j

has copies j1 in the iterated squares 1 - 8, Of these, the points j1

in squares 3, 4, and 5 are such that the d(jl,i)'s are equally valid

candidates for d(j,i).

6680

Y
4 3 2 co o
jf"\\ /3! j'
/
(e-1,0)) ‘ ; (e-1,e-1)
\\04 /
\ i/ 43
.,0 .
(yl’ ) __ ¥ xi‘yi)( )
5 o X. ,Y. 1 cee
b d ‘l D) j!
u
0 !
p) @,x) (0,e-1)
6 5 o9 8
j! i !

Figure 4.12,

>

Distance Measure on the Quasi-Torus
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Therefore, some method of choosing the minimum of all possible d(j,i)'s
is required.
For simplicity, suppose one of the points has been mapped into the

origin. For d(0,i), dl,g d29 d3 and d4 are candidates. Set

d
X

d
Y 2 ,2.1/2
Then, it is easy to see that the required distance is d(0,i) = (dx+dy) o

1

i .,€ = 1 « X,
m1n(x19 xl)

min(yi9e =1 - yl)

In the figure, d(0,1i) = d40
For arbitrary points (xisyi) and (xi,yi)9 the mapping takes the form
(styj) + (0,0)
(xi ;yi) > (xi’xj 9yi°yj)'

Should X, = xj or y, - yj become negative, e - 1 is added:

(xoy;) > Fayh)

where xl = x, - x. ifx, = x, 20
i i j
=x, = X. +e~11if x., = x, <0
i j i
1 _ . . ) 5
y = yi = Yj if yi = yJ =0

i
<

- y. +e-11if Yy * yj <0
and xlsy1 are used in the definition of dx and dy”

Disk Distribution

The specific form of P = P(d) to be used throughout the remainder
of the present work whenever distance is involved is the following (recall
Section 4.2.2 above):

Given any neuron e € \L3 the expected number of connections received

N
by i from \' is

]

A
o]

HA
=

o(ri) constant = Po # 0 for O

0 for R < r

p(ry)



where T, is a radius emanating from neuron i (see Figure 4,13).
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The basic

scheme for assigning connections is modified so that no connections are

obtained outside the disk CR of radius R with center at i. This means

that i receives connections equiprobably from the neurons of CR and none

from Q - CR.

CR = area of C

For N sufficiently large,

R

and Equation 4,3.10(a) becomes

= 21rR2

The numbers R and Py are constant for a given network

The Difficulty

Ideally, a calculus similar to that of Sections

developed for networks with distance-bias.

4,3,2-3 should be

Unfortunately, an attempt to

modify that calculus to treat networks with distance-bias on the distri=-

bution of connections immediately leads to a computational impasse,

The probabilities nk(k(t)) or P

tance variation of p

*

p(d), hence of the A;s, S = =5

0.

K must be modified to account for the dis-

seey Spo To do

this, the geometric structures as well as the respective cardinalities

/7

/ -~
7

h Y

\ ; i

™~
>

[

\v

CR (shaded)

\
l

A

—— neuron i receives
connections equipro-
bably from all neu=
rons of the disk

C,s none at all

Figure 4,13,

rom neurons oute
side CRf

Example of a Disk Distribution



of the sets Ru(t), Ry(t). ceecs Rr (t) would have to be specified. Next,
1 q

the expected number of connections received by each Rr(t), T, Sr é'rq,
from RO(t-l) would have to be estimated. The latter process gives rise

to integrals of the type discussed in Section 4.2.2. Figure 4.14 illus-
trates the variation in the expected number of connections received by

a neuron from simple configurations (using crude approximations to the

area integrals). While these estimates assist in understanding the effects
of distance-bias on the connection probabilities m, or P;, they are not
really useful for the present purposes. There are, however, some useful

techniques for estimating the threshold curve and for setting the param-

eters p, R, ?q and Fb‘\



(a)

(b)

(c)
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Connections Received from a Disk of Radius h,

Receiving neuron i at
(r,0)

; R 2 2.1/2
\ ) o, = 2K(R®-1r%)'/?
R I
r
‘ )
\\\/ !r,a\\_“ L a“ = Rz - I‘z
\ / - L
\V,___,_,/

Connections Received from a Box with Circular Ends.
|

For i in Area 1, Pp = K%(l+d2) These ignore the corner

effects (CR intersects

For i in Area 2, use approximation (a) both a circle and the box)

Figure 4.14. Estimates of Expected Number of Connections Received
by a Neuron i from Simple Geometric Structures. The basis for the
estimates given above is that the expected number of connections

e, received by a neuron i e\, is proportional to the area of A

(in (b), to the length of a line segment). This holds since p (r)
is uniform for 0 £ r £ R, The general inference from the estimates
below is that pp varies quadratically with the distance from i to
the boundary of A,
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Given a network &l, with @F = N, distance-bias function p = p(r)
\

as above, Fb = %—aN the expected number of neurons firing per time step

N r

q
in \V. Perform the steady-state calculations of Sections 4.3.2 - 4,3.3

for the neighborhood CRC::\ﬁlf For this, from Section 4.3.10

R_1 = ZJTR2
F, = == . = oo
b ¢ R ¢
q q
and the As's are given by
R
A = 052: O.-}‘= Oib! (5=a5 S)
s = Ps = Ps £ °s XN (VLS|
R q
since fq = %— . In other words, this is equivalent to treating itself
' b

as though it were a network with uniform random distribution of connec-

tions with density

s==§

S2
o= D16l
1

This calculation, of course, ignores the effect of neurons in
\1 - CR upon those of CR° Depending upon the distribution of synapse-
, s1
0= 54p3), the
s==5
resulting threshold curve would tend to produce either overdamped or

values over synapse-levels (giving the decomposition p

underdamped behavior initially in 310 At this point, refuge is again
taken in the simulation, the calculations above being used as a guide for
setting V(r), then a family of curves derived from V(r) may be tested
experimentally, gradually homing in on the one that best satisfies the
basic conditions laid down in this chapter for steady-state and stability.
In Chapter 6, it will be seen that this proceéure is not as haphaz-

ard as it appears and that many of the principles that apply to networks

with uniform random distributions of connections carry over with only
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slight modification to networks with distance-bias,

4,3.5 Synapse-Level Drift

In the preceding discussions, the synapse-values have been assumed
to be set to discrete integral values =Sy -so+l, cooy Spe If the network
is operating in steady-state, the analysis of Chapter 2, Section 2.3.4,
guarantees only that the expected change in synapse-levels is zero., In
practice, the levels will "drift" from their initial settings since local-
ly some neurons may be firing at rates greater or lesser than Fb for
brief periods of time. If the network is operating in a true steady-state and
if all the network functions are properly adjusted, this "drift" should
ultimately take the form of a multi-modal distribution of synapse-values

about the means -s_, -s +1, ..., s

0°* 0 1°

arises and, as usual, the burden of the proof will be on the simulation.

As usual, the problem of variance

A drift in synapse-levels in a particular direction would indicate an im-
balance in the network functions. For example, the threshold curve might
be set for a steady-state firing rate of l/fq, while the synapse-level

balancing equation is set for a rate of l/r‘,
q

D(A '
UT)JL-O-)“D ™ = Y7

and l/f'q > l/rau In this case, a net increase in synapse-levels (values)

would be expected.

4.4 Networks Under a Single Periodic Stimulus
4.4.1 Stimulus and Stability

In the preceding section, computational guidelines were laid down
for determining the network parameters N, p, rq, etc., and the threshold

function V(r) that will yield stable steady-state behavior in a given
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network §1, The criteria for such behavior are outlined at the end of
Section 4,3.1. Of the five conditions given there, the fifth has not yet
been accounted for, namely "a single application of a moderate sized
stimulus to a network operating in steady-state must not produce epilepsy."
An analysis of this statement and its consequences forms the basis for

the present discussion,

Consider a network ?ﬂ\operating in steady-state. This means that
there is a distribution /(t) of neurons over recovery states that is sta-
tionary in the sense that the expected values of the ﬁ;(t) remain constant
(in fact all equal to Fb) for all time., The negative synapse-values pro-
vide the necessary feedback control mechanism to damp out the effects of
transient variations in F(t) from Fbg the bounds on such variations to
be determined empirically. The origins of these transient variations were
attributed to the random fluctuations of the ﬁ;(t) from their mean Fb that
are inherent to any random process.,

Suppose, however, that a subset‘ZOC:iyl is selected as an input set,

At certain time step ty the neurons of I, are provided with an external

0

stimulus S0° In general, the neurons of ZO

\

over &\(in the case of uniform random connection distributions) or over
: \U ’

some subregion of ()| (in the case of distance-bias), Likewise, neurons

will be distributed uniformly

of ZO will be distributed randomly over recovery-states. Since a neuron

of EO fires at t, if S, plus the incoming stimulus to the neuron at t,

exceeds its effective threshold, for a given S., the expected number of

03

neurons of ZO that will fire at to is FO where

(a) (uniform random distribution)
%ﬁ =4 gioﬁw
% MSO ZO MS

. _ 0
Fp = (x N =~

N
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where M; is defined as

0 [5,]
0 k1 K
(b) (distance-bias)
Lo = A A .= = A
=y = =1
Fo= (%) ~ (Mso A Ms0 ‘N

\ \.
where A is the region of 6( containing g 20<: A(IO{O In (b), it is
assumed that neurons are distributed uniformly over recovery states over
= 1 .
area: if Rr neurons of Ki are 1n recovery state r, then the expected

number in this state in an area A is ﬁ;

Zi >y

- Notice that (a) and (b) are
equivalent if A =\(\A’l & =N,

The basic reasoning of Sec, 4.3.3 may now be applied to the case
b * Fo at toa
(In general, the subset of 20 that fires at tO and Ro(t) will overlap.
Consequently, the actual expected variation is F, + F_ - fo Py

b 0 N
E: 4
Fb + FO - FOFb 55 depending upon the absence or presence respectively

that F(t) undergoes a variation of approximate magnitude F

or

Z

of distance-bias. The error temm is, of course, frequently negligible.)
If FO lies below a certain bound Fmax' the network will remain stable,
Empirically and computationally, a safe bound was found to be
Fmax = Fy/2
although larger variations were tolerated,
Should F0 exceed Fmax’ depending upon the distribution of synapse-
values over connections, F(t) will be driven too far above or below Fb

for the behavior to remain stable and fatal oscillations would be expect-

ed to occur,

The steady-state calculus of Sections 4,3,2,-3 may be applied to

o
Recall again that F, = E(F(t)) is the expected number of neurons of bk
that fire at t in sgeady-stateo
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study the effects of stimulating I and to obtain estimates of fmax°

0

Each subset Mk(: M; has to be reduced at t, by the expected number that
0
fire in Mkp otherwise the calculation proceeds as before, An example of

this calculation will be given in Section 4.4.,3.

4.4.2 Periodic Stimulus

The basic thesis of Hebb is that cell-assemblies and phase sequences
of cell-assemblies come into existence through the repeated application
of a training stimulus pattern. Once the assembly is formed, via the
synapse-growth law, it responds to a brief application of this pattern
and tends not to respond at all to different patterns. 'Response' means
arousal of activity in the assembly that continues for a brief period of
time independently of external stimulus, a combination of effects of
fatigue and external inhibitory stimulus damping out the response. More
specifically, a subset of neurons of the assembly will operate briefly
at rates greater than the background rate l/f'qo For this subset, the dis-
tribution £(t) is no longer stationary, since for a brief period of time
the mean of the %;(t) differs from its steady-state value and not all
the %;(t)°s are equal, Eventually, the effects mentioned above drive
R (t) back to its stationary form. It is the purpose of this section to
examine the effects upon the behavior and structure of &1 of the applica-
tion of stimulus with the simplest type of pattern, namely simple
periodicity.,

~

Suppose a set of neurons DN (as defined in 4.4,1) is stimulated with

1}

stimulus SO every 1, steps at t = tO *mry, mo= 0, 1, 2, ... « At to + T,

the set

(- "
ZT ZTU ZT
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will fire where 22 is the component due to the steady-state (i.e., the Fb
neurons firing at t = to) and L is the component due to the combined
effects of the neurons of 20 that fired at t and the steady=-state).
The expected number of neurons firing at ty + T is

fi = Fb * FT
where FT = ?To This decomposition of Z; into L Zg holds only for
small t. As t grows, the effects of 26 (unless epilepsy were produced)
become dissipated. It is important to realize that FT need not remain
positive, 1 < 0" There are three céses: (1) FT remains positive;
(2) FT becomes negative; (3) FT goes to zero. In general, if t is large
(3) indicates that the stimulus has dissipated. (1) indicates the presence
of a path of connections from 26 to Ei to 22 too

P(z) ~ £)) such that I! , assists in firing !, 0 < t' I 1, Such a path

to Z; (abbreviate

will be designated as an effective connection path from ZO to

1 ' ' i . ! ?
L PE(XO > ET)C (2) and (3) may or may not imply a PE(Z0 > 21)7 In

=

the case of (2), however, Fb + FT has become so large that ﬁ} (t) is
decreased below its steady state value so that F(t0+r) = F' decreases
below its steady-state value Fb“ This raises again the danger of violent
oscillations. For now, merely assume this does not occur and there exists
aPE(% > mgu

At subsequent applications of the stimulus (assuming the same subset

' . . 3 P: 0 '
Lo C ZO fires each time) at ty + mTy, an effective path E(EmTO »> zm10+r)

will exist. These paths will, in general, at least partially coincide

after repeated applications of the stimulus if the stimulus is sufficient-
" "o 3 T o~

ly "strong'": i,e., ZO" Fmax’ T 0

is not, perhaps, a priori evident, again the appeal will be made to

<< rq, S, large. (While this statement

the stimulation, which will bear it out, The role of distance-bias is
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vital in this argument and will be discussed in 4,4.4, below,)

An important characteristic of the stimulus must now be introduced.,
If %o << fq” repeated applications of the stimulus will result in fatigu-
ing the neruons of 20, so that eventually they respond but sporadically
to it. Therefore, consider that the stimulus is applied periodically
every T, time steps for t = tytot = ts then it is turned off from
t = t1 tot = tzp then turned on again, Assume, as in-Chapter 3, that
the lengths t, of these "on-off" periods are equal:

t t.=t, =t. = ,,, =t = constant., Set tg so that the neurons of

170" 274" L
ZO just begin to fatigue by to * t,, and completely recover with respect
to fatigue by tl * ty, etc. The case is very similar to that of the
synchronous periodic inputs of Chapter 3, Assume, therefore, that a path
PE = PE(zé > E;)

develops, 1 £ Ty» POssibly over several 'on-off" cycles. Notice that
the synapse growth law is involved in this development since the neurons
of Z;,nl will be repeated assisting those of Z;q in firing at a rate
greater than 1/;q, therefore causing an increase in the Ajivsb
je Z%vulg ie E;,o

The question arises now: Will the path PE eventually close back
on itself? That is, will an effective path PE(E; > E%O) develop? Since
2%0 = 269 this means that a closed cycle C(Z&) =>PE(£6 > 26) of length
0 has evolved. C(Zé) will form a candidate for a cell-assembly in the
model.

To demonstrate an affimmative response to the question with the
current model will form the bulk of the empirical effort of Chapters 6

and 7. However the following intuitive argument might illuminate

the problem somewhat:
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If p is sufficiently large (and R not too small if distance-bias is
involved), then there almost certainly exists at least one chain of

. , . , .

neurons from i e ZO to i, e El 500 tO 1T0_1 € ZTO'

That is, there exists a Pé(z& + L ). However, it is unlikely that this
' 0

chain would be "effective" in the sense that

1 back to 1, again,

(1) S0y;) >0 j=dg e d=dpforeg =1, ., 0 -1

mdl%)slw
(2) the S(Aji) above are such that, in general, neuron iz,1 assists in

the firing of neuron iz_(2=1, “w‘/to)o That is, il should not fire

independently of i As a transient mechanism or artifact for increas-

2=-1°
ing S(Al_la ), this might be acceptable: however, as a permanent feature,
it is clearly not desirable,

These conclusions hold because of the distribution of synapse=values
over connections, Each link iznl > i2 of the chain has a definite prob-
ability of having a poSitive or a negative synapse-value, Therefore,
the probability that all the S(Aji)'s are positive decreases rapidly with
the length T of the chain,

At this point — easily the most crucial of this thesis = the syn-
apse growth law emerges in its fullest importance: Since the neurons of
L fire every o time steps (except in the off period) and since the
connection along a'?E(Za > Z%O) already exists, in particular, a link
iT 17 i0 exists, any chance firihgs of iT at time steps t

0 01 0

(m > 0) will fortiori be followed by firings of iO at to *mr.

Gradually, then, over sufficiently long time intervals,

+ m(ro=1)

Moooi
=12
™ 1°70
will be expected to increase, thus making the link i 1 io effective,
o
assuming for the moment that S(Ai 1 io) is not strongly inhibitory
=4y

"o
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(very negative). As this link becomes effective, the link i 2 iT -1

0 0
will likewise become so. The latter, of course, depends on the preceding

links gradually becoming effective. Therefore, what must happen is that
"both ends are worked against the middle'" and the path'?E becomes effec-
tive, The role of the repeatedly applied stimulus is to '"lock-in"

the cycle, so to speak via the synapse=growth law.

