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Abstract
A damage detection method is developed for nonlinear systems using model
updating. The method uses a nonlinear discrete model of the system and the
form of the nonlinearities to create an augmented linear model of the
system. A modal analysis technique that uses forcing that is known but not
prescribed is then used to solve for the modal properties of the augmented
linear system after the onset of damage. Due to the specialized form of the
augmentation, nonlinear damage causes asymmetrical damage in the
updated matrices. Minimum rank perturbation theory is generalized so that
it may be applied to the augmented system and can handle these
asymmetrical damage scenarios. The method is demonstrated using
numerical data from several nonlinear mass–spring systems.

1. Introduction

Health monitoring and online damage detection of structural
systems is of growing importance in many fields. The
aerospace industry is one of the fields where these methods
are applied. Many current structural damage detection
techniques are focused on identifying changes in the linear
system behavior [10] and employ linear methods based on
changes in the natural frequencies and mode shapes [26].
Also, system identification [1, 12, 21, 24, 30] and generic
(and not necessarily physical) models such as neural
networks [2, 23, 36] are used. With the increasing demand
for safe space technology, the various structural systems that
compose air and space vehicles must be monitored for safety
and reliability. Hence, the current most common methods
of visual inspection and time-based maintenance will be
upgraded to online monitoring of the integrity of the vehicle
and condition-based maintenance.

The field of nonlinear experimental modal analysis is
an active area of research which plays an important role in

1 Author to whom any correspondence should be addressed.

nonlinear vibration-based damage detection. Worden and
Tomlinson [33] separate the research in this field into three
main areas. The first area uses the basic theory and philosophy
of linear modal analysis by characterizing the nonlinear system
in a way such that the amplitude invariance is lost. The
study of the frequency response function’s (FRF) distortion
was one of the early studies in this area by Ewins [9]. The
second area consists of extending the linear approach of
modal analysis to encompass quantities that are amplitude
invariants of nonlinear systems. For example, Gifford [14]
develops a technique in this area which is based on Volterra
series [25] and obtains the linear parameters from a nonlinear
optimization step and the nonlinear parameters from a linear
least squares analysis of higher-order FRFs (HFRFs). The third
area of the study of nonlinearity in modal analysis requires the
discarding of the linear theory and the creation of new theories
to address the nonlinearity directly, such as nonlinear normal
modes [20, 22, 27, 28] and center manifold theory [31, 34].

The field of linear modal analysis is much more developed
than its nonlinear counterpart. Linear techniques based
on single input single output, single input multiple output,
and multiple input multiple output (MIMO) approaches are
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available. These techniques are developed for both time and
frequency domains. The time-based MIMO methods have
several different characteristics which were surveyed by Yang
et al [35]. The poly-reference complex exponential [32],
eigensystem realization algorithm [17] and Ibrahim time
domain [29] methods find the modal properties using impulse
or free responses of the system. The auto-regressive moving
average vector [37] and direct system parameter identification
(DSPI) [19] both use the response of systems forced by natural
excitations to determine modal properties.

Using modal analysis to obtain the mode shapes and
natural frequencies is the first step in many structural health
monitoring approaches. The modal properties are then used
in a damage detection algorithm. The linear nondestructive
evaluation field has been developed greatly and includes
four general categories: optimal matrix updates, sensitivity
methods, eigenstructure assignment techniques, and minimum
rank perturbation methods (for a review, see the papers by
Ibrahim [16] and Heylen [15]).

In this work an algorithm for analyzing a nonlinear system
as an augmented linear system is presented. This allows for
the much better developed areas of linear modal analysis and
linear damage detection to be exploited. A key feature of the
augmentation requires the modal analysis technique used to
work with a forcing that is known but not prescribed. A MIMO
technique such as DSPI [19] that uses natural excitations of the
system as forcing is the technique used in this paper to identify
the modal properties of the augmented system. Nonetheless,
other techniques may be used as well. Next, the modal
properties of the augmented system are used in conjunction
with a novel generalized minimum rank perturbation theory
(GMRPT) to detect the location and extent of damage in
nonlinear systems. The proposed GMRPT is designed to
account for nonlinearities, and is inspired from a linear damage
detection technique employing minimum rank perturbation
theory (MRPT) [38–41]. A key characteristic of the proposed
augmentation is that the nonlinear damage is manifested in an
asymmetrical fashion in the system matrices. A formulation
of GMRPT is proposed to handle cases of asymmetric damage
and nonlinear systems.

To demonstrate the proposed approach, the method is
applied to several nonlinear mass–spring systems. The
effectiveness of the augmentation and the GMRPT are
demonstrated by numerical experiments. Also, the influence
of measurement noise and of inaccuracies in modal parameters
is analyzed.

2. General methodology

In this section, the procedure for detecting the location and
extent of damage in nonlinear systems using linear theories
is demonstrated. First, the modeling of the nonlinear system
by an augmented linear one is introduced. Then, a means
to solve the eigenvalue problem for the augmented system
using DSPI [19] is detailed. Next, GMRPT is developed for
damage that is not symmetric, which is a characteristic of the
augmented system.

2.1. System augmentation for modeling nonlinear systems

In this section, a method to model a nonlinear system by an
augmented linear system is presented. Consider a nonlinear
system (characterized by a coordinate vector x and forced by
an external excitation g(t)) expressed as

Mẍ + Dẋ + Kx + f(x, ẋ, ẍ) = g(t), or[
M 0
0 I

] [
ẍ
ẋ

]
+

[
D K
−I 0

] [
ẋ
x

]
+

[
f(x, ẋ, ẍ)

0

]
=

[
g(t)

0

]
,

(1)

where M, D, and K are the mass, damping and stiffness
matrices and f is a nonlinear function. Equation (1) can be
rewritten as

Mẍ + Dẋ + Kx + Ny = g(t), or


M 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I







ẍ
ẋ
ÿ
ẏ




+




D K 0 N
−I 0 0 0
0 NT 0 2I
0 0 −I 0







ẋ
x
ẏ
y


 =




g(t)
0

h(t)
0


 , (2)

where N is a constant matrix, and y contains nonlinear terms
of the form (dm xi/dtm)p(dn x j/dtn)q , with integer m, n, p,
q. The function h(t) in equation (2) is introduced to preserve
most of the properties of the matrices in equation (1). The
augmentation is expressed such that it matches the form used
in examples later in this paper. However, the system can be
augmented differently to optimally suit various applications.
Equation (2) is the augmented linear model of the nonlinear
system for which the eigenvalue problem must be solved.

2.2. Eigenvalue problem for augmented systems

To use the augmented model given in the previous section,
a modal analysis technique which uses an excitation that is
known but not prescribed is needed. An example of a modal
analysis technique that meets these requirements is DSPI, and
it is also the technique used to generate data for this paper.
DSPI enables one to determine the mode shapes and natural
frequencies of the system when the displacement of the degrees
of freedom (x(t) and y(t)) and the forcing (g(t) and h(t)) are
known.

An example of implementation of the proposed approach
is to measure the displacement vector x(t) and the forcing
vector g(t). The vector y(t) may then be computed from x(t),
and the vector h(t) may be calculated to satisfy equation (2).
The requirement of the modal analysis technique to use a
known but not prescribed forcing stems from the known
forcing h(t).

A consequence of the form of the augmentation is the
inability for damage to be modeled in the augmentation. This
means that if damage occurs in N it will only be reflected in
the linear portion and not the augmented portion of the system.
The end result is that, when using this augmentation, nonlinear
damage causes asymmetrical changes in the system matrices.
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2.3. Generalized minimum rank perturbation theory

In this section, MRPT is generalized to handle cases where
linear and nonlinear damage is present and the damage is
not necessarily symmetric. First, the location algorithm
is presented, and then the modified extent calculation is
formulated.

2.3.1. Identification of damage location. The damage
location algorithm for GMRPT follows closely that of
MRPT [38–41] except for the addition of several equations
that are used in the identification of the damage extent. It
is assumed that a discrete, n-degree of freedom (e.g. finite
element) model exists for the healthy system, and may be
expressed as

Mẅ + Dẇ + Kw = 0, (3)

where M, D and K are n × n mass, damping and stiffness
matrices, and w is an n × 1 vector of displacements. The
eigenvalue problem of equation (3) (i.e. λ-equation) can be
written in second-order form as(

λ2
hi M + λhi D + K

)
vhi = 0,

uT
hi

(
λ2

hi M + λhi D + K
) = 0,

(4)

where λhi , vhi and uhi denote the i th eigenvalue, i th right
eigenvector, and i th left eigenvector of the healthy structure.
Next, consider that the i th eigenvalue λdi , i th right eigenvector
vdi , and i th left eigenvector udi of the damaged structure
are measured (e.g. through modal analysis and DSPI). Let
�M, �D and �K be the exact perturbation matrices that
reflect the nature of the structural damage. Thus, the exact
perturbation matrices are sparse matrices with the nonzero
elements reflecting the presence of the damage. The λ-
equation for the damaged structure may be expressed as[

λ2
di (M − �M) + λdi(D − �D) + (K − �K)

]
vdi = 0,

uT
di

[
λ2

di (M − �M) + λdi(D − �D) + (K − �K)
] = 0.

(5)

Although only p of the n eigenvalues/eigenvectors are assumed
measured (with p � n), these equations hold for any particular
eigenvalue and eigenvector of the damaged structure because
the perturbation matrices are assumed to be exact. Grouping
all perturbation matrices on the right-hand side defines two
damage vectors di and ci as

di ≡ Zdi vdi = (
λ2

di�M + λdi�D + �K
)

vdi , (6)

cT
i ≡ uT

di Zdi = uT
di

(
λ2

di�M + λdi�D + �K
)
, (7)

Zdi ≡ λ2
di M + λdi D + K. (8)

A composite damage vector may be defined from the multiple
measured modes as

d = 1

p

p∑
i=1

di

‖vdi‖ . (9)

Also, Zimmerman [38–41] developed an alternative view of
the state of damage where equation (6) can be rewritten as

d j
i ≡ z j

di vdi = ‖z j
di‖‖vdi‖ cos(θ j

i ), (10)

where d j
i is the j th component (i.e. j th degree of freedom,

DOF) of the i th damage vector, z j
di is the j th row of the matrix

Zdi , and θ
j

i is the angle between the vectors z j
di and vdi . A

damage detector α
j
i may be calculated from θ

j
i , where

α
j
i = θ

j
i

(
180◦

π

)
− 90◦. (11)

A composite damage vectorγ may be defined from the multiple
measured modes as

γ j = 1

p

p∑
i=1

|α j
i |. (12)

2.3.2. Identification of damage extent. Often it is of interest
to determine the extent of the structural damage in addition
to its location. Due to the nature of the augmentation,
the perturbation matrices, �M, �D and �K, may not be
symmetric. For simplicity, in the following it is assumed
that the structure under consideration is undamped (and that
both M and K are symmetric). Nonetheless, the presence of
damping can be included with little change to the proposed
methodology. Furthermore, it is assumed the effect of the
damage on the mass is negligible. Equations (6) and (7) can
be rewritten with these assumptions as(

λ2
di M + K

)
vdi = �Kvdi ≡ di ,

uT
di

(
λ2

di M + K
) = uT

di�K ≡ cT
i ,

(13)

where i = 1, . . . , p as it is assumed that only p damaged
eigenvalues and eigenvectors are measured. These equations
can be rewritten in matrix form as

MVdΛd + KVd = �KVd ≡ B,

ΛdUT
d M + UT

d K = UT
d �K ≡ AT,

(14)

where
Λd = diag(λ2

d1, λ
2
d2, . . . , λ

2
d p),

Vd = [vd1, vd2, . . . , vd p],

B = [d1, d2, . . . , dp],

UT
d = [ud1, ud2, . . . , ud p]T,

AT = [c1, c2, . . . , cp]T.

(15)

The algorithm for identifying the damage extent is
mathematically supported by the following.

Proposition. Suppose that Vd ∈ �n×p, B ∈ �n×p and
A ∈ �n×p are given, where p < n and rank(Vd) = rank(B) =
rank(A) = p. Define K to be the set of matrices �K in �n×n

that satisfies
�KVd = B, (16)

UT
d �K = AT. (17)

Then

(a) If the set K is nonempty, then the minimum rank of any
matrix �K in K is p. Next, define Kp to be a subset of K
comprised of all �K such that rank(�K) = p.

(b) One member of Kp is given by

�Kp = BHAT with H = (
ATVd

)−1
. (18)

(c) The matrix defined by equation (18) is the unique member
of Kp.

To prove proposition (a), note that equations (16) and (17)
are exactly satisfied if and only if range(B) and range(A)
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are included in range(�K). This implies that rank(B) =
rank(A) = p � rank(�K). Hence, the minimum rank of
�K is p.

To prove proposition (b), assume that the expanded
singular value decomposition of member j of Kp, �Kp, j , to
be of the form

�Kp, j = U jΣ j V j T
, (19)

where
U j =

[
u j

1, u j
2, . . . , u j

p

]
,

Σ j = diag
(
σ

j
1 , σ

j
2 , . . . , σ j

p

)
,

V j T =
[
v j

1 , v j
2 , . . . , v j

p

]T
,

where the superscript j indicates the j th family member, the
vectors u j

i are the left singular vectors, the vectors v j
i are

the right singular vectors, and the values σ
j

i are nonzero
singular values of �Kp, j . In the expanded singular value
decomposition, the singular vectors with indices from (p+1) to
n are not shown in the factorization because they all correspond
to zero singular values. For equations (16) and (17) to be
satisfied, the range of B must equal the range of U j and the
range of A must equal the range of V j . Therefore, the matrices
B and U j can be related by an invertible p × p matrix Q j as
follows:

B = U j Q j , where Q j = Σ j V j T
Vd. (20)

Likewise, the matrices A and V j can be related by an invertible
p × p matrix P j as follows:

A = V j P j , where P j = Σ j U j T
Ud. (21)

Substituting equations (20) and (21) into (19) yields

�Kp, j = BQ j −1
Σ j P j −T

AT = BH j AT. (22)

Thus, each family member is uniquely defined by the
factorization of equation (22). Also, it is evident that H j

is of full rank because its inverse exists (and it is given by
P j TΣ j −1Q j ).

Inspection of equation (22) reveals that the only unknown
term in the factorization is H j . Equation (16) can be rewritten
using the factorization of �Kp, j , defined by equation (22), as

B = �Kp, j Vd = (
BH j AT

)
Vd = B

(
H j ATVd

)
. (23)

The equation above is satisfied if and only if H j ATVd = I,
where I is the p × p identity matrix. This holds because B is
of full column rank. Thus, H j is uniquely calculated to be

H j = (
ATVd

)−1
. (24)

Hence, equation (18) holds as shown by equations (22)
and (24).

The proof of proposition (c) follows immediately by
inspecting the right-hand side of equation (24). Inspection
reveals that H j is the same for all members of Kp. This fact,
in conjunction with equation (22), leads to the conclusion that
�Kp, j is the unique member of the set Kp. This (unique)
member is given by equation (18).

Figure 1. Kabe’s problem [40].

The conclusions of the proposition above may be used
to determine �K, and thus identify the damage location
and extent. To identify the damage location, only right
eigenvectors are needed in GMRPT. However, to identify the
damage extent using GMRPT, p of the n left eigenvectors of
the system are needed as well. One way of obtaining the left
eigenvectors from the right eigenvectors is to use the mass
orthogonality property of the eigenvectors given by

UT
d MVd = I, so that UT

d = V−1
d M−1. (25)

An approach based on equation (25) requires all n right
eigenvectors of the system to be known in order to solve for the
left ones. In many vibratory problems in structural dynamics
and/or fluid-structure interactions, the system of interest is
modeled accurately by a system of equations of motion which
is large dimensional (i.e. n is very large). Recent techniques
for reducing the complexity of these models employs reduced-
order modeling [3–8, 11, 13, 18] based on approaches
such as component mode synthesis and proper orthogonal
decomposition. These techniques are applicable to both linear
and nonlinear systems and usually provide a transformation
from the high-dimensional space of displacements w (of size
n) to a reduced-order space q (of size r � n) as w = Pq,
where P is a n × r matrix. Next, the equations of motion
are expressed in the reduced-order space. For example,
equation (3) successively becomes

MPq̈ + DPq̇ + KPq = 0,

PTMPq̈ + PTDPq̇ + PTKPq = 0,

M̄q̈ + D̄q̇ + K̄q = 0.

(26)

The reduced-order equation of motion in equation (26) has a
low order r . Hence, its r right eigenvectors may be measured
much more easily than the n right eigenvectors of the original
problem. Once the r reduced-order right eigenvectors are
obtained, the r left eigenvectors ei (for i = 1, . . . , r ) of
the reduced-order model may be computed using a relation
similar to equation (25) by using the reduced-order mass matrix
M̄. Next, the r most dominant full-size left eigenvectors are
obtained as udi = Pei , for i = 1, . . . , r .

3. Examples of implementation of the proposed
approach

To demonstrate its characteristics, this methodology was
applied to an eight degree of freedom mass–spring system
(Kabe system [38–41]), shown in figure 1. The parameter
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Figure 2. Kabe’s problem [40] with addition of a nonlinear spring
between mass two and ground.

Figure 3. Kabe’s problem [40] with addition of a nonlinear spring
between mass four and mass six.

values are m1 = 0.001, m8 = 0.002, m j = 1 for j = 2, . . . , 7,
k1 = 1000, k2 = 10, k3 = 900, k4 = 100, k5 = 1.5,
and k6 = 2. First, the linear system was modeled, and
then numerical tests were run using harmonic forcing at each
of the masses to validate the GMRPT by comparison with
previously published results [40]. Next, three nonlinear mass
spring systems based on the Kabe system were created. The
methodology was applied to each of the nonlinear systems, and
numerical tests were conducted.

Kabe’s problem shown in figure 1 is generalized into a
nonlinear mass spring system in three cases. In each of the
cases, the nonlinear springs are of the form kni�x3, where kni

is the nonlinear spring stiffness, and �x represents the distance
the nonlinear spring is stretched. The first case consists of one
nonlinear spring being added between mass two and ground as
shown in figure 2 (kn1 = k1 = 1000). The second case consists
of one nonlinear spring being added between masses four and
six as shown in figure 3 (kn4 = k4 = 100). The third and
last case consists of 12 nonlinear springs added between the
masses and ground, as is illustrated in figure 4. The parameter
values are kn1 = 1000, kn2 = 10, kn3 = 900, and kn4 = 100.

3.1. Case 1: methodology

This case consists of the addition of one nonlinear spring
attached from mass two to ground as shown in figure 2. The
nonlinear system equations are the same as the linear ones
with the exception of the added term in the second degree of
freedom and the augmented equation.

The added term in the second degree of freedom of the
linear equation is k2ng y, where k2ng is the nonlinear spring

Figure 4. Kabe’s problem [40] with addition of 12 nonlinear springs
connecting masses to each other and ground.

Figure 5. Physical equivalence of the augmentation for a nonlinear
spring connecting a mass to ground.

stiffness that connects mass two to ground and y = x3
2 (with

x2 being the displacement of mass two from its equilibrium).
The augmented equation may be expressed as

ÿ + k2ngx2 + 2k2ng y = h(t). (27)

A physical representation of the above system equation is
demonstrated in figure 5, which illustrates how the use of an
additional mass moving in a specified manner (i.e. y = x3

2 )
in conjunction with linear springs can be used to account
for the nonlinear spring. The additional mass results in
an additional degree of freedom, which corresponds to the
augmented equation for h(t) given above.

3.2. Case 2: methodology

This case consists of a nonlinear spring attached between
masses four and six, which results in a slightly more
complicated model then the first (above) as shown in figure 3.
The nonlinear system equations are again similar to the linear
ones with the exception of the added term to the fourth and
sixth degrees of freedom and the augmented equation.

The term k4n6y is added to the fourth degree of freedom
equation, and it is subtracted from the sixth degree of freedom
equation. The nonlinear spring stiffness is denoted by k4n6,
while the stretching of the nonlinear spring is y = (x4 − x6)

3.
The augmented equation may be expressed as

ÿ + k4n6x4 − k4n6x6 + 2k4n6 y = h(t). (28)
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The physical realization of the above system is
demonstrated in figure 6. As in the case where the mass is
connected with a nonlinear spring to the ground, the system
can be physically represented by adding a mass and several
springs to the system.

3.3. Case 3: methodology

This case consists of 12 nonlinear springs being added to the
linear mass spring system as shown in figure 12. Each degree
of freedom is modified in the same manner as done in the
previous two sections. The following augmented equations
are obtained:
ÿ1 + k2ngx2 + 2k2ng y1 = h1(t)

where y1 = x3
2 ,

ÿ2 + k4n6x4 − k4n6x6 + 2k4n6 y2 = h2(t)

where y2 = (x4 − x6)
3,

ÿ3 + k5n7x5 − k5n7x7 + 2k5n7 y3 = h3(t)

where y3 = (x5 − x7)
3,

ÿ4 + k3ngx3 + 2k3ng y4 = h4(t)

where y4 = x3
3 ,

ÿ5 + k2n3x2 − k2n3x3 + 2k2n3 y5 = h5(t)

where y5 = (x2 − x3)
3,

ÿ6 + k6ngx6 + 2k6ng y6 = h6(t)

where y6 = x3
6 ,

ÿ7 + k4n7x4 − k4n7x7 + 2k4n7 y7 = h7(t)

where y7 = (x4 − x7)
3,

ÿ8 + k5ngx5 + 2k5ng y8 = h8(t)

where y8 = x3
5 ,

ÿ9 + k4ngx4 + 2k4ng y9 = h9(t)

where y9 = x3
4 ,

¨y10 + k7ngx7 + 2k7ng y10 = h10(t)

where y10 = x3
7 ,

¨y11 + k3n5x3 − k3n5x5 + 2k3n5 y11 = h11(t)

where y11 = (x3 − x5)
3,

¨y12 + k2n6x2 − k2n6x6 + 2k2n6 y12 = h12(t)

where y12 = (x2 − x6)
3.

(29)

The stiffnesses of the nonlinear springs are denoted by an n in
the subscript (i.e. kinj ).

4. Numerical results

To implement the methodology presented, a numerical
simulation of the Kabe system was performed. The matrices
M, K and N were obtained for the selected system, and each
mass was forced harmonically. The vector of displacements
x(t) was calculated by standard time integration, while y(t)

Figure 6. Physical equivalence of the augmentation for a nonlinear
spring connecting a mass to another mass.
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Figure 7. Results of the damage location algorithm applied to a
healthy unaugmented nonlinear system and a healthy augmented
nonlinear system for case 1.

and h(t) were calculated based on their relation to x(t). DSPI
was employed for the augmented system to determine the
eigenvalues and eigenvectors of the augmented matrices by
using the time series for x(t), g(t), y(t) and h(t). Next,
GMRPT was used to determine the damage location and extent
by using the modal data provided by DSPI. Reduced-order
modeling was not needed for this system since it only has eight
linear degrees of freedom. Various damage scenarios were
investigated using this approach for the three cases considered.

4.1. Case 1: numerical results

In this section, two key characteristics of the nonlinear damage
detection approach are discussed for a system with a nonlinear
spring connected to the ground. First, the effect of the
augmentation is discussed. Next, the relationship between
MRPT and GMRPT is explored.

The effect of the nonlinearity on the healthy system can
be seen in figure 7. The plot shows the damage location
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Figure 9. Results of the damage location algorithm applied to a
healthy unaugmented nonlinear system and a healthy augmented
nonlinear system for case 2.

obtained using equation (9) for four different approaches. The
first approach (augmented without DSPI) uses an augmented
system and a calculation where the exact eigenvalues and
eigenvectors are used. This accurately predicts that no
damage is present in any of the degrees of freedom. The
second approach (augmented with DSPI) uses an augmented
system and a calculation where DSPI is used to obtain
eigenvalues and eigenvectors. These results show a very good
estimate, with nearly zero damage predicted by GMRPT (as
expected for a healthy system). In contrast, the next approach
(no augmentation) uses DSPI to obtain the eigenvalues
and eigenvectors also, but the system is modeled as the
original linear system even though there is a nonlinear spring
connecting mass two to ground. The results show that damage
is erroneously predicted by the linear MRPT in the second
degree of freedom, the location of the nonlinear spring.

The erroneous predictions of the linear MRPT are not
alleviated by matrix updating. To show that, the stiffness
matrix was updated with the damage predicted using MRPT
and the forcing g(t) was slightly altered to simulate a change
in forcing with time. The results are shown in figure 7

where the last approach (no augmentation with update) used
DSPI with the updated linear model. This approach shows
that the linear model is inaccurate when used to model a
nonlinear system, despite matrix updating, because damage
is still erroneously predicted at the degree of freedom that
contains the nonlinearity.

MRPT is a subset of GMRPT, and detects damage in
systems with symmetric damage. Hence, when the damage
to a system is solely in its linear components, then both
GMRPT and MRPT are accurate since the linear damage
results in symmetric damage matrices, which result in vdi =
udi . Figure 8 presents element by element the values of the
stiffness perturbation matrices (�K) obtained using MRPT
and separately GMRPT (and using exact eigenvalues and
eigenvectors of the augmented system). The x-axes in each
plot represent the indices of a column vector obtained from
storing the upper triangular portion of the perturbation stiffness
matrix (�K) into a column vector. The linear and augmented
parts of the matrix are demarcated by a line in the figure. The y-
axes in the plots represent the entries of the difference between
the original and updated stiffness matrices, �K. The left plot
in figure 8 is the scenario where the linear spring connecting
mass three to ground is reduced from a healthy value of 1000
to 900. Since the damage is linear, both MRPT and GMRPT
predict accurately the exact damage of 100. The right plot in
figure 8 is the scenario where the nonlinear spring is reduced
from a healthy value of 1000 to 900. GMRPT is able to predict
accurately the exact damage of 100, while MRPT incorrectly
predicts damage in the linear spring that connects mass two
to ground.

4.2. Case 2: numerical results

This section explores the same characteristics of the nonlinear
damage detection approach as in case 1, except that the
nonlinear spring connects two masses here instead of a mass
and ground.

The effect of the nonlinearity on the healthy system
can be discerned when comparing the approaches presented
in figure 9. The plot shows the damage location obtained
using equation (9) for four different approaches. These four
approaches are the same as the ones in figure 7. The results
in figure 9 show that damage is erroneously predicted by
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Figure 10. A comparison of results obtained for case 2 using GMRPT and MRPT for damage in a linear spring (left) and a nonlinear spring
(right).
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Figure 11. Results of the damage location algorithm applied to a
healthy unaugmented nonlinear system and a healthy augmented
nonlinear system for case 3.

MRPT in both degrees of freedom that the nonlinear spring
affects for the approach with no augmentation. Also, the
damage continues to be erroneously predicted by MRPT
despite updating the stiffness matrix. In contrast, for the
approach with the augmentation and exact eigenvalues and
eigenvectors, zero damage is again accurately predicted by
the proposed technique. Finally, the approach with the
augmentation coupled with DSPI predicts low damage. This
damage is negligible and is due to small inaccuracies in solving
the eigenvalue problem by DSPI.

Figure 10 shows results which further explore the
relationship between MRPT and GMRPT. An element by
element plot of the stiffness perturbation matrices (�K)
obtained using MRPT and separately GMRPT are shown. The
left plot in figure 10 is the scenario where the linear spring
connecting mass four to mass six is reduced from a healthy
value of 100 to 90. Since the damage is linear, both MRPT
and GMRPT predict accurately the exact damage of 10. The
right plot in figure 10 is the scenario where the nonlinear spring
is reduced from a healthy value of 100 to 90. GMRPT is able
to predict accurately the exact damage of 10, while MRPT
incorrectly predicts damage in the linear spring that connects
mass four and mass six.

4.3. Case 3: numerical results

In this section, the characteristics of the proposed approach
are demonstrated, and a discussion of the influence of noise is
presented.

The effects of the nonlinearity on the healthy system can be
discerned by comparing the cases presented in figure 11. The
plot shows the damage location obtained by using equation (9)
for four different approaches. These four approaches are the
same as the ones in figures 7 and 9. The results in figure 11
show that damage is erroneously predicted by MRPT in all the
linear degrees of freedom, except for one and eight (which are
the two masses that do not have nonlinear springs attached to
them). After updating, the erroneous damage does happen to
be reduced, but there is still a significant extent of damage being
inaccurately predicted by MRPT. For the approach where the
augmentation is used with exact eigenvalues and eigenvectors,
zero damage is accurately predicted by GMRPT. Finally, the
approach with the augmentation coupled with DSPI predicts
low damage, mainly in the augmented degrees of freedom,
due to small inaccuracies in solving the eigenvalue problem
by DSPI.

Next, one may further explore the relationship between
MRPT and GMRPT. Figure 12 presents an element by element
plot of the stiffness perturbation matrices obtained using
MRPT and separately GMRPT. In this calculation, 1% random
eigenvector noise and 0.1% random eigenvalue noise was
added. The average damage values were calculated for each
index, and standard deviation error bars are plotted for 100
separate calculations. The left plot in figure 12 is the scenario
where the linear spring connecting mass four to mass six is
reduced from a healthy value of 100 to 50, and the linear
spring connecting mass three to ground is reduced from 1000
to 900. Since the damage is linear, both MRPT and GMRPT
predict similar values with average values within 7% and 3%,
respectively, of the exact damages. The right plot in figure 12
is the scenario where the nonlinear spring connecting mass
three to five is reduced from a healthy value of 100 to 50,
and the nonlinear spring connecting mass seven to ground is
reduced from a healthy value of 1000 to 900. GMRPT is able
to predict the damage within 1% of the exact damages, while
MRPT incorrectly predicts that damage is present in the linear
springs that connect mass three to mass five, and mass seven
to ground.
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Figure 12. A comparison of results obtained for case 3 using GMRPT and MRPT for simultaneous damage in several linear springs (left)
and several nonlinear springs (right) with 1% random eigenvector noise and 0.1% random eigenvalue noise.
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Figure 13. Predicted damage in healthy system for a case of no noise (top), 1% random eigenvector noise and 0.1% random eigenvalue
noise (center), and ±0.0001 random noise input into DSPI (bottom).

To examine further the sensitivity of the proposed method
to measurement noise, three scenarios are explored: (i) a
scenario with no random noise, (ii) a scenario where noise
is present in the measured eigenvectors and eigenvalues, and
(iii) a scenario where noise is present in the measurements of
x(t) (which is used by DSPI). An examination of the matrix
�K for a healthy system is shown in figure 13. The exact
value of �K is precisely zero since there is no damage. The
plot on the top shows that the proposed method predicts the
exact damage for the scenario of no noise. The other two
plots represent scenarios with random measurement noise.
The average damage values were calculated for each index,
and standard deviation error bars are plotted for 100 separate

calculations. The center plot in figure 13 shows damage
predicted for 1% random eigenvector noise and 0.1% random
eigenvalue noise. The average value for all indices is close
to zero as it should be for a healthy system. The plot on the
bottom of figure 13 presents the results for a scenario where
±0.0001 random noise was added to x(t), which was used by
DSPI. The average values of the damages obtained in this case
are larger than in the previous case, but they have much smaller
standard deviations.

Figure 14 shows a scenario where a 10% damage is applied
to a linear and a nonlinear spring. The linear spring connecting
mass three to ground is reduced from 1000 to 900, and the
nonlinear spring connecting mass four to ground is reduced
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Figure 14. Predicted damage in a system with 10% damage in a linear and a nonlinear spring for a case of no noise (top), 1% random
eigenvector noise and 0.1% random eigenvalue noise (center), and ±0.0001 random noise input into DSPI (bottom).
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Figure 15. Predicted damage in a system with 50% damage in a linear and a nonlinear spring for a case of no noise (top), 5% random
eigenvector noise and 1% random eigenvalue noise (center), and ±0.002 random noise input into DSPI (bottom).
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from 900 to 810. The three plots are similar to figure 13, but
here damage is present in the system. The plot on the top of
figure 14 shows the exact damage being accurately predicted
by GMRPT for the noise-free scenario. The plot in the center
of figure 14 shows that the proposed approach can predict the
damage extent within approximately 10% for the scenario with
1% eigenvector noise. Similarly, the plot on the bottom of
figure 14 shows that the proposed approach can predict the
damage extent within approximately 15% for the scenario with
±0.0001 measurement noise.

Figure 15 shows a scenario where a 50% damage is applied
to a linear and a nonlinear spring. The linear spring connecting
mass three to ground is reduced from 1000 to 500, and the
nonlinear spring connecting mass four to ground is reduced
from 900 to 450. The three plots show results similar to
figures 13 and 14, but here the damage applied is larger. The
plot on the top of figure 15 shows the exact damage being
predicted accurately by GMRPT for the noise-free scenario.
The plot in the center shows that, with a level of 5% eigenvector
noise, the average predicted value of the damage is within
1% of the actual damage. Finally, the plot on the bottom
shows that, in the scenario where ±0.002 random noise is
present in the measurements, damage can be predicted within
approximately 8% by the proposed technique.

The accuracy of GMRPT agrees well with results
presented in the literature for MRPT [40]. In those studies, a
much larger relative damage was applied (e.g. k78 was reduced
by over 93%, from 1.5 to 0.1) and, as a result, MRPT was
shown to be able to predict damage in the linear Kabe’s problem
with 5% eigenvector noise. The examples discussed here show
that much smaller relative damages (of only 10% compared to
93.3%) can be detected if there is a lower eigenvector noise
(of 1%).

5. Conclusions

A method to model nonlinear systems employing augmenta-
tion was presented, and a damage detection method was pro-
posed. The proposed approach requires a discrete (e.g. finite
element) model for the system. The nature of the augmenta-
tion requires the use of a modal analysis technique that has
known but not prescribed forcing, such as DSPI. Once the
eigenvalue problem was solved, the proposed approach was
shown to predict accurately both the location as well as the
extent of damage. A generalized minimal rank perturbation
theory was presented. This method is able to address the
issue of asymmetric damage caused by nonlinearities (and the
augmentation).

The algorithms proposed have been demonstrated
numerically for several different nonlinear mass–spring
systems. The effectiveness of the proposed method was
demonstrated, and the effects of measurement errors were
presented.
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