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Abstract. The time dependence of the dark energy density can be an important
clue to the nature of dark energy in the universe. We show that future supernova
data from dedicated telescopes (such as SNAP), when combined with data of
nearby supernovae, can be used to determine how the dark energy density ρX(z)
depends on redshift, if ρX(z) is not too close to a constant. For quantitative
comparison, we have done an extensive study of a number of dark energy models.
Based on these models we have simulated data sets in order to show that we can
indeed reconstruct the correct sign of the time dependence of the dark energy
density, outside of a degeneracy region centred on 1 + w0 � −w1zmax/3 (where
zmax is the maximum redshift of the survey; for example, zmax = 1.7 for SNAP).
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1. Introduction

Most of the energy in our universe is of unknown nature to us. The amount of this dark
energy has been determined by recent experiments, including the Wilkinson microwave
anisotropy probe (WMAP) satellite observations [1] of the anisotropy in the cosmic
microwave background radiation. Our universe is spatially flat (the three-dimensional
equivalent of a two-dimensional plane), with roughly 27% matter and 73% dark energy.
Determining the nature of this dark energy is one of the major fundamental challenges in
astronomy and physics today.

There are many plausible candidates for dark energy. For example,

(1) a cosmological constant, i.e., constant vacuum energy originally proposed by Einstein
in his equations of general relativity,

(2) a time-dependent vacuum energy, or scalar field known as ‘quintessence’, that evolves
dynamically with time [2], or

(3) modified Friedmann equation, e.g., the Cardassian models [3]–[6], that could result
as a consequence of our observable universe living as a three-dimensional brane in a
higher-dimensional universe.
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Other proposed modifications to the Friedmann equation include [7]. The time dependence
of the density of dark energy can reveal the nature of dark energy at a fundamental level.

A powerful probe of dark energy is type Ia supernovae (SNe Ia), which can be used
as cosmological standard candles to measure how distance depends on redshift in our
universe. Observations of SNe Ia have revealed the existence of dark energy in the universe
[8, 9]. Current SN Ia data are not yet very constraining on the nature of the dark energy
[26].

The distance–redshift relation of observed supernovae depends on the nature of dark
energy. To completely specify a theory, one needs to know both the dark energy density
and its pressure. However, here we address the specific question of the time dependence
of the theory, which can most easily be discovered by extracting the redshift evolution of
the dark energy density from the data.

Most researchers have chosen to parametrize dark energy by its equation of state
parameter, wX(z) ≡ pX/ρX . However, it has been shown [10, 11] that it is extremely
difficult to constrain the time dependence of the dark energy equation of state using
supernova searches (or any other technique relying on the luminosity distance); hence one
might worry that one cannot differentiate between different dark energy models. As an
alternative approach, however, one can parametrize the dark energy by its density ρX(z)
directly, instead of its equation of state [12]–[15]. The dark energy equation of state,
wX(z), is related to ρX(z) as follows (here we have assumed that the continuity equation
holds, dρ/dt + 3H(ρ + p) = 0):

wX(z) =
1

3
(1 + z)

ρ′
X(z)

ρX(z)
− 1, (1)

so that

ρX(z)

ρX(0)
= exp

{∫ z

0

dz′
3[1 + wX(z′)]

1 + z′

}
. (2)

To obtain the dark energy density directly, one needs only take a single derivative of the
luminosity distance, whereas to obtain wX(z), one needs to take a second derivative as
well. Hence, given the same data, the uncertainties of the constraints on the dark energy
density should be smaller than that of the constraints on the dark energy equation of
state.

Here, our goal is to achieve reconstruction of the sign of the dark energy density
evolution. In this paper we will show how well, using future supernova data, one can
determine whether the dark energy density changes with time, and whether it increases
or decreases with time. The approach in this paper only allows us to search for a monotonic
increase or decrease in time of the dark energy density; we are not able to identify the
time dependence of a non-monotonic function.

A complication is the degeneracy of dark energy density with the matter density in
the universe Ωm. Here Ωm is the present value of the matter density in units of the critical
density ρcrit = 3H2

0/(8πG). We restrict our analysis here to supernova data only. We
will assume that the matter density in the universe Ωm will be independently obtained
from other experiments (to varying levels of accuracy discussed in the text) by the time
studies of time-varying dark energy density become realistic. The matter density can be
probed by CMB anisotropy and large-scale structure surveys. Other authors have taken
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a different approach of jointly analysing supernova data together with other data sets (for
example, CMB) to see what one can learn [16]. Our emphasis here is the reconstruction
of the time dependence of dark energy, which can best be learned via time dependence of
its density.

We begin in section 2 with the basic equations for using supernovae to study dark
energy. In section 3 we present four theoretical models which we will study to see
how well we can reconstruct the time dependence of the dark energy: models 1–3 have
dark energy density that is constant, increasing, and decreasing in time, respectively.
As our fourth set of models we consider those parametrized by an equation of state
wX(z) = w0 +w1z. In section 4, we simulate SN Ia data for these models. In section 5, we
use the adaptive iteration method to see how well we can reconstruct the time dependence
of the dark energy density for these models: we use three test functions with different
time dependences to see which one best matches the data. For each model we then run
1000 Monte Carlo samples to obtain error bars for our fit. The results are presented in
section 6, followed by conclusions.

2. Basic equations

SNe Ia are our best candidates for cosmological standard candles, because they can be
calibrated to have small scatters in their peak luminosity [17, 18]. The distance modulus
for a standard candle at redshift z is

µp(z) ≡ m − M = 5 log

(
dL(z)

Mpc

)
+ 25, (3)

where m and M are the apparent and absolute magnitudes of the standard candle, and
dL(z) is its luminosity distance.

In a flat Friedmann–Robertson–Walker universe (which we assume in this paper since
it is strongly suggested by current CMB data [19, 1]) the luminosity distance dL(z) is given
by [20]

dL(z) =
(1 + z)c

H0

∫ z

0

dz′

E(z′)
, (4)

where H0 is the present value of the Hubble constant, and

E(z) ≡
√

Ωm(1 + z)3 + ΩXfX(z). (5)

Here Ωm is the present value of the matter density in units of the critical density
ρcrit = 3H2

0/(8πG), and ΩX is the present value of the dark energy density in the same
units.

The condition for a flat universe imposes the relation

Ωm + ΩX = 1. (6)

The dark energy density function

fX(z) =
ρX(z)

ρX(0)
(7)

describes the redshift dependence of the dark energy density ρX(z).
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We note that Cardassian models [3]–[5] contain matter and radiation only (no
vacuum), so that in those models, Ωm and ΩX are used to refer to effective observed
matter density and dark energy density respectively.

