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FOREWORD

This report was prepared by The University of Michigan under USAF Con-
tract No. AF33(615)-1162. The contract was initiated under Project No. L4160,
"Engineering Bionics," Task No. 416004, "Bionic Sub-System Techniques." The
work was administered under the direction of the Bionics Branch, Electronic
Technology Division, Air Force Avionics Laboratory, Dr. Donald E. Lewis, pro-
gram monitor.

This Final Technical Report of Research on the Logical Theory of Adap-
tive systems covers work conducted from 1 November 1963 to 30 November 196k,

This program of research was carried out at The University of Michigan
by the Logic of Computers Group, Professor Arthur W. Burks, Director, The
principal investigator for this research program was John H. Holland, Asso-
ciate Professor, Communication Sciences Department. Assisting Dr. Holland
in this program were Marion Finley, Jr., Stephen Hedetniemi, and Carl Page,
Research Assistants in Communication Sciences, and Dr. Harvey Garner, Pro-
fessor of Electrical Engineering at The University of Michigan. For the highly
technical details of the research effort conducted under this contract, the
reader is referred to the following two Interim Engineering Reports: (1)
06114-1-T, June 1964, by John H. Holland and (2) 0611L-2-T, March 1965, Hol-
land et al.
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ABSTRACT

The general objective of the program of research was to construct a log-
ical theory of adaptive systems, through theuse of automata theory and nerve
net simulation. Among the sub-goals were the following: obtain a general
framework for the description of learning machines in a formalized environ-
ment; investigate the formel methods by which a mechanical system can make
use of regilarities in its environment so as’fruitfully to depart from sim-
ple enumerative behavior (i.e., seek to define efficient adaptation tech-
niques); obtain precise mathematical characterizations of adaptations, adap-
tive rate, and adaptive efficiency; conduct a series of neuron net computer
experiments to determine the conditions under which networks of idealized
neurons would exhibit goal-directed(behavior. .

Specific results obtained and conclusions reached as a result of this
research include the following:

a. Once the appropriate formal framework for study of adaptive systems
has been determined and defined (0611L4-1-T), the central problem be-
comes the definition of construction in universal spaces. Initial

steps toward this definition are described.

b, The application of a formal definition of probabilistic sequential
machines to certain behavior of biological cells (the basic com-
ponents of all natural adaptive systems) yields a theoretical ex-
planation of the relation between the information coded in DNA in
the chromosomes to the production of proteins, particularly enzymes,
at the ribosomes of the cell,

c. TFrom the first of a three-stage series of experiments, it was de-
termined that under certain conditions, simple cycle-less neuron
nets can correlate their output behavior with patterned inputs.

Publication of this technical documentary repor£ does not constitute Air

Force approval of the report's findings or conclusions, It is published
only for the exchange and stimulation of ideas.

iii



TABLE OF CONTENTS

I. A FRAMEWORK FOR THE FORMAL DESCRIPTION OF MACHINE ADAPTATION

II. EFFICIENT ADAPTATION IN AUTOMATON SYSTEMS ,

III. PROBABILISTIC SEQUENTTIAL MACHINES AS MODELS OF GROWTH AND
ADAPTATION IN CELLULAR SYSTEMS

A.

B.
C.
D.

Examples of Probabilistic Sequential Machines
Example 1. Probabilistic Internal Operation:
A Slot-Machine
Example 2. Deterministic Internal Structure:
Chemical Production Cell
Formal Definition of Probabilistic Sequential Machine
Applications to Biological Cells
Suggestions for Future Research

IV. NEURAL NEIWORK EXPERIMENTS

V. FURTHER RESEARCH

AO
B.

REFERENCES

Efficient Adaptation in Automaton Systems
Probabilistic Sequential Machines as Models of Growth
and Adaptation in Cellular Systems

Neural Network Experiments

iv

Page

15

1L
14

1k
1k

15



I. A FRAMEWORK FOR THE FORMAL DESCRIPTION OF MACHINE ADAPTATTION

A system of "universal embedding spaces" for automata was defined. This
phase of research was necessary since a universal embedding space for autom-
ata provides a uniform common framework for comparisons of the computational
and constructional complexity and efficiency of alternative particular form-
ulations of adapting systems (comparisons whjch would otherwise be almost im-
possible to make owing to differences in presentational conventions) .

