REFERENCE MATERIAL
FOR
CCS 476 AND CCS 573

L. K. Flanigan
W. E. Riddle

Department of Computer and
Communication Sciences

University of Michigan

Fall/Winter 1972-73

é'/"‘““zxgw"}
UMK,

) 504

PREFACE

The reference material in this volume is an amalgam of two sets of notes:

a set prepared by Professor Riddle for CCS 476; and a set prepared by
Professor Flanigan for CCS 573. Since the two courses each provide
lectures on System/360, we decided to combine the two sets of notes into
one volume for both courses to use. The bulk of this reference material
will be used in both courses; some individual sections may be used directly
by only one of the courses. This material is designed to provide backup,
reference material for the course lectures; it is not self-contained, and
it is not designed to provide self-instruction or_ to aid independent study.
Frequent reference will be made to this material in the lectures, and
students are therefore encouraged to carry these notes to the lectures in
each course. We also hope that this material will serve as a reference to
basic System/360 concepts throughout the course, thereby reducing the need
to peruse the IBM manuals and the MTS manuals. We would appreciate any
comments, corrections, and/or suggestions generated by this reference

material.

L. K. Flanigan

W. E. Riddle

II.

III.

Iv.

VI.

VII.

VIII.

IX.

XI.

XII.

TABLE OF CONTENTS

INTRODUCTION TO SYSTEM/ 360

FIXED AND FLOATING POINT INSTRUCTION SETS
BRANCHING INSTRUCTION SET
INTRODUCTION TO ASSEMBLER LANGUAGE
DECIMAL INSTRUCTION SET

LOGICAL INSTRUCTION SET

EXAMPLE PROGRAMS

INTRODUCTION TO MACRO ASSEMBLER
STATUS SWITCHING INSTRUCTION SET
I/0 INSTRUCTION SET

THE U. OF M. SYSTEM/360 MODEL 67

EXCERPTS FROM MTS VOL. 3

ii

Page

I.

II.

III.

Iv.

VI.

VII.

VIII.

IX.

XI.

XII.

1

1

I.1

BASIC SYSTEM/360 STRUCTURE: . 0
1/0 UNITS :
MAIN CONTROL UNITS
STORE D Ej
e [) \‘S ® L] *
'i []
. ';» CHANNELS .
g \
J
CPU : .
CONCEPTUAL CPU-STORAGE ORGANIZATION:
STORAGE ADDRESS MATN
STORE
INSTRUCTIONS OPERANDS (DATA)
ro«-o-a-mm,_.wu‘ﬁj emm \\
ra— mdhn ciiniman
| GENERATED £ 1aED VARIABLE | FLOATING
| CONTROL &—jrrmas POTNT IENGTH | POINT
I
(PSW) AN
16 b
GPRS FPRS
0,1’000,15 O,z’h’é

FULL WORD DOUBLE WORD

I.2

MAIN STJRE -~ DATA TYPES
FiXED UNITS: BYTE = § BITS
HALFWORD = 2 BYTES
FULL WORD = WORD = 2 HALFWORDS = |, BYTES
DOUBLE WORD = 2 WORDS = 8 BYTES

DATA TYPES: FIXED POINT == HALFWORD, FULL WORD
FLOATING POINT - WORD, DOUBLE WORD, EXTENDED (16 BYTES)
DECIMAL ~- 1 19 31 DIGITS + SIGN (UP TO 16 BYTES)
CHARACTER == 1 TO 256 CHARACTERS (BYTES)

FIXED POINT FORMAT:

| W‘a o é O

HALFWORD] (RS } | 5 L
. ! 1 =
FULL WORD SIT o s - s e 37

MAXIMUM POSTTIVE: TFFFFFFE = 2,147,483,647 (32767)
MAXIMUM NEGATIVE: 80000000 = =2,1h7,L83,648 («32768)

FLOATING POINT FORMAT:

SHORT Si1 78— = o e = e 31 ~ T DEC PLACES

HOT AR NTLS e AR G5 ammew

LONG Sl TYB == oo o e u{»;gmg «~ 17 DEC PLACES
ot

. wm wn ewe
kgr»_‘!w’ »\%w;s%nmm--«,..,.,w g5

CHARACTERISTIC FRACTION

EXTENDED: DATA TYPE IS TWO LONG FLOATING POINT NUMBERS

VALUE: S(OFRA_CTIONié)%(CHARACTI’Z?RIS'I‘?LC = 10 g,
‘"?9 - Y 75
RANGE: (5.L)10 coo (72)10
CHARACTER FORMAT:

ONE CHARACTER = ONE BYTEs THUS, UP TO 256 DISTINCT CHARACTERS
SAMPIE EBCDIC ENCODINGS:

0=9 == FO=F9 + wa L g == 10
AeI =e C1-CO o e 60 T o 6B
JoR ww D1-DO v B & e 50

e GF § e D

wes TR

Sel ww B2=E9

§i ve o

DECIMAL FORMAT:

ZONED FORMAT:
zD{zDlzD}|-=-=-==]ZD SD!
Z = ZONE = HEX F
D=DICIT = 0 == 9
§ =SIGN = + HEX C (1100)
- HEX D (1101)
PACKED DECIMAL:
DD|DDy{DD|————~ DD|{DS
DIGIT = 0 == 9

|92 N ws)

SIGN = + HEX C (1100)
- HEX D (1101)

UP TO 16 BYTE LENGTH = UP TO 31 DIGITS + SIGN

EXAMPIE:
+68l =8l
FIXED POINT FORMAT 0000024C FFFFFDS),
FLOATING POINT FORMAT 1,32AC000 3246000
PACKED DECIMAL FORMAT 000068);C 000068L,D
ZONED DECIMAL FORMAT FOF6FSC, FOF6F8DL
CHARACTER STRING LEF6FBE), 60F6FSF)
/70
CONVERSTONS :
SCARDS, READ SPRINT, WRITE

7

P
CHARACTER STRING

\\\bi vi\gé PROGRAM (MOVE SIGN)
ZONED DECIMAL <5L~K\

PACK ‘
PACKFD DECIMAL
CvD

1-~;> FIXED POINT
*ﬁx\\fg PROGRAM
FLOATING POINT

(93]

1.4

CONCEP".UAL CONTROL SEQUENCE:

~LR = INSTRUCTION LOCATION REGISTER =-- CONTAINS THE ADDRESS OF THE FIRST
BYTE OF THE NEXT INSTRUCTION TO BE EXECUTED (HALF WORD ALIGNED)

1. NEXT INSTRUCTION FETCHED FROM STORAGE AS SPECIFIED RY ILR
2. ILR UPDATED BY LENGTH OF INSTRUCTION FETCHED

3« INSTRUCTION DECODED IN CONTROL UNIT

L, INSTRUCTION OPERANDS FETCHED FROM STORAGE, IF NECESSARY
5. INSTRUCTION EXECUTED USING SPECIFIED OPERANDS

6. RESTART CYCLE -~ GO TO STEP 1. ’

INSTRUCTIONS FETCHED SEQUENTIALLY FROM STORAGE EXCEPT FOR BRANCH, INTERRUPT,
OR STATUS SWITCH.,
INSTRUCTION FORMATS:

TYPE BITS 0,1

RR 00 oP R1 R2
]) {

i
| ' by

RX 01 opP R1 Xé B2 D2
) i i |) !
| ! } y t }

RS 10 opP Rl R3 B2 D?
i !] i ! t
[} | § ! ! i

ST 10 oP 12 B1 D1
i | | i § |
' : oo ! |

SS 11 opP L1 L2 Bl D1 B2 D2
! i | i
| Y D :
| { L ? }
! } \ i ! i !
i i \ ! ! 1 | i
lo V8 g G Q2o 31l 36 4]

INSTRUCTIONS MUST BE HALF WORD ALIGNED.
ADDRESS COMPUTATION: p
RR: NONE Z .\ B, X SPECIFY GPRS IF NON=ZERO3D IS FROM
RX: D + C(R) + C(X) « INSTRUCTION ITSELF; ADDRESS COMPUTED

RS,SI,88: D + C(B) } _PRIOR TO TNSTRUCTION EXECUTION
OPERAND TENGTH SPECIFICATION:
RR,RX,RS,ST: IMPLIED BY OP CODE == ONE OP FOR EACH TYPE AND LENGTH
Ss: SPECIFIED IN LENCTH FIELD(S) OF INSTRUCTION ITSELF

I.5

PROGRAM STATUS WORD (PSW):

SYSTEM MASK

KEY AMWP INTERRUPTION CODE

SYSTEM MASK:

KEY:

AMWP:

8 12 16 31

BITS 0-6 MASK CHANNELS 0-6, RESPECTIVELY

BIT 7 MASKS EXTERNAL INTERRUPT (TIMER)

0 = MASKED; 1 = UNMASKED

STORAGE PROTECTION KEY

)i BIT STORE PROTECT ==~ 1 BIT FETCH PROTECT

MAY PROTECT BLOCKS OF 2048 BYTES

PSW KEY MUST MATCH STORAGE BLOCK KEY IF USED

A (12) 0 = EBCDIC; 1 = ASCII

M (13) 0 = MACHINE CHECK MASKED; 1 = UNMASKED
W (1,) O = RUNNING STATE; 1 = WAIT STATE

P (15) O = SUPERVISOR STATE; 1 = PROBLEM STATE

o

INTERRUPTION CODE: THIS IS INFORMATION STORED WITH THE PSW WHENEVER

AN INTERRUPT IS ACCEPTED BY THE CPU. THE INFOR=-
MATION DESCRIBES THE CAUSE OF THE INTERRUPT AND
DEPENDS UPON THE TYPE OF INTERRUPT.

OGRA
IIC | CC PgAgK " INSTRUCTION LOCATION REGISTER (ILR)

32 3k 36
IIC:

CC:

PROGRAM MASK:

Lo 63

INSTRUCTION LENGTH CODE = LENGTH OF CURRENTLY EXECUTING
INSTRUCTION IN HALF WORDS (2 = FULL WORD INSTRUCTION)
CONDITION CODE == SET BY ALL TEST AND COMPARE INSTRUCTIONS,
MANY ARITHMETIC INSTRUCTIONS, AND SEVERAL OTHERS, TO
INDICATE RESULT OF THE INSTRUCTION EXECUTION; CC MAY

ITSELF BE TESTED FOR BRANCHING PURPOSES

BIT 36 = FIXED POINT OVERFLOW MASK

BIT 37 = DECIMAL OVERFLOW MASK MAY BE SET BY NON-

BIT 38 = EXPONENT UNDERFLOW MASK PRIVILEGED USER

BIT 39 = SIGNIFICANCE MASK

INSTRUCTION LOCATION REGISTER -~ EXCEPT FOR STATUS SWITCH OR
BRANCH OR INTERRUPT, NEXT INSTRUCTION TO BE EXECUTED IS BY
DEFINITION THE INSTRUCTION LOCATED AT THE ADDRESS IN THE ILR

LI |

NOTE: 1IN CASE OF MULTIPLE CPUS IN THE SYSTEM, EACH CPU HAS ITS OWN PSW.

I.6

INTERI JPT CLASSES:

MACHINE CHECK
INTERRUPT PRIORITY PROGRAM OR SVC PROCESSING PRIORITY

EXTERNAL

1/0

CPU INTERRUPT PROCESSING:

CPU PROCESSES INTERRUPT WHEN IT ARISES IF THE CPU IS IN A STATE OF ACCEPTING
INTERRUPTS AND THE SPECIFIC INTERRUPT IS NOT MASKED, CPU PROCESSING IS AS
FOLLOWS::

1, CURRENT INSTRUCTION IN CPU IS ALLOWED TO FINISH IF POSSIBLE

2o CURRENT PSW IS FORMED WITH APPROPRIATE INTERRUPTION CODE

3. CURRENT PSW IS STORED IN OLD PSW LOCATION FOR INTERRUPT CLASS

i, PSW FOUND AT NEW PSW LOCATION FOR INTERRUPT CLASS BECOMES CURRENT PSW
NOTE: IF MASKED, PROGRAM INTERRUPTS ARE LOST, WHILE 1/0, EXTERNAL, AND/OR
MACHINE CHECK INTERRUPTS REMAIN PENDING.

OLD AND NEW PSW LOCATIONS (ADDRESSES IN HEX):

OLD PSW INTERRUPT CLASS NEW PSW
18 EXTERNAL 58 EACH LOCATION IS DOUBLE
20 SVC 60 WORD; FOR MULTIPLE CPUS,
28 PROGRAM 68 EACH HAS A UNIQUE SET OF
30 MACHINE CHECK 70 OLD/NEW PSW LOCATIONS.
38 1/0 78

INTERRUPTION CODEs:

MACHINE CHECK: CODE IGNORED
SVCs BITS 2L;=31 SET TO SECOND BYTE OF SVC
1/0: BITS 21«23 SET TO CHANNEL ADDRESS

BITS 2l=31 SET TO DEVICE ADDRESS
CSW (LOCATION LO) ALSO STORED
EXTERNALS BIT 2l = TIMER
BIT 25 = ATTENTION KEY
BITS 26=31 = EXTERNAL SIGNAIS 2=7
PROGRAM: 1 = OPERATION
PRIVILEGED OPERATION (M)
EXECUTE (EX)
PROTECTION (P)
ADDRESSING (&)
SPECIFICATION (S)
DATA (D)
FIXED POINT OVERFLOW (IF) *
FIXED POINT DIVIDE (IK)
DECIMAL OVERFLOW (DF)
DECIMAL DIVIDE (DK)
EXPONENT OVERFLOW (E)
EXPONENT UNDERFLOW (1) *
SIGNIFICANCE (IS)
FLOATING POINT DIVIDE (FK)
= MAY BE MASKED IN PROCGRAM MASK)

sk

w8 % 8 B B OB N OB W N OB R

o

2
3
L
5
6
7
8
9
A
B
C
D
E
F=
(%

SEMANTTCS OF THE SYSTEM/?‘O MACHINE TNSTRUCTTONS

Each of the following sertions of these refersnce nates covers na
Aifferert subset af the Svstem/3A0 machine fnstrustionz. At the
beginning of eanh of the sections {eaxcept the sertion on the fnput /ontput
fnstrnetions), all of the instructions covered in that section ave
1isted, Wor earh *nstruntion is given its asserhler language format,
an indisation of whether or not it+s exercution affents the settine of
the rondition code (1f the instrnation ia prefaced with a '*' then it
dnes affenct +he =etting of the condition code), and an explanation of the
semanting of the instruetion. The semartiecs of tﬁe jrstruetions are
ayn]atnaed by showing their effect on the values in recisters and in main
atorame in terms of the operations carried out on these values, In mont
rages +he noerationg are simpla and 2 correspondincly simple desryrintion
nf +he nperation is all that is needed, Thess descriptinns are given
in +hs notation deserihed on the next faw mages, Some of the instrur~tions
hava a rather complex effect and for these, short programs in an easily
nnderstond algorithmin rrogramming language, employing statements composed

from the notatinon desrribed below as well as more nermal programming

languace statements, are presented.
4y 8

Notation for describing semanties

Predefined symhols

. Ri’ Bi' Xi, Da, Li’ Ti’ M and I are nged and *they have the same

meaning as in the POOP marmal. Whether R, derotes a general ournose
or floating noint ragister is determined by context,

GRY refers to the specific semeral purpose rerister with name 1,

¢

. (10 yofors tn the two=bit condition code register which is part of the
et

. TAR refers to the ?U=bit instruetion address register whieh s alsn

part of the PV,
. P°W refers to the Ali~bit program status (dovhle)word,
A1l mamhars shenld be understand to be decimal nurbers nnless

snecified otherwise by giving the radiy of the rumber system as
suhenaript at the end of the number,
« Temporary locations are defined as neednd Fom caviny intermediate

results, They are deseriptively ramed (e.e,, *enn, countex, ets.)

Deseriptions of hasir nperations

Tetting:

. g

A

v

« Value

gtand for » apesification of one of +he ronaral murnnse ap
Flantine noint rogistare ar nre of +the erenia] reriatarg
(‘.e.f TRD L TRW 0‘-",.\.

astamd fapr ar addyess spanifiration, *.e, the name nF nne of
the merepal rurpose vesistars or o "heh't Sived hinary
nmher (N B, for an=-totenny of nntation and azveement with
*he POOP manual addressesA%rp considarad +a he P=hit hinarv
numbers of which onlv +he low-order 2U-bits are actually
nged),

stand for an n=bit binary number, where the size, n, and the
irterrrotation of flelds within 4+he n kit 4c apacified
implinity by +the nature of +thoe Snstruction heing deserihed
fpvgs, in address arithmetic the numbers are Phabit ones,

In fixed hinary arithmetie they are 32-bit onas with the

demarsatior of » sian field and an intecer field, ete,),

then the hasic operations are:

+» (addr) the result of this operatinan is » value, namely

that storad at the loration svecified by the

address

0 {addr}i_‘ this aperation 1limits attention +n the selected

« [xe]

£
1
J

hit positions (with numbering fror the left,
starting at 7ero) within +he field at the sperified
address; in some of the decimal instructions, the
i=3 suhsoripts denote +he hytes rather than the
hits which are of interest == this will he
aprarent from context

is the value zere if reg 3o zero: otherwise 4 is

(vepr)
A ~ 7

. \va]ug}i_j this operation has the effect of truncating bits

by selecting ovt bit positions within the binary
representation of the value; as with iaddr}4~4,

the i=3 anherripts sometimes denote hyte pesitions

o Ter Teo+] gerves to denote the even-odd register mair

whiech starts with reg

. valuef

o valne!
. jraluve|
« Lvalue)

¢« value => addr

£

convert 3
¥ addr also denotes somewhat the same operation

3
means that the value is a 16=bit hinary number

and should be expanded into a 32=bit binary number
hy extending the sign-bit into the high-order

16 bit positions

denotes the two's-complement of the value

denotes the ahsolute valne of the volve

denotes rormalization of a flaating=point number
reflects the operation of storing the value at the
specified address; the width of the field used

at the srerified location is implied by the =ize

of the valie and/or the tyme of the instrnetion

value —>» {addr}i_i denntes somewhat the same operation axecept

that the value is stored in the subfield
between bit positions (or byte position=, in
some fnstances) 1 and i of the addressed

loeation

. valne

value

| {a.ddr}i_j

valne
faddr}y_;

oty =y ¥, /

except that the value is converted from a
number in the number system with radix i

into one in the number svstem with the radix i

denotes a right shift apveration: the hits in *the
selected suhfield of the field at the specified
loecation are shifted right the number of bit
nositions given by value; th> hit b (either zero
or one) is shifted into the vacated positions at

the left~hand end; bits shifted ont of the right-

hand end are dropped

denotes a laft shift operation

integer arithmetic or floating=-noint arithmetic
orerations depending upon the eontext where used
(note that the previously defined use for reren-

theses precludes their use for ordering the

oprerations in an expression == the operctors have

the normally defined precedence and marentheses
are never used to mean an overriding of this

precedence)

Y modnlo=16 addition
» 9, 6 logical arithmetic on 32-bit unsigned values
e Ay Y, ® the logical operators and, (inclusive) or, and

exclusive or

FIXED POINT ARITHMETIC INSTRUCTIONS

LR

L

LH

* LTR

* LCR

* LPR

LM

LA

* AH

* ALR

* AL

* SR

* SH

* SLR

Ry R,

Ry 1Dy(X,,B,)

Rl,Dz(XZ,BZ)

Ry ,Dz(xz,Bz)

RyoRy
Dy Bz)

1772

Ry 1D, (X,4B,)

RyoRy
Rl,Dz(XZ,BZ)
Ri,DZ(X

2’B2)

Ry,D,(X,,B,)

II.1

(Rz) >R,
([B2]+[x2] +D2)—+ Ry

([3,1+1x,140,)1 > B,

a. (R,) >Ry b. i (R)=20 thew O>CC

(RO then 4 —0C else 7—CC
(Rz)'-»"Rl
[(Ry)] >Ry

IR =R,

a. [B,}+D, > temp .
b. determine n such that
R1 +16(n)= R3
c. (temp))—> Ry,
(tempth) —> Ry *y4 1