The process of making the link iT 1 ir effective, in other words,
0 0
the process of drawing neuron iT -1 into the cycle C(Zé), is an example
0
of the phenomenon referred to by Hebb as 'recruitment'. Neuron iT -1 is

0
recruited into the cycle C(Z(“))° Since a number of chains

io -+ il * 6o iT 1 ” i0 may exist, recruitment need not be a one time
0 )

only occurrence. The longer the training period, presumably the more
the neurons that will be recruited into C(E&)o Conversely, certain of

the chains i, » i, » ... » i -+ i may cease to be effective and
0 1 toal 0

a neuron i_ .1 may drop out of C(Zé)a This corresponds to Hebb's frac-
0
tionation phenomenon,
Fractionation and recruitment depend some what upon the initial

value of Ai 14 If S()\i 1
o 70 fo 7’70

the maximum negative value), the increasing trend in Ai 1.i
T, °70

) is strongly inhibitory (i.e., near
would be

less likely to occur, since ir =1 would tend to assert a strong inhibitory
0

This tends to aid fractionation. If S(A;

effect upon i 110“131

‘ ) =0
0 0
and =0y 2 o where % is a small positive number, the inhibition exerted

by i 4 upen i0 may be negligible and the preceding argument stands:

t0=

recruitment might occur.
This main point of this section is now the following: once the lock-
in described above is accomplished and an effective cycle C(Zé) is formed,

the stimulus need not be applied in as strong a fashion as during
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the training period. For example, assuming the neurons of C(Zé) are not
unduly fatigued, a single stimulus might go around the cycle C(Zé) several
times before being extinguished. Notice that C(Zé) may consist of several
neurons in each level & and there may actually be several paths in the
link Zi_l > Zib Starting at iO € 26 each time, the stimulus may actually

circulate through different paths from 26 to Z;OQIQ Thus, the structure
of C(Zé) is not inflexibiy rigid. C(Zb) would be a self-sustaining cycle
since, once activity is initiated (20 stimulated), it is maintained for
a brief period of time (the stimulus circulates through C(Zb) a number of
times before being extinguished).

These properties of C(Eé) - if they can be demonstrated empirically
- appear to qualify C(Zb) as a cell-assembly in Hebb's original sense
[9]. Success in empirically exhibiting a C(Zé) would appear to give

some hope to the field of machine learning.

4.,4.3 Stability Calculations
The calculations of 4.3.2-3 may be readily modified to treat simple
A4
periodic stimulation of a subset 20(:67 . First, at t = t0 when the

stimulus is first applied, the subsets Rr of M; are reduced by the appro-
0
priate expected amounts, that, together with the neurons of Rr (to) that

q
would have fired at to anyhow in steady-state, from RO(tO)L Then the

calculation proceeds as usual until ty * Tos at which point RI is reduced
0

0 that fired at tyo %“, this number being added to

the number that would have fired anyhow at t

by the number in I

0° thus forming F(t0+10)c

Continue in a similar manner for tO * Tt 1, ..,

Table 4.3 shows this calculation for the network of Figure 4.4 and

Table 4.1: N = 400, o = 6, L, = 10 and o= 7, T, = 6, 5, = 6. Notice
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that ﬁgo(t)9 §Z(t)p conp ﬁ;(t) are increasing,

4.4.4 Distance-Bias
In section 4.4.2, it was observed that distance-bias played an impor-

tant role in the formation of an effective path PF(Zé + L), T & Ty

This is, in fact, an example of "localization" alluded to earlier in -
9
the chapter. Consider the network (Btof Figure 4,15, There, R =

(uniform random distribution) and the neurons of 20 are equi-probably con-

nected to any other neuron of Olf The path from 26 to Z; may be any one

of several paths at successive intervals ty * mrt,, and a definite effec-
tive path'fg(za > Z;) may or may not occur.
Consider now the network of Figure 4.16. There, R is finite and

Zog‘;CRb The neurons of ZO are spaced regularly along the 5 x 5 subgrid

of KI? The spacing of the neurons is such that the neurons of zi fired

by 26 will fire again after the next application of stimulus at to

etc, Likewise, the neurons of Zi will tend to fire the same set Xé at

succeeding time steps t0 + 2+ mroo Gradually, of course, the successor-

n

+ T
OP

Figure 4.15. Non-Localization Property of Networks with Unifomm

Random Distribution of Connections, A neuron i ¢ XO is equi-
\‘v,*.

probably connected to any other neuron of N. Localization

(in any uniform, regular sense) is not possible,
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°

°
o
o

Figure 4.16. Example of an Input Set ZO in a Network’\@l with

Distance-Bias. In this network, R = 6, A is the shaded area,

ZO‘CZA the encircled neurons. Every neuron of A - ZO lies in

N Cy(i), i.e., may receive connections from any neuron of I
i€20

Neurons in the exterior of A, - A, receive connections from ZO

as follows:

— Neurons in the squares may receive connections from any

neuron of 200

-~ Neurons in the solid circles may receive connections
from all but one neuron of ZOO
- Neurons marked with X or the dagger may receive connec-

tions from all but three neurons of Eon
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\A
sets ZT spread out over 61, If R is small, it could happen that Lo

would be insulated from ZT -1 and closure would never occur. If the
0

spacing of the neurons of I  were too close, a core of refractory neurons

0
could result with the consequences outlined in section 4.3.4. The setting
S1
of p = zzips is clearly equally critical.
s==5
0

In conclusion, the distance-bias mechanism is very convenient for

ensuring development of the initial path segment P 26 > E;)o However,

g(
it introduces pitfalls all its own and greatly compounds the number of

variables available,

4,5 Networks Under Two Alternating Periodic Stimuli
4.5.1 Alternating Cell-Assemblies

In the preceding section, a heuristic argument was given to show
the possible formation of a closed self-re-exciting cycle C(EO)o It was
duly noted that such a model constitutes a candidate for a Hebbian cell-

assembly, Given that a cycle C(Z,) may be formed and that it indeed is

o)
a cell-assembly, folloiwng the natural development of Hebb's theory, it
is natural to asks:

(1) 1Is it possible to form additional distinct cell-assemblies in
BL_(as a result of applying distinct stimulus patterns)? This is far
from a trivial question, at least for the relatively small N = ?ﬁ used
in this work, since conceivably one C(ZO) could exhaust.xl of neurons
available for recruitment into new cell-assemblies,

(2) 1If the answer to (1) is affirmative, then how will these cell-
assemblies relate one to another? Specifically, how will activity

(circulating stimulus) in one affect activity in another? This is not

meant to imply that there necessarily be a relationship between two
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arbtrarily chosen cell-assemblies of a network. There may or may not be
such a relationship, However, if the cell-assemblies are '"'proximate",

it is reasonable to assume that such a relationship does exist. '"Proximate'
means that, given cell-assemblies C(ZO) and C(ES), some segments of their
respective paths lie within a distance R* from each other, If R* < R,

R the distance-bias radius, C(ZO) may have an immediate effect upon C(ZS)
and conversely., If R < R* < 2R, the possible effect will be delayed one
time step, etc, Clearly, in the current model, the larger the R, the less
probable the possible influence of one cycle upon the other becomes. In
the physiological situation, V fibres or other long-distance axoms might
yield the short graph distances requires to be '"proximate", while entail-
ing long geometric distances.

A special case of (2), to be considered in detail below, is:

(2') How do cell-assemblies arising from negatively correlated
stimuli relate to each other? The hypothesis will be made below that
they will become mutually cross=-inhibiting,

From (2) then flow all the questions concerning the structure of
Hebb's theory of learning, i.e., concerning the arousal of cell-assemblies,
alternation of activity in cell-assemblies, the development of phase=
sequences of cell-assemblies and phase cycles, etc, To adequately dis-
cuss all these questions, to provide the necessary analysis and empirical
evidence that would be needed, simply exceed the bounds of this paperq1

All is not lost, however, since the advanced concepts of Hebb's theory

1To say nothing of the bounds imposed by the existing computer hardware.
The maximum N used effectively in experimentation was 400, One would
want for exploration of the more advanced part of theory at least

N = 1000, preferably N 2 10,000,



123

seem ultimately to reduce to the effects of proximate cell-assemblies upon
each others namely: activity in one cell-assembly should tend to arouse
activity in a proximate cell-assembly. These cell-assemblies presumably
come into existence through sequences of (spatially and temporally)
patterned stimuli of some type, For a complete discussion of how this
might occur, the reader is referred to Chapter 5, Perception of a Complex:

The Phase Sequence, of lHebb [9 ]. For now, merely assume that there exist

two proximate cell-assemblies, C(Xo) and C(ZS), and it is desired to study
the possible mechanisms by which one may arouse the other. .
An important facet to this question is that there appears to be, from
the development given by Hebb, a temporal restriction on the arousal of
the one cell-assembly by the other, 'In fact, in general, the temporal
relation of cortical events takes great importance in his theory. Speci-
fically, assume that, say, activity in C(ZO) is not to start activity in,’
C(ZS) until a certain time interval has passed. Presumably, this time

interval would be related (a) to the stimuli applied to I, and ZS, (b) to

0
the rate of fatigue of neurons of C(ZO)e

In effect, then, C(ZO) has to suppress activity in C(Za) for a perio&
of time, the degree of suppression gradually decreasing as the activity in
C(EO) is damped by fatigue., Conversely, it is interesting to ask, after
C(ES) starts becoming active, will it tend to suppress activity in C(zo)
for a period of time, then allow it to build up again as fatigue takes
effect? Therefore, a "multi-vibrator'" effect may be possible: after
a training period in which C(ZO) and C(XS) are stimulated in certain
patterns, alternating between one and the other, a brief stimulus applied
to one will set up activity that will "oscillate" back and forth between

the two for a period of time. If this effect were possible in the given

model, it would appear that the model would suffice for deeper study of
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the theory. For phase sequences involve a generalization of this type
of behavior from that of two cell-assemblies to larger numbers, all
intricately interrelated by arousing and suppressing one another at
appropriate instants in time. For this reason, the study of this alter-
nation of activity in cell-assemblies will conclude the present work.

Note that the role of inhibitory connections (negative synapse-values)
is absolutely vital here. For C(ZO) to suppress C(ZS) when the former is
active implies the development during the training period of strong in-
hibitory connections from C(ZO) to C(ZS) and conversely. To the author's
knowledge, this point is not explicitly recognized by Hebb [9], although,
of course, it certainly is implicit, Milner [10] made the general role of
negative synapse values explicit. The development of this mutual or cross
inhibition again depends critically upon the synapse-growth law; this time
in reverse: Neurons that are active (say in C(ZO)) are trying to fire
neurons in C(ZS) that are fatigued and will not respond., Consequently,
the corresponding synapse-values drop. Not all synapse-values from C(ZO)
to C(ZS) must become negative however. A few must remain positive so as
to help start C[ZS) up again as the activity in C(En) is damped out .

The arousal of C(ES) may depend upon the prescnce of some "suvcrordinato

structure as well as upon the decrease in inhibition from C(Z For

0) ’
a simple example, a subset = C.m]may be supplying both structures C(ZO) .
and C(Za) with a light =i .-ujus at all times, becoming effective on the
one only when the inhibition from the other decreases, etc.

Notice that distance-bias on the:; distribution of connections is

truly indispensible at this point. In fact, recalling the highly diffuse

character of the hypothetical assemblies described by Hebb, in the long
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run one probably would want a more general distance-bias function than
the one adopted here., This would approximate even better to real net-
works and tend to make (as desired by the theory) the network or less
susceptible to local damage (slicing, tramma, etc,),

In conclusion, success in demonstrating an alternation of activity
in cell-assemblies as suggested above would strengthen Hebb's original
attempt to build a "molar" calculus in which human behavior could be more
adequately related to basic underlying neurophysiological phenomena, This
calculus would form a bridge between detailed neurophysiological knowl-
edge on the one hand and the far grosser body of psychological knowledge

on the other,

4,5.2 Alternating Period Stimuli
Given a network Fl with distance-bias p = p(r), 0 s r < R, let
ZOCACS{ and ZSC A*Cl\‘/l be two distinct input sets,
ANA* =0,
Suppose A and A* are separated by a distance dO’
d(j,i) = d, for all j € A, i € A",
d0 will be taken sufficiently large to minimize the direct effects of sti-
multation of ZO upon 28 and conversely, yet sufficiently small that the
paths (26 + ') and (ZS' -> Z;,) will interact (activity in one affect-
ing activity in the other). A good choice of dO was found to be

R <
7 < dy =R

As in section 4.4.2, attention will be restricted to the case in
which the stimulus has the simplest possible pattern, alternating simple

periodicity: Suppose zo is stimulated with stimulus S0 once every A

* is stimulated with

time steps in intervals Img m=0,1, 2, ,,. , and IO
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*

0

where Im and I; alternate as follows:

stimulus Ss once every I time steps in intervals I;, m=20,1, 2, ..

* *
Im = [to + m(t1+t1+ )D to + tl + m.(t1+t1+ )]’ m 09 13 23 600
LI * * * =
Im = [t0 + t1 + m(t1+t1+ ), t0 +t tl + m(t1+t1+ )], m=0,1, 2, ...
t, and t; are the lengths of the intervals over which S0 and Sg are L

applied respectively. 6 is delay whose function will be discussed below,
The overall stimulus pattern is then

* *
coe Im-l Im-l é Im Im ) Im+1 Im+1 S sas

starting at time t The ''on' period of one stimulus is the "off" period-
g p P

0°
for the other (see Figure 4.17).

t, and t;, as in section 4.4,2, shall be chosen so that by the next
application of the respective stimuli, the neurons shall be recovered
with respect to fatigue from the effects of the preceding stimuli. They
must, however, be long enough that the paths P(Xé > Z;) and—P{za' > Z;,)
may eventually close, Likewise, the delay & is chosen to allow the neurons
of 20 its respective successor —— sets to recover with respect to fatigue
before the next stimulus cycle begins. This is especially important for
smaller networks (N = 400) and relatively large input sets and areas
(%B =T* =9, A= A" = 25) since during one complete stimulus period
ImI; a relatively large number of neurons will tend to become hyperrefrac-
tory (high fatigue values, ¢(§i) large). If & were zero, the next simu-
lus sequence might find too many neurons too highly fatigued to react
as desired. Moreover, the presence of a relatively large number of
hyperrefractory neurons raises again, as discussed in 4,3.3, the danger

of underdamped or overdamped behavior, At the best, either of these

phenomena tend to make fewer neurons available for recruitment,
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Stimulus
S \\ﬁii stimuli off in these intervals
T ~— !
el A ——
So |
] * *
S ety E— I - I
0 I, 1 I2 2 .
~—__— P —
* 8 t t? §
¢ t t ) )

. o . *
Figure 4.17. Alternating Stimulus Envelopes for ZO and 20.
I

Stimulus S0 is applied to ZO every 1, time steps in I

1° p o000 o
* *

Stimulus SS is applied to ZO every T, time steps in I*, I;, soe o

SO is shown as less than Sa only to aid in discriminating between
* * * .

the envelopes Im and Ima S0 = S0 or S0 > S0 might equally well

have been chosen depending upon the given experiment,

Suppose now that a C(EO) already exists, having been obtained by
prior training as suggested in section 4.4, Then, the alternating stim-
ulus sequence is turned on (keeping the same period i for Zy that was
used to form C(Zo) of course). Two questions arise: (1) Will a self-
re-exciting cycle C(ES) develop? (2) Will cross-inhibition between
C(ZO) and C(Za) develop? The reasoning of 4.4 may be applied to convipce
oneself of an affirmative answer to (1). Since C(ZO) and C(Za) are pro-
Ximate (and N is small), they certainly will influence one another ——
connections will go from one cycle to the other, Since a majority of
the neurons of C(ZO)D say, will be highly fatigued after an interval Im'
the neurons of C(ZS) will have little effect upon them and the corres-

ponding synapse-values will drop. Likewise, neurons of C(Za) will tend
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to be fatigued after an interval I; and will be little affected by neu-

rons of C(ZO), etc. Thus, an affimmative answer to (2) may be expected.
Once again, for a demonstration of these claims, appeal is made to

the simulation. Unfontunately, lack of time and money for computer

usage forced cessation of the experimental work before the additional

assembly C(ZS) had actually evolved. However, as will be seen in Chapter

7. the results obtained tend to confirm the claims made in every way; in

particular, cross-inhibition appeared’'to be developing.

4.6 Summary

The main results of this chapter are summarized below:

(1) A steady-state calculus is developed for networks with uniform
random distributions of connections. Letting p be the network density,
this calculus relates the threshold curve V(r) with the expected number of

neurons firing at time t in steady-state as follows:
-
E(F(t+l)) = F = Trl(k(t))qu(t)
where

Ry (t)
N p

and Ro(t) is the act of neurons firing at t - 1, ﬁr (t) the set of neurons

At) =

oftgl whose recovery states T exceed ?q. The assumption of steady-state
reduces this to:
E(E(t)) = Fy = m (A0)R: (0).
Neurons of??\ are assumed ‘to be distributeg randomly and uniformly over
recovery states r = 0, i, 2, .00, rq at t = 0; i.e,, E(Rr(O)) = constant =
Fb forr =0, 1, 2, ..., rq.
(2) In general, positive and negative synapse-values will be present

\i
in \l, giving a decomposition of p into corresponding components:



= = cos ¥ + + + o0 +
P 25 Py P 0 + o_so+1 + P.1 Py P oso.

where =Sg» -sO+1, eesy =1, 0, 1, ..., s, are synapseavalues‘(s0 > 0), Py
the expected number of conmections received by a neuron of(ff with weight
s. It was shown that for some settings of the G the negative connec-
tions suppress firing of certain neurons a t + 1 if F(t) > Fb and "frees"

certain neurons for firing at t + 1 if F(t) < F A general procedure

b
for calculating the pg’s t¢ wbiain this effect was given,

This form of negative feedback seems to ensure homeostasis, i.e.,
in steady-state, transient deviations in F(t) from Fb will not build up
into undamped, possibly fatal, oscillations,

(3) The steady-state calculus was extended to networks with distance-
bias, p = p(r) for r s R ("disk" distribution). The expected number of
connections received by a neuron i € 6; from neuron j sZYl is p if
d(i,j) £ R, zero otherwise, A type of closed geometry (quasi-toroidal)
is used overitln

(4) An attempt was made to characterize (simple) cell-assemblies
as closed cycles of subsets, C(ZO)» arising from a patterned stimulation
of ZOQ The synapse-values from the successor-set Zi to Zi+1 of C(ZO) tend
to high, excitatory values, while all others (e.g. the '"back" values
from Zi+1 to Zi) tend to small or even negative values. C(ZO) is res-
ponsive only to the particular pattern which created it.

