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Abstract

In adaptive radiotherapy, measured patient-specific setup variations are used to
modify the patient setup and treatment plan, potentially many times during the
treatment course. To estimate the setup adjustments and re-plan the treatment,
the measured data are usually processed using Kalman filtering or by computing
running averages. We propose, as an alternative, the use of Bayesian statistical
methods, which combine a population (prior) distribution of systematic and
random setup errors with the measurements to determine a patient-specific
(posterior) probability distribution. The posterior distribution can either be
used directly in the re-planning of the treatment or in the generation of statistics
needed for adjustments. Based on the assumption that day-to-day setup
variations are independent and identically distributed Normal distributions, we
can efficiently compute parameters of the posterior distribution from parameters
of the prior distribution and statistics of the measurements. We illustrate a
simple procedure to apply the method in practice to adaptive radiotherapy,
allowing for multiple adjustments of treatment parameters during the course of
treatment.

1. Introduction

Bayesian methods have been widely used in statistical inference. Applications range from
simple parameter estimation to the regularization of ill-posed inverse problems. Recently, the
use of Bayesian methods has also received attention in other settings such as the estimation of
uncertainties in dose distribution in inverse treatment planning (Unkelbach and Oeltke 2005).
Here we apply established Bayesian methods to sequential refinement of knowledge on a
specific patient as repeated measurements of the states of the patient are performed during the
course of treatment, often known as adaptive radiotherapy (Yan et al 1997). Since multiple
refinements may be performed during the course of a treatment, it is important that there is
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a convenient procedure to repeatedly apply the method, in contrast to some applications that
need only a one-time estimation.

During radiotherapy treatment planning, the distribution of error over a general patient
population is often used to determine setup and treatment margins for an individual patient.
In adaptive radiotherapy, however, individual patient characteristics are measured during
treatment and used to refine the therapy by correcting for systematic setup error and creating
individualized margins of treatment fields. In particular, fraction-to-fraction variations in setup
for an individual patient can generate decisions for future treatments—for example, by using
Kalman filtered data (Yan et al 1997) or sample statistics (Birkner et al 2003). Our group has
been exploring the possibility of using the Bayesian method in estimating the patient-specific
setup parameters (Ten Haken e al 2000, 2001, Lam et al 2004). We present here an approach
to adaptive radiotherapy planning that efficiently and effectively combines a sequence of
observed individual patient setup variations with data from the general population.

For illustrative purposes, we limit an individual patient’s fraction-to-fraction setup
variation to be a scalar X, representing the inferior—superior direction. (Extension to the
realistic case of three-dimensional variation [ X, ¥, Z] can be found in the appendix.) We first
make the usual assumption that X has a Gaussian (Normal) distribution fy (x) with ‘systematic
error’ given by the mean m and ‘random’ setup error given by the standard deviation s. That
is, X has the probability density function (p.d.f.)

ferim,s) = (5~ et (1)
N = S 2s .
x(x;m,s s e

(Here, and in what follows, a capital letter denotes a random variable and the equivalent lower
case letter its associated realization.)

A sequence of k independent and identically distributed setup variations over k fractions
is the random k-vector [X; X, ... Xi], where X; is the variation on the ith fraction.
[X: X, ... Xi] therefore will have the joint p.d.f.

k k
1 2 1
le xzmxk(xl X2 ... Xpym,S) = <m) exp <_F§(Xi —m)2> , k=1,2,...,

2

where x; = the observed variation on the ith fraction.
At the core of our Bayesian analysis are three assumptions:

(a) there is a population of potential patients over which there is a distribution of values
of the mean m and standard deviation s. That is, the mean and standard deviation are
the random variable pair (M, S);

(b) a joint p.d.f. flg),)s(m,s) (referred to as the ‘prior’ distribution or the ‘population’
distribution) on the pair (M, S) can be determined from existing patient population
statistics;

(c) without information to the contrary, each patient can be considered to be randomly selected
from this population.

2. Theory

2.1. Using Bayes theorem

Since an individual patient is randomly selected from the population, before taking any setup
measurements this patient’s variation has a Normal distribution with parameters (M, §) having

p.df. fis(m,s).
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Bayes theorem (the fundamental rule of inference) can then be used to combine imaging
data from individual patient measurements governed by equation (1) with data taken from the
population statistics as incorporated in 1540’)5 (m, s). The result is an ‘updated’ (or ‘posterior’)

joint p.d.f. for the pair (M, §) that can then be used to make subsequent treatment decisions.