E(temy)fhr*)—->R +15()
a [B1+ [0, = {Rifg 515
b 0 {Ry} oy

(R,) + (RZ) >R,

)

1

(Rl) + ({_322}4»[)(2}+D2)«->H1
P+ ([BI+IX, 14D,)t > By
(31)) (Rz)-»»R1

(Ri) ® ({BZ3+[x2")+D2) ~> Ry

(Ry) = (R)) Ry
(Ry) - ([B,)+[x,]4D,) >R,
(Ry) = ([B,}+(x,3+D,)} > Ry
(Ry) @ (R)) >R,

(Ry) ® ([BZ]+[x2"1+D2) - R,

¢lse

M P

&

MR

MH

DR

* SLA

* SRA

R.R,

'

R, D, Xs, B,

k. \ L (X,)Bz>

R,

R)l b ?,CY&'?}Z)

E)! ;»Dl Gﬁ‘;v)

I1.2

6. theck that R,iscven [nuwewbler doee
b {ﬁ*i) ¥ CR;) g S{R\QR*I"‘}

0-63

a. chack that K, 1o evew losendbler dees
b, (R+d) # (1B, 3+[x,1¢D.)
> { Ri % %3.% *iga--azg

{RY* (18,1461} =R,

31-63

d. Check that R, 15 evew lassewdbler does ¥
o. %(R‘,(Q,M)XME /(R —> q\uch@vzf +.
¢, Quw)—» K, ;

{quotient)-> R,+1

G . Choek “%\a} F?‘ 1§ evem &Aﬁ*«mlg\cw doos 4
b JRR Ao 7 (BIDGTD)
— "‘%}»’@%‘H?u‘% bRy
. (fow)-> ?18,3
(\a%m:é 10 wt) 3 Q,* {

a. (B J+D, — 'iaw,f,s 4

b, %ﬂmup)} X6-31
e Q

(R}

(-3

a. fBz.] “*Dz -3 '&W“P;

% SLDA K, \D.(8,)

SR DA R ¢ ;D?. CB?}

ST R, DX, B2)
STH R\)Dl (x-; ’,B;B

STH R/, R, Da(B,)

Ck RiR,

I1.3

Q. theck Hhat R, 15 evew [assmbler does Has]
b. IBZ]*"DZ med %me "

C. %““ﬁ?fze-zx
R

fR,RHY

-0

1-63

Q. thock that R, s even [assewxblev o Hars]
b. [Bz"]fD& -l ‘"QMP g

<. %{&m@'} 26-31

{®]

’ %R')R*+ i§

=63

(RY = [B,] "[XL]*Dz

3(‘2373;@.3,. - [8,7+ 047D,

L&

a. [B1+D, = 40‘“—{3 s
b. de,{'mx watig W S %\ “E"‘«*x%’

Q\ -&-lb(\'\) = QS'}

C. (R;} *’»(‘fwti‘b);
(R, 1) — Gimﬁ)*'i" ',
(Rir2) —> (tw,zaﬁ 8

(Rt —> (bt datn

R =(R,) Huw O

else 1f (RI<(R,) Hhew 41—
doe 2-»ce

CH

avcs

evD

R, , DO B2

R, D, (X %,)

R, D, (%, B

R,Dy (% B

(Q‘\) >%§LY523 +[*x;§*D;§

11.4

& (B3 161D, > o

b 1f R)=(lowp) Hew T=>CC
else 1§ (R)< (teup) thau 4>
dee L—>CC

a. (8,]+ Ly 1+ D, «»—HW 2

b £ (R)= (o) thew © = CC
elge 1§ (RY< Gomplt Hoaw 1
ehoa 2-»CQC

tonvert 5,

o {(EB,"}«»U,}%DQ} —> tow

O-b3

b, {Buphy,., > K,

Do v
Qowvend o 0

ek

FLOATING POwT

NE

LER
LDR

LE
LD

LTER
LTDR

LEER
LLTR

LPER
LFPDOR

LNER
LNDR

AER
ADKR

x4 V.K)
pe P

R, 0. (X, B,
R;)Dz (lxl)?}a)

K{UR&
R, R,

£, D (X By)

R')D! Cyt)52>

INSTRUCTIONS,

1I.5

Openamd rqus%@v éi‘fzr:a;ag-wm.h oW M,\".?.Jt o (:‘i:m.%v«uag- fﬂf.’wu#’{'
hecpotevs Gamd should he 0,74 ev b .

(R — R,

{:{?*z*i*zl* D;) —> ‘R‘

u‘.(‘K}) R > R)‘ :>

b f (R3320 Haw C-sie
eleg .5 (K< Haw 100
else 2-CL

/

(R~ R,
I(RH — R,

IR =&,

<RY+ (R)> =R,

<@y e (B, 1406, 140) > = g
S .

(R + (B,Y =R,

RY+ {08, 1+1x.0+¢D,) =&,

;\/m

*

w

St

SUR
Sw

SU
SW

ME <.
ML e

¥, PGS ,%‘z)

TR . Yy
Py LY
e* ty i BN R 7 J

e P

as [

R, .0,
5y %

b »
[)
M

- N A o

€, 0300, B,
«

",

2,0 2y

o
*‘“’L#“?\»Lg:&\

s o,
i LIS
v

\ oo @,

I1.6

B, »
\

ME Toveaiadin w het sy

CAES a Se e « - N
" [I A A ¥ F 5 [E’ 3
AN &g & k"ai-ﬁ';“g & LKQS g *)v R

B

,”

11.7

x CE RD:(%,B) a (B (%1 4D = tewp;
¥ (D R\ﬂjaixzﬁa\ﬁ bo1f (R) = (temip) Hew O=CL

clse Lf Cﬁa}vi(texu.f;,)\\vm 1 —=CC
glee 2 -5 CC

I1.8

PROGRA": EXCERPT 1:

. OMPUTE ((A+B)#(C+D))/(A~D) WHERE A, B, C, AND D ARE FULL WORD FIXED POINT
NUMBERS STORED IN CONSECUTIVE FULL WORDS IN STORAGE AND THE ADDRESS OF A

IS IN GPR 15,

@

L 3,0(,15) A TO GPR 3

A 34h(,15) ADD B TO GPR 3§ GPR 3 = A+B

L 2,8(,15) C TO GPR 2

A 2,12(,15) ADD D TO GPR 23 GPR 2 = C+D

MR 2,2 (A+B)#(C+D) TO GPRS 2 & 3

L 10,0(,15) A TO GPR 10

S 10,12(,15) SUBTRACT D FROM PR 103 GPR 10 = A=D
DR 2,10 RESULT TO GFR 3

ST 3,16(,15) STORE RESULT AFTER D IN STORAGE
&

PROGRAM EXCERPT 2t

SAME AS PROGRAM EXCERPT 1 EXCEPT THAT A, B, C, AND D ARE NOW FULL WORD
FLOATING POINT NUMBERS,

IE 0,0(415) A TO FPR O

AR Ogli(,15) ADD B TO ¥PR 03 FPR O = A4B

IE 6,8(,15) C T0 FPR 6

AR 6,12(,15) ADD D TO FPR 63 FPR 6 = C+D

MER 0,6 FPR O = (A+B)#{C+D)

