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Abstract

Indefinite plate buckling problems arise when the applied load case results
in buckling loads which are not all of the same sign. Examples include the
important cases of shear buckling and general combinations of tensile and
compressive in-plane edge loads. Optimal controllers which actively
stabilize these general, indefinite plate buckling problems, by transforming
them into a system of definite plate buckling problems, are presented.
Important features of this approach include the ability to select the designed
closed loop critical buckling load, and to pre-determine what load cases a
given controller will stabilize when the exact load combination varies or is
unknown. This last result enables the control designer to know exactly, by
design, what load combinations will be stabilized. A numerical example is
presented where the controllers developed are employed to stabilize
multiple, definite and indefinite buckling modes for laminated composite

plates similar to aircraft wing skins.

1. Introduction

Linear plate buckling is a mechanical phenomenon wherein
the effective flexural stiffness is reduced by the application of
compressive, in-plane edge loads or shear loads. The load at
which the plate becomes unstable and buckles is called the
critical buckling load and is denoted P,. Similarly, tensile in-
plane edge loads effectively increase the flexural stiffness of
the plate.

Linear buckling is an important design constraint in many
structural systems, particularly when minimum weight is a
primary design objective. Laminated composite aircraft wing
skins are an example of a plate structure in which linear
buckling is the dominant design constraint. In-plane edge loads
are applied as a result of the lift forces on the underside of the
wings placing the wing skin panels on the top of the wing in
compression. Typically, aircraft wing skins are designed for
minimum serviceable weight so the ability to actively increase
the axial load capacity of these plate structures has the potential
to yield an important mass savings. Additional examples might
include maritime applications and the shell structures found on
missiles and rockets.

Linear buckling can be mathematically modelled using
finite element methods by leveraging the fact that when the
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critical buckling load is reached the total stiffness matrix is
singular. This reduction in flexural stiffness results from
compressive and shear in-plane, edge loads, and is modelled
by an additive geometric stiffness matrix, Kg-or1, that is
proportional to the magnitude of the edge load(s). For general
plate buckling problems Kg-ora1 can be defined as follows:

KG-tota = aKgx + bKgy + cKgy, (D

where a, b and c, are real valued scalars that reflect the relative

magnitude and direction of the in-plane edge loads in the X, y

and shear directions respectively, and the matrices Kg,, Kgy,

and Kgy, are the associated geometric stiffness matrices.
The resulting total stiffness is then given by

Ktotal =K —Ax (aKGx +bKGy + CKGXy)
= K — A * Kg-total (2)

where X is a positive scalar representing the load magnitude.
Positive values of a, b and ¢ imply compressive loads or shear
loads in the positive direction according to the sign convention
employed. Negative values imply tensile axial edge loads or
negative shear loads.

When the critical buckling load in a given direction is
reached, the total stiffness matrix becomes singular and the
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Figure 1. Definite plate buckling load cases.

resulting non-empty nullspace contains a non-zero deflection
vector that mathematically satisfies static mechanics with zero
applied force (e.g. Kuv = 0). Therefore, the critical
buckling loads, for a given load case, can be determined via an
eigenvalue problem of the form

[K — PKg-oulv =0 3

where K is the flexural stiffness matrix, Kg-io iS the total
symmetric, geometric stiffness matrix, P the eigenvalue, and
v the eigenvector.

When P = P, the plate is unstable in the straight (v = 0)
position and any non-zero perturbation will cause it to take on
the buckled mode shape. Such perturbations exist naturally in
the form of natural curvature, eccentric loading, material non-
linearities and residual strains. Therefore, when the critical
buckling load is reached for a given load case, the plate will
buckle.

Definite plate buckling problems arise when the edge
loads are compressive and no shear loads exist (a, b > 0,
¢ = 0) as shown in figure 1. The resulting buckling loads
are all of the same sign. The problem is definite in that for
A < P in equation (2), Ky is positive definite (i.e. all the
buckling loads are positive). This fact enables the formulation
of positive definite linear matrix inequality (LMI) constraints,
employing conditions based on equations (2) and (3), to create
stabilizing controllers using semi-definite programming (SDP)
techniques (Vandenberghe and Boyd 1995). This approach
was utilized in prior optimal buckling control research by
Chase et al (1999a, b).