To be satisfactory for the intended purpose, any growing automata system
must ‘possess the property that both the adapting mechanism and its environ-
ment must be expressible in the system; this property ensures that mathemat-
ically rigorous statements can appropriately be made about the interaction of
mechanism and environment. For example, various particular systems for the
expressing of automaton growth, self-duplication, etc., have been formulated
(Burks,l Holland,u von Neumann,15 Church,5 Myhill,lu MborelB), Any of these
formulations can be employed to express the adapting machine and its inter-
action with its environment; thus each of these particular systems provides
a candidate for a framework for theoretical work in adaptive systems theory.
Concepts on adaptation developed in one of these systems, however, are often
difficult to translate into a different system, In order to make comparisons
between concepts formulated in different systems, and in particular, to com-
pare adapting mechanisms according to their adaptive efficiency, a unified com-
mon ground of comparison, apart from particular conventions, must be found.

"Universal embedding spaces" provides a means of rigorously describing
what one might mean by growth, self-description, adaptation, rate of adapta-
tion, etc. (matters which are part of the ultimate goal of this line of re-
search) in any of a wide range of growing automaton formulations.

A closer look at one of these particular formulations of growing autom-
ata, that of John von Neumann, will make apparent some of the properties which
must be accommodated. Von Neumann had as his ultimate goal the construction
of automata by automata; he therefore set up his space in such a way that com-
plex automata could be formed by connected complexes of component automata.

In addition he made his space homogeneous; at every point in the space there
was a copy of the same 29-state component automaton. This meant that if his
construction procedures could be carried out in one location in his space,
they could be carried out in any other location.

The component 29-state automata had to possess the property that they
could be combined into a complex automaton having universal computing prop-

Manuscript released by authors March 1965 for publication as an RTD Technical
Report.



erties; (i.e., it had to be possible to form a Turing machine from complexes
of the underlying 29-state automata). This assured that anything that could
be done by machine was representable, thus that no (possibly important) ma-
chine procedure had been eliminated. It is properties such as these—con-
nected complexes, homogeneity, computational universality-—which must be pro-
vided for in a universal embedding space.

Thus, according with one's theoretical or practical aims regarding var-
ious systems of growing automata for expressing the structure and behavior of
adapting systems, the "universal spaces" provide a common descriptive frame-
work.,

The Interim Technical Engineering Report "Universal Embedding Spaces
for Automata," (06114-1-T, June 1964, by John Holland) presents in detail
the research toward this goal. A description of the particular results of
this report will be given now; the detailed presentation of the theorems and
their proofs will be found in the subject report.

The complexes of automata which can in general be built up from an ar-
bitrary finite or countably infinite set of automata were characterized. 1In
this composing of larger automata (the potential adapting automata and their
environment) from component automata, certain comnection properties are re-
quired. These properties are obtained by viewing automata as devices for
transforming (input)- sequences into (output) sequences (the transition and
output functions being combined and being viewed as a functional mapping se-
quences into sequences). (This sequence-to-sequence viewpoint follows the
work, for example, of Burks and Wright in their "Theory of Logical Nets"?
rather than the finite string acceptance concept stemming from S. C. Kleene
in his "Representation of Events in Nerve Nets and Finite Automata."9)

By use of a composition function, either component or already "composed"
automata can be combined to form yet larger autometa, This composition func-
tion is so defined that certain desirable properties are retained, viz. unique
solutions, finite automaton computation-universality. Computation-universal-
ity is so defined that for every finite automaton computation there is some
composition of automate which can perform the computation, and which is em-
beddable in the universal space. The desired computation-universal property
for an automaton composition requires that the composition be a countably in-
finite, iterated structure on a single component and with commutativity of
output wire labels.

The set of homogeneous computation-universal compositions so obtained
can be divided into two sub-classes according as the inputs of an automaton
defined in this space be able to effect its outputs only after a delay or not.

The sub-class requiring the delay includes such important formulations
of growing automata as that of von Neumann. The alternative sub-class (which

includes the "iterative circuit computers" of J., Holland) possesses theoret-

2



ically useful, but practically rather stringent properties; it permits the

( sometimes- impractical) concept of an output response to a present input even
though arbitrarily large numbers of connected elements may 1ntervene, (These
two sub-classes are related to the Mﬁoore,12 and to the Mbaly L formulations
respectively, of finite automata theory.)