For a given cosmological model with dark energy density ρX(z), or dark energy
function fX(z), we can compare the measured distance modulus of SNe Ia at various
redshifts with the predicted distance modulus of a standard candle at these redshifts. A
systematic comparison spanning all plausible models yields constraints on the dark energy
density ρX(z).

3. Dark energy density functions

In this paper we are interested in finding what information future SN Ia data can give us
about the redshift dependence of the dark energy density. For this purpose, we consider
four classes of dark energy densities: (1) constant with redshift, (2) increasing with
redshift, (3) decreasing with redshift, and (4) a grid of models which includes some that
are non-monotonic with respect to redshift. For each of these four classes we choose simple
representative models.

Some of the models we choose can be parametrized by a simple equation of state,

wX(z) = w0 + w1z (8)

in order to allow simple comparison with previous work in the literature. The simple
parametrization of equation (8) also allows us to estimate how small a deviation from
a constant dark energy density can be determined by our technique. The dark energy
density is constant only for w0 = −1 and w1 = 0; any other values of w0 or of w1

parametrize deviations from a constant. However, we stress that it is the dark energy
density itself, ρX(z), and its time dependence that we reconstruct from simulated data,
as it is the more easily extracted quantity.

Four models

The four sample theoretical models we consider are (see table 1):

(1) Model 1. For a constant dark energy density, ρ′
X(z) = 0, we have a cosmological

constant model (w0 = −1 and w1 = 0).

(2) Model 2. For an increasing dark energy density, ρ′
X(z) ≥ 0, we choose a quintessence

model with equation of state wX(z) = −1 + 0.5z.

(3) Model 3. For a decreasing dark energy density, ρ′
X(z) ≤ 0, we choose a modified

polytropic (MP) Cardassian model [4] with n = 0.2 and q = 2,

ρX(z) = ρcritΩm(1 + z)3

{[
1 +

Ω−q
m − 1

(1 + z)3q(1−n)

]1/q

− 1

}
. (9)

MP Cardassian models can have either ρ′
X(z) ≥ 0 or ρ′

X(z) ≤ 0. Our previous
paper [5] shows the regions of parameter space that fall into the two regimes. We also
discussed there that MP Cardassian models can be found with wX = pX/ρX < −1
but with w = p/ρ ≥ −1, so that the dominant energy condition holds (here, w refers
to the total equation of state whereas wX refers only to the new component in the
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Table 1. Dark energy models.

Model Model parameters ρ′X(z)

Model 1: Λ CDM Ωm = 0.3, ΩΛ = 0.7 ρ′X(z) = 0
Model 2: quintessence model Ωm = 0.3, wq(z) = −1 + 0.5 z ρ′X(z) ≥ 0
Model 3: MP Cardassian model Ωobs

m = 0.3, n = 0.2, q = 2 ρ′X(z) ≤ 0
Model 4: grid of models wX(z) = w0 + w1z with arbitrary w0, w1 All ρ′X(z)

Friedmann equation that mimics a dark energy). An effective wX < −1 is consistent
with recent CMB and large scale structure data [21, 22].

(4) Model 4. We consider a grid of models of the form of equation (8) for −1.2 ≤ w0 ≤
−0.5 and −1.5 ≤ w1 ≤ 0.5 and a grid spacing of ∆w0 = 0.1 (0.2 for w0 ≤ −1) and
∆w1 = 0.1. This represents a total of 147 models. This grid includes models where
ρ′

X(z) is monotonically increasing or decreasing with redshift, as well as models with
dark energy density that is non-monotonic with redshift. In a moment we will show
which values of w0 and w1 correspond to a non-monotonic dark energy density.

Although models of the form of equation (8) do not correspond exactly to physically
motivated models, it is interesting to note that they can approximate a wide range of
models. For example, model 3 (MP Cardassian model with n = 0.2, q = 2, and Ωm = 0.3)
can be roughly approximated by a dark energy model with wX(z) = −1.10 − 0.35z. The
approximate equivalence of these models does not extend to the behaviour of dark energy
fluctuations but is limited to the average properties of the energy density.

The dark energy density corresponding to equation (8) is

ρX(z) = ρX(0)e3w1z(1 + z)3(1+w0−w1) (10)

with

ρ′
X(z) = ρX(z)

3(1 + w0 + w1z)

1 + z
. (11)

For ρX(z) > 0, ρ′
X(z) has the same sign as 1 + w0 + w1z.

We note that the only constant value of w that corresponds to a time-independent
dark energy density is w = −1. Any other value of w corresponds to time-dependent
dark energy density, as can be seen from equations (1) and (2). For example, if
wX(z) = −1.2 for all redshifts (corresponding to w0 = −1.2 and w1 = 0), then
ρX(z)/ρX(0) = e−3.6z(1 + z)−0.6, i.e., monotonically decreasing with z. Hence, in
figure 4(a), for the case of w0 = −1.2 and w1 = 0, we do not expect ρ′

X(z) = 0 to
give a good fit.

Nonmonotonic models. Since z must be positive, models with (i) w0 < −1 and w1 > 0
and models with (ii) w0 > −1 and w1 < 0 have non-monotonic dark energy density ρX(z).
Models of type (i) have ρ′(z) < 0 for z < zcrit and ρ′(z) > 0 for z > zcrit where

zcrit = |(1 + w0)/w1|. (12)

Models of type (ii) have ρ′(z) > 0 for z < zcrit and ρ′(z) < 0 for z > zcrit.
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All models other than types (i) and (ii) above have monotonic dark energy densities,
decreasing with redshift for w0 < −1 and w1 < 0 and increasing with redshift for w0 > −1
and w1 > 0.

For comparison, we note that Weller and Albrecht [23] started from specific theoretical
models and reconstructed w0 and w1, whereas we reconstruct the dark energy density.

4. Simulated data

We now construct simulated SN Ia data for dark energy models 1–4 defined above, and
investigate if we can recover the original theory from the simulated data.

We simulate the data by distributing SNe Ia in z randomly per 0.1 redshift interval,
with the total number per redshift interval as expected for SNAP. Here we assume that
SNAP will obtain all SNe Ia in its survey fields up to z = 1.7 [27], similar to a supernova
pencil beam survey [25, 13]. We increase the number of SNe Ia at low redshifts, such that
there is a minimum of 50 SNe Ia per 0.1 redshift interval at z ≤ 0.5. We assume that
these additional low redshift supernovae will come from surveys of nearby SNe Ia. Thus
each simulated data set consists of 2300 SNe Ia.

The measured distance modulus for the lth SN Ia is

µ
(l)
0 = µ(l)

p + ε(l) (13)

where µ
(l)
p = µp(zl) is the theoretical prediction in our dark energy model for an SN

Ia at redshift zl (see equation (3)), and ε(l) is the uncertainty in the measurement,
including observational errors and intrinsic scatter in the SN Ia absolute magnitudes.
In the simulated data set, we draw the dispersion ε(l) for the lth SN Ia from a Gaussian
distribution with variance ∆mint = 0.16 mag. The distance modulus errors are taken to
be constant with redshift and are treated purely statistically. We simulate one set of data
for each of the four models described in table 1.