Indefinite plate buckling problems do not have buckling
loads that are all of the same sign. In the shear buckling case,
for which a = b = 0 and ¢ = 1.0, equation (2) is singular
for X that are distributed symmetrically such that A = X, for
i =1,...,(n/2). This distribution of positive and negative
values of P, for the shear buckling case, occurs because
the plate buckles due to shear loading of a given magnitude
regardless of the direction the load is applied. Figure 2 shows
a shear load case. As a result Koy, is not positive definite for
values of A near the magnitude of the smallest critical buckling
loads. Hence, positive definite conditions cannot be created
and SDP cannot be directly applied to these problems.

Indefinite problems also arise when axial edge loads are
applied in compressive and tensile combinations as shown in

L
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H
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P shear P

Figure 2. Indefinite plate buckling load case(s).

figure 2. Tensile and compressive combinations of axial edge
loads result in a total stiffness for which ¢ = 0 and the values
of a and b are of opposing sign in equation (2). However, the
fact that a and b are of opposing signs means that Ko will
have both positive and negative valued critical buckling loads
in equation (3). Finally, general combinations of shear loading
and tensile and compressive axial edge loads will also result
in indefinite buckling problems.

The lack of specific knowledge about the relative
magnitude of multiple, in-plane, edge loads is an important
factor that must be accounted for in the design of controllers
for structural instability. While the different loads a plate
undergoes may be known their relative magnitudes may vary
during operation. That variation may be unknown or relatively
random so a control design method must be developed that
accounts for these variations and enables the designer to
understand what load combinations will be stabilized, by
design.

For indefinite problems it is impossible to directly create
a positive definite LMI, as was done in the definite case.
This paper presents two important results for the problem of
stabilizing indefinite, general buckling problems. The first
is a modified set of optimal design equations that enable the
design of optimal buckling controllers for these cases. More
specifically, unsolvable indefinite problems are transformed
into systems, or series, of definite problems, generalizing
and building on results in definite plate buckling control
design. The second result is a means of determining what load
combinations a controller, designed for multiple load cases,
can stabilize. This final result is particularly useful when the
exact values of a, b and ¢ are unknown, or vary, for different
load cases.

There are few prior results in the area of buckling control,
or active strengthening, of plates. Chandrashekara and Bhatia
(1993) focused on the finite element analysis of piezo-ceramic
actuated buckling plates for definite problems. Definite
plate buckling problems were also the focus of the optimal
plate buckling controllers developed by Chase and Bhashyam
(1999a) in which significant additional results addressed
additional issues related to characterizing and overcoming
specific architectural and computational difficulties. The
majority of the prior research on the stabilization of buckling
has been performed for one-dimensional structures such as
columns (Berlin 1994, Meressi and Paden 1992, Baz and
Tampe 1989, Thompson and Loughlan 1995, Chase et al 1997,
1999b, and Berlin ef al 1998).

The research presented here contains the first results in
the area of optimal stabilization of indefinite plate buckling,
and are the first application of LMIs and SDP to general,
indefinite matrix optimization problems. The following
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sections present a short derivation of the optimal design
equations and other theoretical results, numerical examples
and a set of conclusions.

2. Controller design

Mathematically, the goal is to design an optimal, multi-input,
multi-output (MIMO) feedback controller which increases the
critical buckling load of a flat plate modelled in the following
linear state space form

(1) = A(P)z(t) + Biu(r) “

where x(¢) is the state vector of structural displacements, v,
and velocities, o, such that &(z) = [vT ©T]T, A(P)is the plant
matrix varying as a function of the edge load(s) P, and B| maps
the control inputs w(#) to the appropriate state equation.

The foundation of the control design method presented
is the eigenvalue problem of equation (3) and the total
stiffness defined in equation (2). Using a finite element model
and equation (2) the matrices that define the state space in
equation (4) can be created. The plant matrix A(P) and
mapping matrix B are defined as follows:

0 I
APy = [—M-leml —M—lc]

5= %]

where C and M are the structural damping and mass matrices
respectively, and D maps the control inputs to the actuated
degrees of freedom. The lower portion of equation (4), using
equation (5) represents the second-order equations of motion
for a linear dynamic system.

Using static output feedback the control inputs, w(?), can
be defined as follows:

&)

u(t) = -Gy (1) = —GCx(r) 6)

where y(¢) is the vector of measured outputs, defined y(¢) =
Cx(t), and G is the gain matrix. This definition of y(¢)
assumes that displacement and/or velocity measurements are
available, but, can easily be generalized for more general
forms such as acceleration feedback. Assuming that C; =
diag(C\.1; C\.22) is block diagonal and that G = [G| G;] are
conformable blocks, then following the derivation in Chase and
Bhashyam (1999a) results in the multi-objective optimization
problem used to create optimal controllers for the definite plate
buckling problem:

min P + i+ y0
subjectto  ®T[(K + DGC1.11) + PKG-oa]P > 0
OT[(C + DG,C1.) + A TP > 0
@)
[GIm G]
>0
GT 1,

P < _Pdesired

where «, B and y are positive scalars which weight specific
terms in the objective function, and the variables . and 6 are
related to constraints on damping and control effort.
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The matrix ® consists of dynamic eigenvectors of the
original system which are employed to create an accurate
modal representation. This contraction reduces the large
optimization problem, that arises from the number of degrees
of freedom required to create an accurate modal finite
element model, and creates a computationally tractable
sized optimization problem. Issues of problem size and
computational tractability were reported extensively in Chase
and Bhashyam (1999a), and will be eased somewhat by
steadily improving computational ability. It is important to
ensure that enough dynamic mode shapes are employed, in
creating the modal model, to fully describe the resulting closed
loop and uncontrolled buckling modes of interest. Finally, it
should be noted that the control gains, G| and G,, remain, and
are designed, in the ‘physical” domain with no transformation
required for actual implementation.

Equation (7) is employed to design optimal controllers
with maximum control efficiency by using the the variables G|,
G, P, i and 0 to modify system stiffness and damping while
satisfying the constraint on desired buckling load, Pyesireq- The
relative weighting on the objectives trades off the positive
value of 0, associated with control effort, with the negative
values of P and A, associated with increasing the stiffness
and damping. The increases in stiffness and damping are
accomplished by reversing the sign of the eigenvalues P and A,
from minus to plus, in the LMI constraints so that minimizing
the maximum eigenvalue has the effect of maximizing the
minimum eigenvalue of the original eigenvalue problem. As
a result, for definite problems, P and A. are negative valued
rather than positive. An important feature of this problem is its
convexity which implies that the optimal solution is a unique
global minima, and therefore an infeasible result serves as a
proof that no solution exists.

However, as noted previously, the positive definite LMI
constraints in equation (7) are not valid for indefinite problems.
In particular, with buckling loads of both signs, it is not possible
to directly modify the minimum magnitude eigenvalues that
represent the critical buckling loads at which the plate first
buckles. The primary result of this paper is the transformation
of equation (7) to create a system of positive definite LMI
constraints for which the minimum magnitude eigenvalues are
the eigenvalues optimized, as in the definite problem.

Indefinite problems are characterized by having both
positive and negative buckling loads (eigenvalues), rather than
having all the buckling loads (eigenvalues) of the same sign.
Therefore, the transformation to a definite problem from an
indefinite problem can be based on separating the two sets of
eigenvalues and optimizing them simultaneously over the same
control gain variables. Separation is accomplished by using
the complete set of buckling eigenvectors, V', and partitioning
them into separate matrices, V' = [V, V_], associated with
the positive, V,, and negative, V_, buckling loads. These
matrices are used to contract the LMIs in equation (7) into
portions associated with the positive and negative eigenvalues.
It is important to note that V, and V_ are obtained from
the contracted model if the matrix ® is employed, as in
equation (7), and directly from the physical system model
if @ is not used. With this approach, V, and V_ will be
conformable.

To create the same definite LMI constraints which allow
the minimum magnitude eigenvalues to be modified directly,
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the sign of the geometric stiffness term associated with the
negative valued eigenvalues must be changed from plus back
to minus. The modified optimal control design equations are
then defined:

min o Pr+o_P_+ BA.+y0O

subject to
VIOT[(K + DG Ci.11) + Py KG-10] PV > 0
V_T(i)T[(K +DG1C1:11) - P—KG—total]d_)V— >0
OT[(C + DG2C2) + AP > 0

o1, G (8)
>0
G' I,
P, < _Pd+esired
P_ < _Pd;sired

where P, and P_ are the eigenvalues associated with the
positive and negative valued buckling loads and Pj .., and
P qreq are the associated desired buckling loads. Note the
different sign for the geometric stiffness term between the two
LMI constraints. For a shear buckling problem P ., =
Py gireq» as the designer is effectively optimizing symmetric
load cases separately. Finally, the damping LMI constraint
is unchanged as is the constraint on control effort since these
portions of the problem were definite.