In particular, after observing k daily setup-variation values x; x, ... xi, the probability
distribution of (M, S), which can be written as f,‘(,f’)s(m, slx1 x2 ... xx), will be updated
according to Bayes theorem:

0
© fa e x (X2 xgmys) £ (m, )
ws(m,s|lxy xo ... xp) = . 3)
’ . (0) d d
Lo fx o x x (e X2 oo xim,8) fo s (m, s) dm ds
It is also possible to iteratively compute the updated distribution using
(k—=1)
Ixo s m, s) fry s (m, s)
O m, slx x LX) = £ M. , k=1,2,3,....
. . (k=1)
L fxGasm,s) fo s (m, s) dm ds
“)
As a result, as data x; xp ... x; are collected, a sequence of posterior distributions
flff,)s (m, s|x; x» ... xi) can be generated from the prior distribution fzg),)s (m, s). The prior

distribution only has information about the population of patients. However, as an individual
patient’s data are collected, when the number of fractions k& becomes large the posterior
distribution f,ffy)s(m, s|x1 x2 ... x) will tend to become peaked at m = 6; (the sample
mean) and s = 5 (the sample standard deviation), where

1 k k
O = % ZX,’, Z(xi - ek)2~
i=1 i=1

Bayes theorem is the only formal way to gradually migrate from the population distribution
of (M, S) to a distribution based on specific patient data. The generation of a posterior
distribution from a prior distribution and observed data via equation (3) has been extensively
studied and is widely used in statistical decision making.

vl
s
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| o=

2.2. Using a conjugate prior

Determining the population distribution f;ﬁ)s(m, s) is a matter of collecting appropriate
population data. However, there is both a computational and interpretive advantage in
fitting fﬁ(ﬁ)s (m, s) to a member of a family of distributions that is ‘closed under sampling’.
Also known as a ‘conjugate family’ of distributions, such a family has the property that the
posterior distribution f A(/f,)s (m, s|x; x ... xi) will also be a member of the family.

To take advantage of this property and to make subsequent calculations tractable, we
use an alternative form of the Normal distribution in which, instead of using the variance 52,
variability is expressed by a parameter called the ‘precision’ 7 which is defined to be r = 1/s2.
If the variance is a random variable S2, then the precision is also a random variable, given by
R = 1/52. Equation (1) can then be rewritten as

I—

fx(x;m,r)=N(x;m,r)

and equation (2) can be rewritten as

& k
fxox  x,(x1 X2 .. xgsm,r) = (é)z exp (—% ;(x,- —m)z) , k=1,2,....
6)
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The conjugate family for (M, R) can be shown to be (see, for example, DeGroot 1970)
the ‘Normal-Gamma’ distribution with parameters «, 8, n and t:

e(m, ) = N-G(m, r; a, B, tt, T) = N(m; p, tr)y (r: &, ), (7)
where N (-; -, -) is the Normal probability distribution defined in equation (5) and
B a1 —pi
ta,B) = ——1% 8
y(t; o, B) @) e 3

is the Gamma probability distribution, where I'(«) is the standard gamma function (e.g.,
['(i) = (i — 1)! when i is a positive integer).

2.3. Interpreting the prior distribution

Since we intend to use the Normal-Gamma distribution of equation (7) to capture a priori
knowledge of the population distribution of setup variability, it is helpful to examine and
interpret its parameters in this context.

We first note that with this prior distribution it can be readily shown that the marginal
distribution for M is a Student’s ¢ distribution (with 2« degrees of freedom, location parameter
u and shape parameter %-) and the marginal distribution for R is y (r; «, 8). However, since
the joint distribution given by equation (7) is not the product of these two marginals, M and R
are not probabilistically independent. This is not a deficiency, however, in that (as noted by
DeGroot 1970, p 170) ‘even if the prior distribution of M and R specified that these variables
were independent, their posterior distribution after the value of a single (individual patient’s)
observation had been noted would specify that they were dependent’.

The shapes of these marginal distributions (and of the joint distribution) are reasonable
representations for patient populations, and the availability of four parameters allows a good
deal of freedom obtaining a fit to the data. Moreover:

e The parameter u, being the expected value of the systematic error M over all patients in
the population, can reasonably be anticipated to equal O since there is no a priori reason
to believe that this systematic error has a bias (in any dimension) high or low. In what
follows, however, we allow u to be general, since this does not create any analytical or
computation difficulties.

e Given that the random error has some value for the standard deviation S = s (and
therefore a precision of R = r = 1/s?), the parameter T represents the precision with
which the systematic error M is known, expressed as a value proportional to r. For
example, suppose the population data support an assumption that the random error has a
standard deviation of s = 5 mm, which implies r = 1/5% = 0.04 mm~2. Further, suppose
the data support using an expected value of systematic error M of © = 0 mm with an
associated standard deviation of 8 mm, then the precision of M is 1/8%> = 0.0156 = tr
and so T = 0.0156/0.04 = 0.39.