5. Estimation of dark energy functions

We recover the dark energy function from each simulated data set. A number of techniques
may be used to achieve this reconstruction. In this paper we use the adaptive iteration
method6 introduced by Wang and Garnavich [12] and Wang and Lovelace [13] and
described briefly here. We assume monotonic ρX(z) in order to implement this iteration
method as discussed in this section. Our current study builds on our previous work [5].
There we proposed a technique for determining the correct sign of ρ′

X(z) if ρX(z) is not
too close to a constant. To quantify how close to a constant we can go, in this paper we
perform Monte Carlo simulations in order to obtain error bars for our results.

5.1. Adaptive iteration method

We start from the simulated data sets constructed from each of the four models described
above. Given our data set, we now proceed as though we did not know which model
it came from. We pretend we know nothing about the form of ρX(z). In attempting

6 For a complementary method, see [26] which uses a Markov Chain Monte Carlo (MCMC) technique.
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to reconstruct the dark energy density, we run through a series of test functions: we
allow the test function ρtest

X (z) to be an arbitrary monotonic function. To approximate
the function, we parametrize it by its value at N + 1 equally spaced redshift values zi

(i = 0, 1, 2, . . . , N , z0 = 0, zN = zmax). The values of ρtest
X (z) at other redshifts are given

by linear interpolation, i.e.,

ρtest
X (z) =

(
zi − z

zi − zi−1

)
ρi−1 +

(
z − zi−1

zi − zi−1

)
ρi, zi−1 < z ≤ zi,

z0 = 0, zN = zmax.

(14)

The values of the dark energy density ρi(i = 1, 2, . . . , N) are the independent variables to
be estimated from data. Again, we proceed as though we had absolutely no information
on the function ρX(z), and treat it as a completely arbitrary monotonic function.

It is convenient to trade the N + 1 parameters ρi with the N parameters fi and the
single parameter Ωm, where

fi =
ρi

ρ0

(i = 1, 2, . . . , N) and Ωm = 1 − ρ0

ρcrit

. (15)

We define

ρ0 ≡ ρX(0) (16)

and take ρcrit ≡ 3H2
0/(8πG) as the usual critical density. We thus have a total of N + 2

parameters: the Hubble constant h = H0/(100 km s Mpc−1), the matter energy density
parameter Ωm, and the N parameters fi (i = 1, 2, . . . , N) describing the test dark energy
function. The complete set of parameters, then, is

s ≡ (h, Ωm, ρi), (17)

where i = 1, . . . , N as described above. We will vary the number of bins N between 1 and
14, and look for the optimal fit to the data. To illustrate, an arbitrary monotonic function
may become a good approximation to the data for four bins whereas it is a miserable fit
for three bins.

In [5] we expanded the adaptive iteration method developed in Wang and
Garnavich [12] and Wang and Lovelace [13] to include arbitrary monotonic time
dependence of the dark energy density; unlike in the earlier papers, we do not restrict
ourselves to cases where ρ′

X(z) ≥ 0. As mentioned above, we do restrict ourselves to
monotonic ρX(z) in order to implement the adaptive iteration method.

The adaptive iteration method is designed to optimize the estimation of the dark
energy density ρX(z) from data. It starts with fi = 1 for all i = 1, 2, . . . , N (a cosmological
constant), and builds fX(z) up iteratively while minimizing a modified χ̃2 statistics defined
shortly. This adaptive iteration technique is further explained in appendix A.

We can now determine a best fit to the set of parameters s by using a χ2 statistic,
with [9]

χ2(s) =
∑

l

[µ
(l)
p (zl|s) − µ

(l)
0 (zl)]

2

σ2
l

, (18)

where µ
(l)
p (zl|s) is the prediction for the distance modulus at redshift zl, given the set of

parameters s, and the sum extends over all the observed SNe Ia. Here σl is the dispersion
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of the measured distance modulus due to intrinsic and observational uncertainties in SN
Ia peak luminosity.

Assuming Gaussian errors, the probability density function for the parameters s is

p(s) ∝ exp

(
−χ2

2

)
. (19)

The normalized probability density function is obtained by dividing the above expression
by its sum over all possible values of the parameters s.

The probability density function of a given parameter si is obtained by integrating over
all possible values of the other N +1 parameters. To reduce the computation time, we can
integrate over the Hubble constant h analytically, and define a modified χ2 statistic [12]
as

χ̃2 ≡ χ2
∗ −

C1

C2

(
C1 +

2

5
ln 10

)
− 2 lnh∗. (20)

Here h∗ is a fiducial value of the dimensionless Hubble constant h,

χ2
∗ ≡

∑
l

1

σ2
l

(µ∗(l)
p − µ

(l)
0 )2, (21)

C1 ≡
∑

l

1

σ2
l

(µ∗(l)
p − µ

(l)
0 ), (22)

C2 ≡
∑

l

1

σ2
l

, (23)

with

µ∗(l)
p ≡ µp(zl; h = h∗) = 42.384 − 5 log h∗ + 5 log[H0dL(zl)/c]. (24)

The probability distribution function of the estimated parameters (excluding h) is now
exp(−χ̃2/2). It is straightforward to check that the derivative of χ̃2 with respect to h∗ is
zero; hence our results are independent of the choice of h∗. We take h∗ = 0.65.

For a given choice of N , we can minimize the modified χ2 statistic of equation (20)
to find the best-fit Ωest

m and ρX(z) (parametrized by ρi, i = 1, 2, . . . , N).

5.2. Using the value of Ωm to constrain ρ′
X(z)

For the remainder of this section, we restrict ourselves to models 1–3. We return to
model 4 in the results section below.

To reiterate, we have started from three of the models defined in section 3:
(1) the cosmological constant model with no time dependence in the energy density, (2)
a quintessence model with ρ′

X(z) ≥ 0, and (3) an MP Cardassian model with ρ′
X(z) ≤ 0.

We have constructed a simulated data set for each of these models, and aim to see how
well we can go backwards to determine the sign of ρ′(z) from this fake data set. In other
words, can we reconstruct correctly the sign of the time dependence of the energy density
of the true model? To do this, we find (via the adaptive iteration technique) the model
that best fits the independently observed matter density Ωm.

For a given number of redshift bins N , we can minimize the modified χ̃2 statistic of
equation (20) to find the best-fit values Ωest

m and f est
i for Ωm and fX(z) = ρX(z)/ρX(0)
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parametrized by fi (i = 1, 2, . . . , N). For each model in table 1, we obtain three sets of
best-fit parameters. We apply three different constraints to the arbitrary function ρtest

X (z)
in order to discover which one allows the best fit. The three constraints are:

(i) ρtest
X (z) = ρtest

X (0) = constant; i.e., a cosmological constant model;

(ii) dρtest
X (z)/dz ≥ 0; and

(iii) dρtest
X (z)/dz ≤ 0.

