
Inverse Problems 6 (1990) 133-151. Printed in the UK 

Inversion of the Bloch transform in magnetic resonance imaging 
using asymmetric two-component inverse scattering 

Andrew E Yagle 
Department of Electrical Engineering and Computer Science, The University of Michigan, 
Ann Arbor, MI 48109-2122, USA 

Received 28 April 1989, in final form 15 August 1989 

Abstract. In magnetic resonance imaging, the relation between the radio-frequency mod- 
ulation of the magnetic field and the desired final magnetisation state is called the Bloch 
transform. Selective excitation then amounts to inverting this transform, which is highly 
nonlinear. Previous attempts to formulate this problem as an inverse scattering problem 
have restricted attention to solutions using reflectionless potentials. This paper uses fast nu- 
merical algorithms for inverse scattering problems to obtain a much larger set of solutions. 
Numerical examples are included. 

1. Introduction 

In magnetic resonance imaging (MRI), a magnetic field is applied to align proton 
spins. Another magnetic field, transverse to the first field, is then modulated using 
radio-frequency (RF) modulation in such a way that the axes of the proton spins in a 
selected region are rotated or flipped, relative to those in the rest of the object being 
imaged. The superposition of the proton spins results in a net magnetisation. When the 
modulation stops, the proton spin axes return to the original aligned direction, radiating 
at the Larmor frequency; the time constant of this relaxation gives information about 
the composition of the object in the selected region. For more details on MRI see [l]. 

To achieve selective excitation (of proton spins) in the object being imaged, the 
transverse magnetic field must be modulated in such a way that only the proton spins in 
a thin slice of the object are flipped; the spins in the rest of the object must be unaltered 
when the modulation stops. Then the radiation and relaxation time information are 
known to apply solely to the selected thin slice. Typically, the spins are to be flipped 
90" or 180" in a thin slice, and not flipped elsewhere; in any case the desired final 
magnetisation state is known. 

The relation between the RF modulation pulse and the magnetisation state resulting 
from it is a complicated relation called the Bloch transform [2]. The problem of 
determining what RF  modulation to use to achieve a desired magnetisation is thus the 
inversion of the Bloch transform. 

Several approaches have been used here. The most straightforward is to linearise 
the Bloch transform into a Fourier transform [3]. This is the so-called 'small tip angle' 
approximation. An interesting interpretation of this approximation, in the context of 
the scattering formulation used in this paper, is given in section 4.4 below. Other 
approaches have been taken in [ M I  ; the optimal control problem formulation in 261 
is notable. 
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The most promising approach has been the inverse scattering formulation due to 
Grunbaum and his co-workers, notably Hasenfeld. The inverse Bloch transform can be 
transformed into a Schrodinger equation inverse potential problem by stereographically 
projecting the magnetisation [7-101. The inverse scattering transform maps solutions 
of the Schrodinger equation associated with reflectionless potentials to solutions of the 
Korteweg-ile Vries equation [l l] .  This allows the body of knowledge on the latter 
equation to be applied to this problem. 

A recent paper by Grunbaum [12] transforms the inverse Bloch transform into a 
two-component wave system inverse scattering problem of Zakharov-Shabat type (see 
[Il l) .  This is much more promising, since fast algorithms for solving inverse scattering 
problems for asymmetric two-component systems [13] can now be directly applied to 
this problem. 

This paper applies the fast algorithms of [13] to the two-component wave system 
inverse scattering formulation of the inverse Bloch transform. The result is a numerical 
procedure for computing the RF magnetic field modulation needed to achieve a desired 
final magnetisation state. By considering non-reflectionless potentials, a much greater 
range of solutions is made available. 

The paper is organised as follows. In section 2 we review the Bloch transform, and 
the reformulation of the inverse Bloch transform as a two-component wave system 
inverse scattering problem [12]. In section 3 we review the pertinent results of [13] on 
solving this inverse scattering problem. In section 4 we apply the results of section 3 
to the problem posed in section 2. Section 5 presents some numerical examples of the 
new procedure. Section 6 concludes by summarising the results and noting directions 
for future research. 

2. The Bloch transform and inverse scattering 

2.1. The Bloch transform 

Let M ( x , y , z , t )  be the magnetisation due to proton spins aligning locally with an 
imposed magnetic field B(x,y ,z , t ) .  Since the RF magnetic field modulation is short 
in duration (about 3 ms), the decay terms in the Bloch equations can be neglected, 
resulting in 

where y is the gyromagnetic ratio of the atomic nucleus. y varies with the size of the 
nucleus; for protons y=4260 Hz G-'. 

The magnetic field has three components: a strong (about 100oO G = 1 T) constant 
component B, in the z direction; a component Gz in the z direction varying linearly 
with z (about 1 G cm-'); and a time-varying RF-modulated component in the x , y  
plane. Thus 

B(x,  y ,  z ,  t )  = B ,  (t)(cos w,(t)i + sin o, ( t ) j )  + (Bo + Gz)k .  (2.2) 

Here B ,  (t) is the amplitude modulation and 
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is the phase modulation of the transverse magnetic field in the x,y plane. Note that 
wL is the Larmor frequency of precession of the proton spins at z = 0. 

Following [l] we transform to coordinates rotating at w L :  

(2.4) 
cos w L t  -sin w L t  0 

0 

Using (2.2)-(2.4), the Bloch equations (2.1) become 

(2.5) 
0 Am 

0 
dN 
- =  ( -Am 
dt y ~ ,  sin 4 - y ~ ,  cos 4 

where spatial position along the z axis has been replaced by 

In (2.5), A w  = yGz is the difference between the local Larmor frequency at z and 
the Larmor frequency wL at z = 0. Note that the gradient in the magnetic field along 
the z axis has produced spatial encoding; position along the z axis has been replaced 
by the offset A w  in resonant frequency from wL. Since Bo x loo00 G and G x 1 G 
cm-', A w  is an offset in kHz from an wL in the MHz range. 

Equation (2.5) describes how the rotating magnetisation vector N ( x ,  y ,  z ,  t )  evolves 
in time for a given modulation { B ,  ( t ) ,  q5(t)). The final magnetisation state N (x, y ,  z ,  T )  
is found by integrating (2.5) from t = 0 to t = T ,  where T is the length of the RF 
modulation pulse. Hence (2.5) implements the Bloch transform [2] 

(i.e. all proton spins are aligned in the -z direction), and to final magnetisation states 
with no x and y variation. This means that all x and y dependencies can be dropped 
in the following, leaving dependencies on offset frequency A w  (in lieu of z )  and time t .  

2.2. Transformation to a two-component wave system 

Here we follow [12] and transform (2.5) to a two-component wave system of Zakharov- 
Shabat type. This is a special case of the asymmetric two-component system treated in 

Consider the density matrix P ( t ,  A w )  defined from N ( t ,  Am) = [N,, N y ,  NJT by 
[131. 

N ,  - iNy P ( t , A w )  = - 
NZ 

= ' ) N X f i ( '  i i ) N y + h (  -1 0 I ) N z ,  2 1 0  2 i  

The set of matrices are the Pauli spin matrices; they show why we choose this particular 
P ( t , A w ) .  



136 A E Yugle 

Since the system matrix in (2.5) is antisymmetric, l lN(t ,Am)//  does not vary with 
time t. Hence the eigenvalues & ( i / 2 ) d m .  of P(t ,Am)  are also independent 
of t .  This implies that the time evolution of P ( t , A o )  can be described by a unitary 
transformation 

P(t ,Am)  = U ( t , A o ) P ( 0 , A m ) U H ( t , A m )  (2.104 

(2.10b) 

ia(t, + /P(t,Am)I2 = 1 .  (2.10c) 

At this point our derivation diverges from that of [12]. Define the matrix D = 
(dU/dt)U-’, so that 

( d(t’Am) e(t’Am) ) U(t,Am).  (2.11) 
dU 
dt -e* ( t ,  Am) d*(t,  Am) - (t ,  Am) = DU(t ,  Am) = 

The symmetries in D can be seen by exchanging rows and columns in (2.11) and using 
(2.10b). Differentiating (2.104 with respect to t, inserting (2.11) and then (2.9), and 
finally comparing with (2.5) yields 

(2.124 d P( t ,  Am) 
- dt ( a*(t, Am) ) = ( 
r ( t )  = ( i / 2 ) y ~ ,  (t)e@(‘). (2.12b) 

Equations (2.12), which appeared in [12], are an asymmetric two-component wave 
system of Zakharov-Shabat type [ l l ] .  They are a special case of the asymmetric 
two-component wave system considered in [13] (specifically, s(z) = - r*(z )  in (2.1) of 
[13]). Note that in (2.12) time t takes the role of spatial position, and resonance offset 
Am takes the role of wavenumber. 

2.3. Comments 

It is not surprising that an asymmetric two-component wave system arises here. The 
Schrodinger equation formulation of the Bloch transform used in [7-101 has a complex 
potential with its imaginary part proportional to energy, when phase modulation is 
allowed [12]. Such potentials are associated with absorbing media [14], and absorbing 
media are known to be readily handled using asymmetric two-component wave systems 

An alternative to (2.12) is the Riccati equation associated with this scattering 
~ 3 1 .  

system. Define 

(2.13) P(t ,  Am) - 2a(t, Aw)P(t, Am) - NX(4 Am) - iN,(t, Am) R(t,Am) = - - 
M*(t, Am) 2l&, Am)I2 N ,  (t ,  Am) - 1 

where the last equality follows quickly from (2.9) and (2.10~).  Then R(t,Am) satisfies 
the Riccati equation 

dR(t, Am) 
dt 

= iAmR(t, Am) + r ( t )  + r’(t)R2(t, Am). (2.14) 
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Equation (2.14) is the same as the Riccati equation in [12]. 
If phase modulation is not allowed, then +(t) = 0 and the reflectivity function r(t) 

is pure imaginary, so that -r*(t) = r(t). This reduces the asymmetric two-component 
wave system to a symmetric two-component wave system. For this special case, both 
[12] and (implicitly) [15] transform the Riccati equation (2.14) into a Schrodinger 
equation, using the standard transformation ((2.22) below) between the Riccati and 
Schrodinger equations. In [15] it is then demonstrated that in order for the solution 
of this Schrodinger equation to be asymptotically consistent with (2.5), the reflection 
coefficient of the entire wave system must be zero! This restricts the solutions to those 
associated with reflectionless potentials, as treated in [8-lo]. 

Thus there seems to be a contradiction between the results of [15] and the results 
of [12] and this paper. The loophole is that the standard Riccati-to-Schrodinger 
equation transformation (2.22) does not preserve the scattering interpretation (this is 
what was really demonstrated in [15]). In a sense, the difficulty is that the standard 
transformation maps the Riccati equation to the wrong Schrodinger equation ! 

To see what is happening, let us examine the well known inverse scattering equations 
for a one-dimensional lossless constant-wavespeed acoustic medium. Such a medium 
is described by a symmetric two-component wave system; it has the same form as 
(2.12) when phase modulation is not allowed. The Riccati and Schrodinger scattering 
equations for this problem are familiar (e.g., see [16] for details), but we now show 
that the relation between them is not the standard mathematical transformation (2.22) 
between Riccati and Schrodinger equations. This explains the result of [15]. 

The basic equations for the medium are 

du(z, w )  dp(z, = p(z)02u(z, 0) p(z, 0) = -p(z) ~ dz dz 
(2.15) 

where p ( z ,  o) is pressure, u(z, o) is medium displacement, p(z) is density, z is depth, 
and o is frequency. Then 

D(z, = P(Zt 4lJpo + i d z " ,  (2.16a) 

V(z,o) = P ( z , 4 / m - - & ? " , 4  (2.16b) 

satisfy the symmetric two-component wave system (compare with (2.12) when --r*(t) 
= r(t); note the sign change between Am and o) 

The Riccati equation associated with this system is (compare with (2.14)) 

where we now define 

(2.17a) 

(2.17b) 

(2.18) 

(2.19) U(z o) 
D(z, w )  

du(z, w)/dz + iou(z, o) 
du(z, w)/dz - iou(z, o) ' 

R(z,o) = -.-..L- = 
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The second equality follows from (2.15). 
The Schrodinger scattering equation for a lossless acoustic medium is known to be 

(e.g. [161) 

( $ + (02 - v (z) u(z, 0) = 0 ) (2.204 

(2.20b) 

u(z, col = J p o u ( z ,  co) = u(z, col exp (- Jz r(z’)dz’) (2.20c) 

where the second equality follows from (2.17b). 
From (2.19) and (2.20~) it can be seen that the relation between the solutions R(z,co) 

of the Riccati equation (2.18) and u(z, co) of the Schrodinger scattering equation (2.204 
is 

1 + R(z’, co) 
1 - R(z’, O)  

u(z, col = exp [ Jz - ( io  (2.21) 

However, the standard transformation from the Riccati equation to the Schrodinger 
equation, as it was used in [15], is 

[ Jl (ioR(z’, co) - ~(z’))  dz’ I u(z,w) = exp (2.22) 

Hence the standard transformation (2.22) does not give the usual Schrodinger scattering 
equation for a lossless medium. 

Of course, the transformation (2.22) does lead to solutions of the Bloch transform 
inverse problem associated with reflectionless potentials, and this is quite useful [8-lo]. 
However, it is now evident that our approach will lead to new classes of solutions. It 
should also be noted that [15] considers not (2.13) but 

N ,  ( t ,  Aco) + iNv (t ,  Am) 
N J t ,  Am) - 1 

and this leads to a Riccati equation different from (2.14). 

3. Solution using the asymmetric Schur algorithm 

In this section we briefly review the results of [13] on asymmetric two-component 
wave systems that pertain to the Zakharov-Shabat system (2.12). For more details and 
references, see [ 131. 
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Figure 1. An infinitesimal section of the Zakharov-Shabat wave system (3.1), 

3.1. The Zakharov-Shabat wave scattering system 

The Zakharov-Shabat wave system 

d W , k )  
dz ( U ( z ,  k ) )  = ( r * ( z )  (3.1) 

is a special case of the asymmetric two-component wave system treated in [13]. 
Here D(z,  k )  and U ( z , k )  are downgoing and upgoing waves, respectively, r ( z )  is the 
reflectivity function, z is depth (increasing downward), and k may be either frequency 
or wavenumber. The system (3.1) describes the scattering medium illustrated in figure 
1. This medium varies smoothly for 0 -= z < L, and it is homogeneous (i.e. r ( z )  = 0) 
for z < 0 and z > L. 

In the time domain (3.1) becomes the pair of equations 

( 3 . 2 ~ )  

(3.2b) 

where 6 ( z ,  t )  = l-", D(z, k )  exp(i2nkt)dk is the inverse Fourier transform of D(z,  k) ,  and 
similarly for c ( z ,  t).  D(z,  k )  and U ( z ,  k )  are considered to be waves since (3.2) describes 
quantities that propagate in increasing and decreasing depth z as t increases. The 
reflectivity function r ( z )  describes how much of each wave is reflected into the other 
wave at each z.  If r ( z )  = 0 then the medium is locally homogeneous, and no scattering 
occurs. 

3.2. Inverse scattering problem 

Now let the solution to (3.1) have the following asymptotic forms: 

~ ( z , k )  = e-ik' U ( z ,  k )  = R(k)eik' Z I O  ( 3 . 3 ~ )  

D(z,  k )  = T(k)e-ik' U ( z , k )  = 0 z > L. (3.3b) 

This is the same as letting the solution to (3.2) have the following asymptotic forms: 

6(2, t )  = 6 (t  - z )  

6 ( z , t )  = F ( t  - z )  ir(Z,t)  = 0 z > L. 

ir ( z ,  t )  = R( t  + z )  z I 0 ( 3 . 4 ~ )  

(3.4b) 

These equations describe an inverse scattering experiment that consists of probing the 
medium with an impulsive plane wave 6 ( t  - z ) ,  incident from above and propagating 
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T l k l e - ' k 2  (Transmitted) 
Scattering 
medium 

(Incident) e-ikz 

R ( k ) e l k 2  (Reflected1 

Figure 2. An inverse scattering experiment with probing from the left resulting in reflection 
response R(k)  and transmission response T(k) .  

downward, and getting back a reflection response &t) that is causal and a transmission 
response ? ( t )  at the far end of the medium. This is illustrated in figure 2. 

Since k(t) is causal, it is clear that 6 ( z ,  t )  and 6 ( z ,  t )  have the forms 

6 ( z , t )  = 6 ( t - z ) + b ( z , t ) l ( t - z )  ( 3 . 5 ~ )  

f i ( z , t )  = O ( z , t ) l ( t - z )  (3.5b) 

where b ( z , t )  and O(z , t )  are the smooth parts of 6 ( z , t )  and 6 ( z , t )  (both of which 
jump at t = z ) ,  and where I (  ) is the unit step or Heaviside function. Equations (3.5) 
are simply a statement of causality. 

Inserting (3.5) into (3.2) and using a propagation of singularities argument (this 
amounts to equating coefficients of 6 ( t  - z ) )  yields 

( 3 . 6 ~ )  

(3.6b) 

The derivation of (3.6) from (3.2) is analogous to the derivation of transport equations 
for a system of partial differential equations. 

3.3. The asymmetric Schur algorithm 

Discretising depth z and time t into integer multiples of a small constant A and using 
forward differences, (3.6) discretises into 

( 3 . 7 ~ )  

r* ( z )A  = - O ( z , z ) / b ( z , z )  (3.7b) 

D(0, t )  = 0 U(0, t )  = &t). (3.74 

Equations (3.7) constitute a layer-recursive procedure for reconstructing r ( z )  from &t). 
Note the transmission response ?( t )  is not needed. 
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3.4. Comments 

(I) Equations (3.7) differ from the well known Schur algorithm only in that the 
reflectivity functions r(z) and -r*(z) are unequal. This is why a straightforward 
discretisation is used-to identify this inverse scattering problem solution with a well 
known numerically stable algorithm. Indeed, by inserting an additional factor of 
1 / d m  the transformation at each step becomes a multiplication by a unitary 
matrix (note this additional factor cancels out in (3.7b)). 

(11) In physical inverse scattering problems, wave systems like (3.1) describe absorb- 
ing media [13]. For example: (i) acoustic media with constant density and wave speed, 
but varying absorption (Maxwell model) ; (ii) electromagnetic media with constant 
permittivity and permeability, but varying conductivity. 

(111) In fact, (3.7) is a special case of the asymmetric Schur algorithm. Even though 
the reflectivity functions are unequal, we can obviously compute one from the other. 
Hence reflection data from one end only of the scattering medium are sufficient to 
reconstruct it, even though the medium is lossy. 

(IV) These types of absorbing media can also be formulated as Schrodinger equation 
inverse potential problems [14]. The potential turns out to be complex, with an 
imaginary part linearly proportional to wavenumber k. Again the reflection coefficient 
R(k) constitutes sufficient data; however, solution of an integral equation replaces (3.7) 

(V) The Born approximation is commonly used in inverse scattering problems. 
This is a single-scattering assumption in which only direct or primary scattering events 
are considered ; multiple scattering is neglected. Here this amounts to neglecting the 
coupling in (3.7a), which simplifies to 

~ 4 1 .  

- r* (z) = O(z, z) = O(0,2z) = ii(2z) (3.8) 
i.e. each value of &t) is assumed to come directly from a reflection of the impulse 
6 (t - z) from -r*(z). This will be used to interpret linearisation of the Bloch transform 
in subsection 4.4. 

(VI) Equation (3.7b) follows immediately from (3.7~)  by setting t = z and noting 
that O(z + A, z - A) is zero by causality. Note that a factor of 2 in (3 .6~)  disappears in 
the discretisation. 

4. Solution of the inverse Bloch transform problem 

Comparing (2.12) and (3.1), we see that a*(t,Aw) and P(t,Aw) correspond to D(z,k) 
and V(z, k), respectively, and that t and Aw/2 in (2.12) correspond to z and k in (3.1). 
It is clear that the asymmetric Schur algorithm can be used to compute r(t) in (2.12), 
provided that a scattering interpretation can be attached to (2.12) and a reflection 
response characterising the desired final magnetisation state can be produced. 

4.1. Scattering interpretation 
The initial magnetisation state is given by (2.8). Inserting (2.8) into (2.9) and (2.10), 
and repeating (2.10c), gives 

(4.1 a) 
(4.1 b) 

(4.1~) 

N,(t,Am) = IP(t,Au)I2 - Ia(t,Au)12 
N,(t, A u )  - iN,(t, Am) = -244 Aw)P(t, Am) 

Icr(t,Au)I2 + IP(t,Au)I2 = 1. 
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Equations (4.1) describe the time evolution of N ( t ,  Aw) directly in terms of the quantities 
a(t ,  Aw) and fi(t, Aw) in (2.12), for the initial magnetisation state (2.8). 

For t = 0 and N ( t , A w )  as in (2.8), the solution to (4.1) is 

a(0,Aw) = 1 fi(0,Aw) = 0. (4.2) 

This is illustrated in figure 3, from which we see that a*@, Aw) and B(t, Aw) are the Jost 
solutions for a scattering experiment with an impulse incident from the right. Thus, 
although we have successfully attached a scattering interpretation to (2.12), we also 
seem to require the (unknown) Jost solutions at t = T. We now show that this is not 
so. 

p i T ,  Aw) 
Scatter ing 
medium 

Figure 3. The inverse scattering experiment associated with the Bloch transform. a ( T A o )  
and ~ ( T A o )  are as defined in (2.12). 

4.2. Initialisation at t=T 

Let the medium represented by (2.12) be probed from the right with an impulse, 
resulting in a reflection response R(T,Ao) and a transmission response T(T,  Aw) (this 
is as in figure 2, but with left and right interchanged). By linearity, we can divide the 
responses in figure 3 by a * ( t , A o ) .  Comparing the result with figure 2 (with left and 
right interchanged), we have 

R(T,Ao) = p(TyAw) - - exp (arg[a(T, Aw)] + arg[fi(T, Aw)]) 
a* (T, Awl la(T, Am) I 

1 
T(T,Aw) = -- 

d ( T ,  Aw) ' (4.3) 

This shows that it is not necessary to find the Jost solutions at t = T ;  merely 
specifying R(T, Am), rather than a*(T, Am) and P(T, Aw) separately, is sufficient to 
compute the r ( t ) .  

Note that we have assumed a*( t ,  Aw) has no zeros in the lower half of the complex 
Aw plane; this is tantamount to assuming there are no bound states. In practice, 
we will choose reflection responses without bound states, to give results different from 
[7- lo]. 

4.3. Summary of procedure 

Given a desired final magnetisation state N (T, Aw), the Schur algorithm is initialised 
at t = T as follows. 

(i) Solve (4.1) for la(T,Aw)I, lfi(T,Aw)l, and arg[a(T,Aw)] + arg[fi(T,Aw)]. 
(ii) Compute R(T,Aw) using (4.3). Note that the three quantities computed above 

(iii) Compute 
uniquely specify R(T, Am). 

&) = q:,*+T {R(T,Aw)f (4.4) 
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where R ( T , A o )  is analytically extended into the complex Am plane so that k(z) is 
causal. Mathematically, this is similar to an inverse Laplace transform; in practice, it 
is easy to choose R ( T , A o )  so that this can b,e avoided (see section 5).  

(iv) Initialise the Schur algorithm using R(z).  
(v) Run the Schur algorithm, computing r(t) .  Reverse them in time (replace r(t) 

with r(T - t ) ) .  
(vi) Compute the amplitude modulation E ,  ( t )  and phase modulation $( t )  achieving 

the desired N ( T , A o )  using (2.12b). 
The only difficulty is that arbitrary selection of a(T, Am) and B(T, Am) can lead to 

r ( t )  (and therefore modulations) that are impractically large, or of too long a duration. 
Hence some judgment must be exercised in selecting the exact shape of the final 
M ( T , A w )  so that the r ( t )  leading to it constitute a practical modulation. The Born 
approximation (see below) will often give a rough idea of the resulting r ( t ) .  

Note that this procedure allows trade-offs to be identified quickly. 
(i) If the selective excitation region is too narrow, the r ( t )  will have long duration 

(ii) The larger the angle of flip, the larger r ( t ) ,  hence the amplitude modulation 
(infinitely long for the case of an infinitely narrow slice). 

B, ( t ) ,  will be. 

4.4. The Born approximation to the Bloch transform 

Applying the Born approximation (see section 3) to this procedure is most illuminating. 
Applying (3.8) directly, and using (4.1) and (4.3), gives 

This shows that the inverse Bloch transform can be approximated by an inverse 
Fourier transform. This is the same result obtained in [2,3] by linearising a series 
expansion. Note that the factor of 2 in (3.8) is cancelled when iAm/2 replaces ik in the 
Fourier transform; the two-way traveltime is replaced with one-way traveltime due to 
the time scaling. 

Note that the Born approximation interpretation lends physical insight; examina- 
tion of the r ( t )  obtained using the Born approximation can be used to decide whether 
multiple reflections in (2.12) will be significant enough to warrant using the Schur 
algorithm instead of the Born approximation. 

Note also that in the Born approximation the r ( t )  are directly proportional to the 
amplitude modulation B,( t ) .  Note also that the larger N,(T ,Am)  - iN,,(T,Ao) is, the 
bigger the r ( t )  will be. Hence for large pulse amplitudes, or large tip angles, the Schur 
algorithm should be used. 

5. Numerical examples 

Some numerical examples of the procedure are given. These are intended to illustrate 
how the procedure works: a suitable R ( T , A m )  is chosen, and the procedure outputs 
r ( t ) ,  which is related to the modulation by (2.12b). The modulation is then inserted into 
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the modified Bloch equation (2.5) to determine the resulting final magnetisation state. 
The two problems considered are 90" and 180" rotations of proton spins in a thin slice. 

In using this procedure, it is of course necessary to scale the variables appropriately. 
To see how this is done, consider the following example. Suppose we are interested in 
flipping proton spins in the middle of a sample 20 cm long. The maximum resonance 
offset computed from (2.6) is then (4260 Hz G-')(l G cm-')(lo cm) = 42.6 kHz. Now 
define the scaled variables 

Am' = Ao/(85.2 kHz) r'(t) = r(t)/(85.2 kHz) t' = t(85.2 kHz). (5.1) 

The primed variables also satisfy (2.12), but the range of A o  has been scaled to the 
interval [-;,;I. This allows use of the discrete Fourier transform; the integer time 
values are multiples of 1/(85.2 kHz)=ll.7 ,us. The computed values r' ( t )  must be 
scaled using (5.1) to obtain the final results. Since primed variables are used in all the 
computations, we omit the primes in the following for convenience. 

In the results shown here, a 128-point discrete Fourier transform is used. Both 
r(t) and the resulting N,(T,Ao) are displayed with their arguments ranging from 1 
through 128; the actual range for N,(T,Aw) is -0.5 through 0.5. Computation time on 
a PC-AT with co-processor was 15 minutes for each run. 

5.1. 90" rotation: initialisation 

The goal here is to achieve a final magnetisation state 

[0,O,-1IT for most Am 
for A o  x Amo 

N(T,Am) = 

where Amo is the slice selected. This corresponds to a 90" rotation from the z direction 
to the x direction. Inserting (5.2) into (4.1) results in 

la(T,Ao)I = 1 IP(T,Ao)l = 0 formostdo 

la(T,Aw)j = IP(T,Ao)I = 0.7071 

arg[a(T,Ao)] + arg[P(T,Aw)] = 0. 

for Am x Amo 

This leads to a reflection response 

0 for most Am 
1 for Am x Amo. 

R(T, Am) = 

r(t) will depend on the exact shape of R(T,Aw) near Amo. 

5.2. 90" rotation: numerical results 

An obvious choice for R( T ,  A o )  is 

1 for IAol < 0.025 
0 elsewhere R(T,Ao) = { 

(5.3) 

(5.4) 

(5.5) 

which should result in a 90" flip in a thin slice in the middle. The x component 
N,(T,Am) of the final magnetisation state resulting from integration of the modified 
Bloch equation (2.5) is shown in figure 4(a). The resulting r(t) outputted by the Schur 
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Figure 4. (a) The x component of the h a 1  magnetisation state N ( T A w )  plotted against 
slice number (n = 128Ao' + 65) for (5.5). The spins are flipped 90" in the region in the 
middle. (b)  The reflectivity function r ( t )  outputted by the Schur algorithm with input (5.5). 
r ( t )  represents the amplitude modulation that achieves the NJTAw) shown in figure 4(a). 

algorithm is shown in figure 4(b). It is evident that r ( t )  has successfully flipped the 
proton spins by 90" in the slice shown. Although we do not show it here, the time 
evolution of N ( t ,  Am) is a gradual reduction in the z component in the middle, and a 
corresponding growth in the x component. 
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Note that r ( t )  is very close to a sinc function, which is the shifted inverse Fourier 
transform of (5 .5 ) .  This is the result of applying the Born approximation (4.5) to (5.5). 
For a 90" flip, the Born approximation works quite well. It should be noted that the 
use of a sinc function to achieve a 90" flip is quite common [3]. 

It is also possible to achieve selective excitation of slices not at the origin. Suppose 
it is desired to flip spins 90" in a different slice. Figure 5 gives the r( t )  and resulting 
N,(T,Aw) for a shifted version of (5.5).  The selected slice is now off-centre, but 
otherwise has characteristics similar to those of figure 4(a). r(t)  is now complex; 
phase modulation is necessary to achieve selective excitation of off-centre slices. An 
alternative is to physically move the object being imaged; use of phase modulation 
sometimes may be more convenient. 

To see why r( t )  has the form shown in figure 5(b),  note that shifting R(T,Aw) by an 
amount R corresponds to multiplication of 9 - l  (R( T ,  Aw)) by ei7* = cos TR + i sin TR. 
Thus, in the Born approximation, r ( t )  will itself be modulated by this complex function. 
This is what is happening in figure 5(b). 

5.3.  180" rotation: initialisation 

The goal is now to achieve a final magnetisation state 

[O,O, -1IT for most Aw 
for Aw x Amo 

N(T,Aw) = 

where Awo is the slice selected. This corresponds to a 180" rotation from the z direction 
to the x direction. Inserting (5.6) into (4.1) results in 

la(T,Ao)l = 1 I/?(T,Aw)I = 0 for most Aw 

la(T,Ao)l = 0 I/?(T,Aw)l = 1 for Aw x Awo 
arg[ol(T, Am)] + arg[/?(T,Aw)] = irrelevant. (5.7) 

This leads to a reflection response 

0 for most Aw 
CO forAw x Amo, 

R(T,Aw) = 

Obviously it will be necessary to approximate (5.8) in some way. A large amplitude 
can be expected to result in flip angles slightly less than 180". 

5.4.  180" rotation: numerical results 

A first choice for R(T,Aw) is 

10 for [Awl .c 0.025 
0 elsewhere 

R(T,Ao) = (5.9) 

which should result in a large flip (probably less than 180") in a thin slice in the middle. 
The resulting r(t)  and N,(T,Aw) are shown in figure 6. Note that the excitation is quite 
selective, but the flip angle is only about 135". However, r(t)  looks nothing like a sinc 
function, so that the Born approximation is not working at all. Since the R(T,Aw) and 
r ( t )  are much bigger than before, this is not surprising. 

Increasing the amplitude of R(T,Ao) resulted in even spikier r ( t )  functions, and the 
form of N,(T,Aw) only got worse: the flip angle in the selected slice increased toward 



Bloch transform inversion in magnetic resonance imaging 147 

1.0 

0.8 

0.6 

- 
3 
4 

0.4 
"' 
2' 

0.2 

0 

0 20 40 60 80 100 120 

n 128 Aw' + 65 

0.1 0 

0.08 

0.06 

0.04 

- 0.02 

0 

c 

-0.06 ~ ~ L J ! l  0 20 40 60 80 100 120 

t 

Figure 5. The x component of the final magnetisation state N ( T A o )  plotted against slice 
number (n = 128Ao' + 65) for a shifted version of (5.5). The spins are flipped 90" in the 
slice which is no longer in the middle. (b )  The real and imaginary parts of the reflectivity 
function r( t )  outputted by the Schur algorithm with input a shifted version of (5.5). r( t )  
represents the amplitude and phase modulation (see (2.12b)) that achieves the N , ( T A o )  
shown in figure 5(a). 

180" very slowly with increasing amplitude of R(T,Aw), while the region outside the 
slice began to be excited. 
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Figure 6. (a) The z component of the final magnetisation state N ( T A o )  plotted against 
slice number (n  = 128Aw' + 65)  for (5.9). The spins are flipped about 135" in the region in 
the middle. (b) The reflectivity function r( t )  outputted by the Schur algorithm with input 
(5.9). r ( t )  represents the amplitude modulation that achieves the N , ( T A o )  shown in figure 
w. 

Another modulation signal commonly used is a Gaussian signal [l], resulting (in 
the Born approximation) in a Gaussian slice profile. This suggests trying 

R ( T , A o  = k/128) = 7.1(0.995)k2 -64 I k < 64 (5.10) 
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Figure 7. The z component of the final magnetisation state N(TAo) plotted against slice 
number (n = 128Ao' + 65) for (5.10). The spins are flipped 180" in the middle. (b) The 
reflectivity function r( t )  outputted by the Schur algorithm with input (5.10). r ( t )  represents 
the amplitude modulation that achieves the N,(TAw) shown in figure 7(n).  

which should result in a large flip angle in the centre of a Gaussian-shaped slice. The 
resulting r ( t )  and N , ( T , A o )  are shown in figure 7. Note that the Gaussian slice is 
realised quite nicely, while the r ( t ) ,  although not a Gaussian pulse, looks more like a 
Gaussian pulse than figure 6(a) looks like a sinc pulse. This suggests that the Born 
approximation breaks down more slowly for Gaussian-shaped pulses. 
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The results shown in this section seem to be comparable to those obtained using 
reflectionless potentials in [8-lo], although the modulation functions are quite different. 
In particular, the results of this paper are easier to compare with known results using 
Gaussian and sinc pulses. The most important point is that a different family of 
modulation functions can now be obtained; this complements the results of [8-lo]. 

6. Conclusion 

A new procedure has been proposed for inverting the Bloch transform in magnetic 
resonance imaging. Following [12], the Bloch transform is recast as a Zakharov-Shabat 
two-component wave system, in which the reflectivity function r ( t )  is related to the 
modulation needed to achieve a desired final magnetisation state M ( T , A o ) .  This is 
a special case of the inverse scattering problem for asymmetric two-component wave 
systems treated in [13]. Hence the asymmetric Schur algorithm from [13] can be applied 
to this problem. Due to the special form of the Zakharov-Shabat system, reflection 
data from only one side are sufficient to reconstruct r ( t ) ,  even though the scattering 
medium represented by the system (not the medium be magnetic resonance imaged) is 
lossy. 

There are considerable grounds for further work. The problem of selecting an 
exact form of R ( T , A o )  that will lead to a ‘reasonable’ r ( t )  is still not pinned down, 
although the Born approximation helps-we need Fourier transform pairs that are 
narrow in both time and frequency. A more interesting problem is considering initial 
magnetisation states M ( x ,  y, z, 0) different from [O,O, -1IT. What set of initial states can 
be treated, and what set of final states can be attained from it? The method proposed 
here will work on any M ( x , y ,  z,O) invariant in x and y (all we need is a(0,Ao) = 1 and 
/?(O,Ao) = 0), but it is not clear what final states correspond to realisable reflection 
responses. 
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