In particular, it is straightforward to show that the prior (e.g., population) moments of
M, S and R are

EIM] = p, Var[M] = % )
2
E[R] =<, Var[R] = &, (10)
B B
1
E[S] = M, Var[S] = b (E[SD?, (11)
(@) 1

where I'(y) is the standard gamma function.
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2.4. Parameters of the posterior distribution

Since the prior distribution equation (7) is conjugate, the distribution after observing
measurements X is also a Normal-Gamma distribution, with parameters oy, B, ux and t,
where

o =a+k/2, (12)
k
1 kt (6 — p)*
=B+5 Y (=0 ——— 13
Bk /3+2i:](x )+ 2 h) (13)
T+ kb
= BT 14
Mk — (14)
T =T+k. (15)

Note that setting k = O (i.e., before any patient data are observed), these equations produce
the prior parameters o = &g, 8 = Bo, L = o and T = 1.

Defining the posterior moments of M, S and R, after observing x, to be E[M;], E[Si] and
E[R], equations (9)—(11) become

E[M] = w, Var[M;] = %, (16)
E[R] = 2* Var[R,] = o (17)
o B’ o B’
1
E[S] = M, Var[$x] = P — (E[S:D> (18)
(o) ap — 1

We can see that the posterior distributions evolve smoothly from the (prior) population
distribution to a patient-specific distribution. As k — oo, E[M] — 6; and E[S] — 5,
the sample mean and sample standard deviation, respectively. The effect of the population
distribution is diminished as more data are accumulated.

It is also useful to compute the unconditional (sometimes called the ‘predictive’)
distribution f¥,,, (xx+1) for patient variation X;.; on the (k + 1)th fraction, given the joint
distribution f’ 11(4](.)1( (m, r) computed on the basis of the previous k observations:

Fxn (Kas1) = / / Fxon (s 1, 1) frp om0, 7) dm dr

= f Sxen Gers my r)N (ms g, Ter)y (5 o, Br) dmdr. (19)

Even though f181, z(m,r) has a conjugate form, the predictive distribution f,,, (x¢+1)
does not have a convenient analytical representation, and must be computed numerically.
However, it is possible to compute its moments, in particular,

E[Xi+1] = tr, (20)
ﬂk 1+ Tk
Var[Xi41] = ———= , (21)
(ar—1) w
and, for the first fraction (when no patient observations have yet been made), k = 0
and therefore E[X,] = u, Var[X;] = (a‘i 5 “TT These are particularly important for the

practitioner, since they are the mean and variance of the patient’s fotal setup error for the
(k + 1)th fraction, taking into account population data as well as the individual patient’s
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data on the previous k fractions. Indeed, these are precisely the values that should be used
in computation of treatment margins. Note, in particular, that in the Bayesian context the
concatenation of uncertainty in the systematic error M and in the random error R is given by
the multiplicative form of equation (21). However, this is equivalent to the weighted sum
often used (e.g. van Herk et al 2000), since in general (suppressing the fraction index k)

Var[X] = E[X?] — E*[X]
= Var[M]+ E |:ii|

R
__ B B
-1 a—1
B 1+t
T @=-1D t

2.5. Estimating prior parameters

A critical step in the implementation of a Bayesian method is the accumulation of population
data related to systematic setup error M and random setup error given by the variance S (or,
equivalently, by the precision R) in order to create the prior distribution f,f,? )R (m,r). The
most straightforward way to estimate the prior parameters «, 8, i and 7 uses the method of
moments. This can be done in one of two ways:

(a) Simultaneously solving the four equations (9) and (11) for «, B8, u and 7, where the
expected values E[-] are replaced by the population sample averages and the variances Var|-]
are replaced by the population sample variances. Since solving for « using the two equations
in (11) cannot be done analytically (it involves inverting the Gamma function), we instead can
define

Var[S]  (P(@)/T (¢ —05)%

= = 1. 22
7= Es)? a1 @
An approximation (providing an error of less than 0.2% for realistic values of «) is given by
0.2505 _ 07329
o =———+1.0954 —0.0849¢™ "+ . (23)

(b) Simultaneously solving the four equations (9) and (10) for «, 8, u and 7. This is
algebraically simpler than (a), but requires estimates (and associated uncertainties) of the
population precision, which is not a conventional way to report population data.