We note that the second and third test functions are monotonically increasing and
decreasing respectively, but do allow portions of the function to be flat as a function of
redshift (i.e., constant for some but not all redshifts). As mentioned previously, we restrict
ourselves to monotonic ρX(z) in order to implement the adaptive iteration method.

For each of these three constraints, we find the best-fit parameters. If our technique
works, the trial that gives the Ωest

m closest to the true Ωm corresponds to the correct
underlying theoretical model (models 1, 2, or 3). For example, for the case where model 2
(ρ′

X(z) ≥ 0) is the theoretical model, if the trial with dρtest
X (z)/dz ≥ 0 yields the best

value of Ωm, then we have reproduced the correct time dependence of the dark energy
density. Indeed we find that the technique works.

Figure 1 shows our results: panels (a)–(c) correspond to models 1–3. For each of the
three models, the figure shows the best-fit Ωest

m , under all of the three constraints above,
for N values ranging from 1 to 14. The different constraints are represented by different
point types. The dot–dashed horizontal line is our fiducial value of Ωm = 0.3 (i.e., we are
assuming that this is the true value of the matter density), and the solid horizontal lines
indicate 10% error bars about this fiducial value. We are assuming that Ωm is known to
within 10% from other data sets.

These plots are not intended to emphasize the dependence of Ωobs
m on N , the total

number of redshifts sampled via linear interpolation (see equation (14)). Indeed, as
discussed above, the reason that we have found the best-fit Ωm for a variety of N values is
simply that the parametrization of the arbitrary function ρX(z) may be poor for one value
of N but excellent for another. For example, two points (N = 1) are perfectly adequate
to describe a straight line function, but more points are needed to describe any more
complicated function. Any one value of N may (by bad luck) give a bad result. We take
a given model to be a good one if it lies within the 10% range on Ωm for several values of
N . The optimal value of N is the one with the lowest χ̃2 per degree of freedom, χ̃2

ν , but
we find that χ̃2

ν does not change much over a wide range of possible values of N . We look
for stability, i.e., for values of Ωest

m that do not change much as we vary N slightly. Note
that one should use a sufficiently large number of parameters in order to ascertain that
stability (or convergence) has been achieved.

For model 2 (with ρ′
X(z) ≥ 0) and model 3 (with ρ′

X(z) ≤ 0), as N increases, the
estimated values Ωest

m assuming the correct sign of ρ′
X(z) asymptote to the ‘true’ value of

Ωm = 0.3, while the estimated values Ωest
m assuming the wrong sign of ρ′

X(z) asymptote
to an incorrect value of Ωm easily ruled out by observational constraints on Ωm. Indeed
our technique works.

For the cosmological constant model (model 1, top panel of figure 1), the estimated
Ωest

m values assuming opposite signs for ρ′
X(z) fall roughly symmetrically on opposite

sides of the ‘true’ value, and they lie within the error bars on Ωm. This indicates a
degeneracy between Λ models and dark energy models that have mildly time-dependent
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Figure 1. The estimated best-fit Ωest
m , shown for a variety of values of the number

of parameters N . The three panels are for the dark energy models 1–3 (given in
table 1) respectively. Each panel plots the estimated Ωest

m for three trial functions:
crosses indicate constant ρtest

X (z), squares indicate dρtest
X /dz > 0, and triangles

indicate dρtest
X /dz < 0. The dot–dashed line indicates the ‘true’ value of Ωm = 0.3

in each model; the solid lines indicate the ±10% range of Ωm. In the bottom
two panels, the test function with the correct time dependence (same as the
underlying theoretical model) produces an acceptable Ωest

m that matches data;
the test function with the wrong time dependence produces an incorrect value of
Ωm and hence can be ruled out. This technique can reproduce the correct time
dependence of the dark energy density if Ωm is known to 10% accuracy. For the
cosmological constant model (top panel), there is a degeneracy between constant
and mildly time-dependent dark energy density.

dark energy density. In other words, it will be difficult to differentiate a constant dark
energy density from one that has a very small dependence on redshift. We will examine
this possible degeneracy further in section 6 to see how well one can differentiate between
these two alternatives.
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In conclusion, we can determine the correct sign of ρ′
X(z) if ρX(z) is not too close to

a constant. To quantify how close to a constant we can go, we need to add error bars to
the points in figure 1.

5.3. Using Monte Carlo to determine errors

We evaluate errors by simulating random fluctuations around a fiducial model. A possible
choice of fiducial model would be the input (theoretical) model we adopted to generate
the SN Ia data set in the first place. However, to be closer to a realistic situation in which
the underlying model has to be determined from data, we will choose our fiducial model
to be the model that best fits the data (for us, the simulated data). Specifically, this
is the cosmological model with ρBF

X (z) (BF = best fit) given by the best-fit values ρBF
i

(i = 0, 1, . . . , N) determined above. We have described in the previous section the method
by which we obtain our best-fit dark energy densities for each of models 1–3. Here, we
add random errors to the ‘measured’ distance moduli.

To derive robust error distributions of the estimated parameters Ωest
m and f est

i = ρi/ρ0

(i = 1, 2, . . . , N ; see equation (14)) from each data set, we create 1000 Monte Carlo
samples by adding dispersion in peak luminosity of ∆mint = 0.16 mag to the distance
modulus µp(z) (see equation (3)) predicted by the best-fit model (i.e., assuming that the
best-fit model is the true model). This is equivalent to making 103 new ‘observations’, each
similar to the original data set [24]. The same analysis used to obtain the best-fit model
from the data is performed on each Monte Carlo sample. The distributions of the resultant
estimates of the parameters (Ωest

m and f est
i ) can be used to derive the mean and confidence

level intervals of the estimated parameters. Wang and Lovelace [13] showed that such a
Monte Carlo analysis gives less biased estimates of parameters than a maximum likelihood
analysis, i.e., the Monte Carlo means of estimated parameters deviate less from the true
values of the parameters.

6. Results

6.1. Models 1, 2, and 3

Starting from the three dark energy models 1, 2, and 3 in table 1 with ρ′
X(z) = 0,

ρ′
X(z) ≥ 0, and ρ′

X(z) ≤ 0 respectively, we obtained simulated data sets. Using these
simulated data sets7, we worked backwards to estimate the best-fit values of the N + 1
parameters as defined in the previous section. In particular, for each of the simulated
data sets we made three trial assumptions, i.e., constant, increasing, and decreasing dark
energy density. For each assumption we found an estimate of Ωm and then ran 1000
Monte Carlo samples to obtain error bars. The results of this analysis are shown in
figure 2. The allowed value of Ωm, assumed to be known to within 10%, is shown with
arrows: Ωm = 0.3 ± 0.03.

