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Abstract. Numerical results of implementing a two-dimensional layer stripping algorithm 
to solve the two-dimensional Schrodinger equation inverse potential problem are pre- 
sented and discussed. This is the first exact (all multiple scattering and diffraction effects 
are included) numerical solution of a multi-dimensional Schrtidinger equation inverse 
potential problem, excluding optimization-based approaches. The results are as follows: 
(1) the layer stripping algorithm successfully reconstructed the potential from scattering 
data measured on a plane (as it would be in many applications); (2) the algorithm avoids 
multiple scattering errors present in Born approximation reconstructions; and (3) the al- 
gorithm is insensitive to small amounts of noise in the scattering data. Simplifications 
of layer stripping and invariant imbedding algorithms under the Born approximation are 
also discussed. 

1. Introduction 

The inverse scattering problem for the Schrodinger equation in two dimensions with 
a time-independent, local, non-circularly symmetric potential has many applications. 
TNO of these applications are as follows: (1) reconstruction of a three-dimensional 
(3D) acoustic medium with density and wave speed varying in two dimensions (2D), 
from surface measurements of the steady-state medium displacement response to 
a harmonic line source [l]; and (2) reconstruction of a 3D electrical medium with 
resistivity varying in 2D from surface measurements of the potential resulting from a 
line DC current source [2]. Both of these applications are quickly reviewed below in 
section 2.1. 

?kro major approaches for obtaining exact solutions of the ZD Schrodinger equa- 
tion inverse potential problem have been proposed. The first is the 2~ version of 
the Gel’fand-Levitan and Marchenko integral equation methods [3]. The other is 
the 2D version of the layer stripping differential methods 141. Here ‘exact’ means 
that all diffraction and multiple scattering effects are included in the mathematical 
solution; errors in the solution will arise solely due to purely numerical effects such as 
discretization and roundoff. Hence all methods based on the Born (single-scattering) 
approximation are excluded here, since such methods, and their modifications, do not 
take into account all multiple scattering effects. In section 2 4  we discuss how the 
Born approximation applies to the algorithm of [4]. No numerical implementation of 
the methods of either [3] or [4] has previously been reported. 

0266-5611/92/040645+21$04.50 @ 1992 IOP Publishing Lid 645 



646 A E Yagle and P Raadhakrirhnan 

This paper presents the results of the first numerical implementation of the 2~ 
version of the layer-stripping algorithm of [4]. It is thus the first a a c t  (as defined 
above) numerical solution of a multi-dimensional Schrodinger equation inverse po- 
tential problem. Note that optimization-based approaches minimize (or maximize) 
some criterion; thus they are not in the spirit of the approach considered here. Al- 
though only reconstruction of the Schrodinger scattering potential is considered here, 
direct application to specific inverse scattering problems, as in [l] and [2], would be 
possible. 

This paper is organized as follows. In section 2 the ZD Schrodinger equation in- 
verse potential problem is formulated, two applications are noted, the layer stripping 
algorithm of [4] is reviewed, details of its numerical implementation are discussed, 
and its simplification under the Born approximation is discussed. In section 3 the 
invariant imbedding algorithm of [SI used to generate the scattering data is reviewed, 
and details of its numerical implementation are discussed. We also discuss its simpli- 
fication under the Born approximation, and show analytically that the Born-simplified 
layer stripping algorithm successfully inverts the Born-simplified invariant imbedding 
algorithm scattering data. Although the latter result is new, it is intended primarily 
to give some feel for the algorithms of [4] and [SI. 

Section 4 summarizes the numerical results, and presents some illustrative ex- 
amples. Issues illustrated include: (1) errors in reconstructed potentials using the 
Born approximation, which are eliminated using the ‘exact’ layer stripping algorithm; 
(2) effects on reconstructed potentials of various amounts of noise in the data; (3) 
effects on reconstructed potentials of regularization of transverse derivatives in the 
layer stripping algorithm; and (4) effects of choosing various discretization lengths in 
the layer stripping algorithm. Section S concludes with a summary. 

2. Iko-dimensional layer stripping algorithm 

21. Problem formulation and applications 

The ZD inverse scattering problem considered in this paper is as follows. The problem 
is defined in ZD ( z , ~ )  space, where z is lateral position and z is depth, increas- 
ing downward from the surface z = 0. The wavefield p ( z , z , k )  satisfies the 2D 
Schrodinger equation 

where the potential V(z,z) is real-valued, smooth, and has support in z in the 
intewal 0 < z < L. It is also assumed that V(z,z) does not induce bound states; a 
sufficient condition for this is for V ( z , z )  to be non-negative. 

The medium is probed by an impulsive plane wave e-i’*, which passes through 
the surface z = 0 a t  time t = 0 and induces scattering by V ( z , z )  for t > 0. The 
scattering data consists of measurements of the wavefield $(z, z * ,  k) and its gradient 
O p ( z ,  z * ,  k ) / O z  for some z*  in the homogeneous half-space z 2 0. For convenience, 
we assume measuremens are taken at the surface Z* = 0, as they would be in the 
applications to follow. The inverse scattering experiment is illustrated in figure 1. 

We now quickly review two applications of this problem. First, consider the prob- 
lem of reconstructing a 3 0  inhomogeneous acoustic medium whose density ~ ( z ,  2) 
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Figure 1. The w inverse scattering problem. 

and wave speed C ( Z , Z )  are smooth functions of depth z and lateral position z. 
The medium is bounded by a free (pressure-release) surface z = 0. The density 
po and wave speed co for z < 0 and z -+ M are known. The medium is probed 
with cylindrical harmonic waves, at two frequencies w1 and w2, from a harmonic line 
source extending along the z-axis, and the sinusoidal steady-state vertical acceleration 
i ( z , y , z  = O;wi )  of the medium at the free surface z = 0 is measured. The goal 
is to reconstruct p ( x , z )  and c ( z , z )  from the measuremen& i ( x , y , z  = O;wi) ,  

This problem can be formulated as a 2~ Schrodinger equation inverse potential 
problem by Fourier transforming the basic acoustic equations with respect to time and 
the other lateral variable y. Details are given in both [ l ]  and 141. Here we merely note 
that in the Schrodinger equation (2.1) the wavefield @(z,z, k )  is pressure divided by 
p ( z ,  z ) ' / ~ ,  the wavenumber k* = w:/c', - IC;, and the potential V(z ,z ;  wi)  is 

i =  1,2. 

It is clear that performing this experiment for two different frequencies w i ,  i = 1 , 2  
will allow p( z, z )  and c( z, z )  to be computed from (2.2). The wavefield is zero at 
the free surface z = 0; its gradient is the medium acceleration p ( ~ , O ) ' / ~ & ( z , y , z  = 

The second application is the inverse resistivity problem of reconstructing a 3D 
inhomogeneous electrical medium whose resistivity p ( z ,  z )  is a smooth function of 
z and z over a bounded region. The medium is probed with current from a line DC 
current source extending along the z-axis, and the electrical potential U( I, y, z = 0) 
induced on the surface z = 0, assumed to be a perfect insulator, is measured. The 
goal is to reconstruct the resistivity p ( r , z )  from the measurements of electrical 
potential v ( z , y , z  = 0). Note that for both applications, the response to a line 
source may be found by superposition of the responses due to point sources along 
the z-axis. 

This problem can be formulated as a U) Schrodinger equation inverse potential 
problem by Fourier transforming Ohm's and Kirchoffs current laws with respect to 
the other lateral variable y. Details are given in 151. Here we merely note that in 
the Schrodinger equation (2.1) the wavefield @(z, z, IC)  is now the inverse Laplace 

o ; w i ) ,  i = 1 , z .  
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transform of the Fourier transform of electrical potential divided by p(., +)lD, and 
the scattering potential V ( z , z )  = p ( z ,  ~ ) ' / ~ V ~ ( p ( z ,  z ) - ~ / ~ ) ,  

22. The 20 layer sfripping algorithm 

The layer stripping algorithm for solving the 213 Schrodinger equation inverse potential 
problem is derived as follows [4J. %king the inverse Fourier transform of (2.1) with 
respect to k yields 
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where 

Equation (2.3) can be written as the coupled system 

(2%) 

From causality and the form of (2.5a), p ( z , z , t )  and q(z,  z , t )  have the forms 

p ( z , z , t )  = 6 ( t - z ) + f i ( z , z , t ) l ( t - z )  (2.Q) 
q(z ,  2, t )  = l j (z,  2, t ) l ( t  - 2) 

where fi and @ are the smooth parts of p and 4, respectively, and 1( ) is the unit 
step or Heaviside function. 

Inserting (2.6) in (2.5) and equating coefficients of 6( t  - z )  (propagation of 
singularities argument) yields 

(2.7a) 

V ( x , z ) = - Z l j ( z , z , l =  Z + ) .  ( 2 . 7 ~ )  

Equations (2.7) constitute the basic ZD layer stripping equations: starting with mea- 
sured f i ( z , O , i )  and q(z,O,l) (the gradient of the wavefield is required for the 
latter), propagate (2.7) recursively in increasing depth z, reconstructing V(z ,  z )  as 
the algorithm proceeds. The coupled equations (2.7a) and (2.76) include all multiple 
scattering anti diffraction effects, since they are equivalent to the Schriidinger equa- 
tion (2.1) in the time domain. The potential may be reconstructed using ( 2 . 7 ~ )  since 
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(2.7) is implemented at the wave front t = t; by time causality there has been no 
time for multiple scattering to occur yet. 

Some advantages of using layer stripping algorithms are as follows. 

(i) Only backscattered data from one direction of probing is required. Integral equa- 
tion methods [3] require the scattering amplitude, which is the far-field response 
in all directions to an incident impulsive plane wave in each possible direction. In 
the applications noted above, this is unrealistic; it also runs the risk of inconsistent 
data. 

(ii) The amount of computation required is much less than the amount required to 
solve the integral equations of [3]. The layer stripping algorithm can be viewed 
as a fast algorithm solution of these integral equations which exploits the Hankel 
structure in the kernel of the generalized Marchenko integral equation of [3]. 

(iii)AN multiple scattering and diffraction effects are included, unlike methods such as 
distorted-wave Born approximation which only account for some of these effects. 

'ha  disadvantages of layer stripping algorithms are as follows. 

(i) It is not clear how to incorporate the effects of bound states (roughly, square- 
integrable solutions to the Schrodinger equation with negative energy); unlike the 
approach of [3]. 

(ii) The lateral derivative aZ/axz in (2.76) can be expected to induce numerical 
instability. 

23. Numerical implemenmion of the w layer stripping algorithm 

The second disadvantage can be removed as follows. 'clke the Fourier transform of 
(2.7) with respect to z. The result is 

t ( z , k , ) = - z q ( Z , t =  Z+,k,) (2.k) 

where li denotes convolution in k, 

m 

p ( r ,  1 ,  k z )  = 1, p ( z ,  r, t)e-"='dx (2.9) 

and q ( r , t , k , )  and V ( z , k z )  are defined similarly. 
The multiplication by k: in (2.86) will induce numerical instability. This may 

be avoided by replacing the multiplication by k: in (2.86) with multiplication by the 
clipped filter 

if Ik,l < Ii H ( k , )  = {: 
otherwise 

(2.10) 

for some cutoff wavenumber I<-. This is reminiscent of the clipped filter used in the 
filtered back-projection procedure for inverting the Radon transform. In practice, the 
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discontinuities in (2.10) at Ik,l = li- would be replaced by a smooth window to zero; 
a Hanning (raised cosine) window was used in the numerical simulations presented 
later. 

We now discretize depth z = nA and time 1 = jA to integer multiples of 
some discretization length A. Since the wave speed in (2.1) is unity, depth and time 
have the same A. Lateral position z would also use the same A; but wavenumber 
k, = kA, must use for A, half the reciprocal of the total lateral extent of interest; 
e.g. if the potential has finite support - L , / 2  < z < L,/2 in z, L ,  would be the 
lateral extent of interest. Note that A and A, have reciprocal units. 

Using forward difference approximations to the partial derivatives then yields 
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p ( ( n +  l ) A , ( j +  l)A,kA,) = p(nA,jA,kA,) + q(nA,jA,kA,)A 
d ( n +  1 ) A , ( j - 1 ) A , k A , )  = q ( n A , j A , k a , )  + ff(kA,)~(nA,jA,kA,)A 

(2.11~) 

*=-m 

V((n+l)A,kA,)=-2q((n+l)A,(n+l)A,kA,). (2.1 IC ) 

Equations (2.11) constitute the numerical implementation of the ZD layer stripping 
algorithm. The update patterns are illustrated in figure 2; note that by time causality 
p ( : , t , k = )  and q ( z , i , k = )  arc zcro for 1 < 2. 

,/slope = l  

I \\,/slope = - 1  

2 

Figurr 2. Update patterns lor ((I) p(z,f,kr) and (b)  q(z, t ,k=) .  

Cheney [6] has shown that the modification (2.10) stabilizes the layer Stripping 
algorithm (2.11), in the following sense. Define the norm 

(2.12) 

Input two different sets of bounded initial data p j ( k = , O , ~ ) , ~ , ( k = , O , i ) , ~  = 1 , 2  into 
the discretized algorithm (2.11), resulting in two different reconstructed potentials 
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K ( k , , z ) ,  i = 1 , 2 .  k t  ~ ~ p j ( k s , O , t ) ~ ~  < li' and [ lq i (k=,O, t ) l l  < li' for some I C .  
Then for z = nA we have 

where I i l (z )  and I i , (z )  are polynomials in n, A, IC, and li'. 
The discretized system (2.11) can be implemented as is. However, its spectral 

properties are worth examining. It might seem as though we can regard the dis- 
cretized functions p ( n A ,  jA, k A ) ,  etc, as merely sampled versions of the continuous 
functions p ( z , t , k , ) ,  etc, provided the latter are bandlimited and sampling is per- 
formed above the Nyquist rate. However, the nonlinear product in (2.76) becomes 
the convolution in k, in (2.86) and (2.116); the wavenumbers become mixed. Indeed, 
even if the inverse potential problem is regularized hy assuming that V ( r , k = )  is 
handlimited in z and zero for Ik,l > I< for some I i ,  it is clear that p ( z , t , k , ) ,  
etc. will not have similar properties. Imposing a bandlimited condition at each re- 
cursion will lead to errors, since the missing high wavenumbers will cause errors at 
low wavenumbers due to the wavenumber mixing. This leads to the question of what 
the discretized p ( n A , j A ,  k A , ) ,  etc mean, and how the convolutions in k, should 
be performed. It should be noted that similar questions arise in integral equation 
methods. 

One possible interpretation is to perform a periodic extension in k of all quantities 
in (2.11). The period in k should be l / A , ;  If in (2.10) should then be half this. 
It is clear by induction that if all quantities at depth nA are periodic in k, then all 
quantities at depth (n + 1)A will also be periodic in k. This has two advantages: (1) 
the infinite linear convolution becomes a finite cyclic convolution; and (2) the discrete 
Rurier transform may be used to perform all Fourier transforms. Since periodicity 
in one Fourier domain is equivalent to discreteness in the other Fourier domain, the 
problem has effectively been discretized laterally as well as vertically: the quantites 
propagated in (2.11) are not samples of a bandlimited function, but actual discrete 
values. As A, - 0, the situation approaches the continuous problem. 

2.4. Born approximation IO the layer sfripping algorilhm 

It is worth noting how the Born approximation applies to the layer stripping equations 
(2.7). The Born approximation is a linearization of the inverse potential problem; 
the idea is to render the potential to be linearly related to the scattering data. This 
has been discussed in detail elsewhere; here we merely scale the potential by a small 
parameter E ,  expand p ( z ,  2 ,  t ) ,  etc. in a Thylor series in t, and discard all terms of 
order c2 or smaller. The result is elimination of the product in (2.76); since this is 
the one nonlinearity in (2.7) its elimination is not surprising. Combining the modified 
(2.7a) and (2.7b) and keeping ( 2 . 7 ~ )  results in 

- 
a2 a2 -+ - --i q ( z , r , t )  = 0 ( az2 ar at 

V ( z , z )  = -2 I j ( z , r , t  = Z+), (2.146) 
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We recognize (2.14~1) as the migration operator relating the wavefield at the surface 
z = 0 to the wavefield on the plane parallel to the surface at depth z ,  and (2.146) 
as the imaging operator (gradient) applied to the migrated wavefield. 'l?i!dng two 
Fburier transforms of (2.14a) with respect to 1 and z and using (2.4) and (2.9) yields 
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a differential equation which has the solution 

i j ( k , , z , k ) =  q(k,,O,k)e-'". (2.16) 

The operation of the Born approximation to the layer stripping equations is now clear: 
(1) migrate the wavefield from the surface to depth z ;  and (2) image the wavefield at 
depth z to obtain the scattering potential. Note that imaging the potential requires 
taking the gradient of the wavefield; this is why q ,  not p, is used. Note also that 
multiple scattering, which is inherently nonlinear, is neglected in (2.14) and (2.16). 
The coupling induced by the product term in (2.7) accounts precisely for all multiple 
scattering. More details about the Born approximation and its relation to layer 
stripping and integral equation methods is available in [4] and 171. 

From the Schrodinger equation (2.1), it is apparcnt that for large wavenumbers 
l. +t.- ..-*,."+:-, ,111- -, ..J, Le -,.tn*:..-t.. .̂..̂ I, .̂.A .I.". -..,.:-,- ..:*n L. 
,> L..- y".'.LL.". I \A, ", n... "I ..,.YL"',J OLil',ll( LlllY una, "1Y1L1y1c ' M L L C " " g  w,,, "c: 
less significant. Indeed, in the limit k + a3 the Born approximation becomes exact, 
in that multiple scattering effects become negligible. However, inversion based solely 
on asymptotically large k is clearly unstable; 'exact' inverse scattering methods use 
low-wavenumber data as well as high-wavenumber data to stabilize the reconstruction. 
Also, it is clear that multiple scattering is more significant for small k (V(z,z) is 
relatively large), so lack of high-wavenumber data makes the use of 'exact' methods 
even more imperative. 

3. Forward problem algorithm 

3.1. Invariant imbedding algorirhnt 

The invariant imbedding algorirhm of i5j was used to generate rhe scattering data, 
to be input into the layer stripping algorithm. We briefly review this algorithm 
here, following the notation of [5] for convenience. Let k be wavenumber, as in the 
Schrodinger equation (2.l), 9 = k, (lateral wavenumber), k ( q )  = (vertical 
wavenumber, as in (2.16)), and p be lateral wavenumber of the incident plane wave 
(ultimately we are interested in p = 0). Then further define h ( z , q )  = V ( z , k z )  
(scattering potential) and +,(I) = p ( k z , z ,  k) (wavefield; see (2.15)). A slight 
problem with the notation of [5] is that the dependence of u ( z , q )  and R ( c , q , p )  on 
k is not explicit. 

Finally, define R ( c ,  q , p )  as the near-field planar reflection response, in direction 
q, of the portion of the medium below depth c, to an impulse 6 ( q - p ) e - ' k ( q ) " / k ( p ) ,  
in direction p (recall directions are specified by wavenumbers). ?ko inverse Fourier 
transforms taking k + 2 and 9 = k, - z, as in (2.13, transform 6 ( q  - p ) e - ' k ( q ) 2  
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into the impulsive plane wave 6( 1 - z cos 8 - z sin O ) ,  where 8 is the angle of inci- 
dence (measured from the vertical) defined by p = ksin 0. Hence k(p)R(O,q,O), 
computed for each k and then inverse Fourier transformed as in (2.4), is precisely 
the reflection response to an impulsive plane wave normally incident on the medium. 

We sketch through the derivation of the invariant imbedding equations to show the 
similarities and differences to layer stripping. A Fourier transform of the Schrodinger 
equation (2.1) taking 2: -+ q = k= yields (recall h ( z , q )  = V ( z ,  kz)) 

I where * denotes convolution in q and k2(q) = kZ - 4’. Defining 
i 

l it can be shown [5,  p 931 that U (  z ,  q )  and W( z ,  q )  satisfy the coupled system (compare 
with (2.8)) 

(3.3) 1 “[“I = [ ik (q )u  - ( h  * (U + w ) ) / ( W q ) )  
d z  w -ik(q)w + ( h  * (U + ~ ) ) / ( 2 i k ( q ) )  

where all variables are functions of ( z , q ) .  
Now imbed the system (3.3) as follows. Let  A( z ,  c ,  q ,  p )  and B( z ,  c ,  q. p )  satisfy 

(3.3), initialized with A(. = c , c , q , p )  = S(q-p ) /k (p )  and B ( z  = L , c , q , p )  = 0 
(the latter is a radiation condition; recall V(z ,  z )  has support in 0 < z < L). Then 

+ , q )  = k B ( z , O , q , p )  
(3.4) 

u ( z , q )  = kA(z ,O,q ,p)  

A ( c , c , q , p )  = & ( q - P ) / k ( P )  R ( c , q , p )  = B ( c , c , q , p ) .  

~ 

Furthermore, a A / a c  and OB/& also satisfy (3.3), but with initial conditions 

I By superposition, the solution to (3.3) with these initial conditions is [S, p 951 

I We also have from the last of (3.4) 

(3.7) 
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Finally, setting z = c in (3.3), substituting into (3.6), and substituting again into 
(3.7) gives the following invariant imbedding equation for R(c,q,p): 

+ // R( c ,  q l d )  h( c ,  9' - 4") R( c ,  q", P) /2 d q' d q" 

+ / ( h ( c , s -  d ) R ( c , q ' , p ) / k ( q )  + R ( c , q , q ' ) h ( c , q ' -  p ) / k ) / Z d q '  

R(L,¶,P) = 0 .  (3.8) 

This is formaula ( l l a )  in [S, p 971. 
Note that (3.8) is computed recursively in decreasing c ,  starting at c = L and 

ending at c = 0. This must be done for each p, q, and k (recall that R ( c , ~ , ~ )  
also depends on IC; this dependence is not shown explicitly in (3.8) since none of the 
integrations are over k) .  Having computed R ( 0 ,  q ,  p) for all k, i.e. having computed 
R ( O , q , p , k ) ,  the inverse Fourier transform (2.4) of kR(O,q ,O ,k )  is precisely the 
reflection response to an impulsive plane wave normally incident on the medium. 
This is the scattering data used as input to the layer stripping algorithm. 

3.2. Numerical implementation of invariant imbedding algorithm 

Y'1y"L' 111 Yyy0,C"L W L L 1 t , " C " L L J ,  (A", _ I ,  "C "lly,rCrurr,rru Lru,,lc;rrulry "1 ci .Xrarg,rr- 
forward manner by discretization similar to that used to obtain (2.11) from (2.8). 
Since (3.8) is already in the wavenumber domain, and the scattering potential h( z , q )  
is known exactly, no computational instability issues arise. The integrals may be eval- 
uated using the trapezoidal rule, and a backward difference. approximation to d R / d c  
used to propagate (3.8) in decreasing c from c = L to c = 0. 

Once again we assume a periodicity of l / A  in the values of all functions of 
wavenumbers; this corresponds to the discretized functions being actual discrete val- 
ues, rather than sampled values of bandlimited continuous functions. The infinite 
integrals in (3.6) and (3.8) become cyclic integrals (computed only over one period), 
so their evaluation is straightforward. The multiplication by k + k ( q )  in (3.8) is 
windowed to zero for values greater than l /(ZA), as in (2.10), and then periodically 
extended. 

Note that it is not possible to compute the reflection response for k = 0 or 
k ( q )  = 0 ,  due to tbe. divisions by these i~? (3.8). ' h e  forrner can be assumed to be 
zero, since a non-zero DC reflection response would represent permanent displacement 
resulting from the impulsive plane wave! The latter corresponds to incidence at 90 
degrees, which would not create a backscattered field in the + z  direction. Hence 
omitting these does not present a problem. 

3.3. Bom approximation to invariant imbedding algorithm 

The invariant imbedding equation (3.8) is suggestive of a 2D version of the Riccati 
equation familiar in ID scattering in layered media. The two integral terms correspond 
to the square term in the ID Riccati equation. ?b aid in understanding (3 .Q we now 
apply the Born approximation to (3.8), and show that the Born approximation to 
the layer stripping algorithm (2.146) and (2.16) reconstruct3 the potential from the 

nn"":ta :." """--""* ---- I....:... ,I) 0, L" :--I _I -..-..:..Is.. I- ..~~~.~.%. 
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reflection response generated by the Born approximation to the invariant imbedding 
equation (3.8). 

As in section 2.4, we scale the potential by a small parameter E, expand the 
wavefield and reflection response in a Bylor series in E ,  and discard all terms of 
order E' or smaller. The result is elimination of the two integrals of products terms 
in (3.8), leaving 

i-(c,q,p) = ( k +  k ( q ) ) R ( c , q , p )  + h ( c , q - p ) / ( W q ) k )  
d R  
dc R(L,q,p) = 0.  

(3.9) 

Since there is no longer coupling between R( c ,  q,  p) of different p, we can set p = 0 
(normal incidence) and solve the differential equation (3.9), yielding 

The factor of k multiplying R ( z , q , k )  is present because k ( p ) R ( z , q , p , k )  is the 
Fourier transform of the reflection response to an impulse, as discussed in the second 
paragraph of section 3.1. Since p = 0 here, we have k ( 0 )  = k ,  so k R ( z ,  q ,  k) is the 
frequency-domain reflection response to a planar impulse. 

Equation (3.10) has a very clear interpretation: to form the reflection response 
at depth z in the Born approximation, assume the incident impulsive plane wave 
penetrates without being scattered to each depth z',  and is then scattered by the 
potential V ( z ' ,  q )  at that depth. Then use the migration operator eik(9)" to migrate 
each scattered field back to depth z independently (neglecting all coupling), and 
superpose the scattered fields due to each c ( z ' , q ) .  At the surface z = 0 this is 
clear, but it applies to any depth z. 

Note that g ( k , , z , k )  in (2.16) in the time domain is causal for all z (see fig- 
ure 2(b)) while a time delay/advance e- ikz'  must be included in (3.10). Also note that 
V ( z ' , q )  in (3.10) is scaled by -i/(2k(q)); the reason for this will become apparent 
in (3.13) below. 

Now consider the Born approximation to the layer stripping algorithm (2.14b) and 

I 
(2.16) applied to (3.10). Tiking the Fourier transform (2.4j of (22%) and using (2.16) 
gives 

q ( z , q ,  k) = (g + ik) p ( z ,  q ,  k )  = (A + ik) j ? ( ~ , q , k ) & ~ ) * .  (3.11) 

Inserting (3.10) into (3.11) shows that the Born-approximated layer stripping algo- 

(3.12) 

from the Born-approximated scattering data. Using (2.146) shows that the Born- 
approximated layer stripping algorithm computes 

~ rithm computes 

9 ( Z , ¶ > k )  = -' , / (2k(q))V( 2, q)e'k(9)2 

SO that it does indeed correctly compute the scattering potential '(2, q )  in the Bom 
approximation. 
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4. Numerical wsults 
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4.1. Initialization 

The algorithm described in section 3 was used to generate the backscattered reflection 
fesponse kR(0,  q ,  k )  to an impulsive plane wave for several different scattering p- 
tentials V(Z,Z). The inverse Fourier transform (2.4) aR(O,q , t ) /a t  of k R ( O , q , k )  
was then used to initialize the discrete layer stripping algorithm of section 2, with 
(recall q = IC,) 

The latter initial condition comes from (2.7a) and the fact that I? ( z ,q , t )  = 
R ( O , q , t  + z )  in the homogeneous overlying half-space z < 0, since R(O,q,t) 
is a backscattered (i.e. upward-traveling) wave. Note that the sample applications of 
section 2 would require different initial conditions. 

4.2. Forward problem versus inverse problem algorithms 

The invariant imbedding algorithm was used to generate the forward data so that 
the Iaycr stripping inverse problem algorithm would not simply run the computations 

murse be mathematically equivalent, since they are both ‘exact’, they are derived 
from different mathematical principles. 

Some specific differences between the forward problem (invariant imbedding) 
algorithm (FPA) and the inverse problem (layer stripping) algorithm (IPA) are as 
follows. 

(i) The €TA propagates the reflection coellicient at depth R ( c , q , p , k ) .  The IPA 
propagates the field and field gradient p ( z , t ,  k s )  and q ( z , t ,  k, ) .  Note that R # 
q / p ,  since R is the ratio of downgoing and upgoing waves, not field quantities. 

(ii) The FPA operates in the k (frequency) domain, while the IPA operates in the t 
(time) domain. 

(iii) The FPA computes R( C ,  q ,  p, k )  for all c ,  q ,  p, k,  while the IPA is initialized using 
k R ( O , q , O ,  IC), a slice of the FPA function. Note in the FPA (3.8) the integrals 
over qi and the ditterences q’ - q”; these clearly have no counterpart in the IPA. 

@)The FPA propagates (3.8), which can be viewed as a ZD generalization of the 
Riccati equation familiar in 1D invcrse scattering. The IPA propagates the coupled 
system (2.8); note that this differs from the coupled system (3.3) used to derive 
(3.8). 

(v) While both algorithms are discretized in depth, the FBP results did not mry 
significantly with mesh size, so this should not be an issue. The IBP results also 
did not mry significantly with mesh size, and gave good results at several different 
resolutions (see below). 

These differences make it clear that errors are not cancelling out algebraically be- 
tween the FPA and the IPA, i.e., the IPA is not effectively running the FPA computations 
backwards. 

of t k  foixi id piobkiii Agfiiiihiii bai’nwatds. Aiiiwug‘n tic twwo aigoritnms must of 
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4.3. Summary of results 
The numerical performance of the layer stripping algorithm was studied under a 
variety of conditions. The results may be summarized as follows. 

(i) The layer stripping algorithm successfully reconstructed the potential in the ab- 
sence of noise. The only difficulty was due to the smoothing of the transverse 
derivative, which slightly smoothed very sharp variations in the lateral direction. 

(ii) The layer stripping algorithm continued to work well when a small amount of 
Gaussian random noise was added to the reflection response. The reconstructed 
potential was slightly degraded, of course, but the amount of degradation seemed 
to vary smoothly with the amount of noise-a slight increase in noise level did 
not vastly degrade the reconstructed potential. 

( i i )  The layer stripping algorithm reconstructions were superior to those using the 
Born approximation (as specified in section 2.4 above), in that the Born approx- 
imation aeated multiple scattering events as additional single scattering events, 
resulting in errors in the reconstructed potential, particularly for large z.  This 
effect was more pronounced when the potential had numerically large values; 
for small potentials V(nA, kA)A << 1 the Born approximation worked quite 
well. This was as expected; multiple scattering involves products of potentials, 
and multiplying small values results in even smaller values. 

(iv)The performance of the algorithm seemed to vary little with the size of the 
discretization length A, provided that the same A was used in the discretized in- 
variant imbedding algorithm. This suggests there may be a close relation between 
the discretized versions of these algorithms. Coarse grid reconstructions seemed 
to be merely undersampled versions of the fine grid reconstructions; the basic 
features of the reconstructions were identical. 
We illustrate these points with some numerical examples below. It should be 

noted that the following is only a representative and illustrative sample of our results; 
the above conclusions are not based merely on the results below. Unlcss otherwise 
specified, all examples used A = 1/32, L = L ,  = 1/2,  and A k  = 1. The 3D 
plots are depicting 2D functions V(z ,  z ) ;  they do not represent objects buried in a 
homogeneous surrounding medium. 

4.4. Comparison with the Bom approximation 
The potential V(z,  z )  is shown in figure 3(a). Note that this is a smooth, rounded 
potential having compact support in both 2 and z. 

The reconstructed potential using the Born approximation is shown in figure 3(b). 
Although figure 3(b) superficially seems to be identical to figure 3(a),  study carefully 
the deepest part of the reconstructed V(Z,Z). The original V ( z , z )  is zero for 
z > 24/32, while the Born-reconstructed V( z, z )  does not become zero until z > 
26/32; it has a ‘tail’. This ‘tail’ is caused by multiple scattering that is interpreted 
under the Born approximation as primary scattering due to an additional non-zero 
portion of the scattering potential; actually, there is no such portion. 

The reconstructed potential using the layer stripping algorithm is shown in fig- 
ure 3(c). This reconstruction has no ‘tail’; the multiple scattering that produces it has 
been accounted for in the algorithm and eliminated. The reconstruction is almost 
perfect. 

A different potential is shown in figure 4(a) .  Note that this potential function is 
constant over a central ‘plateau’, and then drops off rapidly to zero. 
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Figure 3. (a) Original potential function. (b) Born 
approximation reconstruction. Note the ‘tail’ at 
Ihe right. (c) l ayer  stripping algorithm recon- 
struction. 

The reconstructed potential using the Born approximation is shown in figure 4(b). 
Note again the presence of a ‘tail’ at its deepest part, while there is no ‘tail’ at its 
shallowest part, since multiple scattering has not yet had rime to occur in this part 
of the time-domain impulse response (the lack of symmetry in z is apparent if one 
looks at the figure as a whole). Also note the problems in reconstructing the lateral 
edges of the potential function; the central ‘plateau’ is much smaller than it should 
be. 

The reconstructed potential using the layer stripping algorithm is shown in fig- 
ure 4(c). Again the ‘tail’ caused by multiple scattering has been eliminated. However, 
the shallowest and deepest edges of the ‘plateau’ have been rounded off slightly. Since 
this is symmetric between the shallowest and deepest parts, it is not due to multiple 
scattering. We attribute it to smoothing in thc transverse derivative. 

4.5. EIfecls of addilive noise 

The potential V ( z , r )  used in figure 3 was scaled as shown in figure 5(a),  and 
Gaussian random noise was added to the reflection response R ( 0 ,  q,  k). The signal- 
to-noise ratio, computed as the square root of the sum of the squares of the discrete 
signal values divided by the square root of the sum of the squares of the discrete 
noise values, was found to be 36 dB for one run and 18 dB for another (to get power 
SNR these values should be doubled). Note that any powers of A and numbers of 
points being averaged will cancel in this ratio. 



Numerical performance of layer stripping algorithms 659 

Figure 4. (a) Original potential function. (b) Born 
approximation reconstrudion. Note the ‘(ail’ at the 
right. (c) layer stripping algorithm reconstruction. 

The reconstructions at 36 dB are virtually perfect; in fact, the reconstructions 
shown in figure 3 are actually these reconstructions. The reconstructions at 18 dB 
are shown in figure 5(b) using the Born approximation and figure 5(c) using the layer 
stripping algorithm. Note that even in these noisy reconstructions the ‘tail’ is still a 
significant feature in the Born approximation reconstruction, while the layer stripping 
reconstruction has correctly removed the ‘tail’. 

To see the degradation of the layer stripping algorithm in the presence of increas- 
ing amounts of noise added to the reflection response, study figure 6. Figure qu) 
shows the original potential function, which is the same as figure 4(a). Figure 6(b) 
shows a noisy reconstruction of the potential function shown in figure 6(a),  and in fig- 
ure 6(c) the signal-to-noise ratio has been reduced by a factor of four. The increasing 
degradation of the reconstruction is obvious, but the layer stripping algorithm does 
not fall apart even in large amounts of additive noise. 

A similar study is carried out for a different potential function in figure 7. Fig- 
ure 7(a)  shows the original potential function, and figures 7(b)  and 7(c)  correspond to 
figures 6(b) and 6(c) .  The only notable feature of the layer stripping reconstructions is 
the slight (one pixel wide) ‘shelf‘ induced by the smoothed transverse derivative (this 
is discussed in more detail below); otherwise, the reconstructed potential smoothly 
degrades with increasing noise. 

Note the presence of the sharp ridge along the line z = 0 in figures 6 and 7. This 
ridge is due to the non-zero mean of the noise being added to R(0,  q. k). When 
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Figure 5. (a) Original potential function. (b) Noisy 
Born approximation reconstruction. Note the ‘fair 
at the righl. (c) Noisy layer stripping algorilhm 
reconslmction. 

V (  z, z )  is computed by taking the inverse Fourier transform (2.9), this non-zero 
mean, a constant in the Fourier wavenumber k domain, becomes an impulse in the 
spatial z domain. This impulse is the ridge. 

4.6. Dircussion of nunierical stability wilh noise 

The smooth degradation of the reconstructed potential with increasing noise lev- 
els might Seem surprising, since the inverse scattering problem is known to be ill- 
conditioned. ’Ihe reason for this is that multiple scattering has a relatively small 
(compared tu single scatieiing) effect, so that thc Eoin app;oxima:io:: rest!! ?.e!! he 
approximately the Same as the layer stripping result. The Born appruxiniation is lin- 
ear, so that any noise added to the reflection response will produce an addition to the 
reconstructed potential whose strength is directly proportional to the noise strength 
(halving the noise will halve the addition); hence the Born-reconstructed potential 
will degrade smoothly, and it is not surprising that the reconstructed potential from 
layer stripping also degrades smoothly. 

This heuristic argument should not be taken too far; in the ID case, it is well 
known that large noise levels can cause severe problems in layer stripping algorithms, 
and indeed in any ‘exact’ method. The reason for this is no1 numerical instability, 
as is commonly believed; the ID layer stripping algorithm is identical to the Schur 
algorithm (see [S]), which is known io be nuntericuNy stoble. 

The reason that ID layer stripping algorithms can give unstable results when they 
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Figure 6 (0)  Original potential function. (b) Noisy 
layer stripping algorithm reconstruction. (c) Noisier 
layer stepping algorithm reconstruction. 

are applied to noisy reflection data is as follows. It is well h o w n  that the free- 
surface reflection response of a 1D layered medium to an impulsive plane wave below 
the surface is one side of the autocorrelation of its transmission response; hence 
it must be positive semi-definite. Noise added to the reflection response can make 
the two-sided response (the reflection response added to its time reversal) become 
non-positive semi-definite, in which case it is no longer the reflection response to any 
layered medium. The problem is now ill-posed, in the sense of having no solution; it 
is not surprising that the layer stripping algorithms become unstable. 

However, small amounts of additive noise will not cause the reflection response 
to become non-positive semidefinite; as long as this is true, the layer stripping 
algorithms will behave well numerically. Our results in this paper suggest that a a 
similar situation is present in the 2D inverse scattering problem considered here; this 
is a topic of current research. 

4.7. Smoothed reconstructions due IO smoothed transverse derivative 

The smoothing in the transverse derivative incurred by using the clipped filter (210) 
causes a slight hut noticeable smoothing of V ( z , r )  along the 2' direction. This 
was manifested in the reconstructions in figure 7 by the 'shelf' that appeared at the 
ends of the reconstructed potential function. Another example of this is illustrated 
in figure 8. Figure S(a) shows the original potential function, which was produced 
by taking the potential function of figure 7(a)  and adding random noise to it. The 
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Flgure 7. (a) Original potential function. (b) Noisy 
layer stripping algorithm reconstruction. (c) Noisier 
layer stripping algorithm reconstruction. 

Figure 8. (0) Original 'noisy' potential function. (b) layer stripping algorithm recon- 
StNCLiO". 

idea here is that in real life potential functions will not have simple analytic forms; 
they will he complicated functions. Hence figure S(a) is closer to a realistic potential 
function. 

The reconstructed potential from the layer stripping algorithm is shown in fig- 
ure S(b) .  Note again the one-pixel-wide 'shelf' at each of the two flat ends of the 
potential function. We attribute this to the smoothing of the transvene derivative in 
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the layer stripping algorithm; unable to reconstruct the sharp jump from zero, the 
algorithm provides a laterally smoothed reconstruction in which the reconstructed 
potential takes two smaller lateral jumps instead of a single large jump. Note that 
the ‘shelf‘ is half the height of the jump in z at each depth +. 

Also note in figure 8(b) that the ‘noisy’ part of the potential in figure 8(a)  has been 
noticeably smoothed. This again seems to be due to the smoothing in the transverse 
derivative; note that the reconstructed potential is ‘rougher’ in the z direction (for 
which there is no smoothing) than in the z direction (in which there is smoothing). 
This smoothing effect should be taken into consideration in potentials reconstructed 
using layer stripping algorithms. 

Figure 9. (a) Original potential function using 
A = 1/16 ,  (b) Barn appmximation reconslmc- 
tion. Note poor reconstruction of lhe ‘plateau’. 
(c )  Lnyer stripping algorithm reconstruction. 

4.8. Efecl of discretization lengrh A 

The above numerical runs all used A = 1/32. Results for a larger A = 1/16 are 
shown in figure 9. Figure 9(a) shows the original potential, which is an undersam- 
pled version of the potential in figure 4(a).  The reconstructed potential using the 
Born approximation is shown in figure 9(b). Note how poorly the Born approxima- 
tion reconstruct$ the central ‘plateau’ of the potential function. The reconstructed 
potential using the layer stripping algorithm is shown in figure 9(c). Although the 
central ‘plateau’ is reconstructed quite well, the potential function as a whole is spread 
out one pixel in each direction. This shows that while the invariant imbedding and 
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layer stripping algorithms are clearly closely mnnected, the discretized layer stripping 
algorithm is not merely running the invariant imbedding algorithm backwards. 

Results for a smaller A = 1 / 6 4  are shown in figure 10. Figure lO(u) shows 
the original potential, which is a more finely sampled version of the potential in 
figure 4(a). The reconstructed potential using the layer stripping algorithm is shown in 
figure 10(b). The reconstruction is almost perfect-ven the lateral smoothing caused 
by the smoothed transverse derivative is not apparent. This is due to the fact that 
although A, = 1, the maximum value of IC, is now 32 instead of 16; the smoothing 
starts at a much higher wavenumber. A very close comparison of figures lO(a) and 
1O(b) show that the reconstruction is not quite perfect; the reconstructed potential is 
still spread out one pixel in each direction. But this effect is virtually negligible on 
this scale. 
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Figure IO. (0) Original potential function using A = 1/64. (b) Layer stripping algorilhm 
reconstruction. 

Figure 11. (a) Original potential iunction using A = 1/64. (b)  Noisy layer stripping 
algorithm reconstruction. 

One final example combines a smaller A, additive noise in the reflection response, 
and smoothed reconstruction. Figure l l ( a )  shows the original potential, which is a 
more finely sampled version of the potential in figure 7(a). Random noise was added 
to the reflection data, at a signal-to-noise ratio of 15.7 dB. The reconstructed potential 
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using the layer stripping algorithm is shown in figure ll(b). All the features discussed 
in section 4.3 are again present in figure ll(b). These include the ‘shelf‘, still one 
pixel wide, the ridge along the line z = 0, and the main shape of the potential 
function still visible in the noise. This shows that these effects occur at different 
discretization lengths, and indeed may be endemic to layer stripping reconstructions 
with noise for any A. 

5. Conclusion 

The numerical performance of the 2~ layer stripping algorithm of [4] has been studied 
for the fist time. This represents the first numerical implementation of an ‘exact’ 
non-iterative inverse scattering algorithm that includes the effects of all multiple 
scattering and diffraction effects. The folward scattering data were generated ushg 
the invariant imbedding algorithm of [SI. The results indicated that layer stripping 
is a viable technique for solving ZD Schrodinger equation inverse potential problems, 
for which two applications were briefly reviewed. 

%vo particularly important results were that: (1) the ‘exact’ reconstructions using 
the layer stripping algorithm are a noticeable improvement over the Born approxima- 
tion reconstructions; and (2) small amounts of additive noise in the reflection response 
do not cause numerical instability in the layer stripping algorithm. The results were 
illustrated using several numerical examples. It was also shown for the first time that 
the Born approximation to the layer stripping algorithm reconstructs the scattering 
potential from the reflection response generated by the Born approximation to the 
invariant imbedding algorithm of [SI. 
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