(5) The case of alternation of activity of cell-assemblies was
discussed, In the case that two negatively correlated stimuli are applied
to input areas ZO and ¥ respectively, the hypothesis was defended that

0
the resulting cell-assemblies C(ZO) and C(Ea) will be cross-inhibitory,
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Symbols and Terms Introduced in Chapter 4

A - the cardinality of the set A

AE - the event "a neuron receives exactly K connections with
synapse-value S" (Section 4.3.3)

A;S - the event "a neuron receives K or more connections with

synapse-value S" (Section 4,3,3)

alternating periodic stimulus ———— a stimulus applied periodically first
to one subset zogm over an interval 1 of t time steps,
then applied periodically (usually at a different rate) to
another subset Ea(;_m over an interval I* of t(* time steps.
The stimulus (of magnitude SO) is applied every i time steps
in intervals Im’ (of magnitude SS) every 16 time steps in
intervals I;, After a lag of § time steps, this sequence is
repeated, etc, (Section 4.5,2 and Fig, 4,15).

behavior of K[ —————— the sequence F(0), F(1), F(2), ..., F(t-1), F(t),
F(t+1l), ... of neurons of&l firing at t (Section 4.3).

CR — a disk of radius R centered at a neuron of Sl from which
the neuron is expected to receive p = PR connections. The neu-~
ron receives no connections from &\- CR (Section 4.3.4),

C( 6) — a closed cycle of subsets

| ' ! ' ! ! 1<1 1 \
ZO - Xl -> 22 > .. > zro-l - LTO = ZO arising from periodic

stimulation of the subset 26 = &[ (Section 4.4). (Note: In
later discussions, the prime is dropped. 86 literally means
the neurons of ZO that fire when the stimulus is applied.)

d(j,1i) —the distance from neuron J e&l to neuron i cﬁ\ (Section 4,2,2).
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distance-bias distribution a distribution of connections overrn_in

which the probability that a neuron i receive a connection

from neuron j is a function of d(j,i) (Section 4,2,2),

E,Ei — compound events used to determine the probability that a neu-
ron receive K(K=1, 2, ,.,) positive connections fromm in
the case that negative connections are present in fl
(Section 4.3.3),

E(X) — the expectation or expected value of the random variable X,

epilepsy -—the condition of violent fluctuations in F(t), usually with
the result that F(t) goes to zero (Section 4,3),

F(t) - the number of neurons of K\ firing at t. Also the set of
neurons of‘K\ firing at t. (This dual usage should occasion
no confusion since the context will always indicate which
meaning is intended,) (Section 4.3.1).

Fb - E(F(t)) when &1 is operating in stable, steady-state
(Section 4.3),

F - the number of neurons of’K\ firing v time steps after stimula-

tion of ZO directly due to the stimulus (Section 4.4.2).

=
F_ =1,
T T
F; — the total number oi neurons oi’ﬁ] firing v time steps after

stimulation of I  (Section 4.4.2). Note: F' = F +F = ?',
0 S T b 1 T

fatal oscillations (see epilepsy) violent oscillations in F(t),

leading to F(t) going to zero (Section 4.3),

m‘Im —the intervals within which an alternating periodic stimulus
is applied (Section 4.5.2 and Figure 4.15).
M (t) — a subset of neurons of‘KL at time t requiring at least k

connections to fire (Section 4.3,2).
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i - the number of neurons of ﬁk, N = ﬁ;

Nk(t) ~ the set of neurons ofélax time t receiving at least &
connections from Ro(t) (Section 4.3.2).

negative feedback ==——-— a homeostatic mechanism by which the steady-state
behavior of ﬁl is forced to be stable ’“‘E;EJ’ E(F(t)) = Fb

and the oscillations of F(t) ''nmot too violent" (Section 4.3.3).

"on-off" simulus envelope a sequence of intervals in which a single
periodic stimulus is alternately "on" (being applied) for t,
time steps, the "off' (not being applied) for t, time steps

(Section 4.4.2).

oscillations variations of F(t) from Fb (Section 4.3).
P(g) —probability of the event & .
P; —the probability that the sum of all incoming synapses to

a neuron of &1 be 2 k (negative feedback present) (Section 4.3.3).

PE(Zé - Z;) an effective path from EbQKl to X;G;&l (Section 4.4.2).

periodic stimulus a stimulus first applied to a subset Zog;ﬁl
every T, time steps over an interval of tz time steps ("on"},
then suppressed ("off'") for tX time steps, this basic sequence
is then repeated, etc., (Section 4.4.2).

quasi-toroidal geometry = the geometry in which networks 6& of

the model are embedded in order to obtain a distance metric

(Section 4.3.4).

ro = the maximum value of the recovery-state.
rq - the recovery state corresponding to the quiescent value of

V(r) (Section 4.3.2),
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b — the expected value or r for neurons operatine in steady-
q

state: r_ £ ? T r_(Section 4.3.2).
q q m

R — radius of the disk CR (Section 4.3.4),

Rr(t) — the subset of neurons of’&{ with recovery state r at time

t (Section 4.3.2).

ﬁf {(t) - the total subset of neurons having recovery state r Z r at
q q
vime t o (bection 4.3.25.
Ci(ti - the distribution of neurons of K] over recovery states at
time t (Section 4.3.2).
AV ¢
St — the subset of neurons of 6\ receiving connections from

F(t«1) (subset of neurons firing at t-1), St is called
the successor-set to F(t-1) (Section 4.3,1),

stability - the condition of the input-free behavior of K] in which F(t)
does not oscillate '"tco violently'" about its mean Fb
(Section 4.3).

steady-state behavior of === @ behavior of K\ that satisfies the
stability criterion (Section 4 3).

SUCCESSOr-Set =omm—m sE€ St above .

uniform random distribution of connections

- a connection distribu-
tion over neurons of‘“ in which any neuron of&j is equi-
probably connected to any other neuron of K\ (Section 4.2.1).

$ — the lag between successive applications of alternating simuli
(see "alternating periodic stimulus'" above) (Section 4,5.2
and Fig, 4.15).

Ro(t) = Ry(t) - ERy (1)) = Ry(t) - K (Section 4.3.3).

AA(W) - element of area in a continuous two-dimensional neural network

about the point w (Section 4.2,2),
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—mean value of svhapse-iovels (Section 4.3.0).
- the expected number ot connections received by a neurcr o

from R, (t; S \{ at time v (dection 4.3.27.
~ the synapse-level from wcuron A to neuroen b.

(t)) - the probability that a neuron of‘K] receive at least k connec-
tions from Ro(t) at time t (Section 4,3.2).
= the network density parameter (Section 4.2.1). p = NPg -

, X
= expected number of connections received by a neuron or (){

0
from any other neuron ofzn,
~ in the case of negative feedback, the density of synapse-values
with value s (Section 4,3.3). In the case of negative feedback,
S2

D=Z ps°

=.s1

i) -densities as function of distance (Section 4.3),

- a subset of &1 to which external stimulus is to be applied
(Section 4.4).
— the alternate input subset to Z, in the case of alternating

periodic stimulus.

subsets of K\ evolving 1t time steps after stimulation of
ZO (Section 4,4.2) (See FT, F; above) Z; = ZT z:t
— number of time steps after stimulating 2% (Section 4.4.2).
—interval between successive applications of the stimulus to
20 (Section 4.4).
—interval between successive applications of the stimulus to 26

(Section 4.5.2).



5. METHODOLOGY OF EXPERIMENTS
5.1 Introduction

In the next two chapters, experimental results obtained using net-
works with cycles are presented. These results constitute the empirical
verification of the claims advanced in Chapter 4, These claims, stripped
of complicating qualifications, reduce to the following three:

(1) It is possible to produce stable, stimulus-free behavior in
networks with cycles (with or without distance-bias) by means of appro=
priate (a) threshold curve setting, (b) initial distribution of neurons
over recovery states, and (¢) distribution of synapse-values over connec-
tions. This behavior will remain stable under perturbation by a moderate
external stimulus.

(2) It is possible to produce in some networks with cycles closed
cycles C(ZO) as a result of periodic stimulation of a certain input set
ZO’ the stimulation occurring in a sequence of "on-off" envelopes (the
"training' period). C(ZO) will consist of a sequence of subsets,

Lo > I 7 Iy > eee > ZTO=1 > ZTO =1

with the property that for j ¢ Zky ie T k=0,1, 2, co0p 1=1, 7T(20),

the synapse value S(Aji) tends to be strongly excitatory and for j ¢ Zk’
ie 229 L # k+l, S(Aji) tends to be moderately positive, zero, or even
inhibitory, C(EO) is a candidate for a cell-assembly and is a "learned"
response of the network to the given stimulus.

(3) It is possible to produce in some networks with cycles a pair

of mutually cross-inhibiting cycles C(ZO) and C(ZS) where

CEY) =25 >y > > I > 1 =1
0 0
Xy ok % e * %
CEg) =55 » 5 > ol > zracl >3, =1



136

and the values of the connections between neurons of the two cycles tend
to inhibitory values.

Substantiation of claim (1) and related topics will be the object
of Chapter 6. Investigation of claims (2) and (3) is deferred to Chapter 7.

An important assumption pervades the following two chapters: simulat-
ed networks closely approximate the abstract (ideal) networks discussed in
Chapter 4, That this need not be the case is shown by the following
example: The random drawing of a random number n, used in determining
the connection distribution for a netwox%:&l, is implemented by a pseudo-
random number generator. Pseudo-random number generators for digital
computers are known to have many pitfalls, often producing ''skewed" dis-
tributions of n, It is, therefore, essential to determine just how closely
the resulting simulated distribution approximates the theoretical distri-
bution. Such matters as this are relegated to Appendix B, and it will be
assumed that, for all practical purposes, the theoretical and the simulat-
ed models coincide.

The material is presented in these chapters in parallel with the
development of Chapter 4. Networks with uniform random distributions of
connections are examined first, then networks with distance-bias are
considered. Both cases are subdivided into two subcases: (1) negative
feedback is absent (synapse-values all positive) and (2) negative feed-
back is present (positive and negative synapse-values are present). This
order of presentation is a departure from the actual historical order.

In the latter, networks with uniform random distributions of connections
were considered first for the steady-state case, then for the cycle-of-
subsets case. Lack of success in producing cycles of subsets, together

with some considerations such as those given in Chapter 4, led to
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the introduction of distance=bias distributions into the networks of

the model. The sequence above was repeated for networks with distance-
bias: steady-state experimentation, then cycles-of-subsets experimentation.
The almost immediate success of the latter led to a lengthy experiment,
described in Chapter 7, culminating in an alternating cycles (cell-
assemblies) experiment. Since the steady-state experiments for both

cases (uniform random and distance-bias distributions) shared many things
in common, they are presented as a unit, Similarly for the cycle-of-sub-
sets experiments.

Before giving the description of the experiments, a brief review is
given in the next section of the experimental methodology followed in
this work. This is done since it is essential that the reader understand
the nature of the advantages and the disadvantages offered by the simula-
tion which forms the basis of this work,

Finally, at the end of both chapters, the main experimental results

are recapitulated in a summary.

5.2 Methodology

The general methodology used in Chapters 6 and 7 —— not dissimilar
to that of experimental physics or chemistry = is the following, First,
a hypothesis about the behavior of a network is made, given certain param-
eters values, etc, This hypothesis is defended by the calculus of
Chapter 4, as much as this is possible, it being recognized that the ini-
tial setting of the parameters is only approximate, The experiment is
performed (run) resulting either in '"'failure" (hypothesis not confirmed
for the given parameter settings) or in "success" (hypothesis is confirm-

ed for the given parameter settings). If the result was "failure'",



138

the experiment is repeated by varying in a systematic way the paramcters
Successive failures, of course, do not invalidate the hypothesis for all
possible combinations of parameter values. rather only for the values
(or range of values) tested. Likewise, '"success'" merely provides a set
of parameters that work, success is not guaranteed for all possible com-
binations of parameter values, although it might be implied for a range
of parameter values, etc.

Actual experiment must be tempered with reality, especially since
the experimental apparatus used1 is extremely expensive and relatively in-
accessible. In the ideal case, a set of parameters might be varied over
a large spectrum of values. In practice this would yield for too many
possible behaviors than would be profitably analyzed in the span of a life-
time, even if the experimental apparatus were available for such extensive
use. Here the skill and intuition of the experimenter enter in an essen-
tial way in reducing the number of unnecessary or redundant runs, and in
making meaningful inferences from incomplete data. The latter act takes
two forms: (a) The networks used are so large and complicated that
a detailed monitoring of the complete state of a network at each time step
is impractical, resulting in an astronomical volume of computer output.
Therefore, values of state variables of the network must be sampled in
an economical and, to the experimenter, significant fashion. (b) The
expense and relative inaccessibility of the experimental apparatus often
dictate reducing the range of parameters to be tested. The experimenter
must then examine his incomplete set of data and infer that an untried

setting of parameters might yield success. This type of inference is,

1'I'he IBM 7090 computer with an IBM 1410 satellite subsystem at
The University of Michigan Computing Center,
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of course, potentially very dangerous, and must be carefully defended
a priori with whatever analytical tools are present. Usually strong
"trends" are present in this situation, making the reference more
plausible,

The parameters of interest in the sequel are:

(1) N = @a , the size ofﬁg\

A
A S

Generally N = 400, however there were
several runs involving N = 200 and one involving N = 900,

(2) p, the connection density (uniform random case), Typical values
were p = 6, p = 12, p = 24,

(2') ©and R, if distance-bias is present, where R is the radius of
:he neighborhood disk CRO A typical setting was p = 55, R = 6,

(3) The initial distribution of synapse-values over connections,

(4) The threshold curve V(r). In this study, r, = 3, r, = 19,
iq varied with the experiment,

(5) The fatigue curve ¢(2) and the associated tables of values
Al(z) and AZ(JZ.)o The fatigue function was taken as an additive
component of the effective threshold, instead of multiplicative
as in Chapter 3.

(6) The synapse-value curve S(A) and the associated tables of
probabilities U(A) and D(1).

Since the network-generating program was rather time-consuming,

the parameters N, p, and R (if distance-bias were present) were varied
as little as possible, Internal computer storage determined an absolute
upper bound on N of approximately 1000 neurons; however, such factors as
ease of analysis, time required to simulate one time step, etc, dictated
a moderate value of N, N = 400 was taken as a compromise. It is large

enough that the statistical assumptions of the theory should hold true,
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yet not so large as to make running true exhorbitant or analysis of
results any more tedious than necessary

The initial distribution of synapse-values over connections like-
wise tended to be fixed. although a set of experiments was devoted ex-
clusively to a study of the effects of varying this parameter Similar-
ly for S(A) and the tables of U(A) and D(A).

By far the most varied parameter was the threshold curve. For
a given N, p, the calculus of Chapter 4 gives information about the form
of V(r) needed to guarantee stability. However, especially in the cases
of negative feedback and distance-bias, the calculations are unwieldy
and at best yield a first crude estimate for V(r) (or for ¢, but it is
easier to vary V(r) asnoted)., Consequently, finer '"tuning'" of the net-
work may be necessary by varying V(r) slightly. It is important to note
that the calculations were used primarily as a guide to obtaining an ini-
tial estimate of the network parameters. Then, calculations were abandon-
ed and experimentation begun. The modus operandi was to avoid (if possi-
ble) much tedious calculation and place the burden of success upon the
simulation. The analytical theory, of course, remains important as an aid
to the understanding of the models; only the excessively tedious calcula-
tions are bypassed.

The fatigue curve ¢(%) and its associated tables of values Al(z) and
Az(z) were seldom varied, except in a final series of control runs. As
noted in Chapter 4, this function‘was not really‘adequately analyzed in
this work. That is, no general calculus similar to that of Chapter 4.
section 4.3, was developed. Although not an impossible task, the modifi-
cation of the analysis of section 4.3 to consider the effective threshold

V(r) + ¢(2) will have to await a future work,



6. STIMULUS-FREE BEHAVIOR IN NETWORKS WITH CYCLES

6.1 EXPERIMENTAL OBJECTIVES AND PROCEDURES
6.1.1 Objectives

The objectives of the experiments described in this chapter are twofold:

(1) to exhibit networks that maintain stable, input-free behavior

(steady=-state) .
(2) to derive experimentally stable networks that are adequate for
the cell-assembly experiments of Chapter 7.

(1) is the avowed purpose made in claim (1), Chapter 5, Section 5.1.
The implication of (2) is that some networks may maintain. steady-state
behavior, but not yield the desired closed cycles of subsets (cell-
assemblies) when subjected to periodic stimulation. This might occur if
the network is too small or if the threshold curve is too 'steep'". In
the first case, a sufficiently large fund of neurons might not be avail-
able for recruitment into the paths PE(ZO > ZT) so that they never close
into a cycle C(ZO)Q In the second case, V(r) might be so large in the
vicinity of r = o (TO the stimulus rate as in Chapter 4, Section 4.4) that
the set zro-l cannot fire neurons of ZO (= 210), their threshold values
being too high. Again, PE(ZO - 210”1) would never close into C(Zo)g

The implications of "adequate'" stable, steady-state behavir, there-
fore, are that (a) N is sufficiently large and (b) V(r) is steep enough
to maintain stable steady-state behavior but not so steep that
PE(E0 > zrosl) will never close into a cycle. (a) raises the dilemma of
running time, since the larger the N, the longer — hence, the most costly
-~ the experimental runs. It was blatantly assumed that N = 400 was
adequate, This assﬁmption will be defended in Chapter 7, but also the

possibility that this value of N may be too small will be examined.

141
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Similarly, (b} raises the dilemma of parameter variations yielding many
runs, hence again the issues of expense and time.