Figure 2 confirms the conclusions that we made based on figure 1. If the true dark
energy density varies with time (quickly enough) and monotonically (see figures 2(b)
and (c)), the dark energy models with the wrong sign of ρ′

X(z) or with constant ρX(z) are

7 Note that once data become available, the ‘simulated data set’ will be replaced by the real data set. We consider
three different simulated data sets based on different dark energy models, since the nature of dark energy is
unknown.
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(a) (b)

Figure 2. (a) Distributions of the estimated Ωm values from 1000 Monte Carlo
samples. Here, the underlying theoretical model is a cosmological constant.
The Monte Carlo samples are obtained under three different trial assumptions
about the time dependence of the dark energy ρ′X(z): increasing, decreasing, or
constant. The allowed value of Ωm = 0.3 ± 0.03 is indicated. The correct value
of Ωm is reproduced for the correct time dependence of the dark energy, ρ′X = 0;
hence one is led to conclude that the underlying model is a cosmological constant.
Note, however, that for this case some of the models with time-dependent ρX also
produce the right values of Ωm, so that there is some degeneracy. (b) Same as (a),
but for the simulated data set based on model 2. Upon running 1000 Monte
Carlo samples, the correct value of Ωm is reproduced only for the trial functions
with ρ′X > 0, which agrees with the time dependence of the underlying model.
(The underlying model is a quintessence model with wx(z) = −1 + 0.5z and
ρ′X(z) > 0.) We have taken N = 6 for illustration. Hence one recovers the
correct time dependence of the energy density. (c) Same as (a), but for the
simulated data set based on model 3. Upon running 1000 Monte Carlo samples,
the correct value of Ωm is reproduced only for the trial functions with ρ′X < 0,
which agrees with the time dependence of the underlying model. (The underlying
model is an MP Cardassian model with n = 0.2 and q = 2, and ρ′X(z) < 0.) We
have taken N = 6. Hence one again recovers the correct time dependence of the
energy density.

easily ruled out at �95% C.L. if Ωm is known to ∼10% accuracy. If the true dark energy
density is constant with time (figure 2(a)), then while the correct model (Λ model) is
favoured, the incorrect models (with ρX(z) either increasing or decreasing with redshift)
could imitate the correct model if the time variation in ρX(z) is small enough. We will
quantify the size of the degeneracy region shortly (see figure 5 and related discussion).

Note that due to computational constraints, we have chosen N = 6 for demonstration.
For an actual data set, the Monte Carlo analysis outlined here should be performed for
all values of N (from 1 to a reasonably large number).
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(c)

Figure 2. (Continued.)

Figure 3 shows the best-fit dark energy density for the simulated data set based on
model 2 (which has ρ′

X(z) ≥ 0). To obtain figure 3, we take advantage of the fact that our
analysis in figure 2(b) has allowed us to extract the sign of ρ′

X(z), with the assumption
that we independently know Ωm to 10% accuracy. Once the sign of the time dependence
is known, we can deduce the best-fit dark energy density ρX(z)/ρX(0) shown in figure 3,
estimated from the Monte Carlo analysis of the simulated data set based on model 2. The
solid line is the true model, i.e., the theoretical curve. One can see that the dotted points
with error bars, obtained from the simulated data using our technique, match the true
model very well. The value of the matter density corresponding to figure 3 is Ωm = 0.314
(0.271, 0.341) (mean and 68.3% confidence range). The corresponding figure for model 3
(ρ′

X(z) ≤ 0) was published in [5]. Again, one can see that the time dependence of the
dark energy density can be determined quite well.

6.2. Model 4 (linear equation of state)

Lastly we come to theoretical dark energy models with a linear equation of state
wX(z) = w0 + w1z. Again, we simulate data based on this underlying model, and again
we ask how well we can determine the time dependence of the dark energy density of each
model. This linear form of the equation of state is the most common parametrization
used by the community. As stressed previously, one can more easily extract the time
dependence of the dark energy density. Because of our ignorance of the true nature of
dark energy, it is dangerous to rely on specific parametrizations. Hence, we perform
the analysis described in the paper, in which we treat the dark energy density ρX(z)
as a free function in extracting information from the data (in this case simulated data).
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Figure 3. Best-fit dark energy density ρX(z)/ρX (0) estimated from the Monte
Carlo analysis of the simulated data set based on model 2, which has ρ′X(z) > 0.
This plot assumes that Ωm is known to 10% accuracy (and that the sign of the
time dependence has been extracted as shown in figure 2). The solid curve is the
true model, i.e., the theoretical curve. One can see that the dotted points with
error bars, obtained from the simulated data using our technique, match the true
model very well. Here, we have taken N = 6.

We will do a blind test (non-parametric study8), in which we do not assume the linear
form of the equation of state, to see whether the time variation of dark energy density
can be ascertained. This will establish a point of reference with the work by others. In
other words, we generate models with a given equation of state but then reconstruct (the
time dependence of) the dark energy density itself.

In previous work, other authors have started from a fiducial model with fixed values
of w0 and w1. They then asked the question of how well one can reconstruct these
fiducial values from data if one parametrizes the data in terms of the form wX(z) =
w0 + w1z [28, 29]. They found error ellipses around the fiducial model in an effort to
illustrate how accurately one can reconstruct the original model. What we do here is
different in two different ways. First, we avoid analysing the dark energy model with
the same parametrization as the theoretical model, as this assumes too much information
about the model. Second, instead of starting from a single theoretical model (an approach
that assumes we know what the theoretical model is), we consider a large grid of theoretical
models and create simulated data sets based on this entire grid. We then ask the question
of how well one can disentangle a time-varying from a constant dark energy. Our errors

8 We use the word ‘non-parametric’ to refer to methods that may use a finite number of parameters (as a numerical
necessity), but with results that are not dependent on the validity of specific physics models.
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(a) (b)

Figure 4. The estimated Ωm values (with 1σ standard deviations) for wX(z) =
w0 + w1z models. In each plot in panels (a)–(c), we have selected one value of
w0 and show results for a variety of values of w1; these values of w0 and w1

correspond to the underlying theoretical model. Based on each of these sets of
w0, w1 we simulated data, and, in the upper half of each panel, plotted the values
of Ωest

m with error bars that result from our three different trial assumptions, as
a function of different (theoretical) values of w1 in the underlying models. The
three different trial assumptions are represented by circles for ρtest

