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ABSTRACT

The research on adaptive systems described in this report may be sub-
divided into two areas according to the approach used: (1) automata theory and
Turing machines, and (2) neural network simulation.

Automata Theory and Turing Machines

S. T. Hedetniemi, "Studies in Cellular Automata." John von Neumann's de-
velopment of a space of cellular automata, which he used to demonstrate the
construction and reproduction of automata did ndt allow certain primitives for
the 29-state automaton used as the cells in his spaces. In particular, his
primitives would not allow the simultaneous crossing of two channels of infor-
mation. C. Y. Lee gave a solution to this cross-over problem which was more
efficient than that of von Neumann. In this paper, the author gives a further
improvement which allows simultaneous cross-over, but indicates that the con-
struction of the latter would be difficult.

C. V. Page, "Formulating a Game-Theoretic Problem in Probabilistic Se-
quential Machine Theory." The author gives an example of a game which is
relevant to the theory of adaptive systems and rephrases it as a problem in
probabilistic sequential machines; then discusses whether or not a nesting
property may be obtained for these machines which would yield information about
the expected payoffs after some substring of plays.

Neural-Network Simulation

M. R. Finley, Jr., "Experimental Study of Neural Networks by Means of a
Digital Computer Simulation." The author gives the development of a class of
abstract neural network models, based on certain neurophysiological evidences
and the extrapolations of D. 0. Hebb in his development of a theory of learn-
ing. He discusses Hebb's notion of cell-assembly, then describes a series of
initial experiments to test the model for basic desired properties, and the
results obtained. From these, considerable information was gained concerning
the nature of the basic network functions, such as threshold, fatigue, etc.

A derivation is given for the form of the threshold curve, and empirically
derived arguments are given for the fatigue and synapse-value curves,

Publication of this technical documentary report does not constitute Air
Force approval of the report's findings or conclusions. t 1is published
only for the exchange and stimulation of ideas.
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The following is an indication of some of the work being done in an
attempt to understand and achieve optimal designs within von Neumann's frame-

work of 29-state cellular automata.

Perhaps one of the most perplexing problems von Neumann had to solve
in constructing a self-reproducing cellular automaton was that of trans-
mitting information from one point in his cellular two-space to another with-
out its being in any way distorted. Although it is easy to construct a path
(of cellular automata) capable of transmitting information from one origin
to one destination point, it is not nearly so easy to construct paths from
several origins to several destinations, for invariably in two-space at
least two paths must cross.

Unfortunately or not, von Neumann's basic 29-state automata were not
capable of accepting inputs from either of two directions (say from the east
and south) and outputting the same in the corresponding opposite directions
(i.e., to the west and north, respectively). Von Neumann did not design a
crossover primitive, one which might be symbolized, as did C. Y. Lee¥* as
% .

The problem was effectively solved first by encoding differently the in-

formation from the various origins, and then sending all the information
along a common channel (path) which passes by each of the destinations, at
which are located corresponding decoding devices which recognize (ideally)
only the encoded information from their respective origins.

Using this procedure, von Neumann was able to construct a network for

transmitting information which had the desired crossover properties, but in

*¥Lee, C. Y., '"Synthesis of a cellular computer using the 29-state model of
von Neumann,' Engineering Summer Conferences, Automata Theory, The Univer-
sity of Michigan, Summer 196k,



at least two respects it was cumbersome; first, the network was relatively
large; second, the flow of information was slowed down. The following is a
two-input, two-output network which is designed to minimize both the area

and the time delay required to achieve information crossover. This network
is an improvement of the 7X7 crossover network of C. Y. Lee (footnote, page

1).
A 5X6 CROSSOVER NETWORK
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An input pulse (TI) at I; is encoded by the pulser (d) to the sequence
(101), is decoded by the (I01) decoder (b), and appears at the out-
put 07 13 time steps later. Similarly, an input pulse (i) at Io is
encoded by the pulser (c) to the sequence (1001), is decoded by the

(1001) decoder (a), and appears at the output Op 17 time steps later.

It should be pointed out that this network, as well as those of von
Neumann and C. Y. Lee, will not function properly if simultaneous crossover
of information is attempted; with respect to the arrival of inputs, the net-
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work is time dependent.

A particularly ingenious 8X8 crossover network (see below) has been de-
signed which allows for simultaneous information crossover, however, it has
one major drawback. Since this network is always in an active state, and
since construction in the von Neumann model is designed primarily for pass-
ive networks, 1t appears as though the construction of this network will be
particularly difficult.

On the other hand, since all of the previously mentioned crossover net-

works are passive, their construction presents no problems.

THIS DEVICE ALLOWS SIGNALS IN WIRES TO CROSS SIMULTANEOUSLY
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8X8 Synchronous Crossover
von Neumann Cellular Automata
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The Game-Theoretic Problem

Consider the following game which is important as an example in the
theory of adaptive systems. Two players alternately choose either a O or a
1 for a total of 2N choices. After the sequence of choices is made, a pay-
off is supplied depending only on the binary number of 2N bits defined by
the sequence. If the payoff is positive, it goes to one player, otherwise
to the other player. Of interest to us is the case when one player(des-
ignated by FM) uses a fixed mixed strategy dependent on the previous plays
of the game, i.e., after any string x = 1; ...ip ijEjO, 1} player FM chooses
a 1 with probability pxl and O with probability pXO =1 - le. Does there
exist for the other player (designated by D) a fixed sequence of plays which

(1) maximizes the expected payoff for player D against play FM?

(2) has the property that after some substring of plays, each suc-

ceeding play increases the expected payoff for D against the
fixed mixed strategy of FM?

Condition (1) seems quite likely to occur for arbitrary probabilities
of FM. On the other hand, condition (2) which we will call the nesting
property depends on the relationship between the mixed strategy probabil-
ities and the game values attached to strings of length 2N. Probabilistic
sequential machines provide a framework in which necessary and/or sufficient

conditions for the nesting property may be obtained.

An Equivalent Probabilistic Sequential Machine

Following a definition of probabilistic sequential machines and re-
lated terms, the above game-theoretic problem is expressed as a problem in
probabilistic sequential machines. The insight gained from the study of

such machines should prove fruitful in the study of this problem.



Definition 1.1. A probabilistic sequential machine A is a system of inputs,

internal states and outputs specified by

A = <mn, I, 8,2, A0), ... A(k-1), F, &>
where
n: a finite natural number, the number of states.
I: an n-dimensional stochastic row vector, the initial state
vector,
S:  the set of state vectors
S=1(8 =(1,0, ..., O), ... , 8y =(0, ... , O, 1)}.
2: input alphabet set . = {0, 1, ... , K-1}.
A(i): i =0, 1, ..., K-1: nxn switching matrix for input symbol i.
A(i)pm is the probability of a transition from state p to

state m when symbol i occurs.

F: output vector, a n-dimensional column vector whose entries are
real numbers.

¢J: output function C7?Si) =8; - F=F;y 5; in S where . is just
matrix multiplication. (In instances where no confusion occurs

the symbol "." is left out.)

The correspondence between the game and a probabilistic sequential machine,

Game Interpretation Probabilistic Sequential Machine
(i) A player specifies O or 1. (i) TInput of O or 1 to the machine.
(ii) A player will specify a (ii) An input of ? to the machine.

choice using a mixed stra-
tegy dependent on previous
inputs.
(1ii) Number of moves for each (iii) Number of states n = oL _ g,
player N.

10



Game Interpretation Probabilistic Sequential Machine

(iv) Play of game of length 2K (iv) Input string x of the form
with mixed strategy player i1%2ip7...1x? where
moving second. ijin {0, 1} 5 =1, ..., K.
(v) Partial sequence of plays (v) State of machine
observed i.e., 01011. i.e., 501011~
(vi) A priori changes in game (vi) Switching matrices A(0), A(1)
tree caused by specifica- and A(?) which tabulate change
tion of O, 1 or ?%. of state of the game tree with
input.
(vii) Start of the game. (vii) 1Initial state of the machine
(1, 0, ..., 0).
(viii) Value of payoff for game (viii) Output of machine which is
with plays 01011101. FOlOlllOl from state SOlOlllOl'
Remarks
Let x = i7ip ... iy ijez J=1, ... r be an arbitrary string. Then the

switching matrix for x can be found from the switching matrices of its sym-

bols by matrix multiplication, i.e.,
A(x) = A(iq) A(ip) ... A(ip) .

The expected value of output from A for a string x 1s a bilinear form

in I and F with form matrix A(x) i.e., Ep(x) = I A(x) F

In order to reflect the game problem we define the average expectation

of a game sequence x = iyjy ... ipj, where the ix's are given by player D

and the jx's by player FM using "?" to symbolize the move of player FM.

X _ 1 5 . .
= =— ) Ep (i3 ? i, ? i, 7))
E(x) on y e "
where y=(i; ... ip) € (0, 1t

For a game beginning with the fixed sequence by player D of

z =11 ... ixy k<n (and then random choices for the rest) we have

11



- = L TEy(i12ip7 «oig? ... ig?)
E(zy) pn-k ¥
where y = (igip --- 5 i) € (0, 1}07F
Example: A machine with the nesting property.

We show a 31 state machine which has the nesting property for games of
length 4 in which the mixed strategy player FM moves second. There seems to
be no theoretical difference in whether D or FM moves first. The general
form of A(?) and F are shown in Figure 1. A(O) and A(1l) are not shown, but
one can consider them as special cases of A(?). A(1l) is just A(?) with all
pel equal 1 while A(O) is just A(?) with pcO equal 1. Hence the rows of A(?)
are convex combinations of the rows of A(O) and A(1l). Figure 2 presents the
gpecial case which illustrates the nesting property with machine Ay.

Note that all entries of F which are not terminal states of the game
are zero. To complete the representation it is assumed that any move after
a game is concluded restores the game to its initial state.

For machine Ay and game strings of length L, if player D plays at

random he can obtain the average game value

X = L.05
E(x)

but if D begins with O and chooses the second move at random

1

—L = 2.675 y1 in 2 = (0, 1}
E(0%y77) .

while starting with a 1 gives

1

= 5.425 ¥y in z
E(l?yl?)

choosing 1 for both moves, D obtains

E(1712) = 8.100

12
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Hence the string 11 for D has the nesting property in Ay

y1 s Y192

E(1712) >
E( l?yl?) E( yl?yQ?)

yl’ y2 inz .

General Results

The special form of the matrices A(?), A(0), and A(1l) make it possible

to write simple general expressions for X and —Y

E(x) E(zy)
x 1 J1 pd2 Jn
= D e e . .o . .
B(x) on i1 “i1J1i0 i1d71ipdp vve in Ti1d1 ... dpdn
x
where x = (i, J1, ip, Jps «++ 5 ipy Jp) £ ()
If z = 17 7 i ?
y - 1 ZP‘?]- pl2 . pdn . F. . .
E(zy) on-k 1 1dito *1J1 -e- tn 11d7 eer dpdn
J-’ . . . . . . 5 en-k
where y =(J]_) Jdoy ¢ Jky 1k+1ls Jdk+ls ¢+ 1ny Jn) 6 ( ) .
A start z provides a better return for D than random iff:
z 1 pl2 T A .
iy i1diio 1771030 -0 1y 17d1 +-+ 1pdn
y. . . £ (2) 2n-k
y’:(Jl v s Jp Tpgys eee s in) €
l}; Z ... PIn F. .
12J112 iljl o o e in lJn
x
] ) 2n
= (1 12 J]_, cee s Lo Jn) 3 (Z) (%)

Further Research

The major goal of this research is not yet realized. However, it is
clear that the problem of finding those games of the form described in the
first section which have nested sequences which improve the expected output
has been reformulated in terms of equation (¥). Hence, further investiga-

tion will use the methods of convex sets to study inequalities among the

15



output weights and game values which guarantee the nesting property to occur.

X _ and X
E(x) E(zy)
efficiently than by matrix manipulations. Research is underway to develop

Calculation of can be simplified and done much more

a simple algorithm which calculates these quantities by tracing the expecta-
tion from the final states back up the tree to the initial state.
Another problem of interest would be to characterize all those machines

of the same size which have the same nested sequence.
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1. INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

A class of models of neural nets is given which purports to represent,
admittedly in an approximate fashion, a fragment of the (association layer)
mammalian cortex. Such a model usually will be visualized in an environment
together with appropriate sensory and motor apparati, thus allowing, for
example, detection of objects and movement in the environment. The main
problem is to determine whether the models presented have the capacity to
learn, in the sense that, as a consequence of feedback from the environment
to the model, certain internal changes occur in the model with a resulting
(eventual) improvement in behavior.

This class of neural net models has at least one distinctive feature:
that is, it i1s interpreted directly into a computer program. Thus, one has
a rigorous expression of (the particular interpretation of) the class of
models, from which any specific model is obtained merely by specification
of certain parameters. Inasmuch as any prciram is a formal expression of
certain formal operations (analogous to the specification of a list of func-
tions used in the definition of partial recursive functions), it possesses some
of the advantages found in the study of formal systems. On the other hand,
there also is the advantage that any property of the class of models which
is deduced a priori can be, in the interpretation afforded by the computer
program, subJjected to a well-defined test.

Because of the ease with which operations of the models are interpreted
into digital computer operations (more realistically, subroutines), the com-
puter simulation of such models is lifted out of the realm of a mere pro-

gramming application. That is, in a sense, the program itself is a model.

21



Study it--i.e., its behavior-——and you are studying the model.

1.2 BASIC PREMISES AND THEORY: RELATION TO NEUROPHYSIOLOGICAL FACT

The original source for the specification of this class of neural net
models and of the neural as well as behavioral processes involved in learning
stems back to the theory which was developed by D. O. Hebb [3] and later
modified somewhat by P. M. Milner (4], The theory, which integrates knowl-
edge of neural events, taking place in time intervals of up to a hundred
milliseconds or so, with behavioral events, taking place in time intervals
of seconds on up, has as its basis the proposed mechanism of the cell-
essembly: informally characterized, this is a system of cortical (associa-
tion layer) neurons which are capable of acting as a closed autonomous func-
tional unit for a brief period of time. These neurons are anatomically
diffuse, but functionally connected. The functional unity of the cell-
assembly results from the initial existence of the proper inter-connections
among the neurons of the system together with a particular (i.e., selective)
pequence of cortical events that forces these neurons to act briefly as a
unit via a growth of synaptic strength at the connections such that after
8 period of time the assembly may be activated by appropriate excitatory
stimuli.

The cell-assembly is a hypothetical structure; its physiological exist-
ence has not been demonstrated—on the other hand, the concept does not con-
flict with current neurophysiological knowledge. Moreover, the formation of
a cell-assembly rests upan three main premises: (a) the initial existence
of the proper inter-connections among the neurons of the system, (b) an ini-
tial selective sequence of cortical events that forces the neurons of the
system to act briefly as a unit, and (c) the law of the change in synaptic

strength between neurons. This latter premise is taken by Hebb as his basic

22



neurophysiological premise. Stated more fully, it reads:
When an axon of cell A is near enough to excite cell B and re-
peatedly or persistently takes part in firing it, some growth proc-

ess or metabolic change takes place in one or both cells such that

A's efficiency as one of the cells firing B, is increased.

While there is evidence that is very suggestive, the validity of this hypoth-
esis has not yet been demonstrated neurophysiologically: again it does not
conflict with known properties of neurons. It was demonstrated, conclusively
shortly after the appearance of Hebb's book (for example, Eccles [2]) that
some neurons send out inhibitory connections as well as excitatory connections.
Milner [4] argues effectively for the inclusion of inhibitory connections,
subject to the same law of effect (c) and his suggestion is adapted here.

It should be noted here, that many properties of cortical neurons are
inferred from the known properties of peripheral neurons. There seems to be
no reason, at this time at least, for not doing this as it may be some time
before techniques are evolved that will allow the fine, detailed study on
the cortical neuron that has been carried out on neurons in the spinal ganglia,
etc. This is obviously one area where new knowledge will be of the greatest
interest in the study of models such as the one developed here.