As mentioned in 5 1 the historical procedure was to perform a series
of steady-state experiments, varying the network parameters until a net-
work displaying a very stablelbehavior was obtained. Then this network
would be subjected to periodic stimulus and judged for adequacy. If
inadequate, a new series of steady-state runs would be performed with
a new set of parameters. If adequate, a series of closed cycles (cell-
assembly) experiments would be initiated, etc  Since a sufficient number
of problems arose in the steady-state experiments per se, they are treat-
ed as a unit in this chapter. Chapter 7 is devoted to the closed cycles

experiments

6.1.2 Outline of General Experimental Procedure
The experimental procedure used may be divided into three phases;
initialization or set-up, run-in, and detailed long-run testing These

are described below:

1 Given N and o (N, p, and R if distance-bias is to be present),
\
the corresponding network 61 1s generated. The neurons of { { are then
uniformly distributed over recovery states r = 0, 1, .. , r (rm was taken

as 19 throughout the study), yielding

= N
ER,(0) ==, r=0,1. .1
q

2. Synapse-levels Aji(O) are assigned, according to a given

1 s . .
The empirical criteria for 'very stable" behavior are derived from
Chapter 4 and will be described in section 6 1.2 below.
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distribution, to all connections j » i determined by the connection
assignment scheme used in 1 above; i.e.,, the connections are ''weighted".
In the early experiments described below, the Aji(O)'s were set all equal
to a value giving a synapse-value of +1. Later, the Aji(O)'s were dis-
tributed over ranges of A giving both positive and negative synapse-
values (Chapter 4, section 4.3.3).

3. The neurons offgl are distributed, according to a given distri-
bution, over fatigue states &, & =0, 1, ..., % . In most experiments

max

described below, li(O) was set to Zm x (complete recovery with respect

a
to fatigue), i =1, 2, ..., N.
4. The functions V(r), ¢(R), and S(A) and the tables U(A), D(xA).

A=0,1, ..., A and Al(z)g Az(z), L=0,1, ... Rmax are specified.

max
. . , = N
5., A subset 20 C:81‘15 selected to fire at t = O, E(ZO) = o=,
T
q

Usually, a random sample of neurons ofT&L was selected so that a fixed

"starting'" stimulus S  would be expected to cause N/fé neurons to fire

0
at t = 0. Apart from this "starting" stimulus at t = 0, no further sti-
mulus was applied in the steady-state experiments.

Phase II: Run=In

The firing of ZO of step 5, Phase 1, properly begins the run-in
phase of experimentation. In this phase, the network is allowed to op-
erate over a time interval [0,T] until one of three conditions arise:

(1) 'F(t) goes to zero, 0 <t £ T.

(2) The observer interrupts the run for reasons to be mentioned
below.

(3) t =T (end of run interval is reached). Typically, T was chosen
as 100, 200, or 400.

If (1) occurred, the network was either overdamped or underdamped



and some parameter (usually, V(r)) modification is necessary. The appro=
priate parameter is revised and the run-in trial is repeated starting
with step 5, Phase I again.

(2) usually occurs only if it obvious to the observer that the be-

N

havior of ﬂ\ is grossly overdamped or underdamped, anticipating that
F(t) would go to zero soon anyway. This did not occur too often, since
the observer did not always have direct access to the experimental
apparatus,

In case (3), the network's behavior was labelled temporarily as
"stable" since F(t) # 0, t = 0, 1, ..., T. During the course of the run-
in (3), a number of network parameters are sampled at the discretion of
the experimenter, These include:

(a) F(t) for each t;

(b) 1Q(t) for each t (distribution of neurons over recovery states

at time t).
(c) Q?(t) for each t (distribution of neurons over fatigue states
at time t).
(d) Samples of kji(t) for selected time steps t.
(e) The "firing pattern" at t for each or selected t. This is
a "picture" of the network, showing the neurons firing at t.

The outputs (a) - (e) of the run-in were then studied. If F(t)
remained bounded, E(F(t)) = Fbg in particular if no underdamped oscilla-
tions appeared to be developing. the network was cleared for further
testing from t = T + 1 on (Phase III). The distributions of Aji(t) were
checked (when samples were obtained) for sudden or peculiar changes from
the distributions at t = 0., This is primarily a test to ensure that no

sets of neurons are operating at too high or too low firing rates.



If oscillations appeared to be forming, or if some other anomaly appear=
ed to be present, one of two courses might be followed: (a) if the anom=
aly appeared to be not too serious, the run-in might be continued from

t =T+ 1 an additional T time steps (subject to conditions (1) - (3)
above) . '"Not too serious' means that hints were present suggesting that
the anomaly might be purely transient in nature. (b) If the anomaly
appeared not to be of a transient character, the appropriate parameter
(usually V(r)) was changed and the run-in repeated from step 5, Phase I.

Phase III: Log§=Run Testin&

Once past the hurdle of Phase II, the network was subject to further

running from t = TO + 1 on, TO

(T0 =T or T0 = 2T, etc., depending upon the option followed in Phase I1).

The same outputs (a) - (e) of Phase III are obtained as desired by the

being the terminal time step of Phase II

experimenter, If, for t sufficiently large, the behavior of??l appeared
stable with no non-transient anomalies present, the network was judged

to be "very stable" and passed on as a candidate for the cell-assembly

experiments. '"Sufficiently large' means anywhere in the limits t = 400
to t = 1000,

Notice that "very stable" is a purely empirically inferred condition,
"Very stable' means essentially that

(1) F(t) does differ sharply from Fb except in a purely random,
transient fashion =— i.e., undamped oscillations are not building up,

E(F(t)) = F In particular, F(t) never goes to 0,

b(.
(2) No sub-rosa accumulation of neurons with high fatigue values
occurs, This could lead to a pocket of hyper-refractory neurons, the

evils of which have already been expounded in Chapter 4,



(3) No accumulative large deviations of the Ay 'S occur with the efrect

of either damping out F(t) or producing underdamped F(t)'s. This could
occur, for example, if the synapse-level growth law were too fast, i.e ,

DY) 1
U(A) + D( .
q

The occurrenc: »f any one of the anomalies mentioned in (1) = (3)
is grounds for modification of parameters and return to Phase II.

Notice that Phases Il and III take advantage of the modularity pre-
sent in forming a network in steps 2 - 4 of Phase I. In fact, the param-
eters of these steps may be varied at any time step, it not being essen-
tial to always back up to step 5 of Phase I. For example, throughout
the course of Phase III, it might appear that V(r) allows a slight under-
damping, the cumulative effects of which could produce fatal oscillations.
The experimenter may, if he wishes, interrupt the run at a certain point,
insert a new threshold curve, and continue from that point on. Moreover,
as a matter of course, the entire state of the network was 'saved" peri-
odically on magnetic tape for future back-up or retrieval purposes. Thus,
a library of experiments (at different time steps) was built up for

future reference or modification.

6 1 3 Hypothesis

The specific hypothesis being tested in this chapter is:; (Stable,

i
M
v

Steady State Hypothesis) Given a networkﬁ ( with specified parameters

N, p, R (if distance-bias is present), V(r), ¢(2), U(A), D(A), 4,(%),
Az(l)s B{ maintains stable;, steady-state behavior as a result of

a selected subset Eoilfi being stimulated at t = O, E(ZO) = Fb = =
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Phase II may provisionally affirm the hypothesis or may completely
invalidate it, In the former case, more complete confirmation awaits
Phase III. In the latter case, parameter modification is indicated
(Phase I). The hypothesis may also be rejected in Phase I1II, if non-

transient anomalies arise.

6.2 NETWORKS WITH UNIFORM RANDOM DISTRIBUTIONS OF CONNECTIONS
6,2.1 Series I —= Networks with Positive Connections Only

In this section, experimental results are given for networks in which
the initial distributions of Aji(O)“s were such that the corresponding
synapse-values, S(Aji(O))9 were positive. The primary purpose of these
experiments was to demonstrate the validity of the basic theory of Chapter
4 (4.3.2) without the complication of negative feedback. Several experi-
ments (variants of the basic experiments below) included negative feed-
back: however, they were performed before the principles of Chapter 4,
4,3,3, were well understood. Their description is, therefore, included
in this section.

Basic Experiment I

The basic claim of the theory developed in Chapter 4, Section 4.3.2,
is the followings: Given a network‘ﬁk with density p(p # p(R)),
S(Aji(t)) = 1, R(t) such thatfﬁr(t) = N/(rm+l)9 then& will maintain
a stable, steady-state behavior provided V(r) is chosen so that the ex-
pected number of neurons of’@}q(t) firing at t is F = N/(iq)o The

assumption is that few, if any, neurons of the R_(t) for r < r_ fire at
9 T q

s
t. A simple calculus relates Rr (t), o, N§ Fb” and F(t), namely
q
F, = E(F(t+1)) = E(R(t+1)) = wk(x(t))qu(t)
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where

= j
() = 2N AL
j=k
and fose=d
Koo
A(t) = - e

To test this basic hypothesis, the threshold curve V(r) of Figure 6.1
was chosen., Since V(r) = » for r = 0, 1, 2, ..., rq =15 and V(r) =1
for r = rq+l = 16, 17, 18, T, = 19, perforce no neurons of Rr(t) for
T < rq may fire. The remaining network parameters were: N = 400, p = 6,
Aji(O) = AO such that S(A) = 1, ¢(&) = 1, U(A) = <72, D(A) = ,052 for all
A where

D(A 1 1

T emmey I e

UCr) + D(A l6 r °
) q
!B = 27 neurons were stimulated at t = 0, i.e., F(0) = 27, 4R(0), of
PP - = = N
course, was initialized so that R0(0) = Rl(O) = .00 er(O) = e D)

It was expected that neuron i e‘ﬁl would fire for s lying between rq = 16

= ZGC

and — 19, perhaps distributed around a mean ;q of 17, E(fq) =17,
The result == surprising at first to the author, but typical of the net-
works described in this section - was that after approximately rm/Z time
steps, F(t) repeated itself every 17 time steps:

r

F(t+17) = F(t) for all t > 101:=%§

and

?q = 17 (exactly),

This effect was termed "periodicity". Discussion of it will be
delayed until Section 6.2.3., It will suffice for now to observe that it
is not a desirable behavior pattern, since, from the point of view of
information theory, such rigid periodicity suggests that no information
is present, where "no information" would be taken to mean that no neurons

are available for recruitment into cell-assemblies, Consequently, it
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became a subgoal of this work to eliminate this type of behavior pattern
of possible. It is interesting to note that the introduction of distance-=
bias (with negative feedback) automatically seemed to eliminate it.

Figure 6.1 contains a summary of the results of this experiment,
including an "electroencephalogram'" or EEG, i.e., F(t) plotted as a func-

tion of t.

i

The experiment was repeated for a different value of T ) = 14.

0
The results were quite similar to those above: F(t) displayed periodici-=
ty with period ?Z = 17. The corresponding EEG is given in Figure 6.1.

Variations of Basic Experiment I

Two interesting variations of the basic experiment were performed
next. In the first, the synapse-=levels, Aji(O)ﬁs, were distributed uni-
formly over the range 32 € Aji(O)*§ Amax = 63 corresponding to the synapse-=

< . SS( = 32, . !
value range 0 S(ljl(O))‘_ S( max) 32 In the second, the AJI(O) s

were distributed uniformly over the entire range of A, 0 £ Aji(O) s Ama »

X
giving a uniform distribution of synapse values over equal positive and
negative ranges. In both cases, ?; = 18.

The results of the first variation were precisely similar to those
of the basic experiment: periodicity with period ;q = 17. F(t), however,
did not begin repeating itself until t = 27; i.e., for t 2 27,

F(t+17) = F(t). The second case, however, was groésly overdamped and
F(5) went to zero. The respective A=distributions and EEG's are indicat-
ed in Figure 5.2. It is of worth to note that the more complex A-distri-

bution of the first variation above stretched out the interval in which

F(t) was not periodic. This point will be considered in 6.2.3 below.
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Basic Experiments I

The preceding experiment and its variations demonstrated the validity
of the claim of Chapter 4: the neurons ofwﬁl can be forced to 'cycle"

with an expected period g;‘: g—s by setting V(r) so large for 0 s r £ r

q
that no neurons in the correSpgnding Rr(t) may fire, yet V(r) is such
that for rq Srs T Fb neurons are expected to fire at any time step.
It is now necessary to see how well the claim holds up when V(r) is chosen
so that some neurons in the Rr(t) may fire, This would appear to be
the more realistic situation,

Tentative calculations showed that for N = 400, p = 6, etc. as
above, threshold curves of the general form of Figure 6,3 should yield
stable, steady-state behavior, More detailed calculations, such as
those of Table 4.1 of Chapter 4, show that stability may occur, but =
in the absence of appropriate negative feedback — fatal oscillations
may build up.

Consequently a seqhence of V(r)'s were tested for stability, the
network otherwise precisely as it was in Basic Experiment I. These
curves together with the correspondingiﬁ%'s and EEG's are given in
Figure 6.4, The results may be summarized briefly by noting that the
"'steeper' curves produced stability, the "shallower" ones instability,
In the former case, the sets Mk(t) for k = 2, 3, 4, .,, are smaller in
cardinality than in the latter case, For example, in curve 2 which
produced stability, E(ﬁ?(t)) = 40 = E(ﬁ?(t)) = E(ﬁj(t)), etc,, while in
curve 3 which produced instability, E(ﬁ?(t)) = 200, In all cases,
E(ﬁT(t)) = 80, Since p is relatively small in these experiments, the

nk(x(t))'s become negligible quite rapidly as k increases beyond k = 2 or
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k = 3. Therefore, '"steepness'" may be judged primarily in terms of the

. .. = S
cardinalities Mz(t) or Ms(t)o

Once more, the positive results of these experiments were marred
by the periodicity occurring in Basic Experiment I, At this point, var-
ious mechanisms for eliminating this were studied, culminating eventual-
ly in the introduction of negative feedback and distance-bias as des-
cribed in section 6.3,2 below.

Variations of Basic Experiments I1I

Experiments 2 and 4 of Figure 6.4 were repeated for the case that
the Aji(O)“s were uniformly distributed over the range 0 £ ) = Amax = 63,
all other network parameters remaining the same as in Basic Experiment I,
The EEG's, etc., are given in Figure 6.5, experiments 2' and 5°' respec-
tively, In 2', F(t) went to zero at t =57, In 4', the run was termi-
nated prematurely by a programmed ''clock'" error at t = 43, Inferring
from the general pattern of the behavior F(t), it appeared that fhe net-
work might be stable (Phase II). Notice that the behavior F(t) in 5° is
not periodic and well modulated —— i.e., F(t) does not fluctuate violent-
ly as in 2'. The results of experiment 5' gave considerable impetus to
detailed consideration of the effects of negative feedback,

A third variation of Experiments 1 - 7 above entailed changing only
the U(A) and D(A) tables and resuming Experiment 3. The new tables9
EEG, etc., are given in Figure 6,6, For each A, the relationship

D) 1

U0 + D(0) - 17

holds (assuming f‘q-:—: 17) , however for increasing A, U(A) and D(A) in-.
crease. The motivation for this will be discussed in Chapter 7, Section

7.2. Essentially, it was to encourage path closing to form cycles
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A U(A) D(A) A U(A) D(A)
0 .100 00625 33 .20 .01250
1 .103 .00645 34 .21 ,01310
2 ,106 00663 35 .22 ,01375
3 ,109 ,00670 36 .23 ,01440
4 ,112 .0070 37 .24 .01500
5 . 115 .0072 38 .25 ,01560
6 ,118 .00738 39 ,26 ,01625
7 121 ,00756 40 .27 ,01690
8 .124 00775 41 ,28 ,01750
9 127 ,00794 42 .29 ,01810

10 130 ,00813 43 .30 ,01870

11 133 ,00830 44 .31 .01940

12 136 ,00850 45 .32 ,02000

13 .139 ,00870 46 .33 ,02060

14 . 142 00889 47 .34 02120

15 .145 ,00908 48 .35 ,02190

16 .148 ,00927 49 .36 ,02250

17 ,151 ,00945 50 .37 ,02310

18 . 154 ,00964 51 .38 ,02380

19 .157 ,00982 52 .39 02440

20 ,160 ,01000 53 .40 02500

21 163 ,01020 54 .42 ,02620

22 . 166 ,01040 55 .44 ,02750

23 ,169 01055 56 ,46 ,02880

24 172 ,01075 57 .48 ,03000

25 175 .01094 58 .50 ,03120

26 .178 .01110 59 .52 ,03250

27 ,181 .01130 60 .54 ,03380

28 . 184 ,01150 61 .56 ,03500

29 .187 .01170 62 .58 . 03620

30 ,190 .01188 63 60 03750

31 .193 01205

32 .196 01225

Figure 6.6 Variation of Basic Experiment II, Variant (5),
This experiment is a repetition of Variant 5, Figure 6.4, in
which the U(A) and D()A) tables were replaced by the tables shown above.

For each A in this table, D(A)/(U(A)+D(X)) = 1/£~q = 1/17.
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C(ZO) in the periodic stimulus experiments, Again, F(t) cycled precise=
lyonr =17,
Y O Tq

The new tables U(A) and D(\) will be assumed in subsequent experi-
ments until further notice, Thus far a detailed study of synapse-level
drift had not yet been carried out,

Threshold Curves with Dips

To anticipate somewhat the results of Chapter 7, Section 7.2.1, the
stable networks exhibited so far failed to yield cycles C(ZO) under peri-

odic stimulation of a subset I, C Z%_(this L, is to be distinguished from

0

the £, used to start a network at t = 0). The following ad hoc mechanism

0
was introduced in an attempt to encourage formation of paths PE(ZO + ZT)

and closing of these paths into cycles C(Z : V(r) is no longer a mono=

0) ’
tone decreasing function of r, but decreases rather rapidly to low thresh-
old values, incfeasing to a maximum, then eventually decreasing to the qui-
escent value Vq (=1), The general form of this type of threshold curve is
shown in Figure 6,7(a)., The principle was to provide sufficiéntly low
threshold values: for neurons with recovery states near r = T that recruite-
ment into paths PE(ZO - ZT) and eventually closiﬁg of PE(ZO > ET) into

a C(ZO) would be encouraged. It is interesting to note that apparently

some observed recordings of neuron membrane potentials show recovery charac-
teristics similar to those of Figure 6.7(b), where the dip occurs around

r = 1 OT even for r >> Toax? followed by a hyper=-refractory swell, These
curves were eventually completely rejected for reasons to be discussed in
Chapter 7, Section 7.3.1, However, their study did provide some interest=
ing sidelights on the behavior of networks with cycles., Therefore, it is

included here.
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Two basic series of experiments were performed using threshold
curves with dips. The first entailed precisely the same network param-
eters as Experiments 3 above, except for V(r) and the initial A-distri-
bution. For the latter, the Aji(O)‘s were distributed according to
Figure 6.8. Some of the results of this series are given in Figure 6.9

o
=

(V(r)'s, Zo's, EEG's). It is interesting to note that Expcriment 1 of
Figure 6.9 did not yield exact periodicity, although F(t) appeared to be
"homing' in on an exact period of ;q = 17,

The second series was a repeat of the first, with the kji(O)'s all
equal to AO so that S(AO) = 1, just as in Basic Experiment I. The results
of this series are summarized in Figure 6.,10. Two interesting items
emerge from these: (a) Curves 2 and 3 resulted in stability, whereas in
the first series they produced instability. (b) Once again, exact period-
icity reappears. This certainly strengthens the growing feeling that

lack of complexity in the underlying/xsdistribution is the main determi-

nant of this undesirable phenomena.