Again, for practical reasons, one might wish to rocus on the more "realis-
tic" universal spaces only. These would be spaces of the delay-type only, in
which the furtherrestriction is made that freedom of "fan-out" must be restric-
tedlgexPOnential increase of numbers of output wires is barred; see McNaugh-
ton-V) .

However, there is no way of simulating finite automata in a von Neumann
array in such a way that the corresp@nding behaviors all occur with some con-
stant change of time scale, t' = kt + c} the more complex the finite automa-
ton. smulated, the slower the simulation. On the other hand, an arbitrary
finite sutomaton can be simulated in an iterative circuit cemputer, preserv-
ing not anly behavioral timing (k = 1) but also details of local structural
and behavioral relation.. (E.g., the simulation can reflect differences cor-
responding to realization in terms of the stroke function, {|}+) In fact, it
 can be shown such simulation is possible in iterated cellular arrays with
locallyy finite information transfer characteristics only if there is pro-
vision for the "méking" and "breaking" of non-delay paths. For development
of these points the reader is referred to Ref, 5.



II. EFFICIENT ADAPTATION IN AUTOMATON SYSTEMS

Completion of the work on universal spaces provided a formal framework
in which arbitrary adaptive organizations could be defined and discussed in
a uniform way.° This enabled a start to be made on the problem of comparing
various classes of adaptive systems, especially with regard to efficiency.
This initial approach turned on the following ideas:

1. A common class of environments was to be specified—the tree-search
environments. Each element of the class is a tree with payoff as-
signed to its termination (cfi von Neumenn's normal form for gemes. ).

2. The output of the adaptive system at any given time was to be the
"next move" specification; its input was to be the state description
("board configuration") corresponding to its current pesition in the
tree, '

3, Various organizations for adaptive systems were to be described in
terms of the corresponding automets organization (growing logical
nets) and then described in the universal embedding space (cf, the
discussion of embedding in TDR 0611lk-1-T, Section 3).

4, Comparisons were to be made In the efficiency with which the various
embedded systems accumulated payoff. The first notion to be used
here was to compare the payoffs accumulated to time t, pp(t), ppe(t),
by two different strategles, T and T', according to the criterion

1im “T(t)
t4o0 pLT,(‘o)

related to the notion of gambler's ruin in probability.

Several considerable difficulties were uncovered, the most important of
which concerns the definition of construction in universal embedding spaces.
This concept enters when the embedded system changes its organization to em-
ploy a new strategy for exploring the tree. Until this concept can be given
a precise formulation for universal embedding spaces, the set of admissible
strategies (T} remains undefined, This in turn leaves the domain of the
above ratio criterion unspecified.

In sumary, although considerasble progress (and a deeper insight) has
been ‘obtained, in our .objective of a formal framework for study of adaptive
systems, difficult problems still remain. In our opinion the class of uni-
versal embedding spaces is the appropriate formal framework for this investiga-



tions The first nine months of this contract were spent in giving precise
definition to this class and the resulting work is being published in a fest=
schrift for Norbert Wiener. The last three months were less productive of
concrete results, being primarily a period of discovering obstacles to further
progress and getting a clear idea of the effort required to overcome them—
central among these is the definition of construction in universal embedding
spaces.

Further research along these lines should be directed to a study of rea-
sonable definitions of construction in universal spaces followed by use of
such definitions to spécify the class of admissible strategies. for adaptation.
Having thus precisely specified the domain of the proposed ratio criterion,
it becomes possible to specify near=optimal efficiencies for certain tract-
able problems of adaptation and, ih more difficult cases, provide necessary
conditions (guidelines) for efficient systems.



III. PROBABILISTIC SEQUENTIAL MACHINES AS MODELS
OF GROWTH AND ADAPTATION IN CELLULAR SYSTEMS

The purpose of this research was to develop a portion of the theory of
automata that would be suitable for explaining certain behavior observed in
biological cells, the basic components of all natural adaptive systems. We
wished to establish a formalism which relates the information coded in DNA in
the chromosomes of a cell to the production of various proteins, particularly
enzymes, at the ribosomes of the cell.