LE 6,0(,15) A TO FPR &

SE 6412(,15) SUBTRACT D FROM FPR 63 ¥PR 6 = CeD
DER 0,6 RESULT TO FPR O

STE 0,16(,15) STORE RESULT AFTER D IN STORAGE

NOTE: 1IN ABOVE TWO EXCERPIS, FIEIDS B AND X ALWAYE HEFER TO GPRS SINCE ADDRESS
COMPUTATION IS DONE IN GFRS FOR ALL INSTRUCTIONS REQUIRING ADDRESSES IN
STORACE. THE R FIELDS IN FIXED POINT INSTRUCTIONS SPECIFY GPRS, SINCE
FIXED POINT COMPUTATION IS DONE THERE, BUT THE R FIEIDS IN FLOATING POINT
INSTRUCTIONS REFER TO FPRS, SINCE FLOATING pOINT COMPUTATION IS DONE THERE,
IN EITHER CASE, OPERAND LENGTH IS INHERENT WilH THE SPECIFIC MACHINE
INSTRUCTION USED,

III.1

BRANMCLHING INSTRULTIONS:

BeR M, R, a. f e =00, Han 1000, —> Cond
else € CLrOl ihew 0100 ~>Cond
?‘%ﬁi‘? b ceno, Huay 0016, —> cond
&lse Oovl, = cownd »,
b. f Malond)#0 aud R 20
Mo LRI, 7 TAR

BC M, 0.(%:,B,) a, tolaulate cowd as above
b, f M alcond)# O

% {igza +[Xa)+ DAS-B\”}. LAR

BAL"{ i R‘)QL Q. i(Rg_}Ea;ﬁ‘ i +WF "?
b, L PSWI 4 R
e 1 RO thuw (femp) > TAR

BAL R, D (%,,82) a. 1B I+ UGID, = femp o
b LPSW) gy = Ry
¢. (tawmp) = TAR

- RuD o) o (B, 1¢1X, 140, —> wesh

mgf@: *’{‘ﬂg LAY gh’\‘; a?i\'a-‘;i“v.‘. <VC‘U\.&O§>‘E‘"
lemc‘%} l betehed gvcmx
Mo etfachve o ddvasy
b. { R#0
\ » ? »
H\AA\. i{ms*‘)—%s“m v Z.(‘R\EST‘{".“ > %‘"“‘%3-\5 D

e, erecule wak

BOTIE R, Ry a. URM gy, = Yowp
b RY-4 = R}

& 1 (RV£0 ond Ry#OQ

Haan (towp)= TAR

Ber

12% 41

&
by

III1.2

@

(R 50

L4
wp o RAMED
9

‘u%ﬂe ‘?
Lo (R =Ry
&k (R) 3‘(&,@%?}

fa RN cowmp !,
o IRVHIRG) = R

'
2

2 * @m) xémwﬁ;»a

(hamaga) -

I1I.3

PROGRAM EXCERPT 3:

COMPUTE IN GPR 6 THE SUM OF THE 100 CONTIGUOUS FULL WORD FIXED POINT NUMBERS
STORED BEGINNING AT THE ADDRESS IN GPR 9. LOOP CONTROLLED BY A BCTR.

A 10,99 99 TO GFR 10

L 6,0(,9) FIRST # TO GPR 6

BALR 15,0 SET LOOP ADDRESS

A 6,1(49) ADD NEXT # TO SUM

LA 9,L(49) UPDATE VECTOR ADDRESS
BCTR 10,15 LOOP 99 TIMES

PROGRAM EXCERPT li:

SAME AS EXCERPT 3, EXCEPT LOOP CONTROLLED RY A BXIE.

IR 2,9 FIRST # ALDRESS TO GPR 2
SR 6,6 0 TC GFR 6

LA lik I TO GPR L

LA 54396(,9) LAST # ADDRESS TO GPR 5
BAIR 15,0 SET LOOP ADDRESS

A 6,0(,42) ADD NEXT # TO SUM

BXLE 2,l,0(15) UPDATE ADDRESS AND LOOP

PROGRAM EXCERPT 5:

SAME AS EXCERPT 3, EXCEPT LOOP CONTROLLED RBY A BXH.

SR 2,2 0 TO PR 2

LA 5,396 396 TO GPR 5

LA L,k L, TO GPR L

L 6,0(,9) FIPST # TO GPK 6
BALR 15,0 SET LOOP ALDRESS
BXH 2,l1,10(15) TNCREMENT AND TEST
A 6,0(2,9) ADD NEXT # TO SUM
BCR 15,15 LOCP BACK

Iv.1

@3eTsueI]}
saueu

OTToquUAS
ssaooxd

HETIWHSSY
(3o 1s8x)

SdWWQ Ut °*TT
SIN Ut °*t

8I090
ugp Apeaare *o

ATquasse
Ieyjoue utl °*q

AxeaqTT ® Uy °®e

tsaupInNOIqNS
0% sodusIaFeI
U3TM 1X9%

$NVHD0Yd

ayeatad
Tx PUB DVHSOx

OVHSAS*
S9TIBIQET OHDVH

puedxs

(YaTEWESSY Jo red)
HOSSHIOUd~0dD VKW

$,0J0%8U

NEDDVH % (e JO
x93

S,0I0BU °*Z
SAWWA UT °TT
SIK Ut °%

8x02
uy Lpeeate °°

LTquasse
Isyjour uyl °q

KIexqii ® ug °*®
saulgnoIqns ‘g

$03} ssousasisd
UITM 3Xe} °q

SUOT}TUTIOP
oxo®eu °®

$WVYED0dd

1v.2

T

r
i

“zotpuey]
ydnzasqur {

ﬂu.aalu-L

SN

i

|

{

— seuTt psoMﬂ/
"l.hno staxzadng

A o

r="—""77

OAS
& | —

:

i .
WYHD0Ud .