6.2.2 Series II - Networks with Negative Feedback

The experiments of the preceding section were devoted in the main
to networks with initial positive, equal synapse-values. Growing discon-=
tent with the rigid periodicity obtained for stable networks led to
a few experiments with negative feedback present. It was realized that
a systematic study of the role of negative feedback was essential to
the dual goals of obtaining '"very stable' behavior and "adequate' net-
works for the periodic stimulation experiments. At this point, the basic
theory of Chapter 4, Section 4.3.3, was worked out, This produced an in-

valuable aid to the intuition. However, the complexity of the steady-
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state calculations for connection distibutions of the form

51

p = Z\pSa
s==5,

in particular, for the cases Sp = S > 2, was sufficiently great that
often crude estimates only were obtained, then refuge taken in the simula-
tion. Of course, such calculations could be programmed for a computer.
This, from the point-of-view of long-range studies of networks with
cycles, eventually must be done., It was not done in the current work
simply because there was a sufficient amount of programming effort involv-
ed in the simulation per se that precious little time was left for any-

0

thing else. As will be seen in this and the next few sections (6.3.2),
S
the crude approximations used to determine V(r) given p = Z; pg were
s==3
surprisingly accurate.

Three series of experiments were performed, These are described in
turn below. To summarize briefly the results, stability was obtained
for several V(r)'s and rigid periodicity was virtually eliminated., Un=
fortunately, the '"best'" results involved threshold curves with dips.

It was to eliminate this ad hoc mechanism that gave the initial impetus

to consideration of networks with distance-bias.

Negative Feedback Experiments 1, p = Pyt Py 12, Py = 9, Py = 3

The experiments of Figure 6.10 were repeated for basically the same
network of that example except that the network density p was raised to
p = 12 and the initial XA-distribution such that the initial distribution
of +1 valued connections had density Py = 9, that of the =1 valued con-

nections had density CHE 3, The results (V(r)‘'s, EEG's, fb's) are

summarized in Figure 6.11. All networks displayed underdamped behavior,
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with the third surviving the longest (F(89) = 0). The underdamping appears
clearly to be a result of the proportionately larger number of positive than
negative connections present in the network, This suggested the second
series of experiements in which p = 6, Py = 3, P = 3.

+

Negative Feedback Experiements 2: p = R 6, 0, = 3, o, =3

°1

Excess of positive valued connections seemed to produce instability in
the preceding experiments. Therefore, the density of +l-valued connections
was reduced to 3, that of the -1 valued connections remaining 3. The net-
work parameters (except V(r)) remain as before, The results of some of
these experiments are summarized in Figure 6.12. The first two involved
"normal" threshold curves (na dips). The second yielded rigid periodicity
on ;q = 16 (notice that MI(O) = 100 in these experiments to compensate for
the presence of negative connections). In the first, F(t) was homing in
on a rigid period %q = 16 by the termination of the run. The second two
involved threshold curves with dips, Again, in one of these the behavior
was rigidly periodic, in the other no definite periodicity was present,
although the average firing rate (intervals between firings) of neurons
of the network was iq + 16,

Negative Feedback Experiments 3

Case 1: p = P, *Pp et pz =6,p. =15,s=2=2, =1, 1, 2.

S

The experiments of Figure 6.10 were repeated for this more complex
synapse=value distribution., The results are summarized in Figure 6.13,
One additional experiment using threshold curve 2 of Figure 5.4 was per-
formed. It is also included in Figure 6.13, Experiment 4. The first
two threshold curves produced instability, The last two, the last of

which is a '"mormal'" threshold curve, were stable for t € [0,99], but
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apparently underdamped. Rigid periodicity was not present in either

of the last two cases.

i
—
[\S]

©

Case 2; p = LIPS + I + °o + 0, + p, = 24, Py =

24 with a 0-valued sub=-

The total network density was raised to p
distribution with density 12. The intent was to provide connections
whose effect would not be noticeable initially, but which might provide
additional positive or negative connections if needed by the network later
(through synapse-level drift). This would be particularly relevant to
the formation of paths in the periodic stimulation experiments. The last
two experiments of Figure 6.9 were repeated using this distribution. The
results are summarized in Figure 6,13, Case 2. The EEG's display violent

oscillations, but rigid periodicity is lacking,

6.2,3 Conclusions

Stability may be produced in networks with uniform random distribu-~
tions of connections, just as predicted by the theory of Chapter 4 for
this case. However, it was produced, with several exceptions, at a cost:
(a) unnatural ad hoc threshold curves had to be used, or (b) rigid period-
icity in F(t) occurred (F(t) = F(t+?q) and I = Leop ) |

A detailed study of these experiments suggestedqthat the introduc-
tion of distanée=bias into the networks would eliminate both these diffi=-
culties, especially if negative feedback were present. Therefore, fur-
ther work with these networks was abandoned and attention turned toward .
networks with distance-bias.
Periodicity

The difficulty of (b) perhaps deserves further mention., It is
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a theorem of the Theory of Finite Automata that the behavior of a finite
automaton without inputs will cycle on a definite period v, say

The period T is, roughly, an increasing function of the number of states
of the automaton. The networks of this section may be regarded as finite
(probabilistic) automata. Therefore, one intuitively expects the behavior

of these networks to eventually repeat itself; i.e.,

F(t+1) = F(t), Zt = Zt*rﬁ One would like T to be very large,
essentially infinite.

If the threshold curve V(r) is very steep, with p = 6 (relatively
small), N = 400, and positive, equal connections only present 1in Xi; it
is clear that in some sense the number of states of Kl (or state-transi-
tions) is more restricted than if V(r) is shallower, the synapse-values
are distributed over positive and negative connections, etc. Therefore,
in the former case, less information is present than in the latter.

The introduction of distance-=-bias adds another order of magnitude to t

and one would expect far richer behavioral patterns from networks with

this feature.

6.3 NETWORKS WITH DISTANCE=BIAS
6.3.1 Introduction

The conclusions of the preceding section pointed to the necessity
of introducing a distance-bias mechanism. The mechanism adopted was
that described in Chapter 4. It has the advantage that for r > R,
a neuron receives no connections from other neurons at distance r from
itself, yet within the disk r § R, it receives connections uniformly and

equiprobably from neurons at distance r. The expected number of
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connections it receives from CR is p. This means that within a disk CR’

a receiving neuron behaves as though it were in a network with uniform

=
random distributions of connections, CR

With this mechanism present, ''very stable'" and "adequate' networks

= N, p the p of the disk, etc.

were very rapidly obtained = a surprising fact in view of the analytic
intractability of such networks.

To study these networks, it was necessary to start out again with
the simplest cases (in particular with ¢(2) = 0 and Aji(O)'s = )\0)9
develop an experimental intuition for the behavior of these networks, then

gradually introduce greater complexity into them. In the experiments of

Section 6.2, the fatigue function was taken to be identically 0, ¢(2)

Hi
()

for L. =0, 1, ..c, zmax° Since fatigue is a slow, cumulative function,
over relatively short time intervals (t = 0 to 200, say), this should do
little harm. However, for longer time intervals such as are necessary
to determine ''very stable"vand "adequate' networks, a more realistic
¢(2) must be uéedo For example, even with negative feedback present in
a networklgl, there might by chance be a set of neurons that could fire
at a rate much greater than 1/?q for relatively longer periods of time.
These neurons ;hen might eventually influence the behavior of‘ﬁl, either
producinginstébility orunwanted cycles. >In fact, the entire heuristic
argument of Chapter 4, Sections 4.4, hinges on cycles not coming into

existence spontaneously, One method of guaranteeing that this will be

the case is use of the damping effect of the fatigue mechanism,
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6.3,2 Series I — Familiarization

Spread of Excitation Experiment

The first experiment involving distance-bias paralleled Basic Ex-

periment I of Section 6.2. The following network parameters were chosen;

t

N =900, R =10, p =205, A;;(0)'s = X so that () = 1, 6(2) =0,

0

and D(A), U(A) as in Figure 6.6, The V(r) used is somewhat similar to
that of Basic Experiment I, being large for r, Sr s rq = 14 and equal
to 1 for rq <r s L Figure 6,14 gives a summary of the parameters of
this experiment, together with ?; and the EEG. The behavior was rigidly
periodic (as would be expected) with period‘¢:k= 16 after t = 17, i.e.,

for t 2 17, F(t+16) = F(t), L L

t+l6 - “t°

There is an interesting sidelight to this experiment. The starting

subset ZO was chosen to lie along an edge of the grid of\&Lo This was

done deliberately to study the spread of excitation from EO over the en-

tire network, It brings out clearly the effects of the distance-bias,
This is illustrated in Figure 6.15(a) for time steps 1 through 4. Notice

that the excitation spreads in both directions from I , "wrapping around"

08

to the top of the grid since the lower and upper edges are in reality

adjacent (quasi-toroidal geometry). After time step 4, a sufficient num=

ber of neurons are firing over the entire network that no clear pattern
of spread of excitation exists. Since%R = nRz = 314 neurons, the net-
work may be covered by approximately three neighborhoods. This means that
one would expect the excitation to spread over the entire network in
three to four time steps, as actually occurred.

If the neighborhood radius had been very small, the excitation spread

would have taken proportionately longer to cover the network, For large



i65

N, this could lead to violent-possibly fatal-oscillations since

the spreading excitation would encounter progressively more recovered
neurons. Therefore, two important principles emerged from this experi-
ment: (1) ZO must be chosen so that the spread of excitation from ZO
will not encounter areas of recovered neurons. (2) R must be chosen so
that certain neurons would not be isolated from the excitation spread too
long (thus developing a pocket of recovered neurons). These ideas are

illustrated in Figure 6.15(b).

Basic Experiment III

As in the case of Basic Experiment I, the preceding experiment shows
that with distance-bias present a network can still be '"forced" into
stable (albeit periodic) behavior by a sufficiently steep threshold curve.
It is now of interest to test more realistic threshold curves. For this
purpose, curve 2 of Figure 6.4 was chosen., The remaining parameters were;
N =400, R =3, p = 6,78, Aji(O)'s =2 with S(AO) =1, ¢() =1, D()\) and
U(A) as above. The parameters, EEG, %B, etc., for this experiment are
given in Figure 6.16. The behavior was unstable, underdamped, F(t) going
to zero at t = 41,

The small neighborhood radius illustrates the principles of the pre-
ceding paragraphs: during the dip in F(t) fromt = 8 to t = 12, the non-
firing neurons of the network recover four time steps thus contributing
to the swell that starts at t = 13, Had R been larger, more neurons could
have fired for t = 8, co0p 12, possibly avoiding the build~-up of fatal
oscillations,

The subset ZO was taken from the set of neurons i ¢ rl such that

r, 2 16. These neurons are randomly distributed over }?c As Figure 6.17
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shows, however, the small R caused the spreading excitation to cluster
around 20 at t =1, 2, 3, This, of course, reinforces the arguments

given above,

6.3,3 Networks with Negative Feedback, No Fatigue

In an attémpt to understand better the behavior of distance-bias
networks, a series of experiments was conducted for networks with various
initial A-distributions and threshold curves, ignoring the fatigue mecha-
nism, i.e., ¢(2) = 0 as in the previous experiments. These experiments,
then, were intended as run-in experiments, the best of which would be iso-
lated for further tests, using the fatigue mechanism, They allowed
a precise study of (a) the effects of varying the pK's, V(r), and R,

(b) the synapse-level drift over the time intervals in which the experi-
ments were run, (c) the firing histories of individual neurons, etc,

Five of these experiments are described here., As is expected, none
of these experiments yielded rigid periodic behavior, the combined effects
of distance-bias, negative feedback, and reasonably shallow threshold
curves providing a sufficiently large number of states that the period
of the networks was essentially infinite.

2
Experiment 1 N = 400, R = 4, p = 24,4 = :E} Pk where Py =

1
p p k=2
PL1=P =% P = 5 y(r)g u(x), (v, ZO as in Basic Experiment III,

This experiment was run from t = 0 through t = 276, It was "stable"
in the sense that F(t) did not become zero, yet F(t) oscillated within
the bounds of 1 to 50, which seems too extreme. An analysis of the sy-
napse-levels Aji(t)'s at t = 100 revealed a net positive drift, indicat-
ing that the network was, in fact, basically underdamped - i,e.,, a ma-

jority of neurons were firing at rates greater than l/f'qe The results
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of this experiment are summarized in Figure 6.18.

While the neighborhood size might be partially a factor here, it
appeared more reasonable to assume that the proportion of positive
synapse-values was too great, leading to undamped behavior. Experiment 2
was devised to test this hypothesis,

2

Experiment 2 N = 400, R = 4, p = 24,4 = p, Where p, = p . =p , = p/4,
=, k 0 -1 2

=

B

Py =Py = p/8, otherwise identical to Experiment 1,

This network was run from t = 0 through t = 262, The oscillations
remained bounded between the limits 8 and 32 except at t = 180 when
F(t) = 4. This would appear to confirm the hypothesis that more negative
connections were needed, but the low value of F(t) at t = 180 suggests
a slight overdamping.

The results of this experiment are summarized in Figure 6,19,

2
Experiment 3: N = 400, R=8, p=251=23p ,p =p . =p _ =p/4,
=a2 kK’ "0 =1 -2
Pp =Py = p/8; all other parameters as in Experiment 2. The results are
summarized in Figure 6.20. Note that the limits on the oscillations are
F(t) = 6 to F(t) = 48.

Experiment 4: Same network as in Experiment 2, but with a different curve

V(r). The curve V(r) and the results are given in Figure 6.21. The
bounds on F(t) were approximately 15 to 44, The behavior appeared to be
somewhat underdamped.

2
Experiment 5: N = 400, R =6, p = 54,9 = :E; pk where po = p = p

=2
k=-2
Py =Py = p/8. V(r) and all other parameters as in Experiment 4.

= pi’i?

-1

The results are shown in Figure 6.22. The bounds on F(t) were 19 to 43,

Again, F(t) appeared somewhat overdamped.
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Resume of Experiments 1 = 5

By gradual '"tuning'" of the parameters R, p, ) for k = -2, -1, 0, 1, 2,
and V(r), assuming the fatigue mechanism to be inoperative = ¢(R) =0 =

it was possible to produce nearly stable behavior. 'Nearly stable" means

F
that while F(t) lies between certain bounds, e.g., -%=§ F(t) £ ZFb (appro-=
ximately) where Fb‘z . i%%-= 23,5, yet a tendency toward underdamped
T
q

behavior persists, In particular, a symptom of the latter was the fact
that a relatively large number of neurons of the network were firing at
rates greater than the expected rate l/qu

This suggests that it is essential to include the fatigue mechanism
to obtain very stable behavior in these networks. The next section is

devoted to this theme.

6.3.4 Networks with Negative Feedbat¢k, Fatigue Present

The fatigue mechanism used in the subsequent experiments differs
from the one used in Chapter 3 in that ¢() is, added to V(r) to determine
the effective threshold. The advantage of this additive fatigue mecha-
nism is that it does not affect the slope of V(r), whereas, of course,
the multiplicative fatigue mechanism of Chapter 3 does vary the slope of
the effective fhreshold function as ¢(2) increases from +1, Preserving
the slope of V(r) means essentially that the relationships between the
sets Mk(t) are preserved and the basic analysis of Chapter 4 still applies
(after translafion of V(r) by ¢(2)).

Four expefiments (numbered in sequence with the experiments of
Section 6.3.3) are described below, They form candidates for very stable
and adequate networks, the last one being used as the basis for the final,

long-run cell-assembly experiments of Chapter 7,
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Experiment 6: N = 400, R = 6, p = 54.9 = éé}zpkg Pp =P =P, = p/4 y
= p/8, Same network and parameters as in Experiment 5, Additive

PL = Py
fatigue function and tables of Figurei 6,23,

Except for the fatigue function, this is precisely the same network
as in Experiment 5. The results are summarized in Figure 6.24. Notice
that F(t) is bounded, 17 £ F(t) & 40, obeying approximately the desired
limits. The fatigue function definitely appears to have modulated F(t)

somewhat, as is seen by comparing the EEG's of Figures 6.22 and 6.24.

Experiment 7: The exact network of Experiment 6 was used except that

the synapse-values were re-scaled as follows: In all previous experiments,
one unit of synapse-value was equivalent to 12 subunits. The threshold
curve and the fatigue curve basically are represented in terms of these
subunits. If, for example, a threshold value of 12 subunits is added to

a fatigue value of 3, the effective threshold is 1.25 (= 12+3/12) synapse-
values. The relationship between synapse-values and subunits was rescaled
to 1:4 = one syﬁapseavalue is equivalent to four subunits., If a thresh-
old value of 4 subunits is added to a fatigue value of 3, the effective
threshold is now 1.75 (= 4+3/4) synapse-values. Given precisely the same
network as in Experiment 6, this rescaling should make the effects of
fatigue more pronounced, and it did, as seen in Figure 6,25, The oscilla-
tions remained, after an initial transient, in the bounds 16 £ F(t) € 38.