There is one other premise which, although not explicit in the above
formulation of the cell-assembly, is in some respects the most important of
all. That is that the system of neurons under consideration be large enough
and the inter-connections among these neurons be dense enough such that the
probabilities of existence of "the proper inter-connections" in premise (a)
above be of a magnitude such that cell-assemblies may actually come into
existence. Here the evidence from neuro-anatomy is encouraging: the human
cortex has of the order of 1010 neurons; (peripheral) neurons have been ob-
served with approximately 1500 synaptic endings on them (i.e., 1500 input

lines). Moreover, a given cortical neuron (association layer) seems to send
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out connections to all points in the region surrounding it up to a distance
of one millimeter away.

Hebb's theory is in some respects a stimulus-response theory, where
"response" does not mean immediate (muscular) response. This is reflected
most strongly in premise (b), where the "initial selective sequence of cor-
tical events" refers to the "priming" of the initial skeletal pathway assumed
in (a) by massive "training" stimuli together with the stimulus which alone
is to activate the assembly later on. The massive "training" stimuli may re-
sult from a sensation, e.g., hunger, from some environmental feedback, the
action of other, already established assemblies, etc.

Thus, referring back to the statement of the problem given above, the
main problem reduces to that of testing the role of the cell-assembly in
learning—i.e., Hebb's theory—via the digital computer simulation of the
models involved. One of the objects of this study is that of giving—in
terms of the model--a precise characterization of the formation and the role
of a cell-assembly in a learning process. While thus far an intuitive notion
of learning has been referred to, it is hoped, that in the context of a well-
defined experiment, some account can be given for a non-trivial learning
process.

A final observation on the character of cell-assemblies and phase se-
quences of cell-assemblies is in order: That is, that they allow one to dis-
cuss learning and associated problems at a "molar" level (as Hebb puts it)—
i.e., in terms of aggregates of neurons, their statistical properties, etc.—
Just as, for example, in statistical mechanics one works with aggregates of
point masses, with little if any attention being paid to the individual bodies

of the system.

2L



1.3 THE CORTICAL NEURON AND SYSTEMS OF CORTICAL NEURONS

The advent of the micro-electrode and associated probing techniques in
the last fifteen years has allowed physiologists to determine electrical
properties of neurons from direct inter-cellular readings and, as & conse-
quence, a wealth of knowledge has been gained about the electrical behavior
of neurons, axonal propagation of pulses, etc. Most of this knowledge has
been gleaned from studies on non-cortical neurons, e.g., neurons in the spinal
ganglia, etc. A good, though slightly outdated, account of this is given in
Fccles [2]. Tt is assumed that the properties of non-cortical neurons carry
over to those in the cortex. Histologically, the cortical neuron is a neuron;
while direct electrical studies on the cortex are hard to interpret, they
tend to support this assumption.

It is manifestly impossible to simulate the real neuron in all its com-
plexity. 1In fact, even if it were possible to do so, it would probably be
unnecessary, as some of the properties of the neuron most likely are unes-
sential to the problem at hand. As in any science, simplifying assumptions
have to be made, albeit with great care, trying to retain the most essential
properties of the object described. The following description of the neuron

is adopted here.

1.3.1 Structure

The gross-structure of the physiological neuron is as follows:

The main part of the organ is the cell body or soma, S, which sends out
one fiber called the axon, A, which may later branch out quite profusely. A
number of axons from other cells impinge on the soma of the body, sometimes
on extensions of the soma—which often are quite profuse-—called the dendrites,
of the given cell. The point of contact of an incoming (afferent) axon with

the soma or dendrites is the synapse and i1s usually characterized by a nodal
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swelling or button-like ending. Moreover, there is a very narrow gap between

this ending and the cell body, called the synaptic gap. Neurons have been ob-

served with of the order of 1500 synaptic endings on their soma. A given in-
coming axon may make contact several times with a given soma. The afferent
or incoming axons are, in effect, input lines; the axon sent out from the
soma, an output line. Thus the neuron is a multiple input, single output de-
vice.

There are neurons of different structure than this, but their use in the
nervous system seems to be specialized and not of relevance here (e.g., bi-
polar neurons in the optic nerve). It should be noted that in the cortex
there are neurons with very complex dendritic branching and small—if any—

axons as well as neurons with dendritic branching and quite long axons.

1.3.2 Input and Output, Threshold

The axon of a neuron is capable of transmitting a pulse of electric po-
tential (called the action potential) with no significant decrease in ampli-
tude throughout its length. The pulse originates in the soma of the nerve
cell as a consequence of input-pulses on the incoming fibers (synapses) to
the cell and spreads down the cell's axon to its various endings. A cell is
sald to fire when it sends out such a pulse. The neuron (and its axon) is a
threshold device in the sense that, as a result of summation of its inputs
(at the synapses) and depending on the length of the time interval since the
last firing, it either fires completely or not at all, i.e., the amplitude
cof the outgoing pulse is independent of the magnitude of the input pulses.

The net input to the cell at a given time is determined by the number
of impulses present at the synapses at that time and the level of activity
(recall hypothesis (c), 1.2 above) at these synapses. Actually summation of

this potential activity over a brief interval of time probably takes place.

26



The inputs thus sum, in a fashion as yet unknown, spatially and temporally.
In the model, the inputs (see below) are added. If the summed stimuli exceed
the threshold at that time, the neuron fires—if not, it does not fire,

Once the neuron fires, it cannot be made to fire again for a period of

time, the absolute refractory period. After that period of time, it main-

tains a high threshold which gradually decreases to its quiescent or resting
value., This time interval, after the absolute refractory period, required
for recovery to the guiescent state is called the relative refractory period.

Thus, the neuron has the following threshold characteristic:

—
absolute
refractory
period

The time interval since the last firing of the neuron is called the recovery
In the model, time is quantized, t =0, 1, 2, ... . Thus, a neuron fires
at time t + 1 depending upon
(1) whether it fired at time t. If it did, then it cannot be made
to fire until time t + k, whére k, a positive integer and a
parameter of the system, represents the absolute refractory
period.
(2) whether the sum of the inputs exceeds the threshold at time t.

If so, it fires at t + 1; otherwise it remains refractory.
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(3) a spontaneous firing mechanism which is explained below.

1.3.% Synapses

vThe exact nature of transmission across the synaptic gap and summation
of the incoming pulses is as yet unknown. Here, it is assumed that each in-
put line has an associated synapse level, X. This synapse level in turn is
used to determine the synapse value for that line, usually by a table of the

following sort:

S(A)

/
L

If there are n active input lines, then the total input at time t is

n

igi S;(t) where S;(t) is the synapse value corresponding to the i-th line
at time t. Notice that in general there will be negative values of the
synapse values: these correspond to inhibitory connections.

According to the hypothesis (c¢), Section 1.2, the synapse levels are
subject to a law of effect as follows: suppose there is a synapse from
neuron A to neuron B—i.e., neuron A sends, via its axon, one connection to
neuron B. Then, if A fires at time t and B fires at t + 1, the synapse
level from A to B, App, 1s increased by a uniform amount 8A. If A fires
at t and B does not fire at t + 1, App is decreased by 8A; otherwise no

change in App is made: symbolically,

A(t) & B(t+l) =) Ay > App + OA

A(t) & B(t+1) => Apg > Mgp - BA

A ranges in value from O to a maximum. In addition to the law stated above,
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there is a probabilistic mechanism in the model that serves to "slow down"
the A\ change. Essentially, if A is to be changed (i.e., either A(t) & B(t+1)
or A(t) & ETE:IY ), then a probability particular to that level is consulted:
if it exceeds a certain amount, then the change takes place, otherwise ﬁo
change occurs. This mechanism can be used to bias the direction of synapse-

level change.

1.3.4 Fatigue, Spontaneous Firing

In addition to the threshold function, there is a long term mechanism
which delays full-recovery, called fatigue. The evidence for this from neuro-
physiology, in the case of peripheral neurons, is fairly definite. The fatigue
function and its implementation will be discussed at length in a later chap-
ter. The effect of fatigue is one of the subgoals of this study, as is that

of spontaneous firing. There is also fairly good evidence that cortical

neurons fire spontaneously (see, for example, Sharpless, S. K. and Halpern,
L. M. [5]). In the model this is defined as follows: if the recovery state
of a neuron exceeds a certain value (called IDLE), then the neuron fires with

a certain probability.

neuron fires with certain proba-
bility, independent of inputs
—~—~—

0 IDLE r

The role of spontaneous firing seems to be essential-—it may act as a form
of drive if it is a function of the time since the last reward or the like—
i.e., a non-specific global disturbance. As the mechanisms of fatigue and
spontaneous firing can be defined very exactly in the model, their effects

can be studied under tightly controlled conditions.
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This completes the discussion of the neuron for this time.

The mammalian cortex consists of several layers of neurons of different
structure. The outer layer, for example, consists of neurons with axons
which spread out horizontally over large distances; the inner layers con-
sist of neurons with very complex axonal branching in the immediate vicinity
of the cell; axons from within the cortex and perhaps those from subcortical
structures descend up through all the layers and back down again, probably
with complex branching along the way, etc. (see, e.g., Eccles, ibid., pp.
229-331) .

Moreover, there are regions of the cortex, into which sensory input is
projected (e.g., the visual cortex) and other regions from which motor con-
trol is effected.

These features can be simulated to some degree in the model. First of
all, a neighborhood relationship for a group of neurons may be defined that
determines the neurons to which the neurons of the given group are connected
and the density of connections sent out by these neurons. This neighborhood
relationship thus permits structuring several layers of neurons with different
connections for the different layers as well as inter-layer connection. For
example, in the figure below, layer 1 may have very dense local connections,
similarly for layer 2, while layer 3 may be more diffuse, neurons sending out
connections over greater distances; layer 1 may connect to layer 2 in an
approximate one-one fashion, while layer 2 may send out diffuse connections

to layer 3, etc.

layer 1 /// 1 & LT
e )P 5l

layer 3 z/ézsziii_j’/gfzgz;/7
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From the discussion so far, it is evident that there are many parameters
and functions that can be varied in the given class of models; threshold func-
tion, fatigue, spontaneous firing, neighborhood relation, density of inter-
connections, etc. Moreover, the relationship between the various possible
choices may be complicated and subtle. Hence, the great value of the simula-
tion approach: hypotheses, such as those described in 1.5 concerning such
relationships can be tested—hypotheses whose validity (in the models) simply

may not be rigorously demonstrable a priori.

1.4 PREVIOUS NEURAL NET STUDIES

This study is not the first in its field. Rochester, Holland, et al. [6]
experimented first with a "discrete-pulse model," using a simulation program
for the IBM 701, then with an "FM model," using a simulation program for the
IBM 704. 1In the first case, they exhibited "diffuse reverberation," a phe-
nomenon somewhat akin to the sustained activity discovered in isolated cat
cortex by Burns [1], but could not demonstrate any tendency on the part of
the neurons to form cell-assemblies. While the "diffuse reverberation,"” in
the authors' eyes, might serve as a mechanism for short term memory, they felt
that additional structure must be imposed upon the net to allow formation of
cell-assemblies. They conferred with Milner and followed his suggestion [4]
of introducing negative synapse values into their model. At the same time,
taking advantage of the larger and faster IBM TO4 computer, they reprogrammed
their model in such a fashion that the detailed firing history of the neurons
was lost, to be replaced by a frequency of firing for each neuron. This fre-
quency varied with the time, hence the term "FM model." They simulated a net
of 512 neurons with six inputs each. In their experiments with this model
they observed the formation of cell-assembly-like structures, i.e., sets of

neurons such that within each set the connections between the neurons had large,
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excitatory synapse values while between the various sets themselves the inter-
connections had large, inhibitory synapse values. They also observed phenomena
somewhat like the fractionation and recruitment of neurons, as required by
Hebb's theory. On the other hand, the cell-assembly-like structures they ob-
served could not arouse one--another, as Hebb's theory again requires, that

is, their model was too environment-dependent.

In later studies with this model, Holland and Rochester demonstrated
binary learning (Holland—personal communication). However, for a variety of
reasons, the project was abandoned and not resumed by any of its originators.
It was continued, however, at the Logic of Computers Group at The University
of Michigan, under the supervision and inspiration of John H. Holland, by
J. W. Crichton [T7][8].

Crichton and Holland [8] proposed a new method of simulating neural nets
which took advantage of the increased storage of the IBM 704 computer
and which would allow simulation of up to 2000 neurons with about 150 inputs
per neuron. This gives rise to the so-called "variable-atom" model, in which
all neurons with the same characteristics (i.e., firing history, threshold,

fatigue, etc.) are lumped together into an "atom."

Computation of the num-
ber of active inputs to a neuron is performed by reference to appropriate
Poisson tables.

This model was never simulated on the IBM 704. The availability of an
IBM 709 computer, a machine which represented a considerable advancement over
the IBM TO4 in that much improved input-output equipment and procedures were
available and new powerful operation codes were added, caused a major change
in plans and the model was to be reprogrammed for the IBM 709, taking ad-
vantage of its new features. Crichton was joined by Finley at this point.

Crichton and Finley modified the model, putting it in almost the form

in which it is used in this study and programmed it for simulation on the
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IEM 709 [9]. Early experiments with this model revealed the distressing fact
that the model was not capable of sustained activity such as Burns observed
[1]. Stimulated "slabs" would not maintain activity indefinitely, but in fact
died down rather rapidly. Marked epileptic behavior resulted—that is, in-
tense activity alternated with low activity, leading rather quickly to "death,"
i.e., no activity at all. No modification of the net parameters seemed to
produce a cure for this behavior and we were forced to re-appraise the whole
model. This lead to the discovery that the statistical techniques used in the
model contained a fatal flaw, basically that it would not allow a small number
of neurons to produce a sufficient stimulus to fire a single neuron. Several
modifications of the original technique were tried with little success. This
forced us back to basic principles and led to the implementation of a new
technique aimed at introducing greater statistical disuniformity into the
model., It is on the basis of this modified model [10] that the study to be
described here is based.

Crichton has developed in the appendix to his doctoral dissertation [T]
an interesting and fruitful analysis which is especially useful in considering
large systems of neurons and their interactions. This will be referred to

later on in this study.

1.5 PLAN OF RESEARCH

This study represents the first of several stages of the long-range
study and is concerned only with simple, cycle-less nets in which a single
neuron, C, is presented with inputs from two sets, A and B, of neurons. The
behavior of neuron C depends upon the average firing rates of the neurons of
A and B respectively. The essential hypothesis is that the firing of neuron
C will correlate with "patterned" versus random inputs, and this will be seen

to be the case. At the same time, this simple configuration of neurons all
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connected to a single neuron provides an opportunity to study in detail the
basic neuron parameters, i.e., threshold, fatigue, etc.

The second stage, not reported here, will be concerned with a generaliza-
tion of the first obtained by introducing progressively more complicated feed-
back cycles and replacing the single neuron C by a set of neurons. Again the
hypothesis of "patterned" inputs applies and one is led rather naturally to
alternation experiments where, for example, group A will be active, suppressing
activity in B, thus controlling C, then become less active, allowing B to be-
come active, in turn forcing A into inactivity and gaining control of C, etc.

In both cases, the experiments are graduated, going from the simple to
the complex. The theory for each stage is developed separately and its re-
lationship to the general theory indicated. Likewise, the feedback from ex-
periment to theory—an essential component of a work of this sort—is indi-

cated as the occasion arises.
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2. FORMAL DESCRIPTION OF THE MODELS

2.1 INTRODUCTION

In Section 1.3 a general description was given of cortical neurons and
systems of cortical neurons together with the abstraction of properties de-
scribing the neurons of the model. The discussion was informal, going from
certain salient known properties of cortical neurons to their abstracted
counterparts. In this chapter, the structure and operation of the models of
the class being considered are defined formally. The notions of run and
experiment are clarified and, using the network equations, the abstract proto-
type for all experiments is given. Recursive definitions are given for the
various network functions, such as threshold, fatigue, etc. Following this,
in the next section, an attempt is made to clarify the role of the various
functions and to display possible functional forms for them, though no at-
tempt is made at this point to give formal derivations. Finally, a note is
given on the network simulation program, followed by a reference list of

symbols used in this chapter.