“ 40 SIY¥vd

L ﬁgw

SaUT3NOX |
«l wmémw.ml—

L —
= omo oo
- e > on
L = e
L - e
=0 a0 e

Ippe | eueu

STOIHASDT &

ITINEDx» e
m\ﬁm.ﬁn.ﬂm*\
dITsx
gITTTd %
dsss |+ . .
MVedITx § g : :
seTIeIq | (et e hadad il s |
INTINO¥EN : '
MH SIH Ut .M.J
o= 83100 uy Apesile ‘o &
& _ ATquass® m
Emﬂllﬁiﬂa IBYIOUE Ul °q H
dempemenmes AXBIGTT B UL °B w
“ iSsuITINOI m
i ~ANS POVUSISIOL it
} JO Se8wWeU JC 4STT °c¢
AnxtJ uszHwOSvamﬂ OAS *q @
ol L) Se—
anxil & % sM“ﬁmemmeﬁm Tenioe
) P W S I0F ,,s8Toy, °®
HEQVOT ! PULTM 3Xe3 .ﬂ,

r'ﬂl"lﬂl S e S G O e
L

F==——==-==3<3

* SHTINTOW

aﬁwm@MMu;ﬂww

saUTInNOIGNS
I0F
seTnpou

ST TQwasSse
JIey3o uodj}

33UWEBU
e OTToguls
P sesooad

HEIHWHESSY
(Ic 3sex)

ATquess®e
STUY woag

ASSEMBLER ASSEMBLER

SOURCE } \A /v{ LISTING
ASSEMBLER
MACRO ' / \b OBJECT MODULE

DEFINITIONS
OTHER OBJECTg_\A LIBRARTES: PUBLIC, PRIVATE
MODULES (’
TOADER

DATA —~—————p EXECUTION ——fp RESULTS

ASSEMBLER SOURCE:
1. SYMBOLIC MACHINE INSTRUCTIONS
2., ASSEMBLER INSTRUCTIONS
3. MACRO DEFINITIONS AND/OR INSTRUCTIONS

STATEMENT FORMAT FOR THE ASSEMBLER (DEFAULT):
COLUMNS 1-71 STATEMENT

COLUMN 72 CONTINUATION INDICATOR
COLUMN 16 CONTINUATION COLUMN
NAME FIELD: BLANK OR CONTAINS SYMBOL STARTING IN COLUMN 1;

TERMINATED BY FIRST BLANK
OPERATION FIELD: MANDATORY; 1-8 CHARACTERS; TERMINATED BY FIRST BLANKj
CANNOT START IN COLUMN 1

OPERAND FIELD: CONTAINS OPERAND EXPRESSIONS IF NEEDED; TERMINATED BY
FIRST BLANK
COMMENT FIELD: THROUGH COLUMN 713 MAY CONTAIN ANY CHARACTERS; IF COLUMN 1
CONTAINS AN #, WHOLE STATEMENT IS TREATED AS COMMENT
D FIELD: COLUMNS 72-803 FOR IDENTIFICATION AND SEQUENCING
SYMBOLS ¢
ORDINARY: 1-8 CHARACTERS, FIRST IS ALPHABETIC (A-Z,$,#,@), REST ARE

ALPHABETIC OR DIGITS (0~9)3 RELOCATABLE OR ABSOLUTE;
ATTRIBUTES INCLUDE VALUE AND LENGTH

VARIABLE: FIRST CHARACTER IS &, FOLLOWED BY 1-7 CHARACTER ORDINARY
SYMBOL3 PRIMARILY USED IN MACROS
SEQUENCE: FIRST CHARACTER IS ., FOLLOWED BY 1=7 CHARACTER ORDINARY

SYMBOL; USED IN CONDITIONAL ASSEMBLY

Iv.4

OPERA'D EXPRESSIONS
SVALUATED AT ASSEMBLY TIME
RESULT IS 2iy BIT ADDRESS, Ly BIT 1LENGTH OR REGISTER SPECIFICATION, 8 BIT LENGTH
OR MASK SPECIFICATION, OR 12 BIT DISPLACEMENT

FVALUATED WITH 32 BIT SIGNED ARITHMETIC AND TRUNCATED TO FIELD WIDTH

COMPOSED OF SINGLE TERM OR ARITHMETIC COMBINATION OF TERMS

OPERATORS: + = * [/ ()

INTEGER DIVISION; NO MORE THAN 5 LEVELS OF PARENS

TERM: SYMBOL, SELF~DEFINING TERM, LOCATION COUNTER REFERENCE (*),
LITERAL, SYMBOL LENGTH ATTRIBUTE (L'SYMBOL), OR OTHER SYMBOL
ATTRIBUTE REFERENCE.

ABSOLUTE OR RELOCATABLE VALUE

SELF-DEFINING TERMS: ol
ABSOLUTE TERMS; LENGTH ATTRIBUTE = 1; MAXIMUM VALUE = 2 =1 = 16,777,215;
ASSEMBLED INTO INSTRUCTION RIGHT-JUSTIFIED IN FIELD
TYPES:

DECIMAL UNSIGNED DECIMAL INTEGER, 1-8 DIGITS IN LENGTH
HEXADECIMAL ~ X'n', n = 1-6 HEXADECIMAL DIGITS (0-9,A-F)
BINARY B'n', n = 1-2}, BINARY DIGITS (0,1)

CHARACTER C's', s = 1=3 CHARACTERS

LITERALS:
SYMBOLIC DATA (OPERAND) REFERENCES; RELOCATARLE TERMS; ASSEMBLER COLLECTS
LITERALS AND STORES THEM IN ONE OR MORE LITERAL POOLS; ADDRESS OF LITERAL
IS ASSEMBLED INTO INSTRUCTION; LITERAL MAY BE USED WHERE ADLRESS IS EXPECTED,
UNLESS DATA MOVEMENT IS INTO ADDRESS.
FORMATS: =key'v' NON~ADDRESS LITERALS; v = 1 OR MORE CONSTANT VALUES
=key(a) ADDRESS LITERALS; a = ONE OR MORE EXPRESSIONS

IN EITHER CASE, key IDENTIFIES THE SPECIFIC LITERAL TYPE

SAMPLE TYPES, DEFAULT BYTE LENGTHS, AND DEFAULT ALIGNMENTS:

A ADDRESS)i BYTES W
v ADDRESS k li BYTES FW
H FIXED POINT 2 BYTES HW
F FIXED POINT li BYTES FW
E FLOATING POINT i BYTES W
D FLOATING POINT 8 BYTES Dw
P PACKED DECIMAL VARIABLE BYTE
Z ZONED DECIMAL VARTIABLE BYTE
C CHARACTER VARIABLE BYTE
X HEXADECIMAL VARTABLE BYTE
B BINARY VARIABLE BYTE

IvV.5

SIMPLIFIED ASSEMBLY PROCESS (IGNORING MACROS AND ERRORS):
PASS 1: DEFINE SYMBOLS, COLLECT LITERALS, COMPUTE CSECT LENGTHS AND INITTAL
ADDRESSES (DOUBLE WORD ALIGNED)

PASS 2: PRODUCE OBJECT CODE ORDERED BY CSECTS

CONCEPTUAL PASS 1 FLOW:

START

¥

INITIALIZE

0 —$ 10C CTRS

o -+ GET NEXT STATEMENT

P

MACHINE INSTRUCTIONS

ALIGN LOC CTR TO HALF WORD
DEFINE NAME FIELD SYMBOL
VALUE = LOC CTR
LENGTH = INST LENGTH
COLLECT LITERAL IF THERE
ADD INST LENGTH TO LOC CTR