Experiment 8: This is a repeat of Experiment 7 with different Al(z) and

AZ(Z) tables (see Figure 6.26). After an initial transient,
14 2 F(t) £ 49. Some neurons, however, were firing at rates > l/fq = 1/17,
See Figure 6.27 for summary of results of this run.

Experiment 9: The exact network of Experiment 8 was used with a new

threshold V(r). The new curve and results of the run are given in
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2 8,(2) 8,(2) 3 8,(2) Azcz)‘

0 0 1/16 32 2 2/16

1 0 33 ' ( Again, for
2 1 34

each £,

3 1 35 8 a(2)

4 1 36 ) 2 '
5 1 37 INOALIN]
6 1 38 \/ 1 2
7 1 39 2 2/16 1

8 1 40 1 1/16 S 17
9 1 1/16 41 .

10 2 2/16 42 ) s

11 43 [

12 / 44

13 ( 45

14 \ 46

15 47

16 48

17 49

18 4 50

19 2 2/16 51
20 4 4/16 52
21 53
22 54
23 55
24 56
25 57
26 58
27 ‘ ' 59
28 V/ vé 60
29 4 61 v
30 4 4/16 62 0
31 2 2/16 63 1 0

Figure 6.26. Al(l) and Az(z) Tables for Experiments 8 and 9
(Section 6.3).
The above Al(l) and Az(z) tables were used for the experiments

of Figs, 6.27 and 6.28,
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Figure 6.28. The experiment was run from t = 0 to t = 399} apart from
an initial transient, 8 £ F(t) £ 36.

Resume of Experiments 6 - 9

Introduction of the fatigue mechanism into the networks of Experi-

ments 1-5, where for each ,

) a1
AI(L) + Az(l) fq 17

and ¢(2) is an additive function; did indeed appear to smooth out the
behavior of the networks. Rescaling of underlying synapse-value unit

sharpened the effects of the mechanism.

6.4 SUMMARY OF EXPERIMENTAL RESULTS

Stable behavior was readily produced both in networks with uniform
random distributions of connections and networks with distance-bias when
negative feedback was present. In the former case, however, an ad hoc
design of V(r) had to be introduced to eliminate the rigidly periodic
type of stable behavior frequently obtained there. If positive connec-
tions only were present, such rigidly periodic behavior, F(t+fq) = F(t),

zt+f = I,, appeared to be the order of the day.

q
In the distance-bias case, quasi-stable behavior was obtained, that

is’behavior with underdamped tendencies, until the additive fatigue mecha-
nism was introduced. This appeared to yield several '"very stable"

networks,
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7. NETWORKS UNDER PERIOCDIC SiIMULI

7.1 INTRODUCTION AND SURVEY OF RESULTS

The substance of this chapter is to verify claims (2) and (3) of
Chapter 5, Section 5.1, In summary fqrm, these are

(2) It is possible to produce‘iﬁ some networks with cycles closed
cycles (cell-assemblies) C(ZO) as a result of periodic stimulation of

an input set I within an "on-off" stimulus envelope.

0

(3) It is possible to produce in some networks with cycles, mutual-
ly inhibiting self re-exciting cycles C(zo) and C(Za) as a consequence

of applying periodic stimuli to ZO and 26, the stimulus to the one alter-
nating with the stimulus to the other in '"on-off" envelopes (stimulus to

*

0

20 "on" over an interval IO’ stimulus to I, off, t ¢ IO; conversely,

stimulus to I, "off" over 15, stimulus to 26 "on" t € Ia)o

The development of the material of this chapter parallels that of
Chapter 4, Sections 4.4 and 4.5. First the two basic classes of networks,
those with uniform randoh distributions of connections and those with
distance-bias, are considered under the effects of single periodic stimuli
(claim (2)). Secondly, a specific distance-bias network in which a cycle
C(ZO) has already been formed is considered under the effects of alternat-
ing perodic stimuli.

In general, networks (with or without distance-bias) with negative
feedback only are considered. In the first case above, however, several
networks with uniform random distributions of connections and positive
connections only are considered under periodic stimulation. This is done

merely to complete the argument of the preceding chapter, Section 6.2.3,

on periodicity. There the claim was made that periodicity implied lack

206
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of information, specifically, the lack of a reservoir of recruitable neu-
rons. It will be seen that this is, in fact, the case. Hence, the great-
er is the necessity for introducing mechanisms such as negative feedback
and distance-bias in order to increase the amount of information present
in the networks at hand.

Even with the negative feedback mechanism present, the results using
networks with unifcrm randcm distributions of connections were disappoint-
ing. Therefore, these networks were abandoned for the more complex dis-
tance-bias networks, for which some very stable examples had been obtained
(Chapter 6, Section 6.3.4, Experiments 6-9). Just as these had been readi-
ly obtained, once distance-bias was introduced, so were 'adequate" networks
(allowing path and cycle-formation) equally readily produced when distance-
bias was present.

Next (Section 7.5), an "adequate" network was subjected to long-term
training. Unfortunately, this uncovered an imbalance in the fatigue
mechanism. The latter necessitated a series of control runs to isolate
the exact nature of the imbalance. This being done, the experiment was
continued using alternating periodic stimuli. The latter was prematurely
terminated because of lack of funds and time — not, however, until a partial
second cycle C(ZS) and the development of cross-inhibition were observed.

Once agaiﬁg lack of time and money forbad continuation of the train-
ing period to the point that self-reexcitation could be positively demon=
strated, With the knowledge gained from these experiments, however, and
by taking advantage of the larger computers emerging today, this most
likely can be done using larger, richer, and more complex networks with=

out undue difficulty
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7.2 EXPERIMENTAL OBJECTIVES AND PROCEDURES

7.2.1 Objectives

Claims (2) and (3) of Section 7.1 imply several subgoals. (1) The

network must remain stable under stimulation ("adequacy") — i.e., F(t)

must not become zero and it must not oscillate violently (epilepsy).

Once stability is obtained, this implies that the formation of one cycle

C(ZO) must not '"rob'" the network of so many neurons that C(ZS) can never

be formed, etc.

(2)

All the characteristics of cell-assemblies enumerated in Chap-

ter 4, Sections 4.4 and 4.5, must be exhibited. in brief, these are;

(a)

(b)

(c)

(d)

(e)

the presence of strong positive connections in the cycle C(EO)

from the successor-set & toZ (t=0,1, ..., 1

t=1 T =0)

0
the similar condition for the alternating cycles C(EO) and
C(Za), including the presence of cross inhibitory connections
between subsets of each cycle.

the '"learning'" or response to the particular stimulus at
EO(ZO and 26), leading to input-independent self-reexcitation
for an interval of time (alternation of activity, input-inde-
pendent for a brief period of time).

pathvand cycle formation are assisted by the recruitment of
available neurons.

cyclé formation may be followed by fractionation, i.e., the
dropping out of the cycle of relatively inactive (or ineffec-

tual) neurons. This is especially important since it returns

certain neurons to the reservoir of recruitable neurons,
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7.2.2 Experimental Procedure

The experimental procedure of this chapter begins with successful
completion of Phase I1l (Chapter 6) for a particular network. There are
four over-all phases to this procedure:

Phase IV Single Periodic Stimulus — Path Formation Tests

Given a network ﬁl,that has passed Phase IIl of Chapter 6, first
a selection of the following is made:

1, The input set ZOC&;

2, The stimulus period 7, ; r < 1

< r o
0

a 0 q

3. The external stimulus value SO (added to the incoming stimulus
for each neuron of 209 see Chapter 4, Section 4.4.1);

4, The length of the "on'" and '"off" intervals, t, -

Next, the network is subjected to the stimulus for a number tO of
time steps — See Figure 7.1(a). Typically to ranged from 200 to several
thousand time steps. At each time step, the firing patéern of the net-
work was obtained, The firing pattern at time t shows precisely, in cod-
ed form, which neurons of\ﬁ\ fired at time t, forming thus a display of
%\“s activity at each time step. The firing patterns for Experiment 9,
Chapter 6, Section 6.3 for a few consecutive time steps are shown in
Figure 7.1(b).

From a close study of the firing patterns within the "on" interval
of stimulation, it can be determined whether or not overlapping paths
P(E0 -+ ZT)Q T < T, are being formed. This is accomplished by scanning
for overlaps of the subsets L. and Zr+r for successive values of T

0
throughout the "on' interval.! One would not expect to find paths

1Recalling the notation of 4.4,2, the set £! firing 1 time steps after
stimulation, may be decomposed into a steady-state component Y and

a component I, arising directly from stimulation; Lp = IV LY, this
decomposition holding true only for a few time steps after stimulation,
It is the latter component that is meant here.



212

P(ZO - ZI) closing back on themselves after a relatively short training
period, although this might occur.

If overlapping paths P(ZO > ZT), T < T, are detected, the network
is cleared for Phase V. If overlapping paths are not detected, then two
possibilities arise: (a) Further analysis indicates that the network is
not adequate: such paths will never form. (b) Analysis suggests that

a variation of one or several of the parameters I S, or t, might

0’ "o’ %0 )
produce overlapping paths,

In case (a), the network is abandoned, and return is made to Phases
I - III in an attempt to produce an adequate network. In case (b), the

appropriate changes are made and the whole experiment is repeated,

Phase V Single Periodic Stimulus -—=C§c1es Formation Tests

Given a network R\ that has passed Phase IV, i.e,, exhibits over-
lapping paths, the experiment is continued for a large number of time
steps ( 2 1000). Periodically the firing patterns are examined for clo-

sure of the paths P(Z0 -+ ZT) into a cycle C(Z If closure occurred,

0)°
the network is passed on the Phases VI and, possibly, VII. If closure
did not occur, again several possibilities arise: (a) Analysis suggests
that closure may never occur. (b) Analysis suggests that closure may
occur by variation of one of the parameters 1-4 of Phase IV. In case (a),
the network is abandoned, In (b), Phase IV is repeated using the modi-

fied parameter values, etc,

Phase VI Control Experiments

This is really an intermediate phase that may be performed during
or after Phases IV and V. The object is to determine whether or not pro=
longed stimulation of the network produced anomalies that would destroy

the basic stability of the network, For example — extreme to be sure,
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but nontheless possible = cycle formation might recruit all neurons of
&k@ Once the stimulus were turned off, F(t) would tend to zero since

the fund of steady-state neurons would be exhausted and the fatigue mech-
anism would damp out circulating pulses in C(ZO)C Another type of anomaly
that actually occurred, resulting in a prolonged series of control experi-
ments, will be discussed in Section 7.5.3 below.

The basic procedure in the control experiments was to turn off stimu-
lation at a certain point and allow the network to operate without inputs
for an interval of time (100 to several thousand time steps). If it did
not return to stable, steady state behavior, an analysis was undertaken
to determine the cause. The one example in which this occurred involved
modification of the fatigue mechanism, ¢(8), Al(l)a and Az(l)

(Section 7.5.3).

Phase VII Alternating Periodic Stimuli = Alternating Cycles Test

Once a network fn_displayed a single cycle C(ZO), another input sub-
set 25, stimulus period 16, stimulus SS and intervals tos t; were select-
ed. Stimulation proceded as indicated in Figure 7.2. Tests for over-
lapping paths, then overlapping cycles were conduced. Appropriate control
experiments were performed.

As mentioned earlier, this work was terminated before a cycle C(ES)
had definitely been formed. However, excellent overlapping paths were

obtained with the desired relationships between subsets of C(EO) and those

of the evolving C(ZS)O

7.2,3 Hypothesis
The specific hypotheses being tested in this chapter are:

(Closed-Cycle Formation Hypothesis) Given a network Xn_obtained from
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Phase IIl displaying very stable behavior, then for appropriate choices
of EO’ o4 SO’ and tos it is possible to produce a cycle C(ZO) in Kl as

a result of periodic stimulation of I 6 in a sequence of '"on-off" intervals.

0
(Alternating Closed Cycles Formation Hypothesis) Given a network K] in

which a closed cycle C(XO) has been obtained (from Phase V), then for
appropriate 25, TS» t* a'new cycle C(ZB) will emerge after prolonged
alternating periodic stimulation of C(ZO) and C(Za)b C(ES) will send

inhibitory connections to C(ZO) and conversely.

7.3 NETWORKS WITH UNIFORM RANDOM DISTRIBUTIONS OF CONNECTIONS

As mentioned in the Introduction, the results obtained using networks
with uniform random distributions‘of connections were disappointing.,
Consequently,in the sequel)experiments representing typical results only
are displayed. The many varied attempts to produce success (overlapping
paths and cycles) are omitted from description since they were all futile

—-= a '"barking up the wrong tree'" situation,

7.3.1 Seyies I == Networks with Positive Connections Only

Experiment 1 — Fatigue Inoperative

The network of Figure 6.4, 2, of Basic Experiments II (Chapter 6,
Section 6.2.1) was taken as the basis for this experiment. The behavior
of that network was 'stable", albeit rigidly periodic. ?; = 10, T

S0 = 7 (synapse-values), and tz = =("on" envelope only present)., The stim-

=65

ulus was started at t = O withF(0) = 25, The network was run for 602 time

steps. As in the Basic Experiment, ¢(2) = 0 (additive fatigue inoperative).
The results of this expeiiment are summarized in Figure 7.3. The

behavior remained stable, although the oscillations are a more pronounced

than in the steady-state experiment, The EEG's for both these experiments
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Figure 7.4. Firing Patterns for Experiment 1 (Section 7,3), t = 451 - 462,

The firing patterns for two consecutive stimulus periods are given below, Except for some neurons of
(ZO = neurons 381 - 400), there is no overlap whatsoever between the set of neurons firing at t and
tgose firing at tﬂo = t+6,
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“\ 111 11110 ZERa 1\ ZERO ZERO 10 ZERO| ZERO ZERO ZERO ZERG\ IO ZERO ZERO 10 | 100 ZERD ZERD
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are given for comparison in Figure 7.3. No overlapping paths developed
as may be seen in Figure 7.4 where the firing patterns for twelve con-
secutive time steps starting at t = 451 are shown.

Although the experiment was not successful, there are several
interesting sidelights worthy of mention. First, the effect of the stim-
ulus seems to have been much like that of an AM radio signal upon the
carrier wave: The steady-state pattern still predominates but it has
been '"modulated" by the signal (periodic stimulus). Notice, however,
that the rigid periodicity of the steady-state behavior has been destroy-
ed. This leads to the second observation: the behavior repeats itselt

after «

o X fq = 6 x 17 = 102 time steps, F(t+102) = F(t), &

t+102 © It
This, no doubt, is a combinatoric consequence of the informal argument
given in Chapter 6 explaining the origin of the periodicity occurring
there, It is as though there were six additional ways each sequence
F(t). ..., F(t+16) might occur, giving 6 x 17 total combinations before
repetitions of a given sequence F(t), ..., F(t+16) may occur. Whatever
the cause, this result once again implies zero information: recruitment

is not possible

Experiment 2 ~— Fatigue Present

This experiment is basically a repetition of the preceding one, ex-
cept that the fatigue mechanism is now operation. The function ¢(%)
and tables Al(l)g Aé(l) used are given in Figure 7.5, together with
the EEG. The run was terminated at t = 598. At t = 0, neurons were
distributed randomly and uniformly over fatigue states (as well as over
recovery states). S0 was increased to 10 synapse-values to compensate

for this.
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No overlapping paths were present. As before, F(t) repeated itself
after Ty X fq = 6 x 17 = 102 time steps, It took several hundred time
steps before this occurred, however.

A number of variations (with and without fatigue) of the above ex-

. a8 *
periments were carried out = varying I _, SO’ and T In no case did

00
overlapping paths occur. Therefore, negative feedback was introduced
into the networks, Phases I - III conducted for the new networks, and

the experiments of the next section carried out,

7,3.2 Series II == Networks with Negative Feedback

Experiment 3 — Fatigue Inoperative

The basic network used was that of Figure 6.9 with the threshold

curve of Figure 7.6. Notice that this curve has a.dip at r = 5, 6, and
2

7, N =400, p = 12 = zszk where Po = 0, Py =P =P =p,= p/d,

o(L) = 0, ?0 = 20, F(0) = 37, =6,S =10, t = 100, The first

To 0

"on" period started at t = 0, The results are summarized in Figure 7.6,

2

Figure 7.7 displays firing patterns from t = 419 through t = 431, It can
be seen that some overlapping paths appear to be present,

Several experiments similar to Experiment 3 were conducted. All
involved threshold curves with dips. All yielded some overlapping paths,
but no cycles. These experiments likewise were abandoned in favor of

networks with distance-bias.

7,3,3 Conclusions
In general, the experiments of this section resulted in failure ——

no overlapping paths or cycles. An interesting periodicity of length

fq X T, was observed in the positive connections only case., Success of
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Figure 7.7. Overlapping Paths in Experiment 3 (Section 7.3).