2,2 THE NETWORK EQUATIONS

A neural network, of the class of models considered in this study, con-
sists of a set of N elements called neurons with a set of specified directed
connections between these neurons, where "directed" implies, for example,
that neuron A may send a connection to neuron B, but not conversely, i.e.,
there is a connection A-to-B, but not B-to-A. Such a connection is referred
to as the output of A, the input to B. A neuron of the model may have many
inputs, but it always has only one output; however, this output may branch
and go to several neurons, including the source neuron, as inputs or go to the

environment. All that is external to the network itself but which influences,
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and is influenced by, the network, is called the environment. Thus, in general
the environment will supply input to selected neurons of the network and re-
ceive output from selected neurons. Included in this concept of enviromment
would be, for example, reflex mechanisms, a simulated biological environ-

ment, a human observer, etc.

Time is quantized in these models, t = 0, 1, 2, 3, ... . At any time t,
the state of the network, S(t), is determined by the functions (see below)
performed by the model; likewise the state of the environment, E(t), is
determined. From S(t) plus the input to the network at t from the environ-
ment, I(t), is determined the state at time t + 1, S(t + 1). Also, S(t)

determines the output at t to the enviromment, O(t), and we have symbolically
s(t +1) = Fy(s(t), 1(t) ) (t=0,1,2, ...) ,

where Fy i1s the state-transition function for the network. (In general, Fy
is far too complicated to define explicitly, however it is defined implic-
itly by the network equations given below.) Likewise, (E(t + 1), the
state of the enviromment of time t + 1, is determined by E(t) and 0O(t)

and again

E(t +1) = Fgr(E(t), o(t) ) (t =0, 1,2, ...)
Sirce I(t) = g(E(t) ) , for some function g , then
s(t +1) = Fy(s(t), I(t) )

Fyls(t), glFR(E(t), o(t) )] ]

This is a recursive equation for S(t); S(0) and E(O) form the initial con-
ditions for the network and the environment respectively. Given S(0) and
E(0), and a starting signal, the network and enviromment proceed auto-

matically over the time steps t = 0, 1, 2, ... until a stopping condition,
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determined in the enviromment, is reached. Notice that the cycle, network -
enviromment - network, forms a closed feedback loop. The procedure of running
the system <network, environment>, given a S(0) and E(0), from t = O or

t = ty(> 0) down to a tg will be called a run. The sequence of outputs 0(0)
(or 0(tg) ), ++., O(tf) form the behavior of the network. However, the
term"pehavior'will be used in the broader sense of reaction of the network

to the enviromment. The specification of a network-environment pair, the
initial conditions, and a set of hypotheses about the behavior of the network
constitutes an experiment.

Thus, the abstract prototype of all experiments has the following

structure:

(Given: Behavioral Hypotheses, S(0), E(0) )

Start

Compute E(t) =Fg(E(t-1), 0(t-1) )'
iCompute S(t) =Fy(s(t-1), I(t-1) )

t+1->t " 1
Does stopping criterion Yes
hold? ——- 510D
no |

As mentioned, the state-transition function is too complicated to be de-
fined explicitly and must be defined implicitly. This is done as follows:
At any time t, a neuron may fire or not fire. If it fires, it puts a 1 at
its output, if not—a O. The set of neurons that fire at time t, together
with input from the enviromment, will determine the set that fire at t + 1.

The condition for the firing of the ith neuron at time t + 1 is given as a
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recursion relative to the real-valued functions R, F, S, and I which in turn
are defined relative to recursions on ri(t), 2;(t) and kji(t) by the func-
tions V, é, S, and I. Once these functions are given, then the behavior of
the net is determined for all t from the initial conditions. This condition
is

Ti(t): [éi(t +1) = % = [Ri(t) - Fi(t) < ZiJ 531(t)85(t) + I3(t) ]

= J

where 8;(t) = 1 means "neuron i fired at t." Thus, T says that neuron i fired

at t + 1 if and only if the condition

R;(t) + Fi(t) < Z S31()®;(t) + I;(t)
J
holds. Ri(t) and F;(t) are the threshold and fatigue values of neuron i at
time t respectively. Sji(t) is the weight or synapse value of the directed

connection from neuron J to neuron i at time t. For neurons J which do not

send connections to neuron 1, S.. may be considered as equal to zero. Ii(t)

Ji
is input to neuron i at t from the enviromment; it will be referred to as

the pre-stimulus to neuron i. R, F, S, and I are all real numbers; R and

F >0, 8 and I either > or < 0. Negative values of S are called inhibitory
inputs, positive values are called excitatory. They are defined recursively

as follows:

R;(t) = V(r;(t) )

wiere V, the threshold function, is a real-valued function of rj(t); r;(t) is

the recovery-state of neuron i at t defined as follows:
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(o if 81(t) =1

ri(t) = ﬁ r;(t-1) + 1 if 8;(t) =0
“pay 1 85(t) =0 & ry(t-1) = r  \ 1y -1
For ri(t) =0, ... , rg , V(ri(t)) = o. 1y is the absolute refractory period;

i.e., if Si(t) = 1, then neuron i cannot fire again until t + ry + 1. Note

that the function V is the same over all neurons of the net.

Fi(t) = B1y(t) )

where ¢, the fatigue function, is a real-valued function of £;(t); £;(t) is

the fatigue-level of neuron i at t defined as follows:

“25(t-1) + Ao if B(t) = O

Imax 1if 8i(t) =0 & £4(t-1) = fpax
Li(t) =
2;(t-1) - Ay if B4i(t) =1
Amin if 85(t) =1 & 25(t-1) = L4

where A1 > Ap > O+ A7 and Ap are extremely important parameters, determined

from the nominal system firing rate or frequency, fy, by the relation

£y, = b
Al+A2
Sji(t) = mjiS(kji(t) )

where S is the synapse-value function, taking positive, negative, and zero
values, mjq is the multiplicity of the connection j - i, while Kji(t) is
the synapse-level of the connection j -~ i at time t. It is defined as fol-

lows:

1 &8;(t)

1l
I

Asi(t-1) + 1 85(t-1) 1&p,(t) > U(xji(t—l) )

i

Asi(t) = Aga(t-1) -1 &5(t-1)

3 1 & 84(t)

1
Il

0 & p;(t) > D(Aj4(t-1) )
Aji(t-1)  otherwise.
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pi(t) is a number drawn randomly and independently for all i and t from the
open interval (0, 1). U(A) and D(A) are the probabilities of change up and
change down of synapse-levels respectively; notice that U and D in general
vary with n. If A = Ay, then U(A) = O; if A = Apin, then D(A) = 0. The
condition pi(t) > U(kji(t-l) ) says simply that xji(t—l) is incremented by
1 with probability U(kji(t-l) ) at t. As with Ay and Ap, U and D are ex-
tremely important quantities, and relate to the nominal system average fy as
follows:

f, = U (for all A)

U(N) +D(N)

. The law for incrementing or decrementing A\ is the implementation in the
models of Hebb's law of effect for synapse change.

The multiplicity mji of the connection j + i determines the density of
the connection msi = 0o, 1, 2, ... . myi = 0 corresponds to the case of no
connection from j to i. Specification of the set of mji‘s for all i, j es-
sentially determines the connection scheme of the model at hand.

Thus, with these recursive definitions in mind, the flow-chart given
above representing the abstract prototype of all experiments takes on the

following more specific form: (Given: behavioral hypotheses, ri(0), £5(0),

xji(o) for all i, j = 1,...,N.
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t =4
li:l, ee. , N (1) J
v
Compute Ri(t-1) = V(ry(t-1))
Fy(t-1) = $(£4(t-1))
For J : 1, ... , N (1),
sji(t-l) = mJiS(kJi(t-l))
55;51(-1)8;(t-1)
Determine I,(t-1)

v

Is 54(t) =1; i.e.,

yes no
Is Ry(t-1)Fi(t-1) < gsdi(t-l)aj(t-l) + I;(t-1) 2
ry (t) -0 ry(t) + ry(t-1) +1

21(t) + £4(t-1) - Ay

li(t) -+ li(t-l) + A>

v

3 :1, ..., N1

B

v

Aj1(t) + Agq(t-1) + 1 1if Py(t)

g )',ji(t_l)

Ayi(t) » Ay3(t-1) - 1 1f Py(t)

if P(t) + hyq(t-1) 1f PAt)
B
—>- <
yes
L Does stopping criterion holdt? }———P Stop

®
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In this diagram, the notation "A+»B" means that the value of A is replaced by

the value of B; "i =1, ... , N(1)" means that the computation from the oc-
p

currence of this statement down to the point B is first done for i = 1, then

I

repeated for 1 =2, 1 =3, ... , down to i = N. (This is just a "loop" on
the index i.) Pl(t) is the condition for incrementation of kji(t) given

earlier, P,(t) that for decrementati on.

2.5 THE NETWORK FUNCTIONS R, F, AND S

In the preceding section, a formal characterization of the functions R,
F, and S was given, with no attention being paid to their specific analytic
forms. As was mentioned in the Introduction, the study of these forms is a
subgoal of this paper, since prior to this there has not been a rigorous
demonstration for any one of these functions assuming a given functional form.
Since these functions may be specified as one wills, they in fact are param-
eters of the network in the sense that given a specification of these param-

eters a specific model of the class under consideration is determined.

2.3.1 Control of Firing Rate

From the network equations Ti(t) one can see that the function of the
threshold value Vi(t) of a neuron, as modified by the multiplicative factor
Fi(t), is to determine whether or not neuron i of the network fires at t.
If the combined input to the neuron is at least as great as the product of
Ri(t) and Fi(t), then neuron i fires, otherwise it does not. The function V,
which determines R, then controls the firing rate of the neurons of the net.
Immediately after neuron i1 fires, V is infinite and i cannot fire. After a
few time steps (ra——the absolute refractory period), it "recovers" slightly,
that is a very large input stimulus can cause it to fire, after a few more,
less stimulus is required, down to the point where-—if it has not yet fired,

a minimal stimulus is required to cause it to fire. This point is called the
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resting or quiescent value of V. The function é which determines ri(t) modu-
lates the control of V in the sense that if the firing rate of neuron i is
high, then ¢ is large, hence larger stimulus is required to cause i to fire.
If the firing rate is low, the magnitude of ¢ is small (close to 1) and less

stimulus, depending upon the wvalue of V, is required.

2.%3.2 The Threshold Function

From 2.2 one sees that the threshold value, Ri(t), of neuron i is that
value which corresponds to the recovery state r; of neuron i; that is,

r; = the number of time steps since neuron i fired. Each neuron i of the net-
work has associated with it a value of r;, depending on its immediate firing
history. Thus, if 8;(t) = 1 (i.e., neuron i fired at time t), then r;(t) = 0;
if 8;(t-10) =1, and 8;(t-9) = 0, ... , 8;(t-1) =0, 8;(t) = O (i.e., neuron
i fired at t-10 and did not fire again up to and including time t), then

r;(t) = 10. Each time neuron i fires, rj is set to zero. Each time it fails
to fire, it is incremented by 1, i.e., ri(t) = rj(t-1) + 1. r; has a maximum
of 16, further incrementation fails to change it—i.e., 16 = 16 + 1. The
function V(rj(t) ) which gives the value Ri(t) is universal over the net,

that is all neurons i conform to it. Because, at any given time t, these
neurons may have distinct values of r(t), they will usually have distinct
threshold values.

The absolute refractory period or period of infinite threshold, ry, is
taken to be two time steps. That is, if 8i(t) = 1 (neuron i fires at t), then
i cannot fire again until t + 3 (until ry = 3). The total number of time steps
to quiescence, that is, the resting values of threshold, is 16. Thus, if
neuron i fires at t, it is fully recovered (has reached the resting value)

at t + 16.

There are at least three additional important aspects of the threshold

k3



curve. The first is its value at r = 3, the second is its gquiescent value—
i.e., its value for r = 16, and the third is its functional form (i.e., ex-
ponential, guadratic, linear, etc.) especially in the recovery range
r=5,6, ... , 10 A formal derivation of the analytic expression of the
threshold curve will be given later (see Chapter 3), in the order in which
it was discovered. Note that the reciprocal of the recovery, l/r, averaged
in some appropriate fashion, will correspond to the firing-rate of the neuron.
For example, if a neuron fires on the average once every five times, its
"average" recovery is T = 5 and its firing rate = 1/5 = 1/T.

The threshold curve, then, has the following form, where V, = the max-

imum value (for r = 3), Vy = the quiescent value (r = 16):

v
(threshold)

The functional form of this curve, the quantities V and V, as well as the
initial values of r for each neuron of thenet, will be specified for each
experiment. The quantity Vg is important because it defines the least
amount of input stimulus (synapse-value) which may fire the neuron. In the
first experiments, prior to its analytic derivation, the threshold curve

was assumed to be an exponential curve of the form V = ae’"2 + b where a and
b are constants (> 0). The reason for this assumption is two-fold: (a) in

the physiological situation, the cell-body is a membrane which may be as-
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sumed to have electric properties similar to the axonal membrane and (b) the
recordings off of real neurons of the recovery to quiescent values for their
cell potentials look to be of an exponential nature. As we shall see later,
(b) is nearly correct; (a), being as it is a tenuous inference, we might ex-

pect not to be wholly true.

2.%3.3 The Fatigue Function

As already mentioned, the fatigue value F;(t) serves to modulate the
threshold value Ri(t) of neuron i and hence modulates the firing rate of i.
The desired effect of the fatigue function is as follows: given the neuron
in a fully recovered state, that is, the threshold value is near Vg and the
fatigue value is 1, then suppose inputs are presented to the neuron so as to
cause it to fire at a fairly high rate (above the background rate fy). Then,
gradually over a period of 50 to 100 time steps the fatigue value, i.e.,
#(1), of the neuron increases in such a fashion as to cause the firing rate
of the neuron to drop back to f, and keep it there as long as the given in-
puts are present. Suppose next the inputs themselves drop off so that at
the most they would cause the neuron to fire at f,. Then, its fatigue value,
¢(l) decreases slowly back to 1 so as to preserve approximately the average
firing rate of fp. Intense activity of the neuron, that is, firing at near
maximal rates, produces a more abrupt increase in é, whereas sudden drop-
off in activity, that is, firing at very low rates (<fyp) produces a more
abrupt decrease in ¢.

The fatigue value F;(t) of neuron i is determined by the fatigue func-
tion ¢ from the fatigue level £i(t) of neuron i at time t, Fi(t) = 4(£i(t) ).
The function é is universal for all neurons of the net and similar remarks
for the variation in threshold values among the neurons of the netwark apply

to the fatigue values as well. The fatigue value is used, as has been indi-
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cated, as a multiplicative factor of the threshold value for the given neurcn.
$ is a monotonically decreasing function of f with é > 1. The larger the é,
the larger the product R-F. Thus, neuron i may be fully recovered, ri(t) = 16,
and Ry = V(ri(t)) = Vg, but § may be so large that Ri(t) - Fi(t) = Vg - p(25(t))
is much greater than V. . Fatigue is rendered ineffective by setting é(l) =1
for all £. Then Ri(t) - F;(t) always equals Ri(t). Note that the fatigue
value has no effect on the absolute refractory period (é c 0 = ),

The quantity { for a given neuron varies incrementally from O to 32 with
1/32 as the smallest possible increment. The manner of variation is the fol-
lowing: Suppose the neuron has fatigue level [y at time t. Then, if the
neuron fires at r, [y 1s decremented by a quantity Ay, i.e., o > I - Al.
If it does not fire at t, then it is incremented by a quantity Ap, i.e.,

lo > Lo + Ap. This is illustrated below:

( 2)

’(//fneuron fired at t

neuron failed to fire at t

] 1 T
Lo-by Ly toths b

In general, A] > 0, Ap > O, and Ay > Ap. Decrementation below O and incre-
mentation above 32 have no effect, i.e., O - A} = 0, 32 + Ap = 32.

A1 and Ap are extremely important numbers since in terms of them is ex-
pressed a crucial parameter of the net, namely the firing rate at which a
neuron experiences no net change in fatigue level. Thus, if a neuron is
firing at this rate—call it fy—then over an interval of length T time
steps, say, there is no net change in the [ for that neuron and we have--

recalling that f1,T is the number of times a neuron fired in the given inter-
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val and (1 - fp)T the number of non-firings--

AMTpT - Mp(l - fR)T = O .
Solving for I gives
£, = —2,
A1+ A2

This quantity, fy, already mentioned, is called the background firing rate or
the nominal system average. It will be treated in detail later on. Note
that given fj), one can determine A; and Ap (up to a constant multiple k > 0
which may be chosen as 1) and, conversely, given Ay and Ap, Ty is uniquely
determined. f1 plays an important role in Crichton's theory [71.