In essence, by breaking the problem into portions
associated with positive and negative eigenvalues the
definiteness of the problem is restored. = With definite
problems, modification of the minimum magnitude buckling
load (eigenvalue) is straightforward because the eigenvalue
problem can be formulated such that the minimum magnitude
buckling load (eigenvalue) is the maximum eigenvalue by
reversing the sign of the geometric stiffness term. This
transformation enables the design of controllers which modify
the minimum magnitude eigenvalues which were neither
the maximum, or the minimum, eigenvalues in the original
indefinite problem. Overall, this convex optimization problem
is effectively the same as equation (7).

Similar to the definite buckling control design problem
the tradeoff between control effort and performance is done
in the objective function. By selecting the desired buckling
loads explicitly, specific performance is not undefined and they
therefore provide a fixed value around which a control effort
efficient controller may be designed. Thus, the problem is fully
constrained without being over-restricted.

Finally, quadratic stability of the closed loop system can be
considered either directly in the control design problem, or as a
separate analysis. Considering stability in the design requires
an additional LMI constraint considering the standard closed
loop Lyapunov equation. However, the additional variables
associated with the Lyapunov matrix can make this approach
computationally prohibitive. This research considers quadratic
Lyapunov stability as a separate problem, checking dynamic
stability of the closed loop system after the control gains are
designed, rather than concurrently.

3. Stabilization of unknown load cases

For many practical problems the exact values of a, b, ¢ in
equation (2), which define the exact load case, may not be

known. If these values are known they are easily substituted
into equation (8), however, if they are unknown, or vary,
equation (8) may not be directly useful. The following
discussion presents a modified method of control design, and
a means of determining what combinations of load cases
can be stabilized by a controller concurrently designed for
multiple, individual load cases. More specifically, the method
presented shows how concurrent control design for individual
load cases can be used to stabilize combined multi-load cases
with specific, calculable closed loop critical buckling loads.
To begin this discussion, assume that two definite LMI
constraints are concurrently applied, in equation (7), creating
a set of optimal control gains G, for which the following
inequalities are valid over the range of P, and P, specified:

OT[(K + DG1Cy.11) + P K 1® > 0

V_PX < deesired (9)
O'[(K + DG/Ch.11) + PyKGy]® > 0

v _P)' < P(i‘esired

where P, and P, are the variables for the critical buckling
loads for compressive edge loads in the ‘x’ and ‘y’ directions,
respectively. Employing these two constraints results in a set
of control gains G which stabilizes either compressive edge
loads in the ‘x’ or ‘y’ directions to specified values of Py . 4
and Py, .- Note that these constraints do not account for
simultaneous ‘x’ and ‘y’ direction loading. Equation (9) can
be rewritten, using strict inequalities, in standard eigenvalue
form to create the following two conditions for the closed loop
system:

O[(K + DG,C}.11) — P, K 1P > 0 VP, < Pled

®'[(K + DG,C).11) — PyKG,]® > 0 VP, < P;

desired

(10)
where the signs have been switched to represent a standard
formulation of the buckling eigenvalue problem. Equations (9)
and (10) are equivalent statements.

The only proven result from equation (9) is that either
of these edge loads will be independently stabilized up to the
desired limit in compression and for any value in tension. The
important question is, over what range of a scalar, & € [0, 1],
is the following statement valid?

®T[(K + DG/ C\.11) — £ Pl rea KGe — (1 — €)
X Py e Ky 10 > 0 (11)

where this equation asks over what range of convex load
combinations is the plate stabilized, given that equation (10)
is true?

When & = 1 or 0, equation (11) degenerates to one or the
other portion of equation (10) and the statements validity is
obvious. For 0 < & < 1.0 equation (11) can be rewritten as
follows:

d_DT[S{(K"' DG]C];]]) - PticesiredKGX}
+(1 = §){(K + DG, C.11) — Pyea Ky} 1P > 0 (12)

where both terms in the equation are positive definite, and
the validity of this equation for & € (0, 1) is shown
by equation (10). Note that if one of the edge loads
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is a tension rather than compression load the sign of the
associated geometric stiffness term switches and that portion
of equation (12) is still valid.

Hence, if an optimal controller is simultaneously designed
for two separate, definite, compressive load cases, then it will
also stabilize all convex combinations of those load cases, as
well as combinations involving tension of either of the applied
loads, to the desired critical buckling loads. This control design
method effectively stabilizes an infinite number of load cases
that involve the specified edge loads by stabilizing all convex
combinations of those edge loads. In essence, a user-specified
bound on the acceptable load combinations is provided by this
formulation, a valuable design tool when relative loading varies
or is unknown.

Since this result is valid for convex combinations of tensile
and compressive loads the associated indefinite problem(s)
may be stabilized by the simultaneous solution of two definite
problems. Specifically, if the ‘x’ direction is loaded in
compression and the ‘y’ in tension then as long as the
magnitude of the compression load does not exceed the
magnitude of its designed load (Py_,.q) the plate will remain
stable. The same statement will be true if the directions of the
loads are switched.

Finally, the preceding arguments are easily generalized to
include shear load cases as well as compressive and tensile edge
loads. Each load case must have its own LMI constraint in the
optimal equations in the form of equation (7) or (8), depending
on whether it is a definite or indefinite load case. For example,
if shear loads are included, the control design equations must
include constraints similar to those used in equation (8) because
the shear problem is indefinite by definition. Therefore, rather
than trying to specify the specific load balance among multiple
loads the overall, optimal control design equation simply
includes LMI constraints for each load case individually, each
with their own desired value of P, = Pgesired- This approach
provides the greatest design flexibility to the designer offering
variable choices of closed loop critical buckling load for each
edge load and stabilizing all convex combinations of those
loads.

In summary, this section presents a way of solving
indefinite problems involving in-plane tensile and compressive
load combinations by solving two definite problems,
generalizing and building on prior results in this area. This
approach to control design is also shown to enable the
determination of what load combinations a controller designed
for multiple independent load cases can stabilize. Hence, it is
suggested that the best design method for cases where the exact
load combination is unknown, or varies, is the simultaneous
design of controllers for each individual expected load. In this
fashion, values of Pyegjreq for each direction can be chosen,
using the analysis methods presented, so that the range of
expected load combinations will be stabilized.

4. Numerical verification

This section presents a brief numerical example that verifies the
optimal control design methods presented for a shear buckling
problem. The determination of what loads are stabilized for
multiple load case combinations is also investigated.
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The specific problem is the stabilization of a square plate
measuring 20.3 cms on a side. The plate is clamped on all four
sides and is made of a graphite epoxy laminated composite
similar to those found in aircraft wing skins. The overall goal
of adding active control to this stabilize aircraft wing skins is
to save weight, using active elements to stabilize thinner or
larger plates, reducing the total structural weight of the wing
structure in the process. The resulting plate has an approximate
thickness of 0.25 cms with a ply layup of:

[£45, 90, —45, 90, 45, 90, 45, 90, —45, 90,

—45,0,45,0, —45]s (13)
where the values are angles in degrees and the subscript S
denotes a symmetric layout of the 16 plies shown. This ply

layup results in specially orthotropic material behaviour and a
flexural modulus, D;;, of the following form:

32100 23623 —9.04
D,,_|:23623 84 004 —9.04] (Nem).  (14)
—9.04 —9.04 26246

It is important to note that the design approach presented
will work for any type of plate, not just laminated composites
or specially orthotropic materials. The goal of this numerical
example is to show the validity of the control method presented
and its ability to handle multiple load cases as per the discussion
in previous sections. Specially orthotropic materials are used
as this aircraft wing skin example shows a positive tradeoff
benefit in terms of weight savings as per the results from
Chase and Bhashyam (1999a). The method presented does
not directly handle anisotropic laminated composite plates
that often contain significant residual strains due to their
asymmetric ply layup. These cases will only work effectively
if the finite element model used for control design accounts
for these residual strains. Hence, this method is valid for any
system for which linear finite element modelling provides good
correlation of the structural instability.

The plate is modelled by a finite element model employing
64 elements with 4 degrees of freedom per node and
196 total degrees of freedom for the plate. Each element is
approximately 2.54 cm on a side and the finite element models
employed for analysing buckling loads were derived as per the
work by Shames and Dym (1996). Finite element results are
correlated using the analytical results presented by Shames and
Dym (1996) and Young (1989).

For axial loading the correlation between finite element
loads and analytical results were very good. The open
loop, uncontrolled, critical buckling load in the along the ‘x’
and ‘y’ axes, P = P, were within 0.25% of analytical
results. Correlation of the shear critical buckling load, Pg’,
was within 5.7% of the analytical prediction. This lower
correlation, while marginal, would be improved to less than
1% by using a larger number of elements per side, such as 12
or 16, rather than the eight employed. The 8 x 8 model was
still employed to minimize computational intensity and prove
the concept. Correlation of natural frequencies was within
0.03% of analytical results and static analysis of the models
using uniform pressure loads delivered displacements within
0.025% of analytical results for this 8 x 8 model. Overall,
analytical correlation was excellent and the differences in shear
loading results were seen as acceptable to maintain a direct
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Figure 3. Control architecture for the active plate.

comparison with previously reported results and for a proof of
concept verification, particularly given the otherwise excellent
correlation with analytical results.

Sensing and actuation comprise the essential elements of
a control system architecture and are modelled as specifically
oriented patches of piezoceramic filaments and MEMS strain
sensors with a precision of 5 pue. The sensors are assumed
to be laid out in a quantity such that lateral deflections can
be accurately estimated at desired locations from these strain
measurements. The peak moment a pair of the piezoceramic
actuator patches, located on either side of the plate, can
generate iS My,,x = 81.4 Ncm. This induced moment is
oriented about the in-plane axis perpendicular to the orientation
of the piezoceramic filaments. The sensors and actuators
modelled are based on the experimental equipment employed
in Chase et al (1999b).

The exact control architecture is given in figure 3 where
the black dots represent points at which lateral deflection is
estimated and the arrows indicate an element covered with a
filament piezoceramic patch oriented in the direction shown.
Each actuated element, with an oval, represents an individual
control input, so that this problem has 20 control inputs and
13 measurements (26 including velocity measurements). The
resulting control gain matrix, G, is therefore of size (20 x 26).

This control architecture is identical to that employed for
definite axial buckling load cases in Chase and Bhashyam
(1999a) and is employed here for consistency.  This
architecture was selected to provide a positive mass tradeoff
when an active system was employed, saving aircraft mass, a
critical constraint for high performance aircraft. The specific
choice of measurements and architecture employed were
selected after a great deal of trial and error.

The identical control architecture is employed to show
that it is equally applicable for indefinite, as well as multiple,
buckling load cases and to provide a comparison to the
simpler, definite buckling stabilization case. The prior result,
for definite axial load cases, also provides a further result

for verification as the indefinite case, at its simplest, is
simply broken into multiple definite cases. Hence, the design
methodology and verification example are consistent across
these two cases enabling more in-depth comparison of the
results obtained.

The specific multiple buckling load case chosen combines
a definite axial buckling load in the ‘x’ direction with a pure
shear buckling load. This combination reflects the compressive
axial loading seen by an aircraft wing skin with the shear
loading that can arise due to external loads applied during
aircraft turns. Additionally, these loads are a combination
of an indefinite buckling load case and the definite load case
originally reported (Chase and Bhashyam 1999a).

Optimal control gains are simultaneously designed for
both the pure shear load case and for the compressive loads
in the ‘x’ direction. Definite LMI constraints of the form used
in equation (8) are used to design control gains for the shear
loads, and LMIs for definite problems, as in equation (7),
are employed for the definite axial load case. The specific
optimal equation, which combines these two constraint sets to
be satisfied concurrently, is given as follows:

min oP, +a, P, +a_P_+ BA.+y0
subject to  ®T[(K + DGC.11) + P. K] > 0
OT[(C + DGLC).20) + A I1D > 0
VI®T[(K + DG Cy.11) + Py Ky 1PV, > 0
V'oT[(K + DG,C1.11) — P-Kg,y]®V_ > 0

o1, G
>0
G' 1,
Py < — (iasired
Py < _Pc?—esired
P < _Pd_esired

s)
where all the terms have been defined previously. There is one
LMI for the definite, axial buckling load case involving Ky
and P, and two more for the indefinite pure shear buckling
load using Kgyy, P, and P_. There are additional LMIs for
the damping, velocity feedback, gains, control effort 6 and the
desired buckling load constraints. Additionally, there are now
far more parametric combinations in the objective function,
although they are traded off, as a whole, against control effort
0, as might be expected. Note that this equation is unique to this
particular combination of pure axial and shear load cases and
must be set up for each combination to be analysed, however,
the solution and application of the finite element models and
other aspects are entirely the same.

Each load case employs a value of Pgesired = 1.5 P for
designing the control gains. The design results are presented
in table 1 where the uncontrolled, desired, and closed loop
values are given for the buckling loads in the axial and shear
directions. In addition, the value of 8, the maximum singular
value of the control gains G is presented.

In this case, it is apparent that the shear load case is
driving the design. Table 1 shows the closed loop critical
buckling load for the shear case is tight against it is constraint
while it is loose for the axial load case. This result is due to
the specific control architecture employed and the inability to
increase the shear load, without increasing the axial load, using
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Table 1. Results for optimal control gains concurrently designed for
axial and shear loads.

Axial P, Ncm™')  Shear P, Nem™') 6

Open loop 12728 22192 —
Desired 19079 33287 —
Closed loop 24321 33287 T.Te+7

Table 2. Results for optimal control gains for axial load only.

Axial P, Necm™) 60

Open loop 12728 —
Desired 19079 —
Closed loop 24321 2.4e+7

this architecture. A significantly different control architecture,
explicitly designed for controlling shear loads, would have had
a more efficient result.

For comparison an optimal controller was designed for the
axial load case alone, using the same value of Pj_; ., for which
the results are shown in table 2. The result of 6 = 2.4e + 7
illustrates the effect of the additional constraints for stabilizing
the shear load case. Note that this value of 6 is one third the
size of the value of 6 obtained in concurrently designing the
control gains for both shear and axial loads.

It is clear from this comparison how important the control
architecture is to the efficiency and ability to control the
structural instability. This study also confirmed earlier results
that show the active elements act like active stiffeners. In
plate buckling problems the structure effectively ‘squeezes’
out between these stiffeners and buckling mode shapes shift
to find areas of lesser resistance. In this example, while the
architecture was not perfectly efficient for the axial load alone
it was less efficient in combination with the shear buckling
case. Hence, as seen in table 1, the shear load is tight against
the constraint, as it is the driving factor in the optimization, and
the final closed loop axial critical buckling load is far higher
than the desired value.

The excess effective strength in the axial direction comes
at the cost of more expensive control. It is important to note
that this result is not necessarily bad and that the magnitudes of
the load combinations that may be stabilized with the resulting
control gains are increased by the higher resulting closed loop
axial buckling load. Finally, as the number of measurements
and control inputs rises the control efficiency of the resulting
control design increases as well since the ability to handle
multiple modes goes up with the increasing resolution of the
control inputs with respect to the shape of the buckling modes
to be stabilized.

To see if the resulting closed loop system was stable
for a variety of possible load combinations, several convex
combinations of these two load cases were tested. These
analyses were performed to verify the contention of
equations (12) and (15), that the concurrent solution of control
gains for multiple load cases, in this case axial and shear
loads, will stabilize not only those load cases but any convex
combination of the resulting closed loop critical buckling
loads for those cases. Hence, if the closed loop axial and
shear critical buckling loads were applied in some convex
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combination, using equation (11), these analyses are used to
confirm that the system is stabilized as expected.

To test this contention several convex combinations of the
closed loop critical buckling loads from table 1 were selected
and the closed loop plant matrix constructed for these loads
at the boundary. The eigenvalues were then calculated using
Matlab to determine if there were one or more roots effectively
on the imaginary axis (borderline stable) with the remaining
roots located in the left-hand side of the complex plane (stable).
Lower values, in the fully stabilized region, were run to ensure
stability there as well. These analyses are not intended to be
exhaustive but rather to ‘physically’ check the proof in the
mathematics leading to equation (12) and the design method
presented.

In each case the the closed loop plant was stable verifying
the analysis in the prior section. Simulations were also run for
some of these cases to confirm the eigenvalue analysis results.
In this fashion, the controllers designed are validated for a
number of load combinations rather than a single individual
load case or a given load combination. This result illustrates
the power of this approach to optimal control design for cases in
which the exact load combination is unknown. In particular, it
is seen that one control design can cover, or bound, a number of
load cases, simply and effectively handling a major uncertainty
in the design of controllers for structural instability.

Finally, simulations were performed to test the controllers.
The individual axial and shear load cases were simulated
separately to determine the maximum initial displacement, in
the shape of the first buckling mode, that could be stabilized
for each load case. These simulations effectively test the
individual load cases for stability and present a means of
obtaining extreme initial conditions for any combined load
cases. Note that while the structural instability is stabilized by
a given control design if the initial deflection and/or velocity
exceeds the actuator authority of the system it will be unable
to bring the structure back to it is initial, undeformed shape.
This type of failure is a function of actuator authority and sensor
precision. Stronger actuators enable the system to be stabilized
from greater initial conditions, while greater sensor resolution
and bandwidth enables the system to respond faster to smaller
excursions from the nominal.

A robustness ratio is presented to measure, using
simulation results, the effectiveness of the control architecture
elements selected. This ratio compares the maximum initial
deflection that may be stabilized to the minimum deflection
that the sensors can measure. The sensors assumed for this
study have a resolution of 5 e at a bandwidth of 1000 Hz.
The simulations were performed using this sensor resolution
and controller bandwidth with the peak actuation force for the
piezoceramic filament actuators as given previously.

Table 3 provides the robustness ratios for the axial and
shear cases alone as well as the 50-50 convex combination.
These results are fairly constant with a value of just over 8.0
for each case, similar to prior results for plates this stiff, using
MEMS-based actuators and sensors. Note that the axial case
robustness ratio is slightly lower than reported for the axial
case alone due to the different control gains obtained for the
multiple load case problem presented here. Of particular note
is the idea that if sensor resolution were improved to 1 pe
and actuator authority were increased by a factor of Sx, then
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Table 3. Robustness ratios for different load cases.

Robustness ratio

Axial alone 8.70
Axial 8.40
Shear 8.65
50-50 comb.  8.55

the robustness ratio would go up by as many as two orders of
magnitude (Chase and Bhashyam 1999a).

This last result is important since a robustness ratio of
8 along with minimum detectable deflections of 0.0019 mm for
the axial buckling mode and 0.016 mm for the shear buckling
mode, implies that the maximum initial deflection that may
be stabilized is between 0.015 and 0.13E—1 mm. These
values are very small and may occur simply as a function of
eccentric loading or natural curvature of the composite plate.
A more realistic implementation would have a robustness
ratio of at least 100-200 to ensure more realistic, stabilizable
displacements for this implementation on the order of 5.00 mm
or larger.

In each of these simulations the individual buckling loads
are set at at an appropriate convex combination of the original
1.3 P.; loads used to simulate each individual load case. This
value is very near the design limit that was set at 1.5P
in the optimization problem. For each of the convex load
combinations tested, the controller was able to stabilize initial
deflections eight times, or more, the size of the minimum
deflection detectable with the strain sensors.

This last result serves to verify the two main results
of this research. First, that the approach presented for
designing controllers for indefinite buckling problems, as a
combination of concurrently solved definite plate buckling
control problems, is feasible and practicable. Secondly, and far
more importantly, that concurrently stabilizing multiple load
cases also stabilizes the convex combinations of those loads,
bounding, by user specified constraint, the stabilizable range
of load combinations for the system. This last result is the
most important as many applications do not undergo constant
uniform loading and instead are designed with significant
uncertainty regarding relative load magnitudes.

5. Conclusions

This research investigates the design and implementation
of optimal buckling controllers for indefinite plate buckling
problems.  An optimization problem which transforms
indefinite problems into a series of solvable definite problems
is formulated and represents the first application of linear
matrix inequalities and SDP to indefinite matrix optimization
problems. The method presented can be generalized to larger
classes of indefinite matrix optimization problems.

A method of analysis is also presented which allows the
designer to determine the entire range of load combinations that
may be stabilized by simultaneously designing a controller for
individual load cases. This approach allows certain indefinite
problems to be solved as a series of definite control design
problems. More importantly, it suggests an effective design

method for cases in which the exact load combination is not
known, or varies under certain conditions.

The methods developed are verified by the development
of optimal buckling controllers for stabilizing plate buckling
under shear and other generalized load cases. An optimal
controller is designed simultaneously for both an axial
(definite) and a shear (indefinite) load case. The control
architecture and its impact on control design and the resulting
controller are discussed along with the impact of sensor
resolution and actuator authority on controlling structural
instability. The interaction between the system and the
control design are fully discussed for this example to outline
the overall design approach necessary for these applications.
The resulting controller design is able to stabilize both the
individual load cases to the specified desired values, as well
as convex combinations of the input load values, verifying
the design methods presented. This last result produces a
user specified bound on the stabilizable load combinations
designed. Overall, it is seen that multi-load case indefinite
plate buckling can be readily stabilized, to user specified limits,
using the methods presented while simultaneously developing
a bound on the stabilizable load combinations.
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