Arelatively simple model of this process which falls within the frame-
work of probabilistic sequential machines is constructed. It differs from
many mathematical formalisms of cell operation in that it is a steady state
model, rather than a continuous diffusion model. Meny details in the opera-
tion of the cell which are not yet known are lumped into individual param-
eters in the model. Some hypotheses about the operation of the idealized cell
allow it to be studied without knowing all the values of the parameters. For
example, results about the behavior of the idealized cell can be obtained
if one assumes such things as: (1) diffusion between ribosomes is symmetric,
and (2) when two or more chromosomes are active in controlling the production
of the protein, the process is independent of the order in which the informa-
tion is received, i.e., the control sequence received from the various chro-
mosomes is commutative. Assumption (2) attempts to make the mechanisms of
control independent of the random spatial arrangement of the chromosomes. Be-
fore a formal definition of probabilistic sequential machines is stated,
some examples of them will be presented.

A. EXAMPLES OF PROBABILISTIC SEQUENTIAL MACHINES

We consider here two models, one of which can be considered probabilis-
tic and one of which can be considered deterministic, although both fall
within the framework of probabilistic sequential machines. After the examples,
which are intended to clarify basic concepts, will be presented a formal defini-
tion.

Example 1. Probabilistic Internal Operation: A Slot-Machine

A simple model of a probabilistic sequential machine is a slot-machine.
The static position of the dials represents the present state of the machine,
Usually there are 20 different positions on the dial and 3 dials for a total
of 8,000 states. The input consists of putting in a coin and pulling a lever,
causing the machine to travel transiently through many states until it settles
down in one state. An output is associated with each state. Nothing (which
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is associated with 0) comes out unless the dials all display the same object.
In that case, some change tumbles out (which is associated with the correspond-
ing real number) usually dependent only on the kind of object being displayed,
i.e., the state of the machine. Such a machine whose output is controlled by
its states is known as a "Moore machine. " Fach state can be associated with
a number between 1 and 8,000, and the output for each state can be tabulated
in a column vector or 8,000 x 1 matrix. In the formalism, this column vector
will be called the "output vector" and designated by the symbol "F." The out-
put for state i will be written as "Fi."

The enormous number of distinct ways the lever can be pulled are prevented
from significantly influencing the outcome by spring loading. Hence for all
practical purposes there is only one kind of transition law associated with
pulling the lever., If the randomness of transition of the dials caused by var-
iable factors like dust friction, humidity, heating and small vibrations do
not change over long periods of time, the probability of a transition from any
state of the dials to any other can be determined experimentally to any re-
quired precision. This situation is summarized formally in the assumption
for probsbilistic sequential machines that the tramsition probabilities are
stationary. Symbolizing the usual lever play of the machine by L, the transi-
tion probabilities can be tabulated in a matrix A(L), with the entry in the
i'th row and j'th column (written A(L)ij being the probability of & transi-
tion from state i to state j via input L.

If there were no other permissible way to effect the rotation of the
dials than by a pull of the lever, then the behavior of a slot-machine A
could be described as a finite state Markov chain with rewards and transition
matrix A(I). However, sudden small external shocks during the rotation of
the disls can influence the state transitions of the machine. In order to
model completely how such machines are played, we can consider a finite re-
peatable set of such non-standard inputs to the machine. For instance, one
such input might be described as the application of a kick with a prescribed
kinetic energy on a certain spot on the machine occurring 1/5 of a second
after the lever is released. Symbolizing this manner of playing the machine
by K, the transition matrix A(K) could be determined experimentally since the
input is repeatable. A finite set of such repeatable inputs could be defined
and their effects on the behavior of the machine ascertained.

To find out how strings of S and K inputs to the machine affect its op-
eration, it is sufficient to multiply the matrices A(s) and A(K) together
in the order specified by the string, e.g., if a string X is SKKSK then the
transition matrix A(X) is the product A(S)-A(K)-A(K)-A(S)-A(K).

Consider how the dials of the machine might be found initially. If
the-dials can be completely observed, the initial state of the machine is
observeble. In this case, in the formalism the initial state i is represented
by a vector I (or a 1 x 8,000 matrix) with a 1 in the i'th component and



zeroes elsewhere. On the other hand, the dials may not be completely visible,
and we may wish to specify the average behavior of a large number of machines
run simultaneously or we may wish to consider the average return from playing
one machine only when it is left by other players in one of a set of preferred
states. In any one of these cases, I can be a stochastic vector (Il:---,I8,OOO)
where I; is the probability of being in state 1 at time tj.

In the general case, the next state probabilities starting with an initial
state vector I and an input string X are given by I.A(X). Hence the expected
value of output for a machine A starting with initial state distribution I and
output vector F after a string X of inputs has occurred is Jjust

which is a bilinear form in I and F with form matrix A(X). The variance in
output and other higher moments can be defined analogously.

Example 2. Deterministic Internal Structure: Chemical Production Cell

Suppose a chemical tank A is divided into several isolated compartments
Al,...,Ay by partitions which are interconnected by an electronically con-
trolled system of pumps and valves. Suppose that there is a finite set of
controls 2, = 0,1,...,K-1 and that for each control c a fixed fraction of the
chemical in compartment Aj, vgj, is pumped into compartment Aj. For all con-
trols ¢ in Z, the full influence on redistribution of liquid in the tank can
be described in a n x n matrix A(c) with vgj being A(C)ij~ Furthermore, sup-
pose that the liquid being pumped between compartments is a catalyst which
causes production of a desired end product in each compartment with & differ-
ent efficiency, i.e., if the mass fraction of catalyst in Aj is Pi and Fi
is the efficiency of Aj, then the output of end product is PijFj. Note that
it is assumed thet the output of the compartment depends linearly on the cat-

alyst present,

The initial state I is an n component vector with the ith component I;
- being the mass fraction of catalyst in compartment i. Note that

since the tank is a closed system as far as the catalyst is concerned. The
distribution of mass fractions of catalyst over the compartments after a
sequence of controls X = ij..,iy is Just

T-A(11)* vov *A(dm) = I-A(x) .
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That is, (I-A(X)); is the mass fraction of catalyst in compartment i after
starting with initial distribution I of catalyst fractions over compartments
and the string of control inputs X = ij...im.

The total end product from the tank is the sum of the outputs from each
compartment:

s

(IA(X))1Fy

»

]
[l

i

which can be written I.A(X):F in matrix notation. This expression has

the same form as the expectation of output for the probabilistic slot-machine,
but there are no overt probabilities involved here. The mass fractions of
catalyst play the same role as the probabilities in the first example, How-
ever, the output will still be written like an expectation as EA(X)a

The total end product accumulated, Ty, for the string of controls X
from time ty to time ty +m is given by adding the output from each substring,
i.e.,

T, = EA(ll) + EA(lllg) Fowot E(lllguaalm)

B. FORMAL DEFINITION OF PROBABILISTIC SEQUENTIAL MACHINE

By a probabilistic sequential machine is meant a system which satisfies
one of the following two definitions:

Definition 1l.1l: A (Mbore-type) probabilistic sequential machine.
Ais a system A=<mn, I, S, ., A(0),...,A(k-1), F, 0 >
where

n: a natural number, the number of states

I: an n-dimensional stochastic vector, the initial state vector

S: set of state vectors = {87 = (1,0,...,0),...,8, = (0,...,0,1)

Y: alphabet set 2 = (0,1,2,...,k-1)

i): 1=0, 1,..., k-1 n x n switching matrix for input symbol i.
A(i)zm is the probability of a transition from state £ to state
m via symbol 1.

F: output vector, an n-dimensional column vector whose entries are
real numbers

0: output function 0(S3) =S; x F=TF; : Sy € S

A(

Definition 1.2: A (Mealy-type) probabilistic sequential machine,
A=<n, I, 8, 2, A(0),...,A(k-1), W, P>




where n, I, S, 2, A(0),...,A(k-1) are as in 1.1 and where the output func-
tion P satisfies

P(84,d) = WijS1 € 5, jel

It is an easy matter to show that Definition 1.1 and 1.2 are equivalent
in the following sense: For every Moore-type probabilistic sequential machine
there is a Mealy-type sequential machine whose output is the same random var-
iable over each input and vice versa. Consequently, we will be concerned only
with the properties of Moore-type probabilistic sequential machines, which
from now on will be called probabilistic sequential machines.