The functional form of the fatigue curve, the numbers Ay and Ap (or,
fp), as well as the initial value of { for each neuron of the net, will be
specified for each experiment. The form of the curve is clearly of the
greatest importance since it, together with the numbers A; and Ap, determine
the recovery rate of a neuron as well as its fatiguing rate. The desired
properties of this curve have been outlined above. The rationalefor this
will be given in the next chapter. TFor the early experiments, an exponential
curve of the form é = ae-bl + ¢ was used. However, as will be discussed
in detail, in the order of its discovery, this form will not work and, in

fact, é must be a double-valued, hysteresis function.

2.%.4 The Synapse Value Function

Suppose a neuron j sends one directed connection to another neuron i.
As we have seen (1.3.3), to each such directed connection at time t is assoc-
iated a positive number, the synapse level, Aji(t). Just as with the re-
covery states and fatigue levels, A is used to determine a value, the synapse

value, S, by means of a functional relationship. A has a range from O to 15.
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Tt is incremented according to the "law of effect" as follows: suppose the
connection j > i has the synapse level A. Then, if j fired at t - 1 and 1
fired at t, Ao > Ng + 1, with probability U(%O). If j fired at t - 1 and 1
did not fire at t, then Ay > Ay - 1, with probability D(Ng) . Otherwise,

Ny * Mp—1.e., no change. If Ay =0, no further decrementation is allowed;
if Ao = 15, no further incrementation is allowed. The statement

"No * AN + 1 (Ap - 1) with probability U(rg) (D(Ap))" means that if Ay is to
be increased (decreased) —depending upon whether j fired at t - 1 and i at t,
etc.—then the incrementation takes place with probability U(rg) (D(1g)). 1In
general, U and D are assumed to be uniform over all values of A, i.e., for
A= AL, Ur) = UML), D(Ag) = D(Ay), etc., with the exception that U(15) = O
and D(0) = O. Note that the incrementations with probability U(\y)or decrementa-
tions with probability D(AO) form independent trials, e.g., if the synapse
level from J to i is Ay and that from k to [ also equals Ay, both j and k
fired at t - 1, and both i and { fired at t (hence Nji end Ny are both cand-
idates for incrementation), then the probability U()\y) is consulted inde-
pently in each case.

The numbers U and D are of great importance, especially in light of the
theory developed by Crichton mentioned above. Like the numbers A and Ap of
the preceding section, U and D are related to the nominal system average, fy,.
The reason is quite simple: Assume that the rate of change up of a synapse
is proportional to U, say = kU, likewise that the amount of change down is
proportional to D, say = kD. 1} is again defined as that firing rate for
which no net change in )\ between A and B will occur, assuming for the moment
that neurons A and B are firing randomly and independently at the rate fb.

If this is the case, then f% will represent the probability that the firing

of Aat t - 1 is followed by the firing of B at t ('"success"), likewise
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fb(l - fb) is the probability that a firing of A at t - 1 is followed by a
non-firing of B at t ("failure"), f%T is the number of "successes" over a

time interval of length T, fp(l - fp)T the number of "failures." kabgT is
the net change up in the interval of length T; kDfp(l - fy)T the net change

down. By assumption, the difference of these is zero and

Ufpy® = D(1 - fp)fy

or

For the initial experiments in the sequel, ad hoc values of U and D were
used; more detailed discussion will be postponed to a later section correspond-
ing to the time at which the absolutely crucial character of these parameters
was made evident.

Recall that the firing or non-firing of a neuron is determined by a com-
parison of the sum of the synapse values on the active inputs (that is, those
connections coming from neurons which fired the preceding time step) with the
product R.F (which is infinite if the neuron has fired at one of the previous
two time steps). If this sum is less than R+F the neuron does not fire,
otherwise it does. No restriction of the synapse values has been placed.
However, synapse values for small A's are assumed to be negative, large A's—
positive. The negative synapse values for active input lines correspond to
inhibitory inputs to the neuron. S is assumed to be a monotonic increasing

function of A, e.g.,

S(A)
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It turns out, Jjust as for the fatigue function, that this type of function is

inadequate and that S must also be given as a hysteresis function.

2.4 NOTE ON THE SIMULATION PROGRAM

A diagram representing the operation of the network, given an environ-
ment, the initial conditions, and the behavioral hypothesis was given earlier.
A program was written for the IBM 7090 computer which simulates the operations
indicated in that diagram. This program consists of four basic parts: (1)
the lists which describe the state of the net at each time step. The lists
are a block of reference information for (2) below and in turn consist of two
parts: (a) a permanent part which is never changed in the course of a run,

and (b) a volatile part which may change; (2) the net program which computes

at each time step the various functions required by the model, referring to
the lists for parameter values and making appropriate changes to the lists;

(3) the executive and environment routine, a supervisory program which per-

forms two functions: (a) it monitors pertinent net parameters, running time
of the program, etc., and handles the appropriate output editing and (b)
simulates the environment of the model—i.e., computes input and output func-

tions, making any necessary changes to lists; (4) input-output editing and

other specilal-purpose routines, usually slaves of the executive routine.

The net program seldom ever will be varied: the executive and environ-
ment routines will vary from experiment to experiment and often from run to
run, Parameters in the lists will vary from run to run in general, while
Trose lists particular to a given experiment will vary from experiment to

ceriment. It is the lists that determine the structure of a given net:
i.e., neuron inter-connections, density of connections, etc.
Note that the executive routine contains provisions for experimenter in-

tervention in an experimental run. Thus, the experimenter, while watching a
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real-time display of selected functions of the network, may at any time change
the display, modify parameters, store the entire state of the system for

future back-up purposes, etc.

Diagrams giving the overall structure of the program and the flow of

control are given below:

Structure of Program

Slave
Routines

Executive and Environment
Routines

Flow of Control
Start

. . .
Executive and Enviromment |eesesceis Slave

Routines F;:: Routines

i
v

Net Program
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Symbols Used in Section 2.2

s(t) state of the network at time t

E(t) state of the environment at time t

I(t) input to the network from the enviromment at time t

o(t) output from the network to the environment at time t
v, FE state transition function of the network and the

environment, respectively

5:(t) =1 the statement "neuron i fired at time t"
T5(t) the condition for &;(t) =1
R;(t) threshold-value of neuron i at time t
Fi(t) fatigue-value of neuron i at time t
Sji(t) synapse-value of the connection from neuron j to

neuron i at time t

I;(t) input to neuron i at time t from the environment
ri(t) recovery state of neuron i at time t

£5(t) fatigue-level of neuron i at time t
hji(t) synapse-level of the connection from neuron j to

neuron 1 at time t
V(ri(t)) threshold function, gives Ri(t) as a function of

ri(t), Ri(t) = V(ri(t))

p(L4(t)) fatigue function, gives Fi(t) as a function of
2;(t), Fi(t) = A(25(t))
S(kji(t)) synapse-value function, gives Sji(t) as a function

of Aji(t), 53i(t) = s(xrji(t))

p;(t) random number associated with neuron i at time t
Ay fatigue-level change if &4(t) = 1
Ao fatigue-level change if §;(t) = O
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i) nominal system frequency or average background

frequency
U(in(t)) probability of change up for synapse-level Aji(t)
D(Kji(t)) probability of change down for synapse-level xji(t)
my3 multiplicity of the connection from neuron j to neuron 1

Symbols Used in the Flow-Diagram

, N(1) "loop" to N times, starting at i = 1, incrementing i
by 1 each time; i.e., first 1 = 1, then i =2, 3,...

)

etec. up to 1 =N

A~>B replace the value of A by the value of B
Py (t) the condition for incrementing Aji(t)
Ps(t) the condition for decrementing hji(t)

53



3. CORRELATION EXPERIMENTS, CYCLE-LESS CASE

5.1 INTRODUCTION

In the implementation of Hebb's theory, several questions may be isolated
in an attempt to elucidate the nature of the cell-assembly. Perhaps the first
of these concerns identification of cell-assemblies, that is, in terms of the
given models, what are the criteria for cell-assembly-ness? This question is
aimed at a static, structural condition and may be paraphrased as follows:
suppose a model is given in which it is suspected that cell-assemblies have
formed. How, then, does one identify them? The second gquestion (which,
causally speaking, should be first) is concerned with the formation of cell-
assemblies: i.e., in terms of the given models, how does such a structure
(as yields a cell-assembly) come into existence? This question is aimed at
dynamic, structural changes and goes hand-in-hand with a third: what are the
stability conditions, in the given models, for cell-assemblies? To make this
last question more meaningful, the informal description of cell-assembly given
in 1.2 is augmented as follows: One may regard a cell-assembly as a union of
a large number of reverberatory circuits (in the Lorente de NG sense of the
term), any several of which may be active for a very brief period of time and
interrelated so that while any one of the circuits may be rapidly extinguished
(within l/lOOth of a second in the physiological situation), yet for a much
greater period of time (several seconds or longer) the structure as a whole
iz active in the sense that at least one of the component circuits is active.
Taat 1s, within a given cell-assembly there are a number of alternate path-
ways which perform the same function. Therefore, the stability question for
such a structure is absolutely crucial; yet, this character of the cell-

assembly accounts for the fact that the loss or damage of part of a fully-
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developed cell-assembly need not impair its overall function, thus for the
seemingly small effect in some cases of brain damage upon learning ability

and memory. (This is part of Hebb's dual trace memory mechanism and accom-
panies his postulate of synapse growth since the reverberatory activity would
assist to retain memory temporarily while at the same time it would facilitate
the long-run growth changes necessary for permanent memory (see [3], pages
60-78, in particular, p. 62).

Thus the cell-assembly gets us away from a strict dependence (in the
cortex) upon individual neurons. Yet for its growth and development the cell-
assembly depends upon the law of effect (Hebb's neurophysiological postulate)
and upon the availability of neurons which can be "recruited" to the assembly
when they act in synchronization with it and likewise which can be dropped out
of the assembly (fractionation) when they fall into disuse.

The ability or non-ability of the models to allow recruitment of neurons
to an assembly or fractionation of neurons away from it, then poses a fourth
question which is taken as the starting point of this study: do the neurons
of the models have the ability to be recruited into an assembly when pre-
sented with the same input patterns and, dually, to fall away through disuse?
This question leads, as shall be shown in the next section, to simple net-
works which are extremely useful for studying the behavior of single neurons
and small groups of neurons.

Crichton, in the appendix to his thesis [7] has discussed the stability
of cell-assembly-like structures, called by him "semi-autonomous subsystems,"

and some results of his analysis will be referred to later on.

3.2 CORRELATION
The behavior of a neuron of the model depends upon its input history

(which includes synapse value changes on the input lines) and upon its in-
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ternal state changes (threshold, fatigue). To determine the response of a
given neuron to a particular input pattern, one has to take into consideration
the effect of this pattern upon the internal state changes of the neuron and
the relationship of this pattern to any other inputs the neuron may have.
Basically, therefore, the behavior of a neuron may be regarded as being deter-
mined by some function over the totality of its inputs.

Consider now a situation in which recruitment might occur. ILet C be an
uncommitted neuron of the system and suppose it is presented with a patterned
input from a source A of neurons. (A might be, for example, a set of neurons
of area 17, reflecting a direct sensory input from the retina.) Iump all the
other inputs to C into a group B. Now it might be that A directly affects a
system of neurons D, which I will assume form part of a cell-assembly A. The
synapse values from the neurons of A to C will be, by assumption, low ini-

tially.

Likewise, the synapse values from A to D are assumed to be high. If, as a re-
sult of repeated application of the input from A, the synapse values from A
tc C rise and become high, then the neuron C is a good candidate for recruit-
ment into the cell-assembly A. Whether it is recruited or not depends, of
course, upon its relationship to other neurons of the system. It may merely
continue to operate in parallel to the assembly uk- In fact C could become

part of a system of neurons which would tend to suppress, via inhibitory con-
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nections, an antagonistic assembly\B . In any case, therefore, the question
of when C would "correlate" with A in its firing arises. Here "correlate"
means that the synapse values of A to C are high and that C tends to follow
the same firing pattern as do the neurons of A. Therefore, whether C cor-
relates with A or not depends critically upon the relationship between the

firing patterns of A and B.

3.3 NETWORK CONFIGURATIONS FOR THE FIRST STAGE

In this section, first a general overview of the type of experiments
which are to be carried out in this chapter is given, then second, a specifica-
tion of the networks, consonant with the abstract development of the network

equations, 1is carried out.

3.3.1L Overview
The general configuration of neurons that is to serve as the basis for

the first part of this study is the following:

A and B are sets of neuron, C is a single neuron. Each neuron of A and B
sends a connection to C. There are no other connections between neurons of A
and B and C—i.e., no cycles., The neurons of A and B are assumed to be driven
from stimulus sources A' and B'. From the patterns on the input lines A to C
and B to C and the initial states of C, the output pattern Og may be deter-
mined.

The sizes of the sets A and B, the particular patterns which they supply
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to C, the initial states, the net parameters—all these are to be specified
by the particular experiment at hand. Thus, A and B may consist of a single
neuron each or A may have N neurons and B have none, etc. One can readily
see then how it is possible to study the behavior of C as a function of a
wide range of possible inputs and at the same time study the response of C
"in isolation," as it were, given different settings of the basic net pa-
rameters.
A model situation with which we will be concerned in this chapter is

that in which group A essentially provides "back-ground noise" to C, while
group B provides patterned inputs of various sorts. One example of this is

that where the neurons of B fire within a periodic envelope as follows:

Input
Stimulus

4 4
of | \ t

neurons of neurons of
B firing B quiescent

Questions such as what are the lengths of the "on" and the "off" periods in
relation to neuron parameters, what are suitable firing rates of the neurons
of B in the "on" and the "off" periods, etc., immediately arise and become
of the greatest importance. The next step would be to have both A and B
providing similar patterns such as this but out of phase, then to ask how C

depends upon the phase difference, etc.

3.5.2 Specification of the Networks for the First Stage
The models of interest consist of N = 2M + 1 neurons (where N is the
size of the network). The N neurons are partitioned into two groups of M

neurons each and one group of one neuron. The former two groups will be
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designated by A and B respectively, the single neuron by C. Each neuron of A
and B respectively sends exactly one directed connection to neuron C. C,
therefore, has 2M inputs. The output of C goes to the enviromment. The en-

vironment provides the neurons of A and B with inputs of the following type:

Letting &y, ... , oy be the neurons of A and 4y , .- , Qo be those of B,
then to each @4 is associated a probabilistic stimulus Xdi(t). At time t, in-
dependently of Xdi(t+k) for all k = #1, #2, ... , and with probability fai,

Xai(t) = 1; with probability 1 - fy; , xai(t) = 0. If Xy;(t) = O, neuron oy
is not effected. If Xdi(t) = 1, a; is provided with an input stimulus (Lai(t)
in the network equations Eai(t) ) which is always greater than Rai(t)-Fdi(t)
unless, of course, @; is absolutely refractory (i.e., if &g;(t-1) = 1vdqy;(t-2)
=1). @4 has no other inputs. Notice that the probability fai approximates
the actual firing rate of @4, that is, fop = T 1is the expected number of
firings of 4 over a time interval of length T. Specification of the prob-
abilistic vector Xdi(t); i=1, ... , 2M, then determines the "vector" of
frequencies fai of the neurons ; which comprise the total input set to neuron
C. In each particular experiment, the vector Xdi(t) will be specified in
complete detail.

The connection-scheme, complete with the input vector Xai(t), has the

following form:
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The distinction between A and B is only for the purpose of allowing two sub-
vectors of xai(t), i=1, ..., 2M to be applied, i.e., Xg;(t), ..., xaM(t)
and X3M+l(t), cee Xd?M(t)' (Note: This network is obtained by specifying
the maic's, i=1, ..., 2M, to be 1's and all others to be zero out of the

set of N2 + N possible interconnections within the given set of N neurons.)

3.3.3 DNetwork Functions, Initial Conditions, Environment

The threshold, fatigue, and synapse-value functions together with the
parameters associated with them, such as Ay, Ap, U and D, etc., will be
specified separately in each of the following experiments.

The initial conditions comprise specification of the following values:

Lo Aye(0), 1=1, ..., 2M

2. Ty (0), i=1, ... , 24 and rg(0)
3. Aoy (0), 1=1, ... , 24 and £4(0)
ho Ig; (0, 1=1, ..., 2M

The in(o)'s are assumed to be all equal and constant over all time, and so
large that except when the o3 are absolutely refractory, they always cause Qi
to fire when Xp; = 1. Thus, the initial values ry;(0) and Zai(O) are not so
important. Yet the initial values of rp and £ clearly are important for,
for example, if £,(0) is at the minimum, then neuron C starts out fully
fatigued and may fail to respond to initial inputs for some period; whereas
if it is fully rested, that is IC(O) is near the maximum, then C will most
likely respond to the initial inputs.

The function of the environment in these experiments is, at each time
step, to operate the probabilistic vector Xdi(t), i=1, ..., 2M and to ob-

serve the output of neuron C.

3.4 THREE-NEURON EXPERIMENTS

In the first series of experiments the schema of %.3%.2 was specialized
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to N = 3 and M = 1, that is, three neurons, two of which, A and B, send one
connection each to the third, C. The probabilistic vector Xai(t) reduces to
(Xp(t), Xp(t) ) and the corresponding probabilities oy become f, and fy:
XA(t) ——————-——§o
0—>
XB(t)————————~—{>O C
B
The general hypothesis for this series, stated formally, is the following:
HL. Given the three-neuron configuration, then for some appropriate selec-
tions for the network functions V, é, and S and appropriate initial conditions,

neuron C will tend to correlate with neuron B in the sense that as t becomes

sufficiently large,

Apelt) > Ap{t)  end

8p(t) = 1= 8t +1) = 1
8p(t) = 0=t + k) = O
for some range of the rates f, and fy with fp < fj. (For "—)" read "is

followed by".)

This hypothesis merely says that neuron B eventually gains control over
neuron C and that neuron A loses control over C. The motivation for this
hypothesis is that the slow input, neuron B, may be regarded as the informa-
tion carrying line, while the fast one might be regarded as a noisy line.
One then would expect the neuron to correlate with the information-bearing
line and not with the noisy one, at least under suitable conditions. For
example, over the rapid staccatto of a pneumatic hammer operating out-of-

doors one might well hear a periodic knocking on the door.

3.4.1 Experiment 1

In this experiment, neurons A and B were presented with a constant stim-
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ulus IA = I, with probabilities f, and fg respectively, where according to

B
hypothesis, fp > fpe The experiment was run for a variety of settings of
these probabilities. The threshold and synapse-value functions, V(r) and S(A),
were chosen as indicated in Figures 1 and 2 while the fatigue function was
taken to be identically 1, é(l) = 1. Notice that the range of the threshold
curve 1s from Vm = 100 to Vq = 1 and that its form is exponential from r = 3

to r = 11 and is constant, equal to one, from r = 11 to r = 16; likewise the

range of S(A\) is from -15 for A

Apin = O to +15 for A = Mpgy = 15 and S(A)
is a linear function with slope 2. The synapse-level probabilities were set
to 0.1, that is U(A) = D(A) = 0.1 for all A except, of course, U(15) = 0 =
D(0). The input stimuli I,(t) and Ip(t) were both set to the constant value
of 100; this is always sufficient to causé A or B to fire whenever XA(t) or
Xg(t) = 1, unless A or B is absolutely refractory. The initial conditions
for each run were Ap{0) = 15 = Ap{0) and rp(0) = rp(0) = rg(0) = 16.

The results of fifteen separate runs over a range of probabilities fp
and fp are shown in Table 1. In this table, the following quantities are
given for each run: (1) the values of fj and fp, (2) the length of the run
(total number of time steps used in the run), (3) the terminal values of AAC
and App, and (4) the number of times neuron i fired, Nj, for i = A, B, C.
Detailed histories of the synapse-level changes for two typical runs are

shown in Figure 3.

3.4.2 Analysis and Comment on Experiment 1

In this experiment, the choices for the threshold and synapse-value
curves were made more or less arbitrarily. That is, the basis for these
choices was not formal, rather was intuitive. Thus, the threshold curve was
taken to be exponential over the range r = 3 to r = 11 and flat otherwise.

The choice of the form of the curve was based on physiological grounds as
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mentioned earlier, the choice for the particular values of the curve was based
on the consideration that the main range of operation of neuron C, as driven
by A or B, lie in the range r = 6 to r = 10 (approximately) —that is, in the
mid-range of recovery-values. The flat portion was to allow C to be driven
with minimum stimulus and hopefully encourage development of Apo. Likewise,
the choice of S(A) was ad hoc, using a curve balanced between positive and
negative values "for a starter." 1In order to accentuate the effects of the
threshold and synapse-value curves, however, the fatigue function was set to
the identity. The values of U and D were chosen to attenuate the growth or
decay of Apo and Ape 8nd again were starting values.

A glance at the terminal values of Ao and Ape will suffice to show that
the results of this experiment are inconclusive. Sometimes C correlates with
B (runs 1, 2, 9, 11, 1L), sometimes with A (runs 3-8), sometimes with neither
(runs 12 and 15) with no apparent reason. Moreover, it is not clear that in
this case there should be a preference for C to correlate with A or B, since
neither of the inputs is structured in any way—thus C is being asked to
discriminate between two completely random input sequences which differ only
in their relative frequencies. Therefore, this experiment was abandoned for
the case in which neuron A continues to present C with a random input se-
quence, but B now presents C with a periodic input, thus an input signal with
structure to which C should respond selectively.

For reasons to be mentioned shortly, Experiment 1 would not be expected
to be successful in any case. The motivation for including it here is mainly
historical as well as to illustrate some of the specific problems that arise
in implementing models of the kind considered in this paper. One interesting
phenomenon should be noted, however. That is, even with the retarding prob-
ability D = 0.1, the synapse-levels drop rather rapidly. This suggests the
need for a positive bias in the U(A)'s and D(\)'s.
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3.4.3 Experiment 2

In this experiment, neuron A was presented with a constant stimulus Ip
with probability f) whereas neuron B was presented with a periodically inter-
rupted stimulus Ip which equals Ip on a set of intervals t = 2k{ to
t =(2k +1)¢ for k =0, 1, 2, ... where { is the length of the interval, and
equals O on the complementary intervals. In the intervals in which I = Ip,
Iz 1s again presented with probability fp = fp. The intervals in which
Ip = Ip are called the "on-periods" for B, those in which Ip = O are called

the "off-periods."

As in Experiment 1, the threshold curve was taken as in Figure 1, with slight
variation in one case, while again é(l) = 1. However, variation was introduced
in the choice of the synapse-value curve and the probabilities U(A) and D(A\).

A variety of runs were performed for various settings of the functions V(r)

and S(A\) and values of fA and £. The runs performed are discussed separately
below while their results are presented in Table 2. In this table, the fol-
lowing quentities are displayed for each run: (1) the values of { and fy,

(2) the length of the run, (3) the terminal values of Apc @nd Agg, and (k)

the number of times neuron i fired, i = A, B, C. Detailed histories of the

synapse-level changes for several typical runs are shown in Figure 5.

Run 1. The functions V(r) and S(A) were taken as in Experiment 1 (Figures
1 and 2). Ip = 140 (= Ig in the on-periods). The initial conditions were

Mc(0) = aAga(0) =8, r,(0) = rg(0) = ro(0) = 16.
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Runsg 1b-1f involve the same network functions and parameters as Run 1 and the

same period, but the probability I, is varied.

Runs 2a, 2b. Functions V(r) and S(A) as in Figures 1 and 2, except incre-
mented by 2 throughout; e.g., if Vp(r) is the function of Figure 1, then the
threshold function used in Run 2 is Vb(r) + 2, ete. I, = 180 (= Ig in the
on-periods). U()) and D()A) as in Table 3. Initial conditions as in Run 1.
The run was performed twice: that is, done once, then with initial condi-
tions restored, repeated. Since the random-number generating procedure used
to determine the vectors (Xp(t), Xp(t) ) was not re-initialized, the results

of repeated runs like this need not be identical.

Runs 3a, 36 through Runs 6a, 6b. Exactly as Rurs2a, 2b except that the func-

tions V(r) and S(A) are incremented by two in going from Run 2 to Run 3, again
from Run 3 to Run 4, etc. Thus, the threshold function for Run 6 is Vo(r) + 10

where Vo(r) is the V(r) in Figure 1.

Runs 7a, 7b through lla, 1lb. For these runs V(r) was taken as 100 times the

function of Figure 1, that V(r) = 100 Vp(r). Ip was taken as 10,000. Again,
U(A) and D(A) are those of Table 3. For Run 7, the synapse-value curve was
taken as S(A) = 1500 + 8/9 . (s (N - 1500) where s(')(x) = 100 Sp(N), that is
100 times the curve of Figure 2. That for Run 8 was taken as

s(x) = 1500 + §/10 (8§ (M) - 1500), ... , for Run 1l as s(n) = 1500 + 8/13
(85(A) = 1500). 84(A) = 100 So(A), Sp(N) is the curve of Figure 2. These

curves are given in Figure 4.

3,4.4 Analysis and Comments on Experiment 2
As the results of Runs la, 1b, ... , le, 1f show, given the network func-
tions of Experiment 1, no clear pattern of success occurs; e.g., Run la is

bad, both Ap~ and Apg are low, yet Run lc is good, Apg >> Ao It was sus-

65



pected that a positive bias was necessary in the synapse-value function and
in the probabilities U(A) and D(A); this prompted the values for U and D given
in Table 3 and the schemes for biasing S(A) as used in Runs 2-5 and 7-11
(see in particular, Figure 4). Again, the selections of these particular
values were largely ad hoc. As no clear picture of success emerged from this
procedure, it became clear that the experimental hypothesis could not pos-
sibly hold in these models for a three-neuron network: For B to gain control
over C, with both Spp and Spc set initially equal to moderate values, B must
fire initially with some regularity in unison with A in order to cause C to
fire (at the same rate as B); however, this is an unlikely event since the
probability of joint firing of A and B is fp . fp, which in Run 1 would be
1/16 in B's on period, O in the off-period.

This undesirable situation is remedied by replacing the single neurons
A and B by groups of neurons A and B so that the probability of firing for
any neuron of B is much greater than f, . fp, although f) and fp are still

the rates of the individual neurons of A and B
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Vg, =100

SOf—

40—

30—

20—

Figure 1. Threshold Curve for First Series. V, = 100, V, = 1. Form of
curve is exponential from r = 3 to r = 11, linear and constant for
r =11 tor = 16,
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U=.1=D

Figure 2. Synapse Value Curve for First Series. Min = 0y Apax = 15,
Spin = 15, Spgx = +15. Form of curve: linear with slope 2.
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RESUITS OF 15 RUNS FOR EXPERIMENT 1

TABIE 1

Run Length of Run MAC ARC
No.  fa B (timsteps) (final) (final)  Na NB NC
1 1/h 1/6 10,000 0 15 1658 1256 698
2 1/6 1/9 10,000 0 15 1208 891 588
3 1/10 1/15 10,000 15 0 790 559 591
L 1/12  1/18 10,000 15 0 698 L7k 539
5 1/16  1/24 10,000 15 0 543 365  LLv
6 1/7 1/9 10,000 9 0 1084 891 707
7 1/8 1/10 10,000 15 0 977 809 682
8 1/9 1/11 10,000 15 0 891 725 623
9 1/10  1/12 10,000 0 15 790 666 562
10 1/11 1/13 10,000 10 15 L3 631 k5
11 1/6  1/9 5,000 o 15 635 Lhh 296
12 1/7 1/10 5,000 0 0 563 452 1L
13 1/8 1/11 5,000 0 1L 513 Los 255
1L 1/9 1/12 5,000 0 11 437 351 257
15 1/10  1/13 5,000 12 1L 420 321 Loo
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Run No. 5 Run No. 12

Time Step No. NAC NBC Time Step No. NAC ABC
1 9 9 1 9 9
99 10 9 9 9 8
331 11 9 30 8 8
671 11 8 35 8 7
678 11 7 Ll 8 6
69L 11 6 o2k 7 6
882 12 6 227 6 6
91k 11 6 237 6 5
968 12 6 2L8 5 5
1020 13 6 253 5 L
1181 13 5 270 I L
1196 1L 5 283 3 L
1581 15 5 326 3 3
145L 15 L 327 2 3
1493 15 3 390 1 3
1506 15 2 398 0 3
1589 15 1 L03 0 2
1645 14 1 63L 0 1
1749 1L 0 899 0 0
1805 15 0
2538 14 0
3256 15 0
5959 1L 0
5989 15 0
781L 1k 0
8583 15 0

Figure 3. Histories of Synapse-Level Change for Runs 5 and 12 of
Experiment 1. The synapse-levels are shown only when one of the two
changes; thus for t = 1 through t = 98, AAC = 9, ABC = 9, then at

t = 99, Mo becomes 10, Apc remains 9, etc.
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RESULTS OF 11 RUNS FOR EXPERIMENT 2

TABIE 2

Run NAC ABC
No. fa 1 Length of Run (final) (final) Np Np Ng
la  1/h kO 2,000 0 0 324 178 2
2a 1/6 60 3,000 2 1 373 192 2
2b 1/6 60 3,000 1 2 377 189 16
Za 1/6 60 3,000 13 1 386 196 202
3b 1/6 60 3,000 14 1 Lol 206 196
La 1/6 60 3,000 12 13 386 192 227
Lb 1/6 60 3,000 13 0 400 7 20l
5a 1/6 60 3,000 0 12 360 194 Th
5b 1/6 60 3,000 12 2 380 180 163
6a 1/6 60 3,000 1 3 377 194 133
6b 1/6 60 3,000 1 2 345 200 9
Ta 1/6 60 3,000 2 1 373 192 2
To 1/6 60 3,000 1 2 377 189 19
Te 1/6 60 3,000 13 2 386 196 2l2
8a 1/6 60 3,000 13 3 378 189 2L0
8o 1/6 60 3,000 1k 2 396 187 251
8c 1/6 60 3,000 11 15 388 186 263
9a 1/6 60 3,000 13 L 352 178 22l
9b 1/6 60 3,000 2 15 351 172 141
9c 1/6 60 3,000 2 10 357 181 107
10a 1/6 60 3,000 15 8 397 182 263
10b 1/6 60 3,000 2 15 358 192 172
10c 1/6 60 3,000 15 2 39L 190 248
1la 1/6 60 3,000 1 13 342 185 26k
11b 1/6 60 3,000 11 11 351 184 258
1le 1/6 60 3,000 12 5 324 192 24O
1b 1/4 Lo 2,000 2 1 324 178 2
lc 1/5 LO 2,000 2 11 282 145 8L
14 1/6 Lo 2,000 2 15 el 129 86
le 1/7 Lo 2,000 1 2 240 112 L0
1f 1/8 L0 2,000 L 13 207 102 80
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TABIE %

N D(N) U(N)
0 0 .2
1 .005 .2
2 .01 .2
3 .02 .2
L 0L .2
5 .06 .2
6 .08 .2
7 1 .2
8 .1 .2
9 1 .18
10 1 .16
11 1 L1k
12 1 .12
13 1 1
14 .1 .08
15 1 0
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S(A) x 100

Figure

L.,

Synapse-Level Curves for Runs 7-11 for Experiment 2,
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Run 7a Run 5a Run 5b

t* MC ABC ¥ MAC MBC ¥ MAC MBC
1 8 8 1 8 8 1 8 8
12 8 9 4 8 9 Ll 9 8
15 8 8 63 7 9 10L 10 8
19 7 8 169 6 9 11} 11 8
2 7 7 257 5 9 141 11 9
A 6 7 256 L 9 oc 12 9
255 6 6 266 3 9 26l 12 10
335 5 6 280 3 10 337 11 10
583 5 5 377 3 11 379 11 9
541 N 5 403% 3 10 385 11 10
837 3 5 514 3 11 Lo 10 10
852 3 L 627 3 12 579 9 10
979 3 3 6L5 3 11 587 10 10
1452 3 2 653 2 11 598 11 10
1667 2 2 720 1 11 606 11 9
2079 1 1 749 1 10 yeun 11 8
767 1 11 55 11 7

8oL 1 12 T7h 12 7

1099 1 11 8ok 11 7

1233 1 13 813 10 7

1450 1 12 827 11 7

1490 0 12 839 12 7

1565 0 11 881 11 7

1572 0 12 93U 12 7

1603 0 11 962 12 6

1608 0 12 1202 11 6

1620 0 11 1307 12 6

1730 0 10 1312 11 6

1825 0 9 1333 11 5

18L42 o] 8 1343 11 i

1962 o} 9 1443 11 3

1981 0 10 1l 10 3

2067 0 11 1588 10 2

2207 0 12 1655 11 2

2292 0 11 1675 12 2

2303 0 12 1686 11 2

2530 0 11 1691 12 z

2569 0 12 1753 11 2

2783 0 11 1858 12 c

2788 o} 12 1877 11 2

1898 12 2

1927 11 A

1952 12 2

2029 11 2

2076 12 2

2135 11 z

2212 12 2

2282 11 2

2360 12 2

2LL3 11 2

2583 12 2

2680 11 2

2832 12 2

2909 11 po

2925 12 2

2960 11 2

2961 12 2

*t indicates the time step at which the change took place.
Figure 5. Histories of Synapse-Level Changes for Runs Ta, 5a, and 5b.
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Figure 6., Threshold Curves for Experiment 3, Runs 1-8.
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1 2 3 L 5 6 7 8
Mc 2 0 0 0 0 0 0 0
M 0 1 0 1 0 0 1 0
Maxc 1 0 2 1 6 0 0 1
My 1 12 0 0 0 0 1 0
xBlC 15 15 15 15 15 14 15 15
ABEC 15 15 15 15 15 15 1k 15
MBC 15 15 15 1L 1L 15 15 1k
xBuC 15 15 15 14 15 15 15 15
Nay 335 335 560 331 332 533 330 Sl
Npo 510 325 532 335 533 336 520 LT
NA5 3kl 345 529 Se2 539 Skl 535 521
Np), 55T 527 522 552 33k 515 3h7 519
Np. 3hL 326 530 519 532 539 330 517
Ng 360 338 k2 250 234 228 226 220

Figure 7. Terminal Synapse-Levels, etc. for Runs 1-8 of Experiment

3,

Run j used threshold curve J of Figure 5.
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1 2 3 L 5 6 7 8
MgC 0 0 1k 0 0 0 0 0
e 0 0 0 0 0 0 0 0
”A5C 0 0 0 0 0 0 1k 0
M, 0 0 0 0 L 0 0 0
Sy 9 6 5 3 0 o 2 13
MBSO 0 12 3 1 1 11 0 1
MBC 1k 9 2 6 1k 0 13 3
thc 0 0 0 L4 2 L 0 7
Npy ShhL 329 335 343 335 340 317 3357
Na, sh7 330 345 541 349 313 533 329
Mas 357 337 332 336 345 313 32k 338
N’ALL 359 326 321 338 3Lh 338 322 322
NBl 163 183 172 170 157 174 182 177
Np, 167 160 175 175 172 169 186 153
NBB 177 172 170 168 159 170 164 162
Np), 178 164 167 163 164 177 168 172
No 123 166 170 120 158 11L 168 109

Figure 8. Terminal Synapse-Levels, etc. for Runs 1-8, Experiment L.
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TABLE 4

SYNAPSE-IEVEL PROBABILITIES FOR RUNS 9-16, EXPERIMENT L

Ratio D/U
Run U(N) D(N) (Approx()
9 .2 1 1/2
10 232 .09221 1/3
11 .2701 .07406 1/L
12 .3138 .06373 1/5
13 3647 .05485 1/7
1k JhozT .0l720 1/9
15 .hoal .0L062 1/12
16 .5721 .03476 1/16
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Figure 9. Threshold Curve for Runs 9-16, Experiment 1.
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Run No.

9 10 11 12 13 1L 15 16
Mqc 0 0 0 0 15 15 1k 15
MoC 0 0 0 0 9 1k 15 15
MsC 0 0 0 0 15 1k 1k 15
M), C 3 0 0 0 15 15 15 10
MB1C 0 0 5 15 9 15 15 13
MBoC 0 0 0 12 13 1k 15 15
ABBC 0 0 0 6 15 15 15 11
xBuC 0 0 15 8 13 15 11 15
Na4q 3Lk 329 535 343 335 340 317 537
N, 347 330 3L5 341 349 313 333 329
NA5 257 337 332 336 345 315 52k 338
Na), 359 326 321 338 3hh 338 322 322
NBl 163 183 172 170 157 17k 182 177
NB2 167 160 175 175 172 169 186 153
NB5 177 172 170 168 159 170 164 162
Np), 178 164 167 163 16k 177 168 172
Ne 125 9 107 91 272 264 288 263
Ratio D/U 1/2 1/3 1/4 1/5 1/7 1/9 1/12 1/16
(Approx. )

Figure 10. Final Synapse-Levels, etc. for Runs 9-16, Experiment L.
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Figure 11. S(A) for Runs 17-32, Experiment L.
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Figure 13. Threshold Curves for Runs 22-24 and 30-32, Experiment L.
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Run No.

28

17,25 18, 19,27 20, 21,29 22,30 23,31 ek, 32
MiC 14 15 15 13 15 15 15 0 13 13 15 13 26 03
KAQC 15 15 10 11 15 15 00 15 14 1L 15 17 13 15
KABC 14 1h 1= 15 13 13 30 e 10 0 15 13 11 6
Mc 15 15 11 1k 15 15 15 & 15 11 03 70 15 1
B, C 15 15 15 15 10 10 11 15 15 15 15 5 13 10 13 12
Moo o 1515 14 1k 88 15 10 9 13 10 13 17 61
xB5C 15 15 1L 1k 15 15 14 1k 15 15 15 9 14 15 11 15
Ay, C 15 15 15 13 14 1k 14 13 14 1k 9 15 13 12 87
Naq 34k 3LL 329 329 335 335 343 343 335 335 340 3Lo 317 317 337 337
Nap k7 347 330 330 345 345 341 341 340 3ho 313 313 333 333 320 520
NA5 357 357 337 337 332 3%2 336 3% 345 345 313 513  32L 324 338 :38
N, 359 359 326 326 321 321 338 338  3hh Wk 338 338 322 322 322 322
Np, 163 163 183 183 172 172 170 170 157 157 17k 17h 182 182 177 177
NB2 167 167 160 160 175 175 175 175 172 169 169 169 186 186 153 153
NB5 177 177 172 172 170 170 168 168 159 159 170 170 16L 164k 162 162
Np), 178 178 164 164 167 167 163 163 164 164 177 177 168 168 172 172
e 409 LOO 331 318 267 266 238 134 255 233 227 191 220 196 206 188

Figure 1L4. Results of Runs 17-32, Experiment 4. (The paired runs

differed only on the initial conditions on the A's.)
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3.5 NINE-NEURON EXPERIMENTS

Following the suggestion made at the end of the last section, the schema
of 3,3.2 was specialized to N = 9 and M = 4, that is, a network consisting of
nine neurons, two groups of which, A and B, have four neurons each, all of
which send one connection to the single neuron C. The vector Xdi(t) be-
comes (XAl(t), cen XAu(t)’ XBl(t), cee XBq(t) ) where A; € A and
B; € B, i=1, ... , 4. The probabilities ﬂdi become fAi and fBi’

i=1, ..., k:

The hypothesis for the three-neuron experiments Hl is modified as fol-
lows:
H2. For appropriate selections of the network functions V, ﬁ, and S and
appropriate initial conditions, neuron C will tend to correlate with group

B in the sense that as t becomes sufficiently large,

Kﬁc(t) > >\'KC(JG)

and
for all i, 8p.(t) = 1= 8¢(t+l) =1 a.a
i
and
for all i o} t) = 0—= dnx(t+l) = 0 a.a
) Bi( ) > C( )
for some range of the rates f, and fp, with fp, < fAj for i, j =1, ..., L.
i
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The notation

e M

implies some sort of average (e.g., the mean) over the AB,C'S and XA_C'S re-
i i

spectively. This leaves room for a specific KBiC being less than some Ap.ce

J

"a.a." (almost always) implies that the condition occurs with a high prob-

ability, but not with probability 1. Thus it leaves room for the events

SBi(t) = 1 —8(t+l) = O and even—rfor some i—-aAi(t) =1 :::>6C(t+l) = 1.

This hypothesis says that group B eventually takes over control of neuron
C in the sense that the synpase-levels from B to C become high (in average-value),
those from A to C become low, thus ensuring most of the time the firing of C

at t + 1 when one or more of the neurons of B fires, while the neurons of A

seldom cause C to fire.

5.5.1 Experiment 3, Synchronous Case

In this experiment, the vector Xdi(t) was taken in the following fashion:
XAj(t) = 1 with probability f, independently of XAj(t), J + i, and indepen-
dently of XAj(tik), for all j, k = 1,2,...,1likewise, the XAi are treated
independently of the XBi° Thus, the neurons of A fire randomly and inde-
pendently at the rate f,. (The values of IAi(t) and IBi(t) were set to the
constant value of 1000.) For the neurons of B, XBi(t) = 1 for all
i=1, ..., 4 with probability fg = fp. Thus, the neurons of B fire in
synchrony.

This experiment does not quite conform to H2 since fp is not less than
fp; however, it does provide some insights, as will be seen.

The threshold curves for this experiment are shown in Figure 6; the
synapse-value curve is that of Experiment 1: #(£) = 1, and U(A) = 0.2 and

D(A) = 0.1 for all A, except that U(15) = 0 = D(0). fp was set to 1/6, the
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length of all runs was 3000 time steps. AAiC =15 = XBiC and IAi = IBi = 1000
for i =1, ... , k. rp(0) = rAi(O) = rBi(O) = 16. The results of eight sep-
arate runs are shown in Figure 7, where the terminal values of A's are given
together with the number of times each neuron fired. Run j uses threshold

curve j of Figure 5, j =1, ..., 8.

3.5.2 Analysis and Comment on Experiment 3

It is evident from Figure 7 that all the runs performed were successful,

that is, Agg >> Apc. There are a few points that should be noted, however.
(1) the terminal results are given after running sufficiently long that no
reverse-trends seem to arise; (2) while all the NBi clearly must be equal,
yet the Ap.c are not necessarily so, since the probabilities U(A) and D(A)
are consulted independently for each i in AB;C (see 2.3.4); (3) the thresh-
old curves are set so that a total stimulus of 15 may fire neuron C for
ro > 11; thus, initially any neuron may fire C. The steepest of the thresh-
0ld curves, number 8, will allow four neurons whose synapse-values to C are
maximal (15) to fire C for ro > 7. The effect of the steepening threshold
curves 1s to decrease the total activity of neuron C, i.e., No decreases;
(4) (Not shown in Figure T) the steepening threshold curves tended to ac-
celerate the rate at which A\jp decreased; (5) in Run 2, one of the Myc's
(KAAC) remained high (although it was still decreasing when the run termi-
nated) .

Thus, Experiment 3, under the conditions for which it was performed, was
successful. However, the significance of this success is not clear; little
was actually demonstrated about the network parameters that was not already
clear. Moreover, the condition of synchrony is so strong that the experiment
almost had to work for any reasonable selection of the parameters. Therefore,

further exploration with it was abandoned in favor of the more interesting
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case described in the next section where, somewhat as in Experiment 2, the

neurons of group B fire randomly and independently only in an "on-period”

and are silent otherwise.

3.5.3 Experiment 4, Asynchronous Case
The relationship of the firing rates of the neurons of group A and B
was chosen as follows: as in Experiment 3, XAi(t) = 1 with probability fj.

However, Xn.(t) = 1, with probability f, independently of the Xp.(t)'s and
B4 4 A Al

of XBj(tjk), k=0, 1, 2, ... for j $ i, only for t in the intervals [2ki,

(2k+1) 2] for k

0, 1, 2, ..., where [ is again the length of the interval.
Such intervals are called the on-periods for the neurons of B. On the com-
plementary intervals (off-periods), XBi(t) = 0. The Ip, were taken equal to

a constant I(= Ip, when XBi(t) =1).

XBi=l with
prob. fp

In the runs to be described, { was taken as 60, fp as 1/6. Notice that fBi
averaged over a full-cycle (120 time steps) is 1/2 fp;; that is, the neurons
of B fire one-half as often as those of A, thus the hypothesis H2 is com-
pletely satisfied.

The runs for this experiment were designed to gain further information
about the form of the threshold and synapse-value curves and to derive work-

able values of U()A) and D(A).

Runs 1-8. The network functions and initial conditions were chosen exactly
as in Experiment 3, using again the threshold functions of Figure 5. The
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stimulus pattern was as described above. The results of these runs are dis-

played in Figure 8, with the same interpretation of symbols as in Figure 7.

Comment on Runs 1-8. As seen from Figure 8, these runs were not successful.

They do indicate one thing, however; that is a tendency for the A's to plunge
to zero. It is not shown in the figure that the App's dropped more slowly
than the AMg's. Thus, the probabilities U(A) and D(A) are suspect. How-
ever, the threshold curves were deficient in that they are all too high to al-
low any single neuron of B, even with maximum synapse-value, to fire C if

re < 11. Thus, a sort of upper bound on the firing rate of C is established,
reducing the number of favorable situations SBi(t) =1 & dp(t+l) = 1 for in-

crementation of A.

Runs 9-16. The purpose of these runs was to test the behavior of the system,
given the same initial conditions and network functions each time, for a
series of different values of U(A) and D(A). The threshold curve used for
these runs is given in Figure 9, U(A) and D(A) for each run in Table 4, These
probabilities were chosen so that the ration U())/D()) varied from 2:1 to

15:1 in seven equal steps. The linear S()\) curve of Experiment 1 was used.
Length of the runs was 3000 time steps. The initial conditions were as in
Runs 1-8 except that kAiC(O) =10 = Mg 121, oo, L, The results are

shown in Figure 10.

Comment on Runs 9-16. Of these runs, Run 12 was the most successful, al-

though (not shown in Figure 10, ABBC and XBAC were still decaying when the
run was terminated. These runs clearly illustrate how sensitive the network
is to the settings of U(A) and D(A). Thus, the ratios D/U = 1/7, 1/9, etc.,
are clearly too strong-—all the A\'s rise; whereas the ratios 1/2, 1/3, and

possibly 1/4 are too small—most, if not all, of the A's decrease to O.
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Runs 17-32. The synapse-level probabilities U = .3138 and D = .06373 of Run
12 were taken as tentative workable values for these quantities. The curve
for S(A) was given the non-linear form of Figure 11. This particular form
was chosen to bias changes upward when A is large, downward when A is very
small, and to provide for gentle transitions in the midrange of A. Runs 17-
2l were done using the threshold curves of Figures 12 and 13 with the initial
conditions Ap;c(0) = ABiC(O) = 12 and all recovery-states at maximum. Runs
25-32 are identical except for the initial conditions xAiC(O) = kBiC(O) = 10.

The results of these runs are given in Figure 1k4.

Comment on Runs 17-32, The most successful were Runs 20 and 28; the overall
results were somewhat disappointing, however. See the following section for a

discussion of the difficulties and possible solutions.

3.5.4 Analysis and Comment on Experiment L

The hypothesis H2 was confirmed for two cases (Runs 20 and 28) using
threshold curve 20 of Figure 12, the synapse-value curve of Figure 11, the
values 0.3138 and 0.06373 for U(A) and D(A) respectively, and two different
initial values for Ap;c(0) and xBiC(O) (i=1, ... , 4). The failures, how-
ever, outnumber the successes and, consequently, several serious questions
arise:

(1) Presumably one choice of the threshold curve should be universal;
that is, one particular curve should work for a variety of initial conditions;
vet in this experiment the results seemed 'keenly dependent on the form of
vhe curve so that a relatively small change in initial conditions produced a
sharp change in the final results. Likewise, the threshold curves used here
were geared to the eight-input schema and would not work for larger or

smaller numbers of inputs. This brings up the second question:
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(2) The absence of a non-trivial fatigue function seems unrealistic.
That is, a neuron that fires at a high rate for a period of time would be ex-
pected to become fatigued. Thus, fatigue would produce a dampening effect on
the behavior of the neurons. Also, the appropriate fatigue function could ad-
Just the threshold curve to a varying number of inputs, thus answering the

objection of (1) and ensuring the existence of a universal threshold curve.

(3) Bearing in mind the dampening effect of fatigue, it appears that the
relationship of firing of the neurons of group A with those of group B is too

stringent; that is, in the on-periods, the neurons of B fire at the same rate
as those of A and C is being required to discriminate between the two solely
on the basis of one of them being shut off periodically! This suggests that

the firing-rates of the neurons of B should be fairly high in the on-period,

while the rate of the neurons of A should be lower throughout. With a suitable
fatigue function, however, the neurons of B would become damped toward the end
of the on cycle; likewise during the off cycle they would rest (their fatigue-

values tend back to 1). The neurons of A would fire at a rate producing

little or no fatigue. This rate would form a type of background frequency

for the models,
These considerations led to the series of experiments described in the

following sections in which some of the results of the analysis of Crichton's

thesis [7] were introduced.
3,6 THIRTY-THREE NEURON EXPERIMENTS

3.6,1 General

For this series of experiments, the size of the networks was increased
from N = 9 to N = 33 and M = 16, that is, the schema of 3.3.2 becomes a thirty-
three neuron network consisting of the two groups A and B of neurons of six-
teen neurons each and the single neuron C which receives one connection from

each neuron of A and B. The vector X, (t) becomes (X, (t), ... , XAl6(t),
i i
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XEvL(t), con s xBl6(t)) where A; ¢ Aand B; € B i =1, ..., 16; likewise the

fai become fAi and fB-’ etec:

1

A
Xp(£) 3

X Ag
XAy ( £) 0

0O—>

B _—
m____>%//////

Xp, (%)
: B1g
Xp, o (t) ————>0

Recalling the remarks made at the end of the last section, the basic

hypothesis HL becomes the following:

H5. For appropriate selections of the network functions V, ¢ and S and ap-
propriate initial conditions, neuron C will tend to correlate with group B in

the sense that as t becomes sufficiently large,

Mge(t) >> Mg ()

and
for all i, dp.(t) = 1= 8p(t+l) = 1 a.a.
i
and
t) = 0 — t+l) = 0 a.a
6Bi( ) >8o(t+1)
over some range of the rates fAi and fBi such that fBi > fAj (i, =1, ... ,16)

locally but where the fAi‘s and fBi's have a common average, f}, over the inter-
al 10, w]. "Locally" means that over certain sufficiently small time intervals
e relationship fBi > fAj holds.

The intent of the hypothesis is, given that the neurons of B are period-
ically interrupted as in Experiment L4, that the fBi's be greater than the
fAJ's within the on-periods of the neurons of B, equal to or less than the

fp.'s in the off-periods of B, but that the average values of the frequencies
i
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over large time intervals be close to the common value fj,. £ will be called

the background rate of the system.

3.6.2 Some Theoretical Considerations

In the appendix to his thesis [7], Crichton discusses the stability of
systems of neurons which he calls "semi-autonomous subsystems." These are
networks of neurons which may correspond in a limited way to the cell-assemblies
of Hebb's theory. In his development in which, unlike the approach of this
paper, he is concerned with the statistical properties of a very large set of
neurons, he makes a number of assumptions, two of which are relevant to the
experiments of this chapter: (1) the neurons of the system fire aperiod-
ically, randomly and independently of one another, and (2) all neurons tend
in their firing to a common average rate fi. This fi he calls the nominal
system average. From his arguments he derives some bounds on the threshold
curve (to be discussed later) and some important relationships between the
fatigue increments, A, and A5, and the probabilities of synapse-level change,
U(A) and D(A). The gist of his argument is this; that the role of the fa-
tigue function must be to drive the neurons of the system to the frequency
fys thus, if a neuron falls below f, in its firing rate, then the fatigue
should decrease so as to bring the rate back up to fy; likewise, if its rate
exceeds fy, fatigue should increase so as to bring the rate back down to fy.
Firing at the rate of fy, there is no net change in fatigue. This last con-
dition implies that f, = Ap/(Aj+hp) since then TfpAp - T(1-fp)A; must be
zero, where T is the length of the time-interval under consideration (see
2.3.3). Similarly, the condition for no net change in synapse-level becomes
f, = D(A) /(U(N)+D(A) ) .

One further relation that he gives is useful: Consider two neurons A

and C with a connection going from A to C, where A and C fire aperiodically
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at the rates f) and fp respectively. Therefore, the expected rate of in-
crease in Apc per time step is f, - f», and the expected rate of decrease is
£2(1-fo) . Recalling that D/(U+D) = fy from which U/D = (1-Tp)/fy, one sees
that U = K(1-fy), D = Kf, for some constant K > 0. U and D correspond to the
rate of increase and the rate of decrease of a connection and f,f; K(l—fb)

to the expected rate of increase in A\, per time step, fa(1-fp) Kfy to the
rate of decrease in XAC per time step. Therefore, the expected net rate of

increase in Apo per time step is
Tpfok(1-1) - £p(1-fo) Ky = KEp(fa-Tp) - (F)

This is positive, i.e., Ap¢ 1s increasing, if fg > fb(fA, fo, and fy, are all
assumed positive or zero), negative, i.e., AAC is decreasing, if fn < fy and
zero if fA =0 or fn = fy. This relation (F) Crichton gives as the funda-
mental formula for trends in synapse-levels.

These relationships provide very useful guides and will be referred to in
the following. However, a few points should be noted: (1) In the current
experiments, the assumption of independence of firing of the neurons does not
hold. As N increases, however, one would expect it to become more plausible.
The validity of Crichton's analysis therefore increases with N in the present
situation. (2) Although his theory yields fruitful relations between A1, Ap,
U(A), and D(A) and is useful in analyzing trends in synapse-levels, yet, be-
yvond the bound mentioned it says nothing about the form of the threshold,
fatigue, and synapse-value functions.

Tt should be noted that the rates for zero change in synapse-levels and
zero change in fatigue-level need not be identical, that is D/(U+D) may equal
fbl and Ag/(Al+A2) may equal fbgn In fact, in the first group of experiments
to be described below, before the condition f, = D/(U+D) and the relationship
(F) were discovered by Crichton, D/(U+D) was 1/6! (This occurred partly
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through failure of the author to digest the import of his analysis, which was
being developed about the same time as these experiments were conceived. Such

are the pitfalls of the experimental approach!)

3.6.3 Experiment 5, Fatigue Curve Tests

The relationship of the firing rates of the neurons of groups A and B was
chosen as follows: the neurons of A are assumed to fire at the rate f,; that
is, fp, = fpfori=1, ..., 16. As in Experiment L4, the neurons of B fire
periodically so that XBi(t) = 1 with probability fp; in the intervals [2ki,
(2k+1) £] and fp = fp; > fp. In the complementary intervals, unlike the pre-
vious case, XBi(t) = 1 with probability fpp, << f,. fp) is called the high fre-
quency of group B, fpo, the low frequency. The intervals in which fp; applies

correspond to the on-periods in Experiment L.

I e
XEi=l with XBi= 1 with
prob. fgy prob. fpo
0 4 21 51 Ly t
high period low period
of B of B

In the runs to be described, f, was taken to be 1/10, fg = 1/5, fpp = 1/1000.
£, the length of the high-period of B, was taken as 200 time steps. Notice
that in the high period, fBi = QfAi, but that over a complete cycle, fBi
averages very closely to fp; (1/2(1/5+1/1000) =~ 1/10). The threshold and
synapse-value curves used are shown in Figure 15. U(A) = 0.3138 and

D(\) = 0.06373. The quantities Ay and A, were set to 5/8 and 1/16 respec-
tively (thus fj, = 1/11 and is close to fp). Initially, all neurons were

rested, that is, (p(0) = zAi(o) = zBi(o) = 31 and r(0) = rAi(O) = rp;(0) = 16,
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and xAiC(o) = xBiC(o) =8 for i =1, ..., 16. The input stimuli Tp; & Ip;
were taken to be the constant value 1000. Each run performed was terminated
after 2100 time steps.

Four runs were performed for this experiment, each one using a separate
fatigue curve from Figure 16. (Run i used curve i of the figure, i = 1,2,3,k4.)
Letting Sp(t) be the value of the sum of the sAiC(t).and Sp(t) that for the

SBiC(t), the terminal results of these runs may be stated as follows:

Run 1: Sp = 32, Sp = 22
Run 2: S, = Lo, Sg = 80
Run 3: Sp =22,  Sp =53
Run 4: Sp = 1k, Sg = 79

(Note: 1In this and following experiments, it was found to be more convenient
to refer to the synapse-value, S, rather than to the synapse-level \.)

The statistics Sp and Sg do not reflect the dispersion of the SAiC or SBiC:
which in fact, was considerable. In each run the number of negative S's was
about the same as the number of positive. The detailed history of synapse-
value changes for Run 4 are shown in the Appendix. Also, in all four runs,
the firing rate of C was less than or equal to f, (see 3.6.2) and thus the

condition (F) would predict no (uniform) increase in synapse-levels.

3.6.4 Analysis and Comments on Experiment 5

The purpose of this experiment primarily was to obtain a good starting
setting for the fatigue function ¢(4). Of the four runs performed, the fourth
was the most successful in the sense of the hypothesis. However, even there,
of the SBiC: five were still decreasing when the run was terminated, five were
increasing, and only six were stable, though not large. Therefore, Run 4 was
repeated, but allowed to run for 10,000 time steps. The results were:

Bun 5: S, = -129, sg = -89
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Figure 16. Fatigue Curves for Runs 1-4, Experiment 5.
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Sp had decayed to zero by 2351 time steps, Sy by 7801. Thus, though this run
was a failure, yet at least the SBi‘s decayed at a lower rate than the SAi's
and were not as negative as the SAi's. To test the rate of decay of the
synapse-values per se, a variant run of length 10,000 time steps was carried
out in which [ was made equal to 10,000, thus the neurons of A were firing
at the rate of 1/5 over the interval 0-10,000, the neurons of B at the rate
of l/lO over the same interval. The results were:
Bun 5': S, = -1hk, Sp = -1hk
(-144 is the minimum for the sum of the S's). The rate of decay to zero for
Sp was 2951 time steps, for SB it was 1251.

These results suggested a series of initial trend studies in which the
initial behavior of the S's could be studied in detail and in which the param-

eters Ay, Ap, U, and D and the fatigue curve could be varied and the effect

of this variation studied. This series comprises Experiment 6.

3.6.5 Experiment 6, Initial Trend Studies

The purpose of this experiment was to examine in detail the effect of
varying the parameters Ay, Ao, U and D upon the initial developments of the
synapse-values. The experimental arrangement was identical to that of Ex-
periment 5; that is, £ = 200, f, = 1/10, fg = 1/5, all synapse-levels were
set to 8 initially, etc. The threshold, fatigue, and synapse-value func-
tions used are given in Figure 17.

Four separate tests were conducted, the results of which are summarized
below. Each run was terminated at the end of 500 time steps. Notice that
the initial value of the sums of synapse-values, Sp and Sp, for the synapse-
value curve given, is 112 (= 16x7 where S(8) = 7 is the value of S(\) for

A= 8).
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Run 1. The parameter values taken were Ay = 10/16, Ap = 1/8, U = 0.313%8, and
D = 0.06373. A,/(Ar+hp) = 1/11.
Result: The final synapse-values were (using the same notation as for Exper-
iment 5) :

Sp = 115, S = 120.

Neuron C fired at a slightly higher rate than the neurons of A or B.

Run 2. A; and Ap were teken as in Run 1, however, U and D were both set to
0.5.

Results: Both S, and Sp tended rapidly to the minimum value of -14L for the
sum of the synapse-values; however, the sum Sp decreased at a lower rate than
that of Sp. Neuron C fired at a much lower rate than that of the neurons of

A or B.

Run 3. The parameter values taken were: A = 1.0, Ay = 1/8, U = 0.3138, and
D = 0.06373. Notice that Ao/(Aj+A2) = 1/9 and D/(U+D) =~ 1/6.
Results: The final synapse-values are
Sy = 121, Sp = 127.
The firing rate of neuron C was about BO% greater than that of the neurons of

A or B.

BE§_£° The parameter-values taken were: A1 = 1.0, Ap = 3/16, U and D as
in Run 3. Ap/(A7+4p) becomes 3/19 (~ 1/6).
Results: The final synapse-values were

Sp = 108, Sy = 112.

Neuron C fired about twice as often as the neurons of A or B.

3.6.6 Analysis and Comments on Experiment 6
One notices that in all but one run on this experiment, the condition

(F) of Crichton holds for a net increase in synapse-value, since the firing

100



rate of neuron C was greater than that of the neurons of A or B and conse-
quently was greater than the background rate of l/lO. (This experiment was
performed before the author realized that Ap/(Aj+Ap) and D/(U+D) must also be
equal to fp = 1/10. However, this situation does not alter the conclusions
drawn here,) The anomalous run, Run 2, simply allowed too much change down-
ward in A and could hardly have been expected to work (that is SEiC rise,

SAiC fall to about 0); yet it was instructive in that it showed a certain
sluggishness on the part of the XBiC to move downward even with the high value
of D = 0.5, The remaining runs, Runs 1, 3, and 4 were favorable in their out-
comes, but just barely so. One would expect, in light of the remark above
about condition (F) being fulfilled for the case of an increase in A(S(A)),

a stronger trend upwards of the KBiC or at least, a stronger trend downwards
of the kAiCj Thus, a series of tests on the fatigue function and the param-

eters A] and Ao is indicated,

3.6.7 Experiment 7. Further Tests on the Fatigue Function

The purpose of this experiment was to find a fatigue function which, to-
gether with the appropriate values of Ay and Ap.would accelerate the upwards
trend of the ABiC's or at least the downwards trend of the KAiC's. It is
certainly not essential for the hypothesis H3 to hold that the xBic's all
tend to the maximum or that the xAiC‘s tend to the minimum. In fact, the
analysis of Crichton seems to suggest that the AAiC's be such that Sp be close
to zero and the SAiC's be zero or moderately positive or moderately negative,
whereas the kBic's should be such that the SBiC's are strongly positive.

The role of the fatigue function seemed, at this point, so critical that
the exact form of the threshold function did not seem crucial. Therefore,
the threshold function was not varied throughout this experiment. Likewise,

neither was the synapse-value curve. This procedure is perhaps open to ques-
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tion; however it is somewhat analogous to that of finding a local maximum of
a function f(x, y, z) by fixing two points xp and Yo and maximizing f with
respect to z, then holding z and X, fixed, maximize with respect to y, etc.
Moreover, the results thus far indicated that the problem centered more around
the fatigue function than around the others.

The various tests given below utilize the same experimental arrangement
as in Experiment 6 unless mentioned otherwise, that is:

1. all A(0)'s are set to 8; hence, initially S, = Sy = 112;

2. all r(0)'s are set to 16;

3, fp=1/5, but £, = 1/20, £ = 200;

L, V(r) and S(\) are given in Figure 17;

5. @#(4), by, and Ay will be specified in each test;

6. U =0.3138, D = 0.06373
Notice that the decrease in f, now implies that the average rates of firings
of the two groups A and B differ; for A it is 1/20, for B it is l/lO (fB will
be varied in the tests below). The intent was to simulate the condition in
which for a period of time the average rate of B exceeds that of A, but in

which over a longer interval of time, it would reduce to the system average

f, (= 1/20).

Run 1. The fatigue curve tested in this run is given in Figure 17. The pa-
rameters were Ay = 1 and Ap = 1/8, thus Ag/(Al+A2) = 1/9. Length of the run
was 1000 time steps. The final values of the synapse-value sums were

Sp = 119 and Sp = 123. Sp went to a maximum of 125 before decaying to 119,

Sp went to a maximum of 136, The firing-rate of C was greater than that of

the neurons of A or B.

Run 2, Run 1 was repeated for the fatigue curve of Figure 18; length of the
run was reduced to 500 time steps. The final results were S, = 117 and
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and Sg = 135 (these were the maximum values also). The firing rate of C was

again greater than that of the A; or Bj.

Run 3. Run 2 was repeated except that A; and A, were modified: Ay =1,
Ao = 1/16, hence Ap/(Aj+Ap) = 1/17; length of run was the same as for Run 2.
The final results were Sy = 114, Sg = 122, Neuron C fired at a lower rate

than the neurons of B, but greater than those of A.

Run 4. Again Run 2 was repeated, now for the values A = 5/8, dp = 1/16,
Ag/(Al+A2) = 1/11, C fired at a higher rate than the A; or B; and the final

synapse-value sums were S, = 121 and Sy = 127.

Run 5. Run 2 repeated for the values A1 = 3/b and Ap = 1/16, po/(Ay+0p) = 1/13
and terminated after 10,000 time steps. The results were: Sp = -71 and

S = 68. C fired at a lower rate than the By, higher rate than the A;.

Run 6. U = 0.5402, D = 0.04502, Ay = 3/k, Ap = 1/16, so that D/(U+D) ~1/12,
As/(By+bp) = 1/13, otherwise like Run 2. This run was terminated after 10, 000
time steps with Sp = 201, Sg = 229, C fired at a slightly lower rate than the

Bi, at a much greater rate than the Aj.

Run 7. Exactly like Run 6 except that fp was changed to 1/6 and fp to 1/130
After running for 10,000 time steps, Sp = 142 and Sg = 223. C's firing rate

was greater than that of the B; by about 5%.
g i

ggg_go For this run a variation in the firing patterns of groups A and B
was introduced in which in the high periods of B, the neurons of B fired at
the rate 1/6 and the neurons of Afired at the rate of 1/20, while in the low-
period of B, the neurons of B fired at the rate of 1/1000 and the neurons of

A at the rate 1/13. Otherwise, all parameters remained the same as in Run 7.
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Af-er 10,000 time steps, Sp = 156, Sp = 228 and the firing rate of C was again

about b greater than that of the B;.

3.6.8 Analysis and Comments on Experiment 7
The most successful of the eight runs above (excluding from consideration

for the moment Run 8) was Run 7. It should be noted that for this run,

D Ap 1

= f-b = =
U+D Ay +bp 13

2
[

as the theory of Crichton requires. Notice that the average firing rate of the
A;'s and the B;'s is 1/12 ~ fy. Thus, this experiment seems to be in accord
with the theory. Run 8, which purports to be a slight generalization where A
and B fire in phase at alternately high and low frequencies, likewise seems to
conform to the theory.

There are, however, some disturbing signs: namely, that again the ef-
fect of the fatigue-function is not very sharp and there is far too much
variation among the kAic's and kBiC's. Moreover, the entire range of the
fatigue-level is not used, primarily just the values in the steep portion of
the curve. Finally, the selection of the threshold and synapse-value func-
tions still did not seem quite satisfactory.

The results of this experiment prompted much reflection about the nature
of the threshold, fatigue, and synapse-level functions, with the result that
a derivation was obtained for the form of the threshold curve., This is dis-

cussed in the next section.
3.7 COMMENTS ON THE NETWORK FUNCTIONS V, ¢, AND S

3.7.1 The Threshold Function, V(r)
Consider a neuron C with N inputs A;, i =1, ... , N and suppose that

the input neurons are all firing randomly and independently at the rate f.
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What then are the desired properties of the threshold function as far as con-
trolling the firing rate of C is concerned? Over a short time interval, so
that the effects of the fatigue function do not enter in to complicate the
procedure, we may assume that the threshold curve should be such that C fires
at the rate f also. (We could, of course, assume that it fires at some rate
fl + f, but here let us restrict attention to the case f; = f.) Assume now
that the synapse-values xAi, i=1, ... , N, are all equal. With no other
inputs, then, the threshold function V(r) must be such that for r > l/f neuron
C fires. Since the set of input neurons basically is a Bernoullil process
(ignoring the effects of the absolute recovery period), the expected number of
input neurons active at any time step is m = Nf = N - l/r. The expected in-
put stimulus to neuron C per time step then is mS(A) = NfS()\)=N - % - ().
This says that, if N is fixed, the threshold curve should vary linearly with
respect to the input frequency f (at which it is assumed that C should fire
also), i.e., V(r) varies with 1/r, V(r) = K - % where the constant K is deter-
mined by the expected amount of input stimulus per time step.

Thus, V(r) seems to be a hyperbolic function r:

V(r)

This form of V(r) conforms to the bounds required in the development of

Crichton's thesis [7] and to which the reader is referred for further details.

3,7.2 The Fatigue Function, #(f)
The main reason for the failure of the fatigue function to perform as de-

sired in the experiments of this chapter seems to center about the fact that
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f, after having been reduced to an adequately low value through decrementation
by 44 (hence #(1) is large and very effective in damping firing of the neuron),
the rate of recovery (back to large value of £, #(2) ~ 1) is altogether too
rapid in spite of the small value of Ap. Thus, in Experiment 7, Run 7, the
fatigue function should be such that towards the end of the high-period of B,
C is highly fatigued and does not recover so that any neuron can fire it, let
alone a neuron of A, until towards the end of the off-period of B. Yet this
was not the case in this experiment—C recovered quite rapidly and the neurons
of A could fire it in about 20 time steps after the beginning of the low-
period of B. Thus, the xAic's had opportunity to develop, whereas in the
ideal case they should have little or no such opportunity.

Tt turns out that no single-valued function 4(4) will give the desired
effect. Instead, é(l) has to be a hysteresis-type curve where, as [ de-
creases, p(l) increases at one rate py and when £ increases, #( 1) decreases
at another rate Poe The rates Py and Po in fact should be such that Py in-
creases as [ decreases, Po likewise decreases as [ increases. Pictorially,

this is as follows:

A1)

s 15 20 J)

Suppose { is decreasing. Then, #(4) follow curve 1. If then the neuron ceases
to fire, instead of recovering along curve 1, it recovers along curve 2. If

at point [, the neuron fires, then instead of following curve 2, it follows

3
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curve 1, which is 1 "moved-over'" so to speak. (This picture is deceiving
since "curves" 1 and 2 are really rates, and there is no actual shifting of
curves.)

Given this type of fatigue function, the fatigue-value of a neuron would
increase initially gradually, then progressively more as the firing-rate of
the neuron increased until this rate would be suppressed for a period of time
in which the fatigue-value would very gradually decrease, after which the
neuron would resume firing at a lower rate. This type of function would al-
most guarantee success in the experiments of this chapter.

This form of é(l) is readily implemented and is to be used in the next

series of experiments.

3.7.3 The Synapse-Value Function, S(\)

Similar remarks to those concerning fatigue can be made about the func-
tion S(A). 1In this case, one wants S(A) to increase, for large A, at a rate
ey and decrease at a lower rate Pp; likewise for small £, S(A) should de-

crease at a rate p5 and recover at a lower rate (I

S(M) decrease at rate po
S(A) 47

////’

% S(M\)| increase at rate pq
0 7 A

oy

This means that a synapse-level of a connection would gradually at first,
then more rapidly later as the activity of the connection increased, build-
up, to decay slowly at first, then more rapidly later as the activity sub-

sides.
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Again, in retrospect, this form of S(A) would strengthen the results of
this chapter. This form of S(A\) is easily implemented in the model and will

be used in the next series of experiments.
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L. CONCLUSION

A series of experiments on simple, cycle-less neural networks was carried
out. A number of problems regarding the nature of the network functions V,
é, and S arose and, using the experimental results as a guide, suggestions
were made for their resolution. The analysis of Crichton [7] was demonstrated,
with reservations, for the small networks considered. For certain input con-
ditions the threshold curve was shown to be a hyperbolic function of the re-
covery.

The next series of experiments will test the ideas of the last section.
(The author had hoped to conclude this series in time for this report, but
unfortunately failed to do so.) Following this, a series of experiments is
planned in which progressively more complicated feedback among the neurons

is introduced.

111






APPENDIX

DETAILED HISTORY OF SYNAPSE-VALUE
CHANGES FOR RUN 4, EXPERIMENT 5






SYNAPSE VALUES GROUP A
(Slow Group)

TSD?;I;* Sajc Sasc - Sajc Sa
1 7 7T 7 7 7 7 7 T 7T 7 7 T 7 7 7 7 112

51 7 8 6 T 7T T 8 8 7 6 7T T 6 ToT7T 7 12
101 7 8 6 6 7 7 8 8 7 6 8 7 7 7 7 7 113
151 8 8 6 6 i 7 s} 3 7 6 $) 7T 6 T 7 8 114
201 8 8 6 6 8 6 8 9 7 6 8 7 6 7 7 8 115
251 3 38 6 6 7 6 8 9 6 6 8 7 6 7 6 7 111
301 8 8 6 3 6 6 8 9 3 6 9 8 6 6 6 8 106
351 O 8 3 6 6 6 5] S 3 3 9 8 o 7 6 7 103
Lol 8 8 3 3 6 6 8 9 1M LM 9 8 6 7 6 7 89
51 B 8 3 6 6 6 B 10 1M 5M 9 8 b 7 3 7 89
501 8 8 3 6 3 6 8 10 b 5s5M 9 7T 6 T 3 6 81
551 8 8 1M* 6 M 6 8 10 LM sM 9 7T 7 7 3 6 Th
2ol 8 8 1M 3 M 6 8 11 LM  5M 9 7 7 7 3 6 72
651 B8 g 1M 3 IM 6 8 11 5M 5M 9 T 7 6 M 7 an
701 8 8 1M 3 M 6 8 11 5M 5M 9 7 7 6 M 6 63
751 8 8 WM 3 kv 6 8 13 5M 5M 10 6 7 6 3 6 69
801 8 7 1M 1M kM 6 8 13 5M 5M 10 6 7 7 M 6 61
851 8 7 1M LM 5M 3 8 13 5M 5M 9 6 6 7 M 6 52
901 8 8 1M WM 5M 6 8 11 5M 7M 9 7 6 7 kM 6 50
951 8 8 kWM WM 7™ 6 8 11 5M 7M 8 7 6 7 5M 3 4o
1001 8 8 1M 5M 7™ 6 8 11 5M 9M 10 8 6 7 5M 6 L6
1051 8 8 1M 5M oM 3 8 11 7™ 9M 10 8 6 7 ™ 6 37
1101 8 8 4™ 7™ o9M 3 8 11 9M 9M 11 8 6 7 9M 6 29
1151 9 8 4W™ 7™ o9M 1M 8 11 9M O9M 13 8 6 7 9M 6 28
1201 9 8 WM 7™ oM 1M 8 11 9M 9M 15 8 6 7 O9M 6 30
1251 9 8 5M M oM 1M 8 11 7™ oM 13 8 6 7 oM b6 29
1301 9 9 5M 7 O9M 1M 8 11 9M 9M 13 9 6 7 oM 6 29
1351 9 10 5M 7™ 9M 1M 8 11 9M 9M 13 9 6 6 oM 3 26
1401 8§ 11 7™ 7™ 9M 1M 8 11 oM 9M 13 o 6 6 9M 3 24
15451 9 11 7™M M oM 1M 8 11 oM oM 13 9 b 6 oM 3 25
1501 9 11 7M 7 9M kM 8 13 9M 9M 15 9 6 6 9M 3 26
1551 9 11 7™ 9M 9M LM 8 13 9M 9 15 9 6 6 9M 3 24
1601 9 10 7M 9M oM LM 8 13 9M 9M 15 8 6 6 9M 3 22
1651 10 10 M oM oM B5M 8 I3 7'M oM 15 9 b6 6 oM 3 25
1701 10 11 9M 9M 9M LM 8 15 9M 9M 13 9 7 6 9M 3 2k
1751 10 11 9M 9M 9M Lm 7 13 9M 9M 13 9 6 6 9M © 23
1801 9 13 O9M 9M 9M LM 7 15 9M 9M 13 10 6 6 9M 6 27
1851 9 13 9M GM oM LM 7 15 9M 9M 15 10 6 6 oM 6 29
1901 9 11 9M 9M 9M UM 6 15 9M 9M 15 1o 6 6 9M 3 23
1951 8 11 9M 9M 9M kM 6 15 9M 9 13 10 6 6 9M 3 20
2001 8 11 9M 9M 9M 5M 6 15 9M O9M 13 11 6 6 9M LM 13
2051 9 11 o9M oM oM 5M 6 15 oM o9M 13 11 b 6 oM LM 14

*Synapse values printed every fifty time steps.
*%*M indicates minus.
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Time

SNYAPSE VALUES GROUP B
(Fast Group)

Stepr "BIC SmaC - Smec S
1 7 T 7 7 7 7 4 7 7 7 7 T 7 7 7 7 112
51 8 7 7 7 6 6 7 T ToT7T 7 6 7 T 7T 7 111
101 10 7T 7 8 7 6 7 8 7 8 7 6 7 7 7 8 117
151 1. 6 7 7 6 6 7 8 T 9 7 6 7 7 7 9 117
201 11 6 7 6 6 6 6 6 8 9 7 6 6 7 6 8 111
251 11 6 7 [ 6 6 6 8 9 7 [ 7 6 B 111
301 11 6 7 6 6 6 6 6 8 9 7 6 6 7 6 8 111
351 11 6 7 6 6 6 6 6 8 9 7 6 6 7 6 8 111
bol 11 6 7 6 6 6 6 6 8 10 7 6 6 7 6 8 112
4151 10 6 7 6 3 6 6 M 7 11 8 m 7 7 6 8 96
501 10 7 7 6 6 6 6 6 7 11 8 3 8 8 6 8 113
551 10 7 7 6 6 6 6 6 8 9 8 3 8 8 6 8 112
601 10 8 6 6 6 3 6 3 9 9 9 6 8 7 6 8 110
651 10 B 6 [ 6 3 6 3 9 9 9 6 8 7 6 8 110
701 10 8 6 6 6 3 6 3 9 9 9 6 8 7 6 8 110
751 10 8 6 6 6 3 6 3 9 9 9 6 8 7 6 8 110
801 10 8 6 6 6 3 6 3 9 9 9 6 8 7 6 8 110
851 13 9 3 3 [) IM 6 6 8 8 8 6 3 6 6 8 103
901 15 9 6 3 3 M 6 6 8 10 9 6 8 6 6 7 107
951 15 8 6 IM IM 1M 6 6 8 10 9 6 8 7 6 6 98
1001 15 8 6 3 IM 1M 6 6 9 10 8 6 7 6 6 6 100
1051 15 8 b6 M 1M IM 6 6 9 10 8 6 7 6 6 6 96
101 15 8 6 IM 1M 1M 6 6 9 10 8 6 7 6 6 6 96
1151 15 8 6 IM 1M 1M 6 6 9 1o 8 6 7 6 6 6 96
1201 15 8 6 IM 1M 1M 6 6 9 10 8 6 7 6 6 6 96
1251 15 B 6 M LM 3 3 7 10 9 8 7 6 6 6 6 95
1301 11 8 6 M kM 3 IM 6 10 9 8 7 6 6 6 7 87
1351 13 8 6 kv UM 6 3 6 10 9 7 8 3 6 6 7 90
1kol1 13 8 6 5M UM 6 3 6 11 8 6 8 1M 8 6 6 85
k51 13 8 6 5M LM 6 3 6 11 8 6 g 1M 3 6 6 85
1501 13 8 6 5M LM 6 3 6 11 8 6 8 1 8 6 6 85
1551 13 8 6 5M UM 6 3 6 11 8 6 8 1M 8 6 6 85
1601 13 8 6 5M LM 6 3 6 11 8 6 8 1M 8 6 6 85
1651 13 8 7 ™ 5M 3 3 6 11 10 3 8 3 10 6 6 85
1701 13 8 7 9M 5M 3 3 6 11 9 6 8 3% 10 7 7 87
1751 13 9 7 9M ™M 6 3 6 13 8 6 6 6 10 7 7 91
1801 15 8§ 8 9M M 7 3 IM 11 8 6 6 6 9 6 7 83
1851 15 8 8 oM ™ 7 3 ™ 11 8 6 6 6 9 6 7 83
1901 15 8 8 9M TM 7 3 M 11 8 6 6 6 9 6 7 83
1951 15 8 8 9M T™ 7 3 M 11 8 6 6 6 9 6 7 83
2001 15 8 8 OM M 7 3 M 11 8 6 6 6 9 6 7 83
2051 13 8 7 oM oM 7 3 M 11 7 7 6 7 8 6 8 79

*Synapse values printed every fifty time steps.

*%¥M indicates minus.
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