X = constant,
squares for dρtest

X /dz ≥ 0, and triangles for dρtest
X /dz ≤ 0. The dotted lines

denote Ωm = (0.291, 0.309) (here, we assume that Ωm is known to 3% from other
observations.) In the lower half of each panel, we have plotted the quantity Q
defined in equation (25), the number of standard deviations in the difference of
the average estimated value of Ωm with constant and non-constant dark energy
density. (a) Underlying theory: w0 = −1.2 and −1.5 ≤ w1 ≤ 0.5. The correct
value of Ωm is obtained for ρ′X(z) ≤ 0 for w1 < 0; here our technique has
indeed reproduced the correct time dependence of the dark energy. However, the
answer is ambiguous for w1 > 0, where the underlying theory is non-monotonic.
(b) Underlying theory: w0 = −1 and −1.5 ≤ w1 ≤ 0.5. Here our technique
obtains an allowed value of Ωm and hence reproduces the correct time dependence
of the dark energy for all w1. (c) Underlying theoretical model: w0 = −0.8 and
−1.5 ≤ w1 ≤ 0.5 (see discussion in text).

will, of course, be much larger, as we have generated simulated data from a host of models
rather than from a single one. The situation we consider may be more appropriate in that
we do not know what the underlying model is.

We studied a grid of models, with −1.2 ≤ w0 ≤ −0.5, and −1.5 ≤ w1 ≤ 0.5, and
a grid spacing of ∆w0 = 0.1 (0.2 for w0 ≤ −1) and ∆w1 = 0.1. This represents a
total of 147 models. For each of these theoretical models, we followed the same procedure

Journal of Cosmology and Astroparticle Physics 12 (2004) 003 (stacks.iop.org/JCAP/2004/i=12/a=003) 16

http://stacks.iop.org/JCAP/2004/i=12/a=003


JC
A

P
12(2004)003

Probing the evolution of the dark energy density with future supernova surveys

(c)

Figure 4. Continued.

described above. First, we simulated data based on each model; next we obtained the best-
fit ρtest

X (z) for each model with the adaptive iteration method (the best-fit function chosen
due to its producing Ωest

m closest to the correct value); finally we created 1000 Monte Carlo
samples (fluctuations about the best-fit function) to obtain error bars. We followed this
procedure for each of the 147 models. Figure 4 shows the estimated Ωest

m values (with 1σ
standard deviations) for a subset of the wX(z) = w0 + w1z models that we have studied,
assuming: (1) ρtest

X (z) = constant; (2) dρtest
X (z)/dz ≥ 0 and (3) dρtest

X (z)/dz ≤ 0. The
dotted lines in each figure denote Ωm = (0.291, 0.309), i.e., assuming that Ωm is known
to 3% from other observations.

Figure 4 runs through a subset of the grid of theoretical models that we have studied,
namely the models with (a) w0 = −1.2, (b) w0 = −1, and (c) w0 = −0.8. In each plot
we have selected one value of w0 and show results for a variety of values of w1. Again,
these values of w0 and w1 correspond to the underlying theoretical model. Based on each
of these sets of (w0, w1) we simulate data and show how well we can ascertain the time
dependence of the dark energy density. We plot the value of Ωest

m with error bars that
results from our different trial assumptions, as a function of different (theoretical) values
of w1 in the underlying models. We have obtained three different Ωest

m (for the three
different trial assumptions) for each underlying w1.

In figure 4(a), we have taken the underlying set of theoretical models to have
wX(z) = −1.2 + w1z. In other words we took w0 = −1.2 and allowed w1 to vary from
−1.5 to 0.5 with spacing ∆w1 = 0.1. Our goal is to obtain the correct value of Ωest

m only
for the test function that has the correct sign of ρ′

X(z). We see that our technique has
indeed reproduced the correct answer, ρ′

X(z) ≤ 0 for w1 ≤ 0. However, the answer is
ambiguous for w1 > 0, where dark energies that are constant or increasing with redshift
seem to give equally good fits. In fact we understand the reason for the success of the
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Figure 5. The (w0, w1) parameter space that we have studied. For the theoretical
models with w0 and w1 that lie within the shaded region, the reconstructed ρ′X(z)
cannot be differentiated from a Λ model (indicated by a fat circle) even if Ωm

is known to within 1% accuracy. Outside of this region, the sign of ρ′X(z) can
clearly be ascertained (if Ωm is known to within 1% accuracy). Similarly, models
which lie within the dotted, dashed, and solid lines cannot be differentiated
from a constant ρ′X(z) = 0 model if Ωm is known to within 3%, 5%, and
10% accuracies respectively. The degeneracy region is centred about the line
1 + w0 � −(zmax/3)w1, where zmax is the maximum redshift of the survey
(zmax = 1.7 for SNAP). The dot–dashed line illustrates (roughly) the different
degeneracy region if only those data out to a cutoff redshift of 0.5 were used, if
Ωm were known to within 1% accuracy. Note that the degeneracy can be reduced
by examining different portions of the data out to different redshifts.

technique for some values of w1 and the failure in other regimes, and explain it here. As a
reminder, we showed below equation (11) that ρ′

X(z) has the same sign as (1+w0 +w1z).
Hence, for w0 = −1.2, the sign of ρ′

X(z) is equal to −0.2 + w1z. As we discussed in the
last paragraph of section 3, for w0 < 0 (which is the case for figure 4(a)), the dark energy
density is monotonic with redshift for w1 < 0, but non-monotonic for w1 > 0. However,
as our trial functions we have only considered monotonic dark energy densities. Hence it
is not surprising that our technique only reproduces the correct time dependence of the
dark energy in the regimes of parameter space that correspond to dark energies that are
monotonically increasing or decreasing in time. The technique works within the regime
of validity of our trial assumptions.
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We remind the reader that the only constant value of w that corresponds to a time-
independent dark energy density is w = −1. Any other value of w corresponds to
time-dependent dark energy density, as can be seen from equations (1) and (2). As
discussed previously, for the example where wX(z) = −1.2 for all redshifts (corresponding
to w0 = −1.2 and w1 = 0), then ρX(z)/ρX(0) = e−3.6z(1 + z)−0.6, i.e., monotonically
decreasing with z. Hence, in figure 4(a), for the case of w0 = −1.2 and w1 = 0, we do not
expect ρ′

X(z) = 0 to give a good fit. This explains why ρ′
X(z) < 0 gives the correct Ωm,

while the inferred value of Ωm with ρ′
X(z) = 0 is more than 1 − σ away from 0.3.

In figure 4(b), the underlying model is wX(z) = −1 + w1z, again for w1 ranging from
−1.5 to 0.5. In this case the corresponding dark energy density is monotonic with redshift
for all values of w1, and the technique reproduces the right answer for all w1.

In figure 4(c), the underlying model is wX(z) = −0.8 + w1z, again for w1 ranging
from −1.5 to 0.5. This corresponds to a dark energy density that is monotonic for
w1 > 0 but non-monotonic for w1 < 0. The dark energy density grows with redshift
until zcrit = (1 + w0)/|w1| = 0.2/|w1| (as obtained from equation (12)) and then decreases
with redshift. However, the value of zcrit is so small in most models as to be irrelevant; i.e.,
the function is essentially monotonically decreasing over most of the redshifts at which
supernova data are taken. For example, for w1 = −1.5, zcrit = 0.133. As w1 approaches
0, the value of zcrit grows; clearly at w1 = −0.2 and zcrit = 1, the turnover from a growing
dark energy density to a decreasing one takes place in the middle redshift of the supernova
data. In that case we would expect a constant trial with ρ′

X(z) = 0 to be no worse a fit
than a monotonically increasing or decreasing one. In other words, a cosmological constant
appears to fit the data, although of course it is the wrong answer. Indeed this is borne
out by the results of figure 4(c). Here, our technique is very successful at reproducing
the correct sign of the time dependence of the dark energy in those regimes where it is
sensible to approximate the dark energy density as being monotonic in time.

Models with w0 = −0.9,−0.7,−0.6, and −0.5 behave similarly to those shown in
figure 4. As w0 gets less negative, the value of zcrit (at which the derivative of the dark
energy density changes from positive to negative) gets bigger. Again, our technique works
to obtain the correct time dependence of the dark energy density if it is monotonic in
time.

To quantify how much the ρ′
X(z) �= 0 models differ from the Λ models, we have

defined a quantity Q as the number of standard deviations in the difference of the average
estimated value of Ωm with constant and non-constant dark energy density,

Q ≡ |〈Ωest
m |ρX=non-const〉 − 〈Ωest

m |ρX=const〉|√
(∆Ωest

m |ρX=non-const)2 + (∆Ωest
m |ρX=const)2

. (25)

The thick solid curve in the bottom panel of each section of figure 4 shows Q as a function
of w1 for various w0 values. As there are two test functions with time-varying dark energy
density, ρ′

X(z) ≥ 0 and ρ′
X(z) ≤ 0, in the figures we plot the quantity Q for that time-

varying function that produces the value of Ωest
m that best fits the data.

We note that our work is quite different to prior studies performed by other authors.
Previous work (e.g., [10, 11], [28]–[34]) has attempted to examine how well one can
reconstruct the dark energy equation of state, particularly if one assumes that it has
the form wX(z) = w0 + w1z. Our study differs from previous studies in that we do not
assume the linear form for the equation of state. Our approach is non-parametric in that

Journal of Cosmology and Astroparticle Physics 12 (2004) 003 (stacks.iop.org/JCAP/2004/i=12/a=003) 19

http://stacks.iop.org/JCAP/2004/i=12/a=003


JC
A

P
12(2004)003

Probing the evolution of the dark energy density with future supernova surveys

it is not dependent on wX(z) = w0 + w1z being the correct model; we merely use it as a
test case spanning a continuous parameter space in (w0, w1) (via smooth interpolations in
our grid of 147 models). We then see whether the time variation of dark energy density
can be ascertained.

How small can we make the region of degeneracy? We can ask the question: what is the
range of (w0, w1) over which one cannot determine the sign of the time dependence of
dark energy? In other words, what is the range of degeneracy between a cosmological
constant and a time-dependent dark energy appearing to fit the data equally well? And
how far can it be shrunk down?

Figure 5 shows the (w0, w1) parameter space that we have studied. The models
that lie within the shaded region cannot be differentiated from a Λ model even if Ωm is
known to within 1% accuracy. Similarly, models which lie within the dotted, dashed, and
solid lines cannot be differentiated from a cosmological constant model if Ωm is known to
within 3%, 5%, and 10% accuracies respectively.

The degeneracy region shown in figure 5 is centred about the line

1 + w0 � −zmax

3
w1, (26)

where zmax is the maximum redshift of the survey (zmax = 1.7 for SNAP). In appendix B,
we qualitatively derive equation (26). Since the degeneracy region originates from
minimizing the overall redshift dependence of the dark energy density in the redshift
range 0 ≤ z ≤ zmax, it is not surprising that the orientation of the degeneracy region is
dependent on zmax.

In the parameter space outside of the shaded region in figure 5, ρ′
X(z) �= 0 models

are preferred over the Λ models if Ωm is known to 1% accuracy, indicating our ability to
detect the time variation of the dark energy density at 1σ or higher significance levels.

Finally, we point out a way to reduce the degeneracy by taking advantage of the
fact that the slope in equation (26) changes for different values of zmax. Hence changing
zmax will rotate the degeneracy region in (w0, w1). One can choose a variety of different
values of zmax to break the degeneracy. In other words, in addition to using the entire
data set, one can restrict the data out to a variety of different cutoff redshifts to obtain
complementary information. If, in addition to the full data set, we consider only those
data to a second maximum redshift z2,max, we can reduce the degeneracy region in figure 5
significantly. In figure 5 we have plotted both the degeneracy region obtained using all the
data, as well as dot–dashed lines illustrating the different degeneracy region if only data
out to z2,max = 0.5 were used9. The combination of information from these dot–dashed
lines together with the shaded region allow us to break the degeneracy substantially. The
shaded region in figure 5 bounded by dot–dashed lines illustrates the smallest possible
degeneracy region if Ωm is known to 1% accuracy.

Finally, we note that to avoid the correlations that arise from using the same data
twice, we may use a different and independent set of low z data to help reduce the
degeneracy region in the (w0, w1) parameter space.

9 These are qualitative illustrations, not from actual calculations (which would involve lengthy computations).
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7. Conclusions

We have investigated how well future supernova data from dedicated telescopes (such as
SNAP), when combined with data of nearby supernovae, can be used to determine the
time dependence of the dark energy density. For quantitative comparison, we have done
an extensive study of a number of dark energy models, with dark energy density that is
constant, increasing, and decreasing in time. Based on these models we have simulated
data sets in order to show that we can indeed reconstruct the correct sign of the time
dependence of the dark energy density.

Among the dark energy models we studied are those parametrized by an equation of
state wX(z) = w0 + w1z. We studied a grid of 147 models, for −1.2 ≤ w0 ≤ −0.5, and
−1.5 ≤ w1 ≤ 0.5. We emphasize that it is the dark energy density that we reconstructed,
not its equation of state (see equation (2)). We find that there is a degeneracy region in the
(w0, w1) parameter space centred near 1 + w0 � −w1zmax/3 (where zmax is the maximum
redshift of the survey; for example, zmax = 1.7 for SNAP); the models that lie within this
region cannot be differentiated from a Λ model even if Ωm is known independently to 1%
accuracy (we compute the size of the region for Ωm known to varying degrees of accuracy).
Outside of this degeneracy region, we can detect the time variation of the dark energy
density at 1σ or higher significance levels.
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Appendix A: Adaptive iteration technique

The goal of the adaptive iteration technique is to reconstruct (as accurately as possible)
the function fX(z) = ρX(z)/ρX(0) from a simulated data set. We start from a time-
independent function (in which fX(z) = 1 for all z) and build up the function iteratively
to find that function which best matches the data.

To illustrate the adaptive iteration technique, we present an example. In this appendix
we here restrict our discussion to monotonically increasing forms of fX(z). Let us consider
the case where we break up the function (and the simulated data) into five equally spaced
bins in redshift space, i.e., N = 5 so that z ranges from 0, z1, z2, z3, z4, z5. We will start
with a flat function, fX(z) = ρX(z)/ρX(0) = 1, and build up from there. In all the
iterations, we will always keep fX(0) = ρX(z = 0)/ρX(0) = 1 fixed (it is an identity
equation since ρX(0) ≡ ρX(z = 0)), and vary fX(z) at the other values of z. Here is how
we proceed in the first iteration:

(1) Compute χ2 for fX(z) = 1.

(2) Increase fX(zi) for all i = 1, 2, 3, 4, 5 by one stepsize, ∆, i.e., fX(zi) = 1 + ∆ for all
i = 1, 2, 3, 4, 5. Compute χ2. If the current χ2 is smaller than the previous χ2 (from
the previous step), the new fX(zi) values are favoured; keep them. Otherwise, the
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previous values of fX(zi) = 1 are favoured. As stepsize we used primarily ∆ = 0.01,
but also ∆ = 0.05 and 0.1 for comparison. We find that the results are not sensitive
to the stepsize; of course, the smaller the stepsize, the longer the running time.

(3) Increase fX(zi), i = 2, 3, 4, 5 by one stepsize, ∆, i.e., fX(zi) = fX(zi)
prev + ∆,

i = 2, 3, 4, 5, where fX(zi)
prev are the fX(zi) values favoured by the previous step.

Compute χ2. If the current χ2 is smaller than the previous χ2
min (from the previous

step), the new fX(zi) values are favoured; keep them. Otherwise, fX(zi)
prev are

favoured.

(4) Increase fX(zi), i = 3, 4, 5 by one stepsize, ∆, i.e., fX(zi) = fX(zi)
prev +∆, i = 3, 4, 5,

where fX(zi)
prev are the fX(zi) values favoured by the previous step. Compute χ2.

If the current χ2 is smaller than the previous χ2
min (from the previous step), the new

fX(zi) values are favoured; keep them. Otherwise, fX(zi)
prev are favoured.

(5) Increase fX(zi), i = 4, 5 by one stepsize, ∆, i.e., fX(zi) = fX(zi)
prev + ∆, i = 4, 5,

where fX(zi)
prev are the fX(zi) values favoured by the previous step. Compute χ2.

If the current χ2 is smaller than the previous χ2
min (from the previous step), the new

fX(zi) values are favoured; keep them. Otherwise, fX(zi)
prev are favoured.

(6) Increase fX(zi), i = 5 by one stepsize, ∆, i.e., fX(zi) = fX(zi)
prev + ∆, i = 5, where

fX(zi)
prev are the fX(zi) values favoured by the previous step. Compute χ2. If the

current χ2 is smaller than the previous χ2
min (from the previous step), the new fX(zi)

values are favoured; keep them. Otherwise, fX(zi)
prev are favoured.

In the second iteration, repeat steps (2)–(6), but with these changes in step 2: replace
fX(zi) = 1 + ∆ with fX(zi) = fX(zi)

prev + ∆, replace ‘the previous χ2’ with ‘the previous
χ2

min’, and replace ‘the previous values of fX(zi) = 1’ with ‘fX(zi)
prev’.

Subsequent iterations follow the same procedure as the second iteration. Continue
the iterations until χ2

min stops changing.
We successively perform further iterations to ascertain the function ρX(z) that best

fits the data. As described here, one can only end up with a monotonically increasing
form for ρ(z). For a monotonically decreasing function, the procedure is exactly the same,
with +∆ replaced by −∆.

Appendix B: Orientation of the degeneracy region

Equation (26) is a numerical result derived from the grid of models that we have studied
in the (w0, w1) parameter space. Here we present a rough qualitative derivation of the
orientation of the degeneracy region of equation (26).

For a model with wX(z) = w0 + w1z, the dark energy density function fX(z) ≡
ρX(z)/ρX(0) = e3w1z(1 + z)3(1+w0−w1) (see equation (10)). Equation (26) represents (w0,
w1) models which differ so little from the Λ model that they cannot be differentiated
from it for a given set of observational data with maximum redshift zmax. To obtain an
understanding of this result, we need to minimize |f ′

X(z)| = |ρ′
X(z)/ρX(0)|. It is convenient

to write

f ′
X(z) =

ρ′
X(z)

ρX(0)
= fX(z)Φ(z), (27)
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where

Φ(z) ≡ 3(1 + w0 + w1z)

1 + z
. (28)

To parametrize the degeneracy between w0 and w1, let us set 1 + w0 = −αw1, with
0 < α < 1. In other words, based on our numerical results from the grid of models we
studied, we assume a linear relationship between w0 and w1, and obtain a derivation for
the slope of this relation. Since

Φ′(z) =
3(1 + α)w1

(1 + z)2
, (29)

whereas the original function f ′
X(z) is not monotonic as a function of redshift, since Φ′(z)

has the same sign as w1, the function Φ(z) is monotonic with redshift. Hence, to minimize
|Φ(z)| in the range of 0 ≤ z ≤ zmax, we set |Φ(0)| = |Φ(zmax)|. Since Φ(0) = −3αw1, and
Φ(zmax) = 3w1(zmax − α)/(1 + zmax), we find α = zmax/(2 + zmax). Hence

1 + w0 = −αw1, α � zmax

2 + zmax

. (30)

Note that this is only an approximation to α, since we need to minimize |f ′
X(z)| =

|fX(z)| |Φ(z)|, not just |Φ(z)|. The rough result here differs somewhat from equation (26),
which has α = zmax/3, but gives a rough idea of the orientation of the degeneracy region
and its dependence upon zmax. For example, equation (30) differs from (26) by only about
20% for zmax = 1.7.

By considering the part of f ′
X(z) that is monotonic with z, the minimization occurs

mostly through equating its values at z = 0 and zmax. This leads to an orientation of the
degeneracy region that is dependent on zmax. If we only use the data out to z = 0.5, the
uncertainties on both w0 and w1 are larger; however, the orientation of the degeneracy
region is different than that from using the data out to z = 1.7. To avoid the correlations
that arise from using the same data twice, we may use a different set of low z data to help
reduce the degeneracy region in the (w0, w1) parameter space.
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