In general, since E[R] # E [%], these two methods will not produce exactly the same
prior parameter values; the difference, however, can be shown to be small for reasonable
parameter values. In what follows, since most population data sets contain measurements and
estimates of within-patient variance rather than precision, we will use method (a).

2.6. Adaptive treatment planning

Before the beginning of therapy, and therefore before any measurements on an individual
patient are taken, treatment planning is based on f;,? )S (m, s). The method can be as simple
as using E[M], the expected value of the mean M as given in equation (9), to determine
setup corrections, and using E[S], the expected value of the standard deviation S as given in
equation (11) together with 4/ Var[ M ], to determine the margin according to some ‘recipe’ (e.g.

van Herk et al 2000). Since the density function flff’)s (m, s) is available besides population
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Table 1. Population (prior) moments and parameters.

E[M] (mm) 0.0
E[S] (mm) 5.4
Var[M] (mm?)  10.1
Var[$] (mm?) 3.6

o 3.1
B (mm?) 67.8
4 (mm) 0.0
T 3.21

sample averages and variances, it is preferable to use +/Var[X] directly in the estimation of
the margin, where Var[X] is given by equation (21) with k = 0. Or, a more sophisticated
method of optimizing the treatment plan (e.g., Lof et al 1998) might be used, which requires
the entire distribution f 11(40, )S (m, s).

As treatment progresses and data from the specific patient become available, the posterior
parameter values oy, Bk, (x and t; can be computed from equations (12)—(15) and used to
compute E[M,], E[S;] and /Var[M] (or /Var[X,] if it is used instead), using equations (16)
and (18) or (21), which in turn will generate updated setup corrections and margins for the
re-planning of treatment. If the treatment plan is one that involves optimization, the entire
posterior distribution can be used in the associated computation.

Once the posterior distribution is determined, decisions can be made about the adaptive
treatment of the patient. Various policies for adjusting the setup and margin of the treatment,
based on the posterior distribution, can be formulated. For example, one may take a ‘zero-
action-level’ policy and correct the systematic setup error and re-plan with an updated margin
based on the moments of the predictive distribution computed in equations (20) and (21) from
the posterior distribution parameters. Or, one might make a one-time adjustment to the setup
and margin after the nth fraction using E[X,] and Var[X, ], where for example, n = 5.

3. Example

To illustrate the procedure, setup errors were obtained from a population of eight patients. The
population distribution statistics and parameters, determined using method (a) of section 2.5,
are shown in table 1. Figure 1 shows, for a patient selected from this population distribution,
the measured left—right position (solid diamonds in the figure) on the kth fraction. The open
squares and their associated error bars are the predictive moments E[X;] and /Var[X;],
respectively, computed from o_1, Bx—1, tk—1 and Tx—; using equations (20) and (21) for
k =2,3,.... For k = 1, the shaded square and the (heavy) error bar show the predictive
moments E[X;] and «/Var[X] based completely on the (prior) population parameters.

At every fraction k, the margin for treatment planning is typically a multiple of </ Var[X;],
and E[X}] can be used to correct for the systematic setup error. Note that for this particular
patient, the expected systematic setup errors (open squares) are close to the population
systematic setup error E[M] = 0, which implies that relatively small bias corrections are
needed. The predictive random setup error (error bars on the open squares) gradually decreases
from over 12 mm at k = 1 to about 6 mm as treatment progresses. Thus, the margin would be
reduced over time if a Bayesian adaptive procedure were to be used for this patient.

4. Discussion and conclusions

Two common approaches to adaptive radiation therapy either use a form of Kalman filtering
or use running statistics for a specific patient. The argument for the latter is that the decision
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Figure 1. Typical patient-specific setup variances (black diamonds) during the course of treatment.
The moments of the predictive distribution, E[X;] and 4/ Var[X], computed from the population
distribution, are shown as the grey square data points and the (heavy) error bar at k = 1. The open
squares show the updated predictive moments E[ X ] and the associated error bars show / Var[ X ],
both computed by combining information from the population distribution with measured setup
variations.

will not be affected by the population distribution which may not be representative of the
individual patient, and that in the long run it will provide the best estimate for the parameters
of the patient’s distribution. However, the disadvantage is that there is only a finite number of
fractions, and in order to benefit from adaptive radiation therapy, setup corrections need to be
made as early as possible. The fluctuation in the running statistics is large during the initial
phase of the treatment, and so the trade off is between making a confident decision and an
early decision. Moreover, if population data are available and there is reason to believe that
the particular patient has been ‘selected’ from this distribution, then a Bayes approach is the
only consistent way to combine both sources of data.