C. APPLICATIONS TO BIOLOGICAL CELLS

Comparing examples 1 and 2 to the formal definition we see that both in-
deed are probabilistic sequential machines. We now consider a tentative model
of the production of protein by the ribosomes of a biological cell which is
based upon example 2 and hence views the cell as a probabilistic sequential
machine, We regard the cell as the tank and the compartments as partitioned
areas in the cytoplasm around ribosomes. Instead of electronic pumps and
valves, chemicals cause changes in the isolation of the compartments, perhaps
by changing the permesbilities of membranes in the cytoplasm. The input con-
trol alphabet, controlling the chemicals affecting the isolation of the ribo-
somes, are distinct sequences on the chromosomes which cause steady state
changes in the distribution of the catalyst. A transition matrix might be
experimentally determined for each sequence. We suppose in addition that the
catalyst linearly affects the production of some protein at the ribosomes and
that the ribosomes have different efficiencies. Hence the output of the cell
of the protein, which may be an enzyme, can be changed from one control time
to the next by redistribution of the catalyst among the ribosomes. Whether
these suppositions are correct for some protein will have to be determined ex-
perimentally. However, from them can be deduced certain aspects of the be-
havior of the cell which may be more easily observed.

At present the theoretical framework of probabilistic sequential machines
(P.S.M.) is being used to study two important phenomena in the behavior of
cells. The first phenomensa is that of mosaics in the chromosomes of cells,
i.e., the influence on the protein production of the cell by one, two, or
three extra chromosomes due to a hereditary accident. P.S.M. theory has been
used to derive inequalities between the amount of protein produced by normal
cells and mosaic cells, subject to the assumptions (1) and (2) of the introduc-

tion.

The second phenomena concerns the underlying causes of cancerous behavior
of cells. Presumably such behavior is caused by alterations of the production
of enzymes. There is a longstanding dispute among experts in carcinogenesis
as to whether the behavior of the cell is more severely affected by ruptures
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in the cell wall or by changes in the chromosomes.

Ruptures of the cell walls undoubtedly influence the isolation of the
ribosomes. In the P.S.M. model, ruptures are considered to cause merging of
states of the machine, analogous to ribosomes being forced into the same chem-
ical neighborhood. There is uncertainty in the model as to what efficiency
to assign to the state corresponding to a rupture area containing two or more
ribosomes based upon the initial efficiencies of the ribosomes. However,
certain plausible candidates have been tried in lieu of any experimental ev-
idence. The study of the behavior of the malhine after certain of its states
have been merged has its foundations well established mathematically in the
study of deflated matrices., Research will be continued on the influence of
different kinds of state merging on properties of the behavior.

If definitive results about the output could be obtained from the study
of merged states, they could be compared to outputs obtained by altering the
input sequences in ways reflecting how chromosomes are known to be defective.
Then for a given machine or for a given class of machines one could establish
(perhaps by simulation) which kind of change, altering of input symbol or
merging of states affects the output more drastically. Given a valid model
of the protein production of the cell, this would settle the dispute as to
whether ruptures in the cell walls or defective chromosomes are the more im-
portant factors in carcinogenesis.

The two major problems in biology at which this research is aimed can-
not be resolved until both s large amount of theoretical effort and relevant
experimental data are obtained. It was the intent of this research to ad-
vance the theory as far as possible in light of what is known while suggest-
ing measurements to be made and plausible hypotheses to be checked,

D. SUGGESTIONS FOR FUTURE RESEARCH

This research has suggested two auxiliary areas of investigation. As we
have pointed out, the expected value of output for a string X for a probabil-
istic sequential machine is a bilinear form in I and F with form matrix A(X).
This nice mathematical description occurs because we assume the output from
a state is linearly dependent on the probability of being in that state. A
more general approach would be to assume the output from a state is some
polynomial function of the probability of being in that state. However, the
expected value is no longer a bilinear form and standard matrix methods have
not been developed to study such formulations. A theoretical study of such
structures might be of value to other fields in which bilinear forms are used
~for linear approximation because of the lack of something better.

A more radical change in the model for a cell suggests another area of
investigation in matrix theory. Suppose each "symbol matrix" that is applied

because of the activity of the chromosome controls the diffusion for several
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time steps, so that the proper model for the diffusion process involves powers
of the "symbol matrices." In fact we may assume that a symbol acts on the
distribution of concentrations until it drives the vector of concentrations
into an eigenvector of the symbol matrix which is a stable distribution of
concentrations, i.e., the diffusion process has reached a steady state.

The mathematical question is the following: Given the K symbol matrices
A(0),...,A(K-1) one can compute their stable distributions or eigenvectors
(vectors such that V A(i) = ¢,V for some constant c;) and usually there will
be n such eigenvectors for each n x n matrix, “Some will be stochastic and
hence possible distributions of catalysts. But given an arbitrary stochastic
eigenvector of the machine, which other stochastic eigenVectors can be reached
from it by application of the symbol matrices in the manner described above?
That is, what sequence of steady state operation is possible in such a system
with the answer being given in some computational manner from the symbol
matrices.

12



IV, NEURAL NETWORK EXPERIMENTS

The object of this study was to devise a series of experiments to test
the self-organizing capability of large neural network systems in realistic
learning situations. The theoretical basis for the work is contained in the
Hebb-Milner cell-assembly theory, especially as developed later by J. H.
Holland and J. W. Crichton.® The series of experiments was divided into
three stages: the first stage deals entirely with simple, cycleless nets and
is designed to allow determination of the basic network parameters associ-
ated with the threshold, fatigue, and synapse-value functions. The central
idea of this sub-series of experiments was to determine whether a neuron of
the model could distinguish patterned inputs from unpatterned ones by cor-
relating its output behavior with the patterned inputs. This property must
be present to ensure the self-organizing capability ultimately desired, i.e.,
the formation and growth of cell-assemblies. The second stage would continue
with the basic network configuration of the first, but introduce gradually
more and more feedback among the neurons, to the point where some of the the-
oretical observations made by Crichton concerning the behavior of cell as-
semblies could be tested, as well as such things as the alternation of activ-
ity of cell-assemblies required by Hebb's basic theory. The third stage
would deal with learning experiments as such, testing the adequacy of the
cell-assembly hypothesis in learning. A sub-series of experiments has been
planned for this third stage.

The first stage only has been completed thus far and the correlation
hypothesis was shown to hold under certain conditions. A number of experi-
ments were performed using simple, cycle-les§ nets in an attempt to derive
the correct functional forms of the threshold, fatigue, and synapse-value
functions, all of these being essential parameters of the models. On the
basis of the experimental results, a derivation was obtained for the thresh-
0ld curve and the general forms of the fatigue and synapse-value functions.
These last two functions, it turns out, must be hysteresis functions of a
certain type whereas the former, the threshold function, must be a hyperbolic
function of the recovery state.

The basic theory of Crichton (see J. W. Crichton, Doctoral Dissertationm,
University of Michigan, 1964) concerning trends in synapse-level changes was
demonstrated by the experiments of the first stage.

For the future, it remains to test the functional forms of the network
functions mentioned above, then to begin the second stage of experimentation,
 where cycles are introduced into the networks. It is hoped that this second
series of experiments can be concluded with a test of Hebb's hypothesis of
alternation of cell-assembly activity.
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V. FURTHER RESEARCH

The following research goals and directions are suggested as possibly
fruitful areas of further investigation.

A, EFFICIENT ADAPTATION IN AUTOMATON SYSTEMS

1. Conduct a study of reasonable definitions of construction in uni-
versal spaces.

2, Specify the class of admissible strategies for adaptation, using
the definitions studied in 1.

3, Attempt to specify (through the application of 1 and 2) the near-
optimal strategies for tractable problems of adaptation. In more
difficult cases, 1 and 2 can be utilized to provide necessary con-
ditions (guidelines) for efficient systems.

B. PROBABILISTIC SEQUENTIAL MACHINES AS MODELS OF GROWTH AND ADAPTATION
IN CELLULAR SYSTEMS

1. Investigate the mathematical structure of probabilistic sequential
machines whose output from a state is a polynomial function of the
probability of being in that state.

2. Characterize the sequence of eigenvectors which can be obtained by

arbitrarily numerous applications of the symbol matrices in order
to construct a steady state diffusion model of the cell.

C. NEURAL NETWORK EXPERIMENTS

1. Test the functional forms of the network functions discussed in
Section IV of this report.

2. Conduct a series of experiments introducing cycles into the networks.
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