OUTPUT INFORMATION &
FOR PASS 2

Y 7

(4]

ASSEMBLER INSTRUCTIONS

P END

CSECT
"'9{ DSECT

USING
— { DROP
— LTORG
> CNOP

ENTRY
"'9{ EXTRN

CLEAN UP & GO TO PASS 2
——i} EQU DEFINE NAME FIELD SYMBOL

i DC ALIGN LOCATION COUNTER, THEN
DS UPDATE FOR NEEDED BYTES

SAVE CURRENT LOC CTR & GET
NEW ONE

UPDATE USING INFORMATION

ESTABLISH LITERAL POOL

ADJUST LOC CTR TO SPECIFIED
ALIGNMENT

IDENTIFY ESD ENTRIES

 Q—

J

LOC CTR ALWAYS CONTAINS ADDRESS OF NEXT BYTE OF CSECT TO BE USED.,
SOME ASSEMBLER INSTRUCTIONS DEFINE NAME FIELD SYMBOLS ALSO (CSECT, DSECT,

DC, DS, LIORG, AND SO ON)

USED AS A TERM HAS VALUE ATTRIBUTE = LOC CTR AND LENGTH ATTRIBUTE 1

Iv.6

C NCEPTUAL PASS 2 FLOW:
PASS 1

YN

RELGGHTE GSECTS

UPDATE RELOCATAELE SYMBOLS
® {> GET NEXT STATEMENT
MACHINE INSTRUCTION ASSEMBLER INSTRUCTION
ALIGN 10C CTR TO HALF WORD —J END FINISH LISTING AND OBJECT DECK, DONE

EVALUATE OPERAND EXPRESSIONS
CHECK OPERAND ALIGNMENT, IF POSSIBLE '-4} DC OUTPUT CONSTANTS, UPDATE LOC CTR

CHECK REGISTER SPECIFICATIONS

OUTPUT OBJECT CODE —b DS UPDATE LOC CTR
OUTPUT ASSEMBLY LISTING »
UPDATE 10C CTR BY INST LENGTH __P{CSECT SAVE CURRENT LOC CTR; SET NEW
DSECT 10C CTR
BN gsme UPDATE USING TABLE
ROP

3 LTORG OUTPUT LITERAL POOL

— CNOP ADJUST LOC CTR AND OUTPUT NO—OPSJ

NOTE: THE FLOW SHOWN FOR PASS 1 AND PASS 2 ARE CONCEPTUAL ONLY; ACTUAL ASSEMBLER
PROCESSING IS CONSIDERABLY MORE COMPLEX AND DIFFERS GREATLY FROM THAT SHOWN.

Iv.7

ADDRESSING:

EXPLICIT ADDRESSINGs:
USER SUPPLIES BASE, INDEX, AND DISPIACEMENT FOR ADDRESS

FORMATS ¢
RX D(X,B); D(,B); D
RS D(Bi; D

Ss D(L,B); D(,B); D
hw
IMPLIED LENGTH = L'D _

IMPLICIT ADDRESSING:
USER SUPPLIES RELOCATABLE EXPRESSION -- ASSEMBLER CONVERTS IT TO THE
PROPER BASE AND DISPLACEMENT AND INSERTS THEM INTO THE INSTRUCTION.
FOR THIS TO WORK, MUST:
1. AT ASSEMBLY TIME, INFORM ASSEMBLER WHICH GPRS MAY BE USED AS
BASE REGISTERS AND SPECIFY WHAT VALUES THESE REGISTERS WILL
CONTAIN AT EXECUTION TIMEj
2, AT EXECUTION TIME, MUST ENSURE THAT PROPER VALUES ARE IN BASE
REGISTERS AS PROMISED DURING ASSEMBLY.
EXAMPLE USINGS:
1, THESE L SEQUENCES ARE EQUIVALENT:

BAIR 5,0 S BAIR 5,0 USING S+2,5 USING S,5
USING *,5 USING S+#2,5 S BALR 5,0 BAIR 5,0
S 000200
2, IM 2,l,ADDRS

USING HERE,2,3,l

ADDRS A(HERE ,HERE+L096 ,HERE+8192)

3. M 10,11,=A(BASE+100, BASE+};196)
USING BASE+100,10,11

L. LA 5,5Y
USING SY,5

NOTE: NO RELOCATABLE EXPRESSION MAY BE USED IN A PROGRAM (INCLUDING # AS A
TERM AND LITERALS) UNLESS THERE IS A USING REGISTER WHOSE VALUE IS
WITHIN 4095 OF THE RELOCATABLE EXPRESSION VALUE.

FORMATS 2
RX S(X); S
RS S = RELOCATABLE EXPRESSION

s
SI S X, L = ABSOLUTE EXPRESSIONS
ss S(L); S
-

IMPLIED LENGTH = L'S

Iv.8

MACHIN's INSTRUCTION PROCESSINGs

NAME FIELD SYMBOL:
VALUE IS ADDRESS OF LEFT=-MOST BYTE OF INSTRUCTION

IENGTH IS INSTRUCTION LENGTH

RR 2
RX,RS,SI
SS 6

ASSEMBLER CHECKING DURING PROCESSING:
IEGAL OPERATION MNEMONICS ONLY
HALF WORD ALIGNED (FILLS WITH X'00') -
OPERAND ALIGNMENTS CHECKED, IF POSSIBLE
REGISTER SPECIFICATIONS CHECKED

FPRS 0,2,l,6 ONLY .
GPRS O THROUGH 15 ONLY, EVEN-ODD PAIRS CHECKED WHERE NEEDED
EXTENDED MNEMONICS FOR BC AND BCR:
MASK CONDITION MNEMONICS
0 NONE NOP,NOPR
1 OF, 1s BO,BOR
2 ? BH,BHR,BP,BPR
L ¢ BL,BLR, BM, BMR
7 # BNE, BNER , BNZ , BNZR
8 = BE,BER,BZ ,BZR
11 2 BNL, BNLR,, BNM, ENMR
13 £ BNH , BNHR,, BNP , BNPR
1 NOT 1s BNO
15 ALL B,BR

PROGRAM EXCERPT 63
REPEAT OF PROGRAM EXCERPT 1 USING IMPLIED ADDRESSING., ASSUME A, B, C, AND D

NAME THE FOUR FIXED POINT NUMBER WHICH ARE IN CONTIGUOUS LOCATIONS.

BALR 12,0 ESTABLISH ADDRESSABILITY -- ASSUME
USING #,12 IT COVERS WHOLE PROGRAM AND DATA
L 3,A A TO GPR 3
A 3,B A+B TO GPR 3
L 2,0 C TO GPR 2
A 2,D C+D TO GPR 2
MR 2,2 PRODUCT TO GPRS 2 & 3
L 10,4 A TO GPR 10
10,D A=D TO GPR 10
2,10 RESULT TO GPR 3
3,D4l, STORE RESULT -- ADDRESS D+} COULD ALSO EE

WRITTEN AS C+8, B+12, OR A+16

e e e NI W
=3 =

1v.9

PROGRAM EXCERPT 7s
REPEAT OF PROGRAM EXCERPT), USING IMPLIED ADDRESSING. WE NOW ASSUME THE 100

FIXED POINT NUMBERS ARE STORED CONTIGUOUSLY IN A VECTOR NAMED VECT AND THE SUM
IS TO BE PLACED IN A FULL WORD NAMED SUM.

BALR 10,0 ESTABLISH ADDRESSABILITY
USING #,10

L 2,=A(VECT) FIRST ADDRESS TO GPR 2
SR s 0 TO GPR 6

1A L,k Ly TO GPR L

1A 5,VECT+396 LAST ADDRESS TO GPR 5

A 6,0(,2) SUM TO GPR 6

BXLE 2l %=y LOOP ON COUNT OF NUMBERS
ST 6,SUM STORE SUM

PROGRAM EXCERPT 83
SAME AS PROGRAM EXCERPT 7 EXCEPT WE NOW ASSUME THE COUNT OF THE ENTRIES IN VECT

IS IN A HALF WORD NAMED COUNT; THE COUNT IS GREATER THAN OR EQUAL TO ZERO.,

BALR 10,0 ESTABLISH ADDRESSABILITY
USING #,10
1H 6,COUNT COUNT TO GPR 6
LTR 756 COUNT TO GPR 7 AND SET CC
BZ STORE BRANCH ON ZERO COUNT - GPRS 6,7 = 0
SR 1,1 ZERO TO GPR 1
L 6,VECT FIRST NUMBER TO GPR 6
B STORE-L ENTER THE SUM LOOP
LOOP LA 1,L(,1) UPDATE THE INDEX
A 6,VECT(1) ADD NEXT NUMBER TO SUM
BCT 7,L00P LOOP ON COUNT OF NUMBERS

STORE ST 6,5UM STORE SUM

Iv.10

DEFINF CONSTANT (DC) AND DEFINE STORAGE (DS) ASSEMBLER INSTRUCTIONSS
IiAME FIELD SYMBOL PROCESSING:
VALUE = ADDRESS OF FIRST CONSTANT OR FIRST STORAGE AREA, AFTER ALIGNMENT
LENGTH = LENGTH OF FIRST CONSTANT OR FIRST STORAGE AREA
EACH OPERAND IS COMPOSED OF UP TO FOUR SUBFIELDS:
1 DUPLICATION FACTOR -~ OPTIONAL SUBFIELD
2 KEY SUBFIELD =~ REQUIRED SUBFIELD
3 MODIFIERS -~ OPTIONAL SUBFIELD
N NOMINAL VALUES -=- REQUIRED SUBFIELD FOR DC, OPTIONAL FOR DS
NOTE: 1IN FOLLOWING, dae STANDS FOR "UNSIGNED DECIMAL SELF DEFINING TERM OR
PREDEFINED ABSOLUTE EXPRESSION ENCLOSED IN PARENTHESES, WITH VALUE
GREATER THAN OR EQUAL TO ZERO®.
DUPLICATION FACTORs: SPECIFIED AS dse; DEFAULTS TO 1 IF NOT GIVEN; A VALUE OF
ZERO FORCES ALIGNMENT BUT RESERVES NO STORAGE
KEY SUBFIELD: DEFINES TYPE OF CONSTANT TO BE HANDLED AND SELECTS THE IMPLICIT
(DEFAULT) LENGTH AND ALIGNMENT. THE KEYS, TYPES, DEFAULT ALIGNMENTS,
DEFAULT LENGTHS, MAXIMUM LENGTHS, AND CONSTANTS PER OPERAND ARE AS

FOLLOWS 2
C CHARACTER BYTE AS NEEDED 256 1
X HEXADECIMAL BYTE AS NEEDED 256 1
B BINARY BYTE AS NEEDED 256 1
P PACKED BYTE AS NEEDED 16 MULTIPLE
Z ZONED BYTE AS NEEDED 16 MULTIPLE
F FIXED PT FW N 8 MULTIPLE
H FIXED PT HW 2 8 MULTIPLE
E FLOAT PT FW N 8 MULTIPLE
D FLOAT PT W 8 8 MULTIPLE
L FLOAT PT oW 16 16 MULTIPLE
A ADDRESS FW L b MULTIPLE EXPRESSIONS
V ADDRESS FW L i MULTIPLE EXT SYMBOLS
Y ADDRESS HW 2 2 MULTIPLE EXPRESSIONS
S BASE/DISPL HW 2 2 MULTIPLE
Q ADDRESS FW L L MULTIPLE
MODIFIERS:

LENGTH: L.n BIT LENGTH § n GIVEN AS dae
In BYTE LENGTH
IF GIVEN, OVERRIDES DEFAULT LENGTH AND CANCELS ALIGNMENT
SCAIE: Sn n GIVEN AS dae WITH OR WITHOUT SIGN
SCALES F,H,E,D,L T¥PES OF CONSTANTS AFTER CONVERSION TO BINARY
EXPONENT: En n GIVEN AS dae WITH OR WITHOUT SIGN
SCALES F,H,E,D,L TYPES OF CONSTANTS BEFORE CONVERSION TO BINARY
NOMINAL VALUES#
FOR ADDRESS TYPES, SPECIFIED AS (E1,E2,....,En)
FOR V TYPE, EACH Ei IS AN EXTERNAL RELOCATAELE SYMBOL
FOR A TYPE, FACH Ei IS A RELOCATABLE OR ABSOLUTE EXPRESSION
FOR ALL OTHER TYPES, SPECIFIED AS C! OR 'C1,02,4e00e,Cn!
TYPES C,X,B: 'C! ONLY
TYPES P,Z,F,H,E,D,Ls MULTIPLE VALUES ALLOWED
AS A TERM HAS VALUE OF LEFT MOST BYTE ADDRESS IN CONSTANT
FOR THE DS ASSEMBLER INSTRUCTION:
NOMINAL VALUES CPTIONAL
SAME ALIGNMENT/LENGTH, BUT NOTHING LOADED
TYPES X,C MAY HAVE MAXIMUM LENGTH OF 65535 BYTES

DS EXAMPLES:
DS OH
DS OF
DS OD
DS nH
DS nF
DS nD
DS CIn
DS mCIn
DS nC

Iv.11

ALIGNS TO HALF, FULL, OR DOUBLE WORD, RESPECTIVELY, BUT RESERVES
NO STORAGE; LENGTHS = 2, L, 8, RESPECTIVELY

ALIGNS TO HