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Abstract. A novel piecewise regularisation approach has been developed for the identifi- 
cation of spatially discontinuous parameters in second-order parabolic systems. First, 
previous results on the regularisation identification approach are reviewed; regularisation 
is interpreted as eniorced compactness of the parameter space. Then.  a piecewise 
regularisation identification approach is rigorously formulated in a functional analytic 
framework. The theoretical results are applied to the history matching of one-dimensional 
fractured reservoirs. The  performance of the proposed algorithm is evaluated by 
numerical experiments. 

1. Introduction 

The problem of estimating spatially varying parameters in partial differential equa- 
tions (PDE) from noisy data arises in many areas of science and engineering. The 
present work has been primarily motivated by petroleum engineering applications, in 
which the spatially varying parameters to be estimated represent unknown reservoir 
properties such as permeability and porosity. These parameters are inaccessible to 
direct measurement and, therefore, have to be estimated on the basis of measured 
pressure and flow rate histories; this estimation process is commonly referred to as 
‘history matching’. In groundwater hydrology, similar problems arise; they are called 
‘inverse problems’. 

Quite a few history-matching algorithms have been developed for petroleum 
reservoirs in the past two decades with the implicit or explicit assumption that the 
unknown parameters are continuous functions of position (see references in Seinfeld 
and Kravaris (1982) and Yeh (1986)). However, very little attention has been given to 
naturally fractured reservoirs, which are frequently encountered in practice, primarily 
because of the complexity involved in the reservoir description. In fractured reservoirs 
the unknown parameters are discontinuous functions of position. Furthermore, the 
location of the faults may be unknown. 

The flow of oil in a fractured reservoir is described by a linear parabolic equation 
of the form: 

a d d t  = V (a(x)Vu)  + f ( x ,  t )  in S2 x IO,  T [  

u ( x ,  0) = U&> in Q (1.1) 
auiav = 0 on dQ x 10, T [  
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where a(x)  is a piecewise continuous function on a spatial domain 52 with boundary 
852. In the above model, the dependent variable U represents pressure, f accounts for 
the withdrawal or injection of fluid in the reservoir, a is the transmissivity of the 
porous medium and v denotes an outward normal vector. The history-matching 
problem can be stated as follows. 

Knowing the source term f and the initial condition and given a measurement of 
u(x, t )  at a discrete set of points x,, , . . , x,,, determine the spatially varying parameter 
a(x) (including the location of its discontinuities). 

Before one develops a method for the identification of (continuous or disconti- 
nuous) spatially varying parameters, two key questions need to be examined. 

(i) Do the measurements provide sufficient information to determine a uniquely? 
(identifiability). 

(ii) Do small perturbations in the data result in correspondingly small errors in the 
solution? (stability). 

If the answers to these questions are both affirmative, the identification problem is 
said to be well-posed; otherwise, it is said to be ill-posed. 

When observation data are available for the entire spatial domain, identifiability 
can usually be easily established under relatively mild assumptions (see Kitamura and 
Nakagiri (1977) for linear parabolic systems). Establishing identifiability for pointwise 
observation data is an extremely involved problem. At present the results are 
available only for special cases (Kravaris and Seinfeld 1986b). On the other hand, it 
can be easily shown that the identification problem is, as a rule, unstable. In fact, the 
homogenisation theory (Bensoussan et a1 1978) states that the solution of a PDE with 
highly oscillatory coefficients is virtually the same as the solution with a very different 
smooth coefficient. The following simple example would suffice to illustrate the 
instability argument implied by the homogenisation theory. 

Consider a one-dimensional PDE of the form (1.1) in Q = ] O ,  2n[ with a highly 
oscillatory coefficient a = a,(x) = (100 + 99 sin XI&), 0 < E 4 1. The solution U, con- 
verges, as E tends to 0, to the solution uh corresponding to the homogenised uniform 
coefficient a = a,, = 14.1. 

The customary identification approach has been the least-squares method, which 
consists of minimising the functional 

subject to the model equation. In the numerical implementation of the least-squares 
approach, the unknown spatially varying parameter a is a priori approximated using a 
finite-dimensional representation (e.g. splines); then the problem reduces to the one 
of determining a finite number of constant parameters (e.g. spline coefficients) that 
minimises JLs (Lamm 1987). When the number of constant parameters is kept small, a 
well behaved solution results. However, the modelling error introduced by the finite 
dimensional approximation can be significant, since the spatial variation of an 
arbitrary a cannot be fully described by a small number of constant parameters. As 
the number of parameters is increased, numerical instabilities appear, manifested by 
anomalous oscillations in the estimated a. 
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A popular approach to alleviate the numerical instabilities is to use a priori 
information about the parameters to be estimated. If the means and covariances of the 
unknown parameters are a priori known, the least-squares functional can be aug- 
mented with a term that penalises the weighted deviations of the parameters from 
their assumed mean values (Gavalas et a1 1976, Tarantola 1984). While it is not 
difficult to show that a priori statistical information about the unknown parameters 
would lead to better conditioned estimates, such information is not always available in 
practice. 

The ill-posed nature of the distributed parameter identification problem suggests a 
regularisation approach for its numerical solution. In the regularisation approach, an 
ill-posed problem is reformulated into a related well-posed problem, the solution of 
which is more regular (in a sense) than the solution of the original problem and 
approximates the solution of the original problem. The idea of regularisation, initially 
proposed by Tikhonov (1963a, b) as a method of solving ill-posed integral equations, 
has been rigorously extended to the identification of spatially continuous parameters 
in PDES of parabolic type (Kravaris and Seinfeld 1985) and successfully implemented 
in the history matching of oil reservoirs with spatially continuous properties (Lee et a1 
1986). 

In the present work we introduce a new piecewise regularisation approach for the 
identification of spatially discontinuous parameters in one-dimensional second-order 
parabolic equations. First, in $ 2, the general regularisation identification theory is 
briefly reviewed with an emphasis on the illustration of the basic idea of regularisa- 
tion. Then, in $3,  identification by piecewise regularisation is rigorously formulated in 
a functional analytic framework. Finally, in B 4, the proposed approach is numerically 
implemented for test problems, and its performance is compared with that of the 
conventional least-squares method. 

2. Regularisation approach in distributed parameter identification 

Consider a distributed parameter system modelled by a PDE and the problem of 
identifying the unknown parameter a in the PDE from an observation uoh* of the 
solution U. A conceptual framework for the identification problem can be set up as 
follows. First, we define three function spaces: the parameter space A ,  the solution 
space U and the observation space H ,  to which belong a ,  U and U’’‘ respectively. The 
set of physically admissible parameters is denoted by Acid c A .  For example, in history 
matching of reservoir properties, Add will contain all strictly positive elements a(x)  of 
A .  Then, solving the PDE for a given a (with the other pertinent information, such as 
given boundary and initial conditions) is represented by a solution operator Q: A-,  U 
defined by 

U = @(a).  (2.1) 
The type of measurements available is characterised by an observation operator 0: 
U-, H defined by 

(2.2) 
Uoh\ - -@(U). 

For a distributed observation, 0 is simply an identity operator; for a point obser- 
vation, 0 is represented as an appropriate injection operator. Combining (2.1) and 
(2.2), U”‘” is given by 

ullh’ = (0 o @) ( a )  (2.3) 
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Figure 1. Function spaces t o r  the identification problem 

where (0 0 @) denotes the composite mapping of @ and 0. Now the identification 
problem can be posed as follows. 

Knowing the mappings a: A -+ U and 0: U+ H and given an observation u O ” ’ ~  H ,  
find a e A  satisfying (2.3). 

Thus, the identification problem can be viewed as solving in A,ld the (nonlinear) 
The  situation is depicted in figure 1. 

operator equation 

(0 o @ ) ( a )  = uoh’. (2.4) 
Then the ill-posedness of the identification problem, which is roughly defined in the 
introduction, can be characterised by the properties of the operator (0 0 @). More 
precisely, the problem of solving (2.4) is said to be well-posed if 

(i) (2.4) admits a unique solution, i.e. (0 0 @) is injective (identifiability), 
(ii) the solution depends continuously on the data uoh’, i.e. (0 0 @ ) - I  is continuous 

(stability). 

Otherwise, the problem is said to be ill-posed. 
It was already pointed out that the identification problem is, as a rule, unstable. 

Given the continuity of the mapping (0 0 CP): A - t H  with respect to physically 
meaningful norms, the inherent instability of the identification problem implies that 
the set of admissible parameters Acid is in general not compact. This is an  immediate 
consequence of the well known topological lemma. 

Lemma. Let (X, d,), ( Y ,  d y )  be metric spaces, and M a compact subset of X. If a 
mapping F: M+Y is continuous and injective, the inverse mapping F - ’  is also 
continuous on the set F ( M ) .  

In the customary least-squares approach, one  attempts to construct a solution by 
minimising on Atid the least-squares functional 

Being a measure of the deviation of the model ouput from the actual observed output 
in the norm of the observation space, JLs seems to be a natural choice for the 
performance index. Due  to  the non-compactness of A,Id, however, J,Ju)  will not in 
general have a minimum on A.ld. Furthermore, using the same non-compactness 
argument, it can be shown that even if a minimum of JLs exists, it may not depend 
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continuously on U'"". Thus, even when the observation is error-free, a minimising 
sequence {U,,} generated by a minimisation scheme does not necessarily converge to 
the true solution. 

Roughly speaking, the non-compactness of A,,,, as an underlying source of 
instability in the least-squares estimation implies that A,,(, is too big, in the sense that 
one cannot expect to pick up  a stable approximate solution instead of anomalous 
oscillatory ones, which also belong to A,,,, and give smaller (hence improued)  JL.h. (This 
is due to the infinite dimensionality of the distributed parameter system; a closed and 
bounded subset of an infinite dimensional space is not necessarily compact, as i t  is in a 
finite dimensional space.) Thus,  in order t o  obtain a least-squares estimate which 
depends continuously on the observation, one  has to constrain the space of unknown 
parameters in such a way that the mapping (0 0 Q) would have a continuous inverse 
on the image of this constrained set. 

The  regularisation approach for distributed parameter identification (Kravaris and 
Seinfeld 1985) is based on eriforced compactness of the parameter space during the 
minimisation process. Specifically, this compactness can be attained as follows. First, 
we introduce a more regular space R which is compactly embedded in A ,  i .e. R is such 
that a closed sphere R,, c R 

R,/ = {a  E RI liu$2 s d ,  d >  0) 

is a compact subset of A in the norm of A .  Then we define R;,d= R n A,,,,, and 
introduce the stabilising functional 

Js (a)  = ll4 (2.6) 
and the smoothing functional 

where P > 0 is the regularisation parameter. Finally, we obtain a regularised estimate 
by minimising ] , ; (a)  on R,!,,. It is easy to show that a minimising sequence {U,)}  of 1,; 
indeed lies in a compact set as follows. 

