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Abstract
One of the most important aspects of detecting damage in the framework of
structural health monitoring is increasing the sensitivity of the monitored
feature to the presence, location, and extent of damage. Distinct from
previous techniques of obtaining information about the monitored
structure—such as measuring frequency response functions—the approach
proposed herein is based on an active interrogation of the system. This
interrogation approach allows for the embedding of the monitored system
within a larger system by means of a nonlinear feedback excitation. The
dynamics of the larger system is then analyzed in state space, and the shape
of the attractor of its dynamics is used as a complex geometric feature which
is very sensitive to damage. The proposed approach is implemented for
monitoring the structural integrity of a panel forced by transverse loads and
undergoing limit cycle oscillations and chaos. The nonlinear von Karman
plate theory is used to obtain a model for the panel combined with a
nonlinear feedback excitation. The presence of damage is modeled as loss
of stiffness of various levels in a portion of the plate at various locations.
The sensitivity of the proposed approach to parametric changes is shown to
be an effective tool in detecting damages.

1. Introduction

Structural health monitoring is a pervasive need in air, space,
sea and land structures [6], and may be applied online
(during normal operation of the monitored system) or offline
(e.g. during maintenance cycles). Online is generally preferred
to offline monitoring in most applications (e.g. monitoring
air-frames, unmanned air vehicles, the joint strike fighter,
buildings and bridges). However, technical difficulties
faced by current methods (especially for detecting incipient
damage of small degree) and problems associated with
taking measurements during normal operating conditions have
limited the available techniques to mostly offline detection of
large damage.

* An earlier version was presented at the SPIE 11th International Symposium
on Smart Structures and Materials.
3 Author to whom any correspondence should be addressed.

Damage is detected by monitoring a feature of the system.
Changes in this feature indicate damage [9]. The types
of features used vary depending on the monitored system
(vibration response, electromagnetic properties, ultrasound
etc). A class of techniques used for damage detection are based
on vibratory responses. Most such methods monitor changes
in the frequencies and modes of vibration [6, 9, 15, 16, 20].
Other current vibration-based techniques use subspace
identification and updating [1, 10, 17, 24, 29], wavelet
analyses [3, 22], evolutionary algorithms [30], Ritz [28] or
stochastic methods [19] and others [23]. These techniques
are designed for linear vibrations while far fewer apply
to nonlinear systems. Some nonlinear methods are based
on system identification [2, 13, 21], while others use
neural networks [4, 27], phase space reconstruction [5] or
Lyapunov exponents [18, 25]. These nonlinear methods have
several limitations, e.g. some have difficulty tackling high-
dimensional systems, others do not predict the damage location
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Figure 1. A panel forced by a transverse distributed force.

or level, or do not detect simultaneous damages. However,
our results show that the use of nonlinearities holds a great
potential. We have observed that the changes in the shape of
attractors of the dynamics are large for nonlinear systems and
may be used for detecting multiple damages.

Distinct from previous techniques of obtaining informa-
tion about the monitored structure, an active interrogation
of the system is what we propose to use. This interroga-
tion approach allows for the embedding of the monitored sys-
tem within a larger system by means of a nonlinear feedback
excitation. The attractor of the dynamics of the larger system
is then analyzed in state space. The shape of this attractor is
used as a complex geometric feature which is very sensitive
to damage. The proposed approach is implemented for mon-
itoring the structural integrity of a panel forced by transverse
loads. The proposed approach is demonstrated numerically
herein. Experimental investigations involving the active inter-
rogation proposed (by means of nonlinear feedback excitation)
are feasible also, and they are expected to confirm the numer-
ical observations.

2. Modeling

A panel subjected to loading is depicted in figure 1.
The structural nonlinearity is due to the coupling between
stretching and bending of the panel for deflections of the order
of magnitude of the panel thickness. Energy dissipation of the
system is also considered by introducing internal and external
damping. Finally, the damage in the panel is modeled as a
local reduction in the bending stiffness of the panel (which
may occur in many damage scenarios, such as the cases where
yielding occurs or a crack propagates in the material).

The panel shown in figure 1 is modeled as a one-
dimensional, homogeneous, isotropic and elastic thin plate
with pinned–pinned end points. The thickness h is considered
much smaller than the length l . Also, the width b is considered
much larger than the length l . Damping is modeled as being
due to two components: external damping due to the vibration
of the panel in air; and internal damping due to the viscosity of
the material of the panel. To model the structural nonlinearity
caused by the in-plane stretching of the panel due to out-of-
plane deflections, von Karman’s strain–displacement relation
is used. The governing equation for the panel dynamics is

obtained as

DW ′′′′ + ρhẄ + CiẆ
′′′′ + CeẆ − N W ′′ − P(X, t) = 0 (1)

where W ′ and Ẇ represent the spatial and time derivatives of
the panel deflection W , D is a coefficient characterizing the
bending stiffness of the panel given by D = Eh3/12(1 − ν2),
Ce and Ci are external and internal damping parameters, while
ρ is the mass density and P(X, t) is the transverse distributed
loading. N is the in-plane tension load (assumed to be uniform
along the entire length of the panel) and is expressed as follows:

N = Eh

[
η0 +

1

l

∫ l

0

1

2
W ′2(ξ ) dξ

]
(2)

where the first term (η0) is the initial axial strain, and the second
term is the stretching of the panel due to bending. Substituting
equation (2) into (1), one obtains

DW ′′′′ + ρhẄ + Ci Ẇ
′′′′ + CeẆ − Ehη0W ′′

− Eh

2l

[∫ l

0
W ′2(ξ ) dξ

]
W ′′ − P(X, t) = 0. (3)

The boundary conditions corresponding to a pinned–pinned
panel may be expressed as

W (X = 0, t) = 0,

DW ′′(X = 0, t) + CiẆ
′′(X = 0, t) = 0,

W (X = l, t) = 0,

DW ′′(X = l, t) + CiẆ
′′(X = 0, t) = 0.

Nondimensional variables x , w and τ are defined as x = X/ l ,
w = W/h and τ = t/

√
ρhl4/D. Next, equation (3) can be

nondimensionalized to obtain

w′′′′ + ẅ + CIẇ
′′′′ + CEẇ − Rx w

′′

− S

[∫ 1

0
w′2(ξ ) dξ

]
w′′ − F(x, τ) = 0 (4)

where w′ = ∂w/∂x , ẇ = ∂w/∂τ . The corresponding
nondimensional coefficients in equation (4) are as follows:

• internal damping CI = Ci/
√

ρhl4 D,
• external damping CE = Cel2/

√
ρh D,

• in-plane pre-load Rx = Ehη0l2/D,
• bending–stretching coefficient S = Eh3/(2D) = 6(1 −

ν2) and
• input force F(x, τ) = l4/(h D) · P(x, τ).

The boundary conditions can also be rewritten in nondimen-
sional form as

w(x = 0, τ) = 0, w′′(x = 0, τ)+CIẇ
′′(x = 0, τ) = 0,

w(x = 1, τ) = 0, w′′(x = 1, τ) + CIẇ
′′(x = 1, τ) = 0.

The bending stiffness and Young’s modulus for the damaged
regions of the panel are denoted by D̄ and Ē . Similar to
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Figure 2. Quarter point dynamics (v = ẇ versus w) for panels with
different levels of damage and subjected to a harmonic excitation
force at their middle.

equation (3), the governing equation of the damaged regions
of the panel may be expressed as

D̄W ′′′′ + ρhẄ + CiẆ
′′′′ + CeẆ − Ēhη0W ′′

− Ēh

2l

[∫ l

0
W ′2(ξ ) dξ

]
W ′′ − P(X, t) = 0. (5)

The nondimensional variables x , w and τ defined for
the undamaged panel are also used to nondimensionalize
equation (5). One obtains

Sr · w′′′′ + ẅ + CIẇ
′′′′ + CEẇ − Sr · Rx w

′′

− Sr · S

[∫ 1

0
w′2(ξ ) dξ

]
w′′ − F(x, τ) = 0, (6)

where Sr is defined as the stiffness reduction factor, Sr = D̄/D,
characterizing the damage level in the panel, i.e. Sr equals unity
when no damage is present. Also, the smaller the value of Sr,
the larger the damage.

Finally, the panel dynamics is computed by using a
finite difference scheme and a time marching algorithm.
All spatial derivatives in the governing partial differential
equation and the boundary conditions are approximated by
a finite difference formulation of second-order accuracy. The
discretized equations for the dynamics are integrated in time
using the Gear method, which is adequate for stiff systems.
More details regarding the numerical approach may be found
in Epureanu et al [7].

3. Nonlinear feedback excitation

Damage detection in strongly nonlinear systems is challenging
especially because of the modal coupling and the amplitude
dependence of the response to harmonic excitation. Thus,
current methods are designed to avoid or minimize the
influence of nonlinearities and, hence, have low sensitivity.
The proposed solution for greatly increasing this sensitivity
is to exploit (and enhance) nonlinearities. The key idea is to
actively change the dynamics so that the attractor (in state space
or in embedded coordinates) is a complex geometric shape
which is used as a feature able to indicate the damage level
and location. Next, given a (measured) attractor, damage is

detected by comparing its current shape with its undamaged
shape.

In the case of limit cycle oscillations, the attractors
are closed curves in the state space. Such curves are
good indicators in some cases [11], but they are not very
sensitive [7, 8] or rich because their shape is not very
complex. To increase sensitivity, the geometric complexity
is enhanced by inducing chaotic dynamics which usually
has attractors expanded spatially (and of similar magnitude).
These attractors have complex shapes which are sensitive to
damage. A very large increase in sensitivity may be obtained
by using a nonlinear feedback excitation. The specific form
of the nonlinear feedback is dependent on each particular
application and includes quadratic, cubic and possibly other
terms. This novel approach is significantly different from a
nonlinear or chaotic excitation. A chaotic excitation applied
to a linear system means that superposition still holds and,
hence, each frequency component of the chaotic signal is
simply filtered through the transfer function of the structure
as any other type of excitation would be. However, when
using nonlinear feedback (superposition does not hold), the
excitation becomes part of the system. The emerging dynamics
is a characteristic of this new system and, thus, it is much more
sensitive to changes in its parameters. Moreover, the present
method detects the damage location and extent with increased
performance. In contrast, chaotic excitation has been used for
damage detection with some success [14, 26], but the features
used there (e.g. attractor variance, Lyapunov exponents) could
not predict the damage location and were only moderately
sensitive to the damage level.

To show the potential offered by nonlinear feedback
excitation for enhancing the sensitivity of damage detection
to the level, the extent and the location of the damage in the
panel, a concentrated force in the form of a harmonic excitation
in combination with nonlinear feedback force components is
used and applied to the middle point of the panel. The response
function of nonlinear feedback excitation may be expressed as

F(τ) = F0 sin ωτ + λw(1/2)2w′′(1/2) + γ w′′(1/2), (7)

where w(1/2) and w′′(1/2) are the displacement and the
curvature at the middle point of the panel, and λ and γ are
control parameters. The form of the nonlinear components
in feedback excitation is drawn from the form of two terms
in equation (4), S[

∫ 1
0 w′2(ξ ) dξ ]w′′ and Rx w

′′, corresponding
to structural nonlinearity and axial pre-load, which play an
important role in the complex dynamics of the panel. Thus,
nonlinear feedback excitation may be designed to increase
the nonlinearity and enhance the instability in the linear
panel without considering structural nonlinearity and axial pre-
load. Finally, the transverse distributed loading F(x, τ) in
equation (4) can be expressed as F(τ)δ(x − 1/2), where F(τ)

is the input force and δ is the Dirac delta function.
As known for linear dynamics, when a linear system is

subjected to a harmonic excitation, the ensuing dynamics is
a periodic oscillation. Such an oscillation/vibration has been
observed in the literature to have a low sensitivity to parametric
variations [8, 9]. For example, in the case of a linear panel
model excited by a concentrated harmonic force acting on the
middle point of the panel, the attractor of the dynamics (of
the quarter point of the panel) is just a simple elliptical curve.
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Figure 3. The Poincaré plot of the attractor of the dynamics spanned by the displacement and velocity of the quarter point for undamaged
and damaged panels subjected to nonlinear feedback excitation at their middle points.

Figure 2 shows such an elliptical curve for three separate cases:
a healthy panel and two panels with low and high levels of
damage expanding over a small extent. One may note that it
is difficult to distinguish between the dynamics of these three
systems by only observing the vibration of the quarter point
on the panel. Here, the linear panel model can be obtained
by eliminating the nonlinear term S[

∫ 1
0 w′2(ξ ) dξ ]w′′ from the

nonlinear panel model in equation (6) (discussed in section 2).
The low level and small extent of damage in figure 2 are
considered to be a 10% loss of bending stiffness of the panel
(corresponding a value of 0.9 for Sr in equation (6)) expanding
along 1.25% of the panel length around the middle point of
the panel. Also, a 50% loss of bending stiffness of the panel
is referred to as a high level of damage.

In contrast, the dynamics of the panel model forced
by nonlinear feedback excitation is much more sensitive
to parametric changes. The shape of an attractor changes
when parameters of the system change [8]. Such changes
have been observed [26], but their characterization has been
limited. To address this issue, one considers that the attractor
(sampled in time) is a cloud of points in state space or
embedded coordinates. This cloud of points moves and
deforms when parametric changes occur. To characterize these
shape changes, algorithms (such as the ones applied for the
recognition of human faces [12]) may be used. In essence,
the novel idea is to collect clouds of points corresponding
to healthy and damaged systems (with various levels and
locations of damage). Then, changes in the shape and
orientation of the clouds can be monitored and correlated
quantitatively and/or qualitatively with parametric variations.
Such an approach allows for the detection of multiple
simultaneous damages of various levels and locations. Distinct
from pattern recognition applied to other signals, the proposed
approach uses attractors (invariants of the dynamics) which
are much more intimately/better tied to system parameters.

Figure 3 shows that the geometric shape of a cloud of
points (in a chaotic attractor) changes dramatically when
damage is present. That is an important improvement in
sensitivity over the linear approaches where exactly the same
damage levels and extents cannot be detected (as shown in
figure 2). Thus, the nonlinearity in the linear panel generated
by nonlinear feedback excitation can effectively generate

a more complex geometric shape for the attractor of the
dynamics, and can also increase significantly the sensitivity
of the shape of the attractor to damage presence, location and
extent.

To characterize the changes in the shape of the attractors
we define and use probability density functions which
represent the probability for a given point in the attractor to be
in a vicinity (of a given size) of a given point, i.e. the number
of points in the attractor which are inside a circle of radius
r around each point in the state space, divided by the total
number of points in the attractor. For a 2D cloud of points, a
three-dimensional diagram of probability densities is obtained
as shown in figure 4. The radius r is chosen as 0.1. The
particular value for r is dependent on the size and the number
of points in the attractor.

Figure 4 shows the probability density function of the
attractors of the dynamics for an undamaged panel and a panel
with a low level and a high level of damage (for a small
extent of damage) located respectively at the middle point
and at the quarter point of the panel length. Figure 5 shows
that the difference between the probability density functions
for a healthy panel and the panels with different locations
and levels of damage is large. Moreover, the shape of the
probability differences differs for various types and locations
of damage. The parametric variations considered represent
different levels, extents and locations of damage. As a result,
the nonlinear feedback excitation can successfully enhance
nonlinearity in the system to provide an accurate and robust
method for detecting the level, extent and location of structural
damage.

Next, we investigate in more detail the detection of the
level and location of damage. Figure 6 shows the difference
probability density functions obtained for three separate cases
of a panel with different levels of damage around its middle
point (for values of Sr of 0.50, 0.55 and 0.60). The three
shapes observed are very similar. To quantify their similarity,
one may compute a two-point correlation matrix and calculate
its eigenvalues. As expected, one of the eigenvalues obtained,
em

1 , is much larger than the other two, i.e. em
2 /em

1 = 0.0283
and em

2 /em
1 = 0.0144. The clear separation of one of the

eigenvalues compared to the other two indicates that the
three shapes observed in figure 6 are linearly dependent.
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Figure 4. The probability density of the point distribution in the Poincaré sections for the undamaged panel and the panel with low and high
levels (and small extent) of damage at different locations.

Figure 5. The difference of probability densities of the distribution of points in the Poincaré plot for the panel with different locations and
levels of damage.

Figure 6. The difference of probability densities of the distribution of points in the Poincaré plot for the panel with different levels of
damage around its middle point (left Sr = 0.50, center Sr = 0.55, right Sr = 0.60).

The most dominant shape corresponds to em
1 and is denoted

by sm
1 . Similarly, figure 7 shows the difference probability

density functions obtained for panels with different levels of
damage around the quarter point (for values of Sr of 0.50,

0.55 and 0.60). The same separation of the eigenvalues of
the two-point correlation matrix is obtained. Specifically,
one obtains eq

2/eq
1 = 0.0480 and eq

2/eq
1 = 0.0229. The

most dominant shape corresponds to eq
1 and is denoted by
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Figure 7. The difference of probability densities of the distribution of points in the Poincaré plot for the panel with different levels of
damage around its quarter point (left Sr = 0.50, center Sr = 0.55, right Sr = 0.60).

Figure 8. The difference of probability densities of the distribution of points in the Poincaré plot for the panel with different levels of
simultaneous damages around its quarter and middle points (left Sr = 0.50, center Sr = 0.55, right Sr = 0.60 for both damage locations).

sq
1 . These results demonstrate that the difference probability

density functions have approximately the same shape (but of
varying magnitude) for various damage levels and that this
shape changes when the damage location changes.

Similarly, figure 8 shows the difference probability density
functions obtained for distinct panels with simultaneous
damages of different levels at two locations: around the middle
point and around the quarter point (for values of Sr of 0.50, 0.55
and 0.60 at both locations). The difference probability density
functions are linearly dependent also, as demonstrated by the
eigenvalues of a two-point correlation matrix, emq

2 /emq
1 =

0.0409 and emq
2 /emq

1 = 0.0253. However, the dominant
shape, smq

1 (corresponding to emq
1 ), is linearly dependent on

the shapes sm
1 and sq

1 obtained for damage present only at
the middle point and, separately, damage only at the quarter
point. This linear dependence is shown by the eigenvalues
of a two-point correlation matrix computed using nine shapes
(three for middle point damage only, three for quarter point
damage only and three for simultaneous damages) plotted in
figure 9. The log plot indicates that there is a large separation
between the first two eigenvalues and the rest of the seven.
The presence of two dominant eigenvalues indicates that the
nine shapes are approximately linearly dependent on only two
shapes, which correspond to plates with damage at the quarter
point and separately at the middle point.

4. Conclusions

The dynamics of a panel forced by transverse loads and
undergoing limit cycle oscillations and chaos has been
investigated. The nonlinear von Karman plate theory has
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Figure 9. A log plot of the eigenvalues of the correlation matrix for
nine snapshots obtained as the difference probability density
functions for nine separate damage cases at two locations (all
eigenvalues are divided by the largest eigenvalue).

been used to obtain a model for the panel coupled with a
nonlinear feedback excitation. Damage has been modeled as
a loss of stiffness in a portion of the plate. The sensitivity of
the nonlinear system to parametric changes has been shown
to be an effective tool in detecting damages. Most of the
current studies of such problems are based on linear theories.
In contrast, the results presented have been obtained using
nonlinear dynamics, and have the advantage of an increased
sensitivity and accuracy in detecting damage.
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