Interpretation: The firing patterns for t = 419 - 431 are given below, The neurons of Lg are enclosed
within square brackets (neurons 1-20 of!L). Iy was stimulated at t = 419 and t = 425, Neurons that fired
at t then again at t+1y = t+6.are shown encircled (excluding Ig). These neurons are candidates for a path
(in the sense of Chapter 4) from Ly, They will be in such a path, if the connections from Ly to Z;, Ip to
L2, etc, exist, since it is just possible that these connections do not exist and their firing at t+1y is
a coincidence. Since the results of Experiment 3 in general are so poor, the matter was not pursued
further, and attention was directed towards networks with distance-bias. In the future, however, when
overlapping paths are displayed as below, it may be assumed that the connection-matrix of the network was
examined and the appropriate connections from a subset ZT to its successor-set Er+l actually exist,

STIMULATED NEURONS 1 THROUGH 20
TIME 419 _OUTRUT IS 37 FIRING DISPLAY
ZERO ZERO ZERO ZERO ZERD ZERD ZERO ZERO ZERO ZERO ZERO ZERO 1000 10000 ZERO 1 ZERO ZERO ZERO
ZERO ZERO 100 ZERO 100 ZERO ZERQ ZERO 10 ZERO 100 ZERO ZERO ZERO 100 ZERO ZERD ZERO _ZERQ
ZERO ZERD ZERO ZERO ZERO ZERO 1 ZERO 100 ZERO 1100 1000 ZERO ZERO ZERO 1000 ZERO ZERO ZERO
ZERO ZERO ZEROD ZERQ, ZERD 10000 ZERO ZERO 1 ZERO ZERO ZERO ZERO ZERD ZERO 1000 ZERO 2ERO ZERO
11111 11111 11111 11111
TIME 420 OUTPUT IS 47 FIRING DISPLAY
ZERO 1001 10 ZERO 10 100 1 10000 1010 10 1 ZERO 1 1000 1000 100 ZERO 10 ZERO
1100 1 1001 ZERO ZERO ZERO ZERO ZERO 10000 ZERO ZERO ZERQ ZERO ZERO 100q1) 10000 ZERO ZERO ZERO
1000 1000 ZERO 100 1011 1 ZERO , 110 ZERO ZERO 100Q1 ZERO ZERO 10000 ZERD ZERO ZERD ZERO ZERO
10 ZERO ZERO 1 10100 1 ZERO 00 ZERO 1 1p ZERO ZERO ZERO ZERO 100 100 ZERQ ZERO
ZERO ZERO ZERO ZERO
TIME 421 OUTPUT IS 59 FIRING DISPLAY
1100 100 1 1010 1000 ZERO 100 1 ZERO ZERQ 10100 ZERO 100 ZERO 1000 ZERO 10000 100 ZERO
10 10010 ZERO ZERO 1000 ZERO ZERO ZERO ZERO ZERO ZERO 1000 10000 100 ZERO ZERO ZERO ZERO 101
100 10 10 10001 ZERO PO ZERO ZERO 1001D ZERD ZERO 10 10010 ZERD 1000 ZERO 1000 1100 10
10000 110 ZERO ZERO ZERO 1000 ZERO ZERO 110 10000 ZERO 1110 11000 10 10101 10 ZERO 10 1
ZERO ZERO ZERO ZERO
TIME 422 OUTPUT IS 59 FIRING DISPLAY
10 10000 10000 10100 10000 ZERO 1000 ZERO 100 ZERO ZERO ZERO 10 10 ZERO ZERO ZERO 10001 ZERO
ZERO ZERO 10010 1000 10001 10 ZERO 1000 ZERO ZERO 10 10000 11C 1000 ZERO 110 1000 1010 10
10 10000 11000 10 10100 10000 110 11000 ZERO 1001 ZERO 101 ZERO 2ERO ZEROD 100 1 ZERO ZEgRO
ZERO 1000 ZERO ZERQ 1001 ZERO 10000 ZERO 10000 1000 1001 1 1 ZERO ZERO 1 ZERO ZERO ZERO
ZERO ZERO ZERO ZERO
TIME 423 OUTPUT IS 38 FIRING DISPLAY
ZERO 10 ZERO ZERO ZERO ZERD ZERO 100 ZERO ZERO 1010 1010 ZERO ZERO 1 ZERO 10 ZERO ZERO
ZERO 100 ZERO 101 ZERO 10001 ZERO 10 ZERO 11000 1000 ZERO ZEROQ 1 ZERO ZERO ZERO ZERO 10000
ZERO ZERO ZERD ZERO ZERO ZERO 1000 ZERQ 1000 100 ZERO ZERO ZERO 1 1lp ZERO 10 ZERO 1000
1 10001 10000 100 ZERQ ZERO 16 ZERO ZERO 100 10000 ZERO ZERO 100 ZEROC 10000 ZERQ 1000 ZERO
ZERO ZERQ ZERO ZERO
TIME 424 QUTPUT IS 27 FIRING DISPLAY
ZERO ZERO ZERO ZERO ZERO 10000 10000 ZERO 1 10001 ZERO 100 ZERO ZERO ZERO 1000 ZERO ZERO ZERQ
ZERO 1000 ZERO ZERQ ZERO 2ERO 11000 100 ZERO 10 1 ZERO 1000 10 ZERO ZERQ ZERD 1 ZgRO
ZERg 100 ZERO ZgRO ZERD 1000 10000 ZERO ZERO ZERO ZERD ZERO ZERQ ZERO ZERO ZERO 100 ZERO ZERQO
100 ZERD 1 12 ZERO 10 ZERO 100 ZERO ZERG 2ERO ZERO 2ERO ZERO ZERO ZERO 1 ZERO 100
ZERO ZERO Z2ERD ZERO
STIMULATED NEURONS 1 THROUGH 20
TIME 425 OUTPUT IS 34 FIRING DISPLAY
ZERO ZERO ZERO ZERO 1 ZERO ZERO ZERO ZERQ ZERO ZERO ZERO ZERO ZERO ZERO ZERQ 2ERO ZERO ZERO
ZERO ZERO ZERO ZERO ZEROD 1000 1 ZERO 1 ZERDO 10000 ZERO ZERO ZERO ZERO 1000 10 ZERO 1000
ZERO ZERO ZERQ ZERO ZEROD ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO 1 ZERD 1 10100
ZERO ZERO 100 ZERQ ZERO ZERD ZERO 10 ZERO ZERO ZERD ZERQ ZERO ZERO ZERO ZERO ZERO ZERQ ZERO
i 11111 11111 11
T IME 426 OUTPUT IS 25 FIRING DISPLAY
ZERO ZERO 1000 ZERO ZERO ZERD ZERO 10 ZERO 1000 ZERO ZERO ZERO 1001 10 ZERO ZERO ZERO 10000
ZERO ZERO ZERO ZERD 100 100 2ERO_ ZERO ZERO ZERO ZERQ 100 ZERO Z2EROD ZERO ZERO ZERO ZERO
ZERO ZERO’ ZERQ ZERO ZERO Z2ERB ZERO 1@;un ZERO 10 ZERO ZERO 1 10100 ZERY 10000 ZERO 10 ZERO
ZERO ZERO ZERO ZERO ZERQ ZERO ZERO 00Y ZERO ZERO ZERO 10 ZERO ZERO 100 ZERO 100 1000
ZERO ZERQ ZERO ZERO
TIME 427 OUTPUT IS 19 FIRING DISPLAY
ZERO ZERO ZEROC ZERO ZERO 10 ZERO ZERQ Z2ERO ZERO ZERO ZERO ZERO ZERO ZERO 10 ZERO ZERO ZERO
10000 ZERO 100 ZERO ZERQ ZERO ZERO 1 2z ZERO  ZERO 1 ZERO ZERO ZERO ZERO 10001 ZERO ZERO
1 ZERO 100 1000 ZERO ZERO ZERO ZERO ZERO 10 ZERO ZERO ZERO 10001 ZERO ZERO ZERO ZERO
ZERO ZERO 1010 ZERO ZERO ZERO 100 ZERO ZERD ZERO ZERO ZERO ZERO ZERD Z2ERO ZERO ZERD 1 ZERO
ZERO ZERO ZERD ZERG
TIME 428 OQUTPUT IS 15 FIRING DISPLAY
ZERQ ZERO ZERO ZERO ZERD ZERO ZERO 1000 ZERO ZERO ZERO ZERO 10000 ZERO ZERO ZERO ZERO ZERG 1000
1 ZERO ZERO ZERO 0 ZERO ZERD 2ERO ZERO 101 ZERO 10 ZERO ZERO ZERO 2ERO ZERO ZERO ZERO
ZERO 2ERO  ZERO ZERO éggo ZERO ZERQ ZERO ZERO 1000 ZERO ZERO 100 ZERO ZERO ZERO 10000 ZERO 1
ZERO ZERO ZERO ZERO RO ZERO ZERO ZERO 1000 10 ZERO ZERO ZERO 7ERO ZERO ZERO ZERO ZERO 10000
ZERO  ZERO ZERT ZERO
TIME 429 OUTPUT IS 11 FIRING DISPLAY
1 ZERO ZERO ZERO ZERO ZERQ ZERO ZERO ZERO 100 ZERO ZERO ZERO ZERO ZERO ZERO ZERO 2ERQ 100
ZERO ZERO ZERQ ZERO ZERO ZERO 100 ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERp ZERO ZERO 10000 ZERO
10000 ZERO ZERO ZERO ZERO ZERO 1000 1 ZFRO ZERO ZERO 2ERC ZERO ZERO ZERO ZERO ZERO ZERO ZERO
ZERO ZERO ZERO ZERO ZERO ZERO 1000 ZERO ZERQ ZERO ZERO 10000 ZERO ZERO ZERO ZERD ZERO ZERO 10
ZERO ZERO ZERO ZERO
TIME 430 OUTPUT IS 10 FIRING DISPLAY
ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO Z2ERO ZERO ZERQ ZERO ZERO 100 ZERO 1 ZERO ZERO
ZERO ZERO ZERD ZERO ZERO ZERO ZERO ZERO ZERQ ZERO ZERO ZERO 1 ZERO ZERO 1 ZERO ZERO ZEROD
ZERO ZERG ZERO ZERO ZERO ZERO ZERO ZERO Z2ERO ZERO ZERO ZERO ZERO 10 ZERO ZERO ZERO ZERO ZERQ
ZERO ZERO 2ERO 1000 10 ZERO 1 ZERO ZERO ZERO ZERO 2ERO ZERO 1000 10 ZERO ZERO ZERO ZERO
ZERO ZERO ZERO ZERO
STIMULATED NEURONS 1 THROUGH 20
TIME 431 OUTPUT IS 25 FIRING DISPLAY
ZERO ZERD ZERO ZERO 100 ZERO < ZERD ZERO 2ERO 2ERO ZERO ZERO Z2ERO Z2ERO ZERO ZERO ZERO 1000 ZERO
ZERD ZERO ZERO 10000 ZERO ZERO ZERO ZERO ZERO ZERO ZERQ ZERO 1000 ZERO ZERO ZERO Z2ERO Z2ERO  ZERO
LERO ZERO ZERO ZERO ZERO ZERO ZERO 2ERQ Z2ERO ZERO ZgRO ZERO ZERO ZERO ZERO 26RO ZERO ZERO ZERQO
1000 ZERO ZERO ZERQ ZERO ZERO ZERO ZERO Z2ERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO
11111 11111 11111 11111
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a sort was obtained using simultaneously threshold curves with dips and
negative feedback., However, the threshold curves so used appear to be

too ad hoc for general use: while a given curve V(r) might work for

T = 6, say, the same curve probably would fail for T9 = 10, This cer-

tainly is an undesirable facet of V(r)'s with dips, Unless some mecha-

nism be introduced to "scale'' the V(r) for use with any =

0* Ty = o = rq
= and such a mechanism is difficult to envisage =—— the use of these
curves is to be discouraged.

Further effort might have been expended on networks with uniform
random distributions of connections., Admittedly, the experiments of this
section were in reality familiarization runs = the experimenter was
learning about stimulating networks. Consequently the experiments were
crude and often unrealistic. Possibly raising the network density p
and carefully selecting the A-distribution p = égéi P? the set ZOQ etc,
would have yielded the desired results without t;; gd hoc threshold curve
with dips mechanism. However, it appeared that networks with distance-
bias (and negative feedback) offerred the same results far more readily,
This is due to the '"localization' effect found in such networks which
prevents the effects of an external stimulus from dispersing itself too
rapidly over the entire network. This idea seemed so attractive that
the current networks were abandoned altogether and networks with dis-

tance-bias alone considered from this point on,

7.4 NETWORKS WITH DISTANCE-BIAS
In the sequel only networks with negative feedback are considered.
All stimulation experiments begin after completion of Phase III, usually

at t = 200 or t = 400, First, experiments were conducted with fatigue



225

0ST

(pot1ad-,330, 1SITF 3O FTeY 3seT)
/l\\.\\l\\l}

(pajeutwzal wnx)

_ 330 sninuils
0 = (9¥2)4 ,/ll\l\llj/,,\\\l\

uo sninutls

0t

0z

0g

ot

3)d

uo snynuYS

*STBAISIUT SWT] PIIDS[IS JIOF MOTAq uMmoys ST 933 Suriynsax ayl °*sdeis auT3 paipuny [eIdAdS JO porrad ur-uni e
X93Je Jo peajsur ‘g = 3 e uedaq uoriernurs ‘3ydrsioano ue ySnoayx °(prxd ogxez ® Se vmuuvmm=00u)~& Jo mox
w0330q 9yl ‘*e°1 ‘QZ-1 SUOINAU JO PIISTSUOD ou *juawtiadxd STY) IOF pasn sem 81°9 *314 FJO YIOMIdU YL

*antyeradour anStieq —— (p°, UOTIOAS) T Juawrxadxg °g*s aandty

(1) 4



226

Figure 7.9. Experiment 2 (Section 7.4) — Fatigue Inoperative,

This experiment continues Experiment 1, Section 6.3 (see Fig. 6.18)
from t = 201 to t = 482, t = 100, 19 = 6, Sp = 8.3 (units of synapse-
values). The "on" and "off" periods were 200 - 300, 400 - 500, ... and
300 - 400, 500 - 600, ... respectively, Lo is shown disgramatically
below, Since I forms a rather compact set, stimulation probably
produced a refractory zone around and including Zge

N = 400

= 4 (neighborhood radius), Cp ¥ 50

= = :-p- M :gn
p = 24,4 PPyt Py * Py =5 s# 050, >

V(r), ¢(2), U(A), D()) as in Basic Experiment III

Ly = {168 - 172, 188 - 192, 208 - 212, 228 - 232}  (shaded on diagram)

20
40()*_*“' D s aatien SUTE SR SESPS SN S NP ,381
380“ L] L[] . . L] . L] L] . (] . L] L] (] . L] . | 361
360" [ ] L] [ ] . L] L] L] L] . L] . L] L] L] . . . 341
340" L[] L] L] . L] . L] . (] L] . L] (] . L] . L] 321
320‘ LR A ) . L] [ ] L] . L] . 301 E
3000 v v Ce 28— 0
2804 v v v e e Ce 261
260 o ¢« 4 0 4 4o . 241
240( e o ¢ ¢ e o . 221
2200 4« 4 0 0w I . 201
200.‘ . [ ] L] [ ] . L] L [ ] . L] (] . L[] . . L] , 181
180.’ L] . L] L[] . L] -— L] L] . L] . . .‘ 161
R S T3 |
L S S V3 |
S (13|
100. LN (] L ] (] . L] L] L] L] . . L] L] . L] [ ] ’ 81
80. . . L] . L] . . [ ] (] [ ] . [ ] L] L] L] . . 61
600 L L e e e N R N 41
400 S 6 4 6 6 4 6 e 6 s s 6 e e e e s 21
20 “ r — e S WSS S W U W SR S W S W - x ] .
191817161514131211109 8 76 5 4 3 2 1
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inoperative. Next, some of these experiments.were repeated and some new
experiments performed with fatigue present.,

The input area EO plays a crucial role iu these experiments., The
selection of ZO is almost as important here as was the selection of V(r)
in Sections 6,2 and 6.3 of Chapter 6.

Overlapping paths were readily obtained, using ''normal" (monotone
decreasing) threshold curves. In one case, overlapping cycles were
formed. On this basis, a '"very'" stable network was selected for a thorough
test of cycle and alternating cycles formation, This experiment is de

scribed in Section 7.5.

7,4,1 Networks with Fatigue Inoperative

Experiment 1: The network of Experiment 1, Section 6.3.3 of Chapter 6,

was used. Through an oversight, stimulation began at t = 0 (before the

run-in of Phase III), io was taken as an edge of the iterated square

(Figure 7.8). ?0 =6, t, =200, S, = 1.7, ¢(8) = 0.

The results are summarized in Figure 7.8, F(245) became zero in

L

the second "on" period with large swells developing around t = 200. It
was not possible to revive the network with further application of the
stimulus. Recall that Experiment 1 (Section 6.3.3) appeared to be under-
damped.

This run is of interest since it shows fhe need for selecting 20
and SO carefully.

Experiment 2: The network of Experiment 1, Section 5,5,3, at t = 200

(i.e., after running input-free from t = 0 to t = 199) was used, ZO

= 100,

was chosen as a 4 x 4 subgrid of rn»(see Figure 7.9), ZO = 6, t,

S0 = 8.3 synapse-values, The stimulus was turned on at t = 200 (first
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Figure 7.10 (continued).

Although overlapping paths were not expected in this experiment, there were some isolated examples as
the following sample of the firing patterns shows. The sample is from time-steps t = 425 - 434 (see EEG).
Neurons overlapping at t and t+t, are encircled. Neurons of L, are bracketed.

0

STIMULATED NEURONS 127 THROUGH 134

STIMULATED NEURONS 147 THROUGH _ 154

STIMULATED NEURONS 167 THROUGH 174

STIMULATED NEURONS 18" THROUGH 194

STIMULATED 20/ THROUGH 214

STIMULATED NEURONS 227 THROUGH 234

STIMULATED NEURONS 247 THROUGH 254

STIMULATED NEURONS 267 THROUGH 274

TIME 425 OUTPUT IS 83 FIRING DISPLAY

ZERD 10 ZERO 100 10 1000 ZERO ZERO_ 2.R0 .EAJ_ ZERO ZERO_ 10 ZERGC _ZERO ZERO. 10 11000 _ZERD
ZERO_ ZERGT T 1 ZzERO_10000T 1111 111103 zERo_ ZERGU TI11 i1110)71100 _zErRG (1111 111100 zErRO_ zero C1111

11110) ZERO ZERO (1111 11110} ZERO ZERO (1111 111103 ZERC ZERC{ 1111 11110 JZERO ZERO T1111 11110 ZERO 10000
ZERO™ ZERO ZERO ZERO 100 ZERO ZERO ZERO ZERG ZERO 10 1 ZERO 100 ZERO 1 ZERO ZERD ZERD
ZERO ZERO ZERO ZERO )

TIME 426 QUTPUT IS 26 FIRING DISPLAY

1000 100 ZERO ZERO 1 ZERO ZERO ZERO ZERO 100  ZERO ZERO 10000 (;)_ZERO 1 ZERO ZERO ZERO
ZERQ 1 26RO 10 ZERO 1000 ZERO ZERO "ZERG ~ZERG ZERO "ZERQ 10000 10000 "ZERQD ~ZERO ZERO ZERO ZERO
ZERO ZERO ZERO ZERO ZERO 10000 1001 ZERO ZERG 100 ZERO ZERO ZERO 100 TERO ZERO ZERD ZERO
ZERO ZERO ZERO ZERO ZERO ZERO ZERO Z2ERO ZERG ZERC 1 ZERO ZERO ZERO 10 10 10 2ERD ZERO

1 100 ZERO 1

TIME 427 OUTPUT IS 19 FIRING DISPLAY

ZERO ZERO ZERO ZERO ZERO 10000 ZERO 10 ZERO 10CCO ZERO ZERO ZERO 100 1101 ZERO ZERO ZERO 1
ZERO ZERO ZERO ZERO Z2ERO ZERO ~ZERO™ _ZERO 'ZERO 2ERO ZERU ZERO ~ZERO  ZERG ZERO ZERO ZERO ZERO
ZERO 1 ZERO ZERO ZERO Z€ERO ZeRo (Dpco0 ZERO 1 ZERO ZERO ZERO 10 ZERO ZERG ZERO ZERO ZERO
1000 ZERO ZERO ZERO 1 ZERO 10000 1 ZERO ZERO 1000 ZERO ZERO Z2ERO ZERO ZERO ZERO ZERO ZERO

10 ZERO ZERO ZERO

TIME 428 QUTPUT IS 24 FIRING DISPLAY

100 ZERQ ZERQ ZERQ ZERQ 1 100 ZERO ZERO ZERC ZERQ ZERO ZERO ZEROD 10000 ZERO ZERO ZERO 100

10100 "ZERO ZERO ZERO ZERO ZERO 10000 ZERO Z2ERGC 100 ZERC ZERO ZERG ZERO ZERO ZERG 1 ZERO ZERO
ZERO ZERO ZERO  ZERO 11 ZERO ZERO ZERO ZERO ZERO ZERO ZERO 10001 ZERO ZERO ZERG ZERD ZERO

ZERO 100 1(5 ZERO ZERO 100 ZERO ZERO ZERO 1000 100 ZERGC 10010 10000 ZERO ZERO ZERD ZERO ZERO
ZERO ZERO Z2ERO ZERO
TIME 429 QUTPUT IS 17 FIRING DISPLAY
__2EROZERO ZERO_ZERO ZERO__ZERO _ 10 ZERD ZERO 2ERO 2ERC ZERO ZERO ZERG ZERO 110 ZERD Z2ERO ZERO
ZERO ZERD 10000 10000 ZERO ~ZERO ZERO ZERO ZERO ZERG ZEROD ZERO ZERO ZERO ZERO 2ERO ZERO 101 10000
ZERO ZERO ZERQ ZERO ZERG ZERO ZERO ZERO ZERQ ZERGC ZERO ZERO ZERG 1000 ZERO ZERD 10000 ZERO 1
10 ZERO ZERO ZERO 1000 ZERO ZERO ZERO 1GCO ZERO 2ERQ  ZERG ZERO ZERG ZERO ZERO ZERO ZERO ZERO
100 1 1000 ZERD
TIME 430 OQUTPUT IS 11 FIRING DISPLAY
ZERO _ ZERQ 1 _ZERO ZERO 10000 ZERO ZERO ZERQ Z2ERQ ZERO ZERO ZERO ZERO ZERO ZERO Z2ERO ZERO
ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERQ ZERO Z2ERO 26RO ZERO ZERO ZERO ZERO ZERO ZERQ ZERO
ZERO ZERO ZERO Z2ERO ZERO 10 ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO 10 ZERO ZERO ZERQ
ZERG 10 1000 ZERO ZERO 1000 ZERO ZERO ZERO ZERO ZERQ. 100 ZERG 7FRN ZFRO ZERD 100 ZERO ZERO
ZERO 10000 ZERD ZERO

STIMULATED NEURONS 127 THROUGH 134
STIMULATED NEURONS 147 THROUGH 154
STIMULATED NEURONS 167 THROUGH 174
STIMULATED NEURONS 187 THROUGH 194
STIMULATED NEURONS 207 THROUGH 214
STIMULATED NEURONS 227 THROUGH 234
STIMULATED NEURONS 247 THROUGH 254
STIMULATED NEURONS 267 THROUGH 274
TIME 431 QUTPUT IS 70 FIRING DISPLAY
ZERO ZERO ZERO ZERO ZERO ZERO _ZERO 100_ ZERO ZERO ZERGC ZERQ 1 ZERO_ ZERO ZERO_ ZERO ZERO _ZERD

ZERQ  ZERO ZERO _ZERO ZERQ_ 2ERO T111l 111103 z€RQ_ ZERO[ 1111 11110] zerg zeroT 1111 111161 ZERQ  ZERO (L1111
111100 zero zero (1111 11110} ZERO ZERO (1111 111161 ZERO' ZERO [ 1111 11114l zERC ZERO( 1101 1110) ZERO ZERO

ZERO ZERO ZERO 1010 ZERO ZERO ZERO ~ZERO 10 ZEROQ ZERGC —ZERO 1 1 10 ZERO ZERO ZERO ZERO
ZERO ZERO ZERG ZERO )
TIME 432 QUTPUT IS 18 FIRING DISPLAY T o
ZERO ZERO ZERO ZERO ZERO Z2ERO ZERO Z2ERO 10060 ZERO ZERO 10 ZERO / ZERO  ZERD 1 ZERO ZERO
1 ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO Z2ERO ZERO ZERO 10 ZERQ_ ZERO ZERO ZERO ZERO
ZERQ ZERO ZERO ZERO ZERO ZERO 1 ZERO ZERO ZERO 10000 ZERO ZERO ZERO éz:> ZERO 1 10000 10
ZERO ZERO ZERO ZERO ZERO 10000 ZERO ZERO ZERO ZERC ZERC ZERO 1000 ZERO Z ZERO ZERO 100 100

ZERO 10 ZERO ZERO

TIME 433 QUTPUT IS 25 FIRING DISPLAY

ZERC ZERO, ZERO 10 ZERO ZERO ZERO 1 100 ZERC 1101 ZERO ZERO ZERO ZERO 10000 ZERO 2 - 2ERO
ZERO ZERO 2ERO ZERO ZERO ZERO ZERO/ IERO ZERO 2ERC ZERO ZERG ZERO 10000 ZERO ZERO ZERO 2€§:)zsao
ZERO ZERO 10000 ZERO ZERO ZERO zsaqgiyuoo 1 10000 1 ZERO ZERO ZERC 10000 ZERO ZERO 1 2ERO
ZERO 1000 ZERO ZERO ZERO 11 ZERO ~ZERO 10CC0 ZERO 2ER0 ZERO 100 ZERO ZERO ZERO ZERC ZERO 10000

1 ZERO 101 ZERO o R
TIME 434 QUTPUT IS 16 FIRING DISPLAY
ZERO 10000 ZERO ZERO ZERO ZERO ZERO 1C10 ZERQ ZERC 2ER0O ZERO ZERO ZERO ZERO 1000 ZERO ZERO 1
100010010 ‘ZE 100 ZERO ZERO ZERO ZERO ZERO ZERO ZERQO ZERO 2ERO ZERO 2ERO ZERO ZERO ZERO ZERO
ZEROQ 10 @ ZERO ZERO ZERO ZERO ZERO ZERO 2ERO ZERO ZERO ZERO ZERO ZERO ZERO ZERD ZERO ZERO
ZERO 10 100 1 ZERO ZERO ZERO ZERO 2ERO ZERO ZERO ZERO ZERO ZERO 10000 ZERO ZERO ZERO 1000
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"on'' period), off at 301, etc, The run was terminated at t = 482,
Samples from the EEG and firing patterns are given in Figure 7.9.

No overlapping paths were detected in this experiment. It appeared
that the input area created a refractory zone which did not allow direct
successor neurons of ZO to fire after stimulation (the danger of this
occurring was noted in Chapter 4). The input area was therefore enlarged
for the next experiment.

Experiment 3: The network of Experiment 4, Section 6.6.3, at t = 200 was

used. 20 was taken as an 8 x 8 subgrid of‘&za T, =6, S =8.3,t = 100.

0 0
The run was terminated at t = 442. The results are summarized in Figure
7.10. As is drawn in the firing pattern samples, some overlapping paths
were present. Nonetheless, the input area seems too large and too dense
for effective path formation. This led to the spatially distributed

input set of the next experiment.

Experiment 4: Again the network of Experiment 4, Section 6.3.3, at

t = 200 was taken as the starting point of this experiment. Everything
is as in Experiment 3, except that Zy is "spatially distributed", i.e.,
fixed neurons are chosen for 20, but they are not clustered tightly about
each other as in the preceding experiments (see Figure 7.11(a))., The ex-
periment was terminated at t = 444 in the second off period. Overlapping
paths were detected., The results are summarized in Figure 7.11(a).
Experiment 5: uThis was a repetition of Experiment 4 above with 1. = 7,

0
The results are summarized in Figure 7,11(b). Again, overlapping paths

were present,

Resume of Experiments 1 - 5 (7.4.1.)

The above experiments clearly show that, using '"normal" (monotone

decreasing from Vmax to Vq) threshold curves V(r), overlapping paths may
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INPUT AREA STIMULATED

236

TIME 1215 OUTPUT IS 58 FlRlNG DISPLAY o . -
10000 ZERO ZERG 1WR0 ZERO ZE ZERQ 10000 _ZERO 1 ZERG 10000 b \gg ﬂ@oo 010 ZERD 110 o 1100
ZERO __ZERO ZERO 10 ZERO % 1) (oo (Tpoo0 ZERO 100 R ZERO “ZERO__ZERO Do 4T
(TP0 (Ip000 1000 ZEROD ZERQ ZERD 10000 ZERO ZERO ZERO 0\19g006  ZEROD 1000 10000 ZERD 1000 —
100C ZERO ZERO 1@0 (ﬁooo 10 10 ZERO ZERO B 0~ 1 2ERO_ZERD 10000 1000 ZERO
ZERO ~ ZERO 1 100
_TIME_ _ 1216 OUTPUT IS 44 FIRING QJSPL o R
2ERO’ ZERD ZERQ AZERD ZERD ZERO azb %ﬁboo 010~ é;) ZERO ZEBQ 10000 ZERO ZERO ZERO ZERD lERDCi;bIO
zeRp zero (1) (IDQo__ERo 1000 RO ooo do 1N (D ZERO 1 IERD 10 ZEROZERD )T
100 ZERD o géoo (}}oo g§2 110(100660  ~\I0f1000 ~ZERO, ZERO( D000 ZERD ZERD ~ZERD
ZERO ZERO 1 RO “ZERO iﬁg ZEROZERO 100 ~ ZERO xo(gpooo ZERO ZERO ZERQ 100
26RO (130 " 1000 ZERO
TIME 1217 OYIPUT 1S Q0 FIRING DISPLAY
ZERO 1000 2 ZERO 10\ ZERO ZERO o 10000 1 ZERO ZERO 100 0 ZERG ZERO
ZERO  ZERO ZERO ZzEeruo (10001 ) ZERO ZERD zeao 1000 ZERO ZERO 1q;po 0 ZERO 10000 x
ZERO ZERO _ZERU ZERO 1 10 n ZERO ZERO - 1 ZERO 0 ZERD IERUV""““”f}‘
ERO 1 po0o2  zerO  ZERD 10001 ZERO ZERO  ZERO 10E5 ZERO  ZERO ZERO ZERO
18 10000 ZERO
TIME 1218 OUTPUT IS _ 32 FIRING DISPLAY .
I ZERO ZERO ZERO (J0OG ZERO ZERO ZERG ZERO ZERO C>o !Ebo ZERO ZERO ZERO ZERO ZERO ZERO
RO 1000 100 ZERO $  ZERO ZEROZERO 2ERO ZERO Z¥RO po ?j5415@£LVE§RU, ZERO ZERO ZERD ZERD \\
ZERO ZERO @109 0 100 ZERD 1C0 ZERO 1000 ZERO 00 "ZERO 101 éooo ZERO  ZERO )
ERD ZERO YERO N'190 ZERO ZERO IERO  ZERO ZERO 10010 ZERD 1o¢)o ZEROD ZERO 100 ZERD 1
ZERO (;} ZERO ZERO : )
TIME 219 OUTPUT 1S 25 FIRING DISPLAY
12 ZERO ZERO ZERO 1300 1000 100 2ZERO ZERO ZERO ZERO 1000 ZERO ZERO _ZERO ZERO ZERO ZERO
ZERO LtRD 1000 ZERO ZERO ZERO 10000 Z2ERO ZERO 11 ZERO ;}b ZERD 1500 ZERU(:§001 100 ZEROD ZERO A?
ZERU 1 ZERO ZERO ZERO ZERO ZERC ZERO ZERO_ 1000 ZERO ZEAQ ZERO ZERO ZERO ~1ERD ZEROD ZERD Z2ERD
zsRo(;gvoc 2ERO ZERO ZERU ZERO ZERO ZERO ZEROC)OOOO 10U ZERO 100 ZERO ZERO ZERO ZERO 1 ZERD
1 Y0000 ZERO ZERO
TIME 1220 QUTPUT IS 18 FIRING DlSPLAV .
ZERO 1 ZERO ZERO 1 ZERO gyo ZERO 2ERO ZERO ZERO ZERO ZERO 10 ZERO ZERO ZERD ZERO
ZERU ZS5RU  ZERU ZE ZE ZERO ZERO z ZERO ZERO 10U ZERO ZERU ZERO ZERO ZERC ZERO 1000 100 {5
ZERO ZEROD 101 Eﬁb E§ ZERO ZERD ZERO\DPOOC ZERO ZERO ZERO (;boo ZERO 2ERO ZEROD ZERO ZERO 1
ZERO ZERO 1093 ZERU 2k ZLRO ZERD ZERO ~ZERO ZERO ZERO ZERO “{ERD ZERO 10 10000 ZERO ZERD ZERO
LERO ZERO 1ERO ZERD
TIME 1221 OUTPUT IS 22 FIRING DISPLAY
ZERQ ZERO 10002 ZERO ZEROD ZERO ZERC ZERO ZERO ZERO 1100U ZERO Z2ERO ZERO ZERO ZERO ZERQO ZERG ZERO
ZERO ZERO ZERD ZERO ZERO ZERO ZERO 13000 ZERO ZFRO ZERO RO 10009 10 ZERO ZERO 1000 1 ZERO Q_
ZERO ZEROD ZERO ZERO ZERO ZERO ZERO ZERO .ZERO ZERO ZERU f?bo ZERO 1 10 ZERO ZERO 10000
2ERO ZERQO ZERO ZERQ ZERO ZERO ZERO 1000 ZERO ZERO ZERO 00 ZERU ZERO 1 10 2z 10000 ZERD
1073 ZERC ZERO 1240
INPUT AREA STIMULATED -
TIME 1222 OUTPUT IS 43 FIRING DISPLAY
ZERD ZERO ZERO ZERO ZERQ 10000 lul0d ZERO , ZERO ZERO ZERO ZERO gzo 600 10 o
100Gy . ZERO ZERO 1193 ] b1 (D000  ZERO z§(3 @ Z¥RO YZERD ZERD @a @@ 26
1dQr1 Qooo 12099 ZERD ZERQ TZERO ZERO %00 ZERO ZERO ZERO 0
ZERO ~ ZERO ZERO <i§§> 100 1CO0 ZERO ZERO RO ZERD ZERO 1000 100 ZERO ZERO 1000
LEROD 2ERO ZERO ZERO
TIME 1223 OUTPUT IS 43 FIRING DISPLAY
1005 ZERO  ZES RO ZERO 1 ZERU ZERO ZERU ZERG zeao 10 ZERO ZERO _ZERO zsao(;gooo
ZE, ZERO J ZERO 1 ZERO ERO 3 ZERO lERU(iSOOO 2ERO Y0000 QLg
ZERO 1007 ZERO q;o go mo@ooo @ 1000 L)0C0~"ZERO ZERD ZERO 7
) 100 ZERU ZFRO 10 RO z z 0(:pooo ERO ZERO ZERO 10000
R n 12 ZERO
TIME 1224 OUYIPUT IS 39 FIRING DISPLAY
ZERO 1 %i%a 160 ZERO 100 ZEROD ZERD Pl ZERO ZERO ZERO 0 lERD 1000 ZERO
ZERO \Lp1 Z¥RU ZERO 2 ZERO ZERO 0 ZERO ZERO  ZERO ) 'zERo 7ERe\OF
LZERO ZERO _ZERO 1 y 1 ZERO RO 2ERO  ZERD R ZERD ZE?
ZERO zERo@JlJQ 1 ZeRO @@ ZERQ  ZERD 6}0 1C  ZERO ZERO ZERO ZERO
1 1 ZERO )
TIME 12 JPUT IS 32 FIRING DISPLAY
ZERO  ZERO 1:20; 1,00 ZERO ZERO ZEROD 1 ZERO ZERO 00 ZERO ZERO ZERO 1 1000 ZERO 1000
1 ZERO RO 1\3 ZERO 100 ZERO L ZERO ZERO ZERO ?0 Z§ IERO ZERO LERO @RD ZERD ~ ZERO ¥
ERQ  ZERO zero 1000{1p000 ZERO ZERO RO ZBRO ZERO 1 ZERG 00 ZERD ZERO
@xuo 15 LRL) % ZERO ZERO “ZERO ZERO ZERO ZERO  ZERO 0 ZERO 1 JERO ZERO ZERO -
1000ﬂ ERO ZERO ZERO B S
TIME<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>