Without loss of generality we may assume that 

. . s J j l (u f l+ , )  sJ,;(a,,) s . . . s J p ( a , ) .  

Hence, for every a,,, rza 1, 

i .e.  {a,,} lies in R,/,  with d = l /PJj1(a,) .  
As a result of the compact embedding of R into A ,  existence of a minimum of J,;(cx) 

easily follows. This is a consequence of the well known fact that a continuous function 
has a minimum on a compact set. Further,  as a key result of the regularisation 
approach, the continuous dependence of the minimum on  the observation U"'" with an 
adequate choice of P can be shown using a similar compactness argument (Kravaris 
and Seinfeld 1985). 

The regularisation parameter P can be selected as a function of an upper bound d 
on the observation error (i.e. l~u"t"- u ~ " ' l l / / s  0). The following methods have been 
discussed in Kravaris and Seinfeld (1985). 
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Method 1. When an a priori upper bound on llalI, is known, i.e. l/aTllR4 A ,  one can 
choose p(S) = (S/A)2. 

C-B Chung and C Kravaris 

Method 2. Choose p(S) so that 

l l @ ( @ ( ~ , J ( O J )  - ~ ' %  = 8 
where ag(a) minimises 

J,,(a) = I/O(@(a)) - uUhsllX +/?(G)l/all;. 

In order to apply the above regularisation approach to concrete distributed parameter 
identification problems, all that is needed is an appropriate PDE framework that will 
permit one to select physically meaningful function spaces A ,  U ,  H and a set A,l,, so 
that the mapping (0 0 @): ACId-+H is well defined and continuous. Then one can 
choose R so that the embedding of R into A provides the necessary compactness of the 
constrained parameter set. 

3. Identification of spatially discontinuous parameters in second-order parabolic 
systems by piecewise regularisation 

Consider a one-dimensional parabolic equation 

in IO,  I [  x IO,  T [  am a 
at ax 
--- ( a ( x ) E )  = f ( x , t )  

du au 
- (0, t )  = - ( I ,  t )  = 0 ax ax in 10, T [  

where a(x )  is a piecewise continuous function having n discontinuities at (=(gl, &, 
. . ., g,,) withO<[,<.  . . < & , < I a n d & , = O ,  &,+l=l. 

We consider the following identification problem. 

Knowing f and ug and given observations uPh'(f), j = 1, . . . , ,U of u at the points xI, 
of possible parameter discontinuity, estimate 

To rigorously formulate this identification problem, we first define the parameter 

A=C,([O, I])=the space of functions which are uniformly continuous on each 
t l [ ,  i= 1 ,  2 ,  . . ., n + 1. In other words, C,([O, I]) will contain those func- 

tions which are continuous on [0, I ]  except possibly for jump discontinuities at &, 
i =  1, 2 ,  . . ., n. When endowed with the norm 

. . ., x,, and given the points t i ,  . . ., 
4 x 1 .  

space A as follows. 

l l 4 : ( ,~~ .~ ,~  = max{lIullc~lc,e- , . € , I ) }  

Ct([O, I ] )  is a Banach space. 

Since a(x) must be strictly positive to make physical sense, we define 

A,ld = {a  E A lu(x) 2 a(, > O}. ( 3 4  
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The second step is to define a solution space and establish continuous dependence 
of the solution U of the boundary value problem (3.1) on a .  Consider the variational 
formulation of (3.1): 

/ j:): - U +  j:l a(.)” ax ”=j  ax fu v u  E H’(]O,I[) 

(3 .3 )  
u(x, 0) = UiI(X). 

A standard result from PDE theory (see, for example, Lions 1971) states that if 

4 x 1  E L“(10, I[) and a(x )  s a(l > 0 in IO, I [  

U&)  E L’(]O,L[) 

f ( x ,  t )  E L2(]0,  I [  x ]O,  T [ )  (or more generally in L’(0, T ;  (H’(10, I [ ) ) ’ ) ) ,  

equation (3.3) admits a unique solution U in 

(3.4) I du 
W(0, T )  = UIU E L2@, T ;  H1(10,4)), 5 E L2(0, T ;  (H1(lO, Q)’) 9 { 
which depends continuously on f and uil. Now applying the implicit function theorem 
to the variational formulation (3 .3) ,  it is not difficult to show that U depends 
continuously on a as well. More precisely, defining a mapping 

Y: (a ,  U )  E L“(10, I [ )  X W(0,  T )  

(3.3) can be represented by the equation 

Since Y is of C’-class and (aYiau)  (a ,  U )  is a linear homeomorphism of W(0,  T )  onto 
L’(0, T ;  (H’(10, I [ ) ) ’ )  x L’(10, I [ ) ,  the implicit function U = @ ( a )  is also of C’-class from 
L”(10, I [ )  into W(0, T) .  Since C,([O, 11) c L”(10, I [ ) ,  the result holds for a E C,([0, I ] ) .  

Since the solution U is in L’(0, T ;  H’(10, I [ ) ) ,  u(x,, t )  will have meaning (and 
‘t+u(x,, t)’ E L’(0, 7‘)) as a result of the embedding H’(10, I [ ) +  C”([0, I ] ) .  Accordingly 
the point observation dih’= {~(x,, t ) ,  j =  1,  . . .,,U} is well defined for every U E W(0,  T )  
and has values in (L’((0, T)) / ‘ ;  so H=(L’(O, T))/’  will be the observation space. 
Furthermore, it is straightforward to show that the point evaluation operation is 
continuous. Consequently, we have the continuous dependence of u(x,, t ) , j =  1, . . . , p  
on a .  In  the  following we will consider u to be a function of a and we will use the 
not,ttion u(x,, t ;  a )  to indicate the dependence of U on a .  

Now for a regular space R which is compactly embedded in A = C,([O, I ] ) ,  we 
introduce a candidate HP(10, I [ )  defined below. The assertion on the compact 
embedding HY(10, I[)-.C,([O, I]) is established by theorem 1. We define: 
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R = HY'(10, [[)-the space of functions whose weak derivatives up to order m are 
square integrable over each I(,- I ,  &[, i = 1.2 .  . , . , n + 1 .  When endowed with the inner 
product 

HJ(10. I [ )  is a Hilbert space. 

Theorem 1.  H;'(]O, ,!I) is compactly embedded in C:([O, I ] )  for m= 1, 2, . . . .  

Proqf'. From the Sobolev embedding theorem (Adams 1975), it readily follows that 
for i = 1. . . . . n + 1, Hiit(]<,- I,  k , [ )  is compactly embedded in 6'([c,- I, c,]) iff m > i .  This 
means that the set 

X,=Cu E C"([t,-,, 'a ll4;P(,i, l . & [ ) - w 4  

is a compact subset of C"([ ( , - , ,  & I ) .  Now consider the following product spaces: 

C=nC"([c,- l ,  ti]), a Banach space endowed with the norm 
, l +  I 

I =  I 

I Il~4 = maxCll4, "lji# l .2>l,J 

and 

H = n H"'(](,-  I .  g,[), a Hilbert space endowed with the inner product 
, / T I  

1 :  I 

,:I 

From the embedding H"(]( , -  (,[)-+ C"([c,_,, ti]) it easily follows that the Cartesian 
product H is embedded in C. Now using the well known Tikhonov theorem of 
topology (Simmons 1963), it is straightforward to verify that the Cartesian product X 

l l+l  

I =  I 

= { ( u I , .  . . , L ~ , ~ - , ) E C / / I U , ~ ~ ~ ~ , , ( , - ,  , , , l ~ M , < ~ , i = l , .  . . , n + l )  

is compact in the norm topology of C. Hence a closed subset I? of X 

with M =  min{M,, . . ., M,,,,} is also a compact subset of C ,  which indicates that H is 
compactly embedded in C. But C and C<([O, I ] )  are clearly isometrically isomorphic, 
and H and Hc"(]O. I [ )  are isomorphic Hilbert spaces. Therefore H';"(]0, I [ )  is compactly 
embedded in C,([O, l ] ) .  
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So far we have laid down the groundwork for the identification of spatially dis- 
continuous parameters in (3.1) hy regularisation: a PDE framework with appropriate 
function spaces and the compact embedding of H;'(]O, I[) into Ci([O. I]). A regularised 
solution of this problem can be obtained by minimising the smoothing functional 

(3 .6 )  

on the set 

R,ld = A l d  n R 

={a  E w;(]o, I[)la(x) 2 a,,>o, x €10, I [ } .  ( 3 .7 )  

The performance index is clearly well defined on R,,,. 
The next theorem establishes the existence of a global minimum of J,,(a) on  R,,,. 

As pointed out in the previous section. the key elements of the proof are (i) the 
continuous dependence of u(x,, t )  on a and (ii) the compact embedding of H:'(]O, I [ )  
into C;([O, 4) .  The  argument of the proof is very similar to the one  of theorem 4.2 of 
Kravaris and Seinfeld (1985) and will be omitted for brevity. See Chung (19x8) for 
details. 

Theorem 2. The  functional admits a global minimum a,] on R,[',. 

The next theorem establishes that minima of J,, depend continuously on the 

Let v i  be the true value of the parameter and u';"'={ii(x,~ t ;  a/). j =  1, . ., m),  an 

(i) a,. is the unique pre-image of U\?'; 
(ii) /3 is an appropriately chosen function of the observation error;  

observation; what it says is roughly the following. 

error-free observation. Provided that 

any minimum of J I j  converges (in the norm of C,([O, I])) to a, as the observation error 
tends (in the norm of (L ' (0 ,  T ) ) " )  to zero. 

Theorem 3. Assume 

U<?'€ (L'(0, T) ) ' (  

3 a unique a i (x )  E H',"(]O, I [ )  such that u ( x , .  t ;  a i )  = uyh> 

B,(d) and B2(d) are given non-negative, nondecreasing and continuous functions 

The argument of the proof is very similar to that of theorem 4.3 of Kravaris and 
Seinfeld (1985) and will be omitted for brevity. See Chung (1988) for details. 
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Remark 1. The  approach described above extends naturally to more general second- 
order parabolic systems of the form 

au a a U  
- - - ( a ( x )  g) + b(x) + c(x)u =f(x ,  t )  
at ax 

where any of a(x) ,  b(x), c(x) can be unknown and need to be identified. The  
appropriate function spaces will be given as follows: 

A = C,([O, I ] )  X C;([O, I ] )  x C,([O, I ] )  (3.9) 

with norm 

U =  W(0,  T )  (3.10) 

H =  (L'(0, T))Ii (3.11) 

with inner product 

Now using the same Tikhonov argument i t  is straightforward to establish the compact 
embedding A-R. Then one  can obtain a regularised solution by minimising 

(u(x,, t ;  a ,  b ,  c) - u)""(t))'dt 

(3.14) 

The  arguments of theorems 2 and 3 carry over in this case 

Remark 2. When the location of the discontinuities 6 = (tl, . . . , 6,f) is unknown, 6 has 
to  be estimated along with a(x ) .  For this problem, a theoretical formulation is not 
available. However, a formal extension of the approach that consists of minimising 

is straightforward. It has been implemented in the numerical part of our work (see the 
next section). 
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4. Numerical implementation 

4.1. Numerical experiment3 

The identification approach developed in the previous section was applied to the 
estimation of the spatially discontinuous parameter a(x)  in the following PDE: 

= 2 (a(,y) g) X E ] ~ ,  1[, t ~ ] 0 , 0 . 0 2 5 [  
at ax 

m(x, 0 )  = 10 + 20x (4.1) 

a U  d U  

d X  ax 
- (0 ,  t )  = - (1, t )  = 0. 

The performance of the proposed algorithm was evaluated through a series of 
numerical experiments. Specifically, on the basis of simulated data generated with a 
specified true parameter a7.(x), starting with an initial guess, we tried to recover the 
true parameter. In our simulation study, two different true parameters were con- 
sidered: 

3[exp( - 25(x - 0.25)') + exp( - 25(x - 0.75)')] 

3[exp( - 25(x - 0.25)') + exp( - 25(x - 0.75)')] + 1.5 

4 + 3 sin n(x  - 0.5) 

x E [0,0.6] 

x E [0.6, 11 
( 4 4  

x E [0 ,0 .5]  
(4.3) 

i a&) = 

1 + cos n(x - 0.5) x E [ O S ,  11. 
a&> = 

In order to numerically minimise the smoothing functional Jir(a), two kinds of 
discretisation are needed: parameter discretisation for a finite dimensional represen- 
tation of a(x )  and state discretisation for a numerical solution of the state equation 
(4.1). Figure 2 shows the two corresponding grid systems which are employed in our 
numerical experiments as explained below. Thus we will get an approximate minimum 
by minimising a discretised (both in space and time) smoothing functional over an 
approximate finite dimensional approximating subspace of Hg'(10, 1 [ )  (Kravaris and 
Seinfeld 1986a). For m 6 3, such an approximating subspace can be conveniently 
generated by piecewise cubic splines as follows (Lamm 1987). 

1 2 3 .  . . .  NP 1 

Parameter /I I I* 
grid 

, I  

hP1 1 i 3 .  . .  ' Np2 

' ;  - iNp=Np l+Np2)  I , ,  I ,  

I hp2 

State grid 1 2 3 ' ' ' p51 ' ' . Ns 

+2-++Y+ 
0 hsl hs2 1 5 

X 

Figure 2. Two grid systems for the numerical  minimisation of the smoothing functional.  
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In each subregion [0, t] and [[, 11, an equidistant grid is defined as shown in figure 
2. When NI,, and Np2  are sufficiently large integers, an arbitrary element of ff;"(10. I [ )  
can then be approximated by 

where BA,(x),  i =  1. 2 is the cubic B-spline function on each subregion. 

Remark 3. It is well known that the cubic spline is a convergent approximation in H"' 
(Aubin 1972). Therefore, since Hj'(10, I [ )  is defined as a product of H " '  on each 
subregion, the piecewise cubic spline o f  (4.4) will be a convergent approximation in 
H:'(]0.  I [ ) .  Also, it is straightforward to extend the above piecewise cubic-spline 
representation to a(x) with n discontinuities. 

The state equation was solved numerically using the implicit finite difference 
scheme with the state grid shown in figure 2. A n  accurate solution was obtained using 
time step At  = and N ,  = 33 (N\] = 17, N\? = 16), and this level of state discretisation 
was used when the level of parameter discretisation was low (N ,=8  and 14). For 
higher NI,, N, was increased accordingly. 

The data U;;:;' used in our  runs were generated as follows. First, the state equation 
(4.1) was solved numerically for a = or  CL,?  with N,= 129 and At= 10-'. Then the 
set of values {u(x,,  t,,,; a/); x,=j/16, j =  1 ,  . . ., 15, r,,, = 10-'m, m =  1: . . ., 25) were 
perturbed by normally distributed random numbers with zero mean and standard 
deviation 0.1 (1 0.5% error).  Consequently, the approximate error level 6 in the 
observation data was 

, = I  m = I  

Thus in our simulation, we used the 

- ~j:):')'At=3.75 X lo-'. (4.5) 

following discretised smoothing functional 

where the unknown vector 0 is given by 

w=(w l l ,  . . .. WIN,,l? W?I ,  . . ., w2\,+)' 

( w l t ) / = ( w l ,  . . ., Wl\,,l, W ? ! ,  , . .. W?\ !,,, 6)' 
when 6 known 

when [unknown 
e( (4.7) 

and v is represented by (4.4). It is noteworthy that when t is assumed to be unknown 
and has to be estimated along with the spline coefficients OJ, the mesh sizes h,, and h, in 
each subdomain. [0, $1 and [t, 11, may vary depending on the current estimate of t 
during the minimisation process. Such [dependent  grid systems were used previously 
in a similar fashion (Lamm 1987). 
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The  function J,i(0) was minimised iteratively as follows. As an initial guess of the 
spline coefficient vector U ,  uniform values of 2 (i.e. a'"'=2.0) were used. Then ,  at  
each major iteration, the descent direction was updated using the UFGS (Broyden- 
Fletcher-Goldfarb-Shanno) quasi-Newton minimisation method (Shanno and Phua 
1978); the step length along this direction was found using the golden section line 
search method. The  convergence criterion for stopping the major iterations was 

( ) s J ; ; - " - J ' h ' <  /i 1 0 - 7 .  (4.8) 

4.2. Results and discussion 

Our  simulation runs are divided into two parts: (i) when 6 is known and (ii) when 6 is 
unknown and has to be estimated. In the first part, we have studied the effect of the 
level of discretisation N,, on the least-squares estimates and the effect of the 
regularisation parameter /3 on the regularised estimates. The  performances of the two 
approaches are compared. W e  also studied the effect of the magnitude of the spatial 
gradient duidx on the least-squares estimates. In the second part, however, we 
encountered severe convergence problems with both methods. These difficulties are 
attributed to the severely ill-posed nature of the problem of estimating discontinuities. 

Estimation with 6 known. The  ability of the least-squares method to recover each of 
a , ,  and ( I , ?  is investigated at  various levels of discretisation. Table 1 shows the values 
of the performance indices evaluated at  the final estimates. The  corresponding 
estimates are shown in figures 3 and 4. 

can be reduced with higher N ,  only at the expense of higher 
J5. Figure 3 shows clearly that at  low N,=8 the modelling error introduced by the 
finite dimensional approximation is significant while at high N,, = 134 ill conditioning 
in the form of anomalous oscillations is inevitable. In estimating ur?, which is 
smoother than a,, ,  a similar effect is observed except that the modelling error at low 
N,, is not so significant as in estimating ai?. The  difference can also be noticed by 
comparing the corresponding J ,  values. 

As a result of a trade-off between modelling errors at  low NI, and instabilities at 
high NI,, there seems to be an optimum level of discretisation. For our examples, the 

In  estimating a r I ,  

Table 1. Least-squares estimation with 6 known: effect of thc level of discretisation. ( a )  
For a , , .  ( h )  for ar2 .  

Number 
N,, J ,  \ J s  of iterations 

( ( 1 )  
8 8.801 x 10 ' 4 . 5 2 4 ~  10' 16 

14 3.746X 10 1.018 x 10' 20 
134 3. iXXx 10 ' 1 . 1 3 7 ~  10b 42 

8 4 . 2 7 2 ~  10 ' 1.715 x 10' 12 
14 3 . 8 6 6 ~  10 ' 3 . 2 0 2 ~  10' 24 

134 3 . 5 8 2 ~  10 ' 7.261 x IO" 21 

( h )  
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IT---- 

0 0.2 0.4 0.6 0 ' 8  1 .o 
X 

Figure 3. Least-squares estimates of uT,  with 6 known: NI, effect. 0, true; A. NI, = 8; 0, 
NI,= 14: 0, N,= 134. 

best performance was obtained with N,= 14 for both u7,, and uE. In practice, 
however, the true parameter is completely unknown and. therefore, it will not be easy 
to determine the optimum level of discretisation on the basis of the least-squares 
estimates for various levels of discretisation. Hence there arises a need to use 
sufficiently high N ,  in order to describe the spatial distribution of the unknown 
parameter reasonably well and, at the same time, a need to provide a countermeasure 
against numerical instabilities which will show up in the least-squares estimation. 

In our regularisation identification approach, it is the presence of the penalty term 
pJs  in the performance index that prevents the numerical instabilities of the least- 
squares estimates obtained at high level of discretisation. Accordingly, larger values 
of /3 would lead to estimates with smaller Js, i.e. to smoother estimates. This effect of 
increasing regularisation parameter can be easily seen in table 2, and is well 
illustrated in figures 5 and 6. Also note in table 2 that decreasing values of J s  are 

I I 
0.2 0.4 0.6 0.8 1.0 

4- 
0 

X 

Figure 4. Least-squares estimates of u p  with 6 known: NI, effect. 0, true;  A ,  N I, = 8; 0, 
N,,= 14; 0, NI,= 134. 
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Table 2. Rcgularised cstimates with 6 known at high level of discretisation ( N , =  134): 
cffect of the regularisation parameter. ( U )  For a , , ,  ( h )  for uT2.  

Number 
i s  J ,  j JI \ J ,  o f  iterations 

3.588X 10 
1.181 x l o - '  
3 . 7 2 3 ~  10 ' 
6 . j 8 6 x  10 .' 

3 587-x 10 
3 611 x 10 ' 
3 6Y9 x l o r '  
2.142 x 10 ' 

3.588X 10 ' 1.137X 10' 42 
6 . 0 9 2 ~  IO ' 4 . 8 1 9 ~  10' 92 
3.597 x 10 ' 1.256 x 10' 202 
5.104 x 10 ' 1.483 x 10' 154 

3.582 X 10 .' 7.261 X IO" 21 
3.553 x 10 ' 5.825 x 10' 146 
3.621 x 10 7 . 8 2 6 ~  I O  151 
9.520 X 10 ' 1.172X 10 154 

accompanied by increasing values of JLs with a few exceptions ( p  = lo-"' for aTl and 
p = for which are probably due to numerical conditioning problems in the 
minimisation process. 

The regularisation parameters were chosen according to the discrepancy rule (see 
method 2 in $ 2 ) .  Specifically, we macle runs for different orders of magnitude of p and 
selected /3 so that the .ILs value corresponding to the estimates is close to the square of 
the observation error d' (see equation (4.5)). Thus, for the cases considered here, we 
chose /3 = for uT, and [ 3 =  l0-"for aE. In the runs we made, this rule seems to pick 
the optimal p within a range in which the estimated surface does not change 
significantly. 

Figures 7 and 8 compare the regularised estimates, for aT1 and uT? respectively, 
corresponding to the optimal values of /3 with the least-squares estimates. These 
figures clearly demonstrate that regularisation is an effective means of obtaining a well 
behaved approximate estimate. 

I I 
0 '  0: 2 0.4 0.6 0.8 1.0 

X 

Figure5. Regularised estimates of a,, at NI,= 134 with 6 known: /3 effect. 0. true; A ,  
/3 = 10 ' 1 ' ;  0, [l = 10 0. p = IO ('. 
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1 
I I 

0 0.2 0.4 0.6 0.8 1.0 
x 

Figure6. Regularised mtimates of a,? at N,,= 1.34 with k n o w n :  /1 effect. C. truc; A. 
p= 10 cl. b= 10 (1; 0. p =  10 ?. 

Remark 4. The problem of selecting the best regularisation parameter /3 is an open 
research problem. The  discrepancy rule that was applied here is not necessarily the 
best method of selection of p.  In  fact, numerical problems arising in the actual 
implementation of the identification approach-such as numerical errors in solving 
PLIES, extremely slow convergence rate in the minimisation process, existence of local 
minima, etc-often make it impractical t o  mininiise sufficiently close to the a priori 
known error level 8’. However, alternative methods (e.g. order-of-magnitude rule, 
quasi-optimal value, etc) are available in the literature (Tikhonov 1963b). In practice, 
one may make preliminary test simulation runs to choose a p-selection scheme which 
is most appropriate for the identification problem at hand. 

Next we investigated the effect of the magnitude of the spatial gradient of the 
solution, auiax,  on  the performance of the estimation algorithm. Since the diffusion 

+ I 
0 0.2 0.4 0.6 0.8 1.0 

X 

Figure 7. Least-squares and optimal regularised estimates of U , ,  at N,, = 1.34 w i t h  E 
known. 0. true; A ,  B=O;  E, p =  10 ‘. 
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I , I 1 
0.2 0.4 0.6 0.8 1.0 + 
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FigureS. Least-squares and optimal regularised estimates of u i I  iit N , , =  134 with 
known. 0. true; A. /1'=0; 0. p =  ". 

coefficient a ( x )  in a parabolic rwE is a measure of the tendency of the system to 
dissipate its gradient, it follows that a system with a larger gradient a d a x ,  as a rule, 
has a higher parameter sensitivity auiaa; this is a favourable situation for estimating a 
in the inverse problem. On the contrary, estimation of the systems with smaller or  
vanishing gradients is more sensitive to the noise in the data.  To investigate the issue, 
we performed estimation runs for a system initially at rest (u,,(x) = 20). In order to. 
collect meaningful observation data.  we excited the system using a withdrawal term f 
of the following form 
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Table3. Least-squares estimation of a , ,  with < k n o w n  and ,Y,,= 14: effect 0 1  withdrawal 
rates. 

Number 
Cl J ,  i Ji of iterations 

20 3 . 5 9 6 ~  10 ' 3 . 1 6 7 ~  IO' 10 
so 3 . 7 0 s x  IO ' 2 1 4 3 x  10' 22 

where q, is the withdrawal rate at  the j th source Q,, a small interval represented by 

Q, = {XI lx - x,l Y,} ;= 1.  . . .,/A,,. (4.10) 

and X,,, denotes the characteristic function. In  our simulation, two constant rates, 
q = 2 0  and 80, were used at each of five point sources located at x=O.O75, 0.225, 
0.525, 0.65 and 0.85; this amounts to the depletion of 12.5"0 and 5070 of the material 
(or energy) of the system respectively at t=0.025. The withdrawal builds up sharp 
spatial gradients around the point sources, thus leaving locally vanishing points in 
between. The  results of least-squares estimation for uT, obtained at N,,= 14 are shown 
in figure 9 and table 3. They clearly show that the better estimate is obtained with the 
higher q.  This illustrates the point that a larger gradient resulting from the larger 
excitation provides more favourable estimation conditions. However there seems to be 
no indication that locally vanishing gradients affect the estimation performance 
significantly. This may be partly explained by considering that the least-squares 
estimation relies on the point observation, the locations of which d o  not necessarily 
coincide with the points where auidx vanishes. But a full explanation should be 
furnished by detailed sensitivity analysis of the system under a given set of conditions. 

Estimation with 6 unknown. T h e  problem of identifying spatially discontinuous 
parameters becomes much more difficult when the locations of discontinuities 6 are 
unknown. Besides the difficulties of theoretical formulation mentioned in the previour 
section, we have potentially larger parameter spaces to search over than when 6 is 
known a priori. Our  simulation study shows that the performance and convergence of 
the algorithm is severely dependent on the initial guess (('I) of E .  This is well illustrated 
in table 4 and figure 10 which shows two different least-squares estimates for ( L , ~  

obtained with N,, = 14. The  different initial guesses of 6 result in different estimates of 
6, and, consequently, the overall spatial distribution of the estimates looks distorted 
accordingly. It is apparent that these estimates are poorer than the one  in figure 3 
which was obtained with 6 known and at  the same (optimum) level of discretisation. 
In fact, significantly larger J, values indicate premature local convergence. 

Table 4. Least-squares estimation of ail with [ unknown and N,,= 14: initial guess 
dependence. 

Number 
["I1 [ J ,  s J ,  of iterations 

0.7 0.639 8 . 7 1 8 X l O  ' 1.078X10' 1 1  
0.4 0.405 5.920 x 10 7.52sx Io' 38 
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0 0.2 0.4 0.6 0.8 1.0 
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Figure 10. Least-squares estimates of a r l  at N, ,=  14 with 6 unknown:  6'") dependcnce. 0, 
true; A, {("l=0.7; U, ( '" '=0.4. 

Estimation runs at higher level of discretisation yielded poorer results, shown in 
figure 11 and table 5 .  Regularisation does not alleviate the convergence problems, 
though it reduces the anomalous oscillations in the least-squares estimates. The 
simulation runs for estimating a7? also showed poor performance and are not 
presented here. 

As pointed out earlier, the convergence problems encountered in estimation runs 
with 6 unknown reflect the difficulty of carrying out minimisation in the larger 
parameter space. Specifically, the parameter space can be conceived of as an indexed 
family of C,([O, l]), (€10, 1[. Thus, any optimisation process over this larger space, 
with its complicated structure, would suffer more from local convergence and/or a 
slow convergence rate than over C,([O, 11). 

67 

I 
I I 

0 0.2 0.4 0.6 0.8 1.0 
X 

Figure 11. Lcast-squares and regularised estimates of aTI  at NI,= 134 with 6 unknown 
( ( " " = 0 . 7 ) .  0. true; A.  p=O; U. /3= 1 V ' .  
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Table 5 .  Lea\t-squarc\ and replar isat ior  estimation of CL,, with 6 unknoun (<"" = 0.7)  
and , A T , , =  124. 

N um her 
i: ; J ,  ; JI \ J ,  01' iterations 

0 0.656 1 . 7 6 4 ~  10 1 . 7 0 4 ~  IO ' 6.751 x 10" I!, 
I O  0.627 1 . 2 8 6 ~  IO ' 8 . 0 3 8 ~  IO ' 4.S2Ox 10' I13 

Another difficulty o f  the problem of estimating a with [ unknown lies in its severe 
ill-posedness in the sense that point observations of U d o  not provide enough 
information to estimate [. In view of the stability of the boundary value problem (4.1) 
with respect to variations in the coefficient (LE L"(]O,  /[), the solution of (4.1) with 
discontinuous a ,  is very close to  the solution I I , , ,  (i .e.  I ~ U ( ~ ,  - i r , I I s ~ )  with a,,,, which is 
obtained by smoothing out cl, around ( such that lla,,, - a,.ll S d .  For the identification 
problem (which is an inverse problem of (4.1)). this stability may imply non- 
identifiability of ; under a given level of uncertainty in the data. 

This claim regarding the non-identifiability of 6 seems to be supported partly by 
the results of the following experiments. To reduce the adverse effect of variable 
on the convergence of the optimisation, we fixed ( ( ' I )  throughout the minimisation 
process. This is repeated for various values of [(('). Table 6 shows a partial list of the 
results of these experiments, and figure 12 the corresponding estimates. It can be seen 
that all the estimates in figure 12 exhibit the spatial distribution of a y ,  well enough, 
except that the jump discontinuity is smoothed out in the estimates obtained with 

with [("J=0.6 (i.e. with ( known) does not yield the smallest J,,s in table 6. 
t ( l I 1  = () , 4 and (("'=0.7. Furthermore, it should be noted that the estimate obtained 
i 

5. Conclusion 

A novel approach for  the identification of spatially discontinuous parameters in 
second-order parabolic systems has been developed on the basis o f  a rigorous 
formulation of piecewise regularisation. Combined with piecewise cubic spline rep- 
resentations of unknown parameters. the approach provides a stable and efficient 
history-matching algorithm for one-dimensional fractured oil reservoirs. Our  numeri- 
cal experiments showed: 

(i) regularisation is an effective method for obtaining a well behaved smooth 
approximate solution by alleviating the ill-conditioning present in the least-squares 
method; 

Table 6. Least-squarcs estimation of CL,, with {"" fixed a n d  N,,= 14. 

N u m b e r  
of i tc rat i ons J\ t l l l i  

i J I  \ 

0 . 4  3.702 x IO 2.406 x IO' I9 
0.6 3 .746X I O  I . 018X IO' 20 
0.7 2.997 x IO 2.41 1 x IO' 23 
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Figure 12. Least-squares estimates of U , ,  iit N,,= 14 with <("I  fixed: 6"" effect. 0. true: A. 
("')=0.4; 0. <""=0.6; 0. ~ " " = 0 . 7 .  

(ii) when the location of discontinuity is unknown, it is difficult to obtain an 
accurate estimate due to local convergence and unidentifiability of the discontinuity 
from point observations. 
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