It can be shown that the estimate of the systematic setup error using Kalman filtering as
proposed by Yan et al (1997) is equal to E[M;] from the Normal-Gamma distribution for
zero E[M]. However, the Kalman filter does not provide an estimate of the random setup
error and the running standard deviation is usually used instead. This asymmetry is resolved
by the Bayesian method which simultaneously provides information about the random setup
error and the systematic setup error.

Bayesian methods provide a formal statistical inferential method to obtain the probability
distribution of the systematic setup error and random setup error after a set of measurements
is available. This probability distribution can be used directly in optimizations or to make
decisions based on parameters such as the expected value, median or mode of the distribution.
In this report, we have used a specific family of distribution functions for the prior (population)
distribution and posterior (after observing errors over k fractions) distribution on (M, S),
namely, the Normal-Gamma distribution on (M, 1/S 2). This allows the parameters of
the posterior distribution function to be determined analytically. Moreover, the family of
Normal-Gamma distribution is a conjugate family of distributions under sampling. The
procedure of computing the posterior distribution can be repeated without difficulty as more
measurements are accumulated. We have not tested to see if the distribution on (M, §) for
the patient population can be reasonably fitted to the Normal-Gamma distribution. However,



Bayesian adaptive radiotherapy 3857

if a different distribution is more appropriate, the method can be implemented by using a
numerical evaluation of equation (3) or (4).
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Appendix. Extension to three dimensions

When the individual patient’s fraction-to-fraction setup variation is the (random variable)
3-vector X = [X, Y, Z]' representing the three spatial dimensions, extension of the analysis
is straightforward. We assume that X has a three-dimensional Normal distribution fx(x) with
three-dimensional mean vector m and 3 x 3 variance—covariance matrix v. That is, X has the
probability density function

fxxm, v) = Qm) y| e s mv i em), (A.1)

A sequence of k independent and identically distributed setup variations over & fractions
is the random 3 x k matrix [X; X; ... X;], where X, is the variation on the ith fraction.
[X; X5 ... X] therefore will have the joint p.d.f.

k 1 ¥k ty—1(x: —
le X X, (Xl Xy ... Xgm, V) — (27_[)—3k/2|v|—7 e—[i >isy (xi—m)'v '(x; m)]‘ (A2)

When the values of the parameters (m, v) are unknown, we treat them as random variables
(M, V) with prior (population) distribution 1\(/;) )V (m, v), which can be obtained from patient
population statistics.

In order to take advantage of the convenience of using a conjugate distribution, we define
the precision matrix R = V- and let fl\(/?, )R(m, r), the prior distribution on (M, R), be the

Normal—-Wishart distribution:
Dem, ©) = N3(m; p, tOW(r; o, B). (A3)

In equation (A.3), N3(m; p, r) is the three-dimensional Normal distribution

N3(m; p, Tr) = (2) 32r 2 |p| "2 e Lo Mo o] (A.4)
and W (r; a3) is the three-dimensional Wishart distribution

W(r; o, B) = Cla)| 8|/ |r=2 emamee o), (A5)
where C(a) = [23"‘/2713/21"(%)F("‘T_])F(%)]_l. Note that the parameters o and T are

scalars equivalent to those used in the one-dimensional analysis of section 2.2, while p is a
three-dimensional column vector and 3 is a symmetric positive-definite 3 x 3 matrix. The
values of o and t and the components of p and 3 can be obtained from population data by
using the method of moments in an extension of the procedure outlined in section 2.3. After
observing the three-dimensional errors X; X, ... X, and defining the sample mean vector

k
DX
i=1

_ 1
X =

bl

and

k
¢ = % ;m —X(x - %),
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after k fractions the posterior parameters for the distribution on (M, R) are
T+ kX
T4k

’

o =a+k, T =T +k, e =

T

Br=B+¢+ (p=X)(p—X)".
T+a

The posterior moments most useful to the practitioner, since they are the values needed
in order to adapt the treatment plan for the (k + 1)th fraction, are given by the mean vector and
variance—covariance matrix

1 -1
ElXenl = VarlXp ] = %ﬁ;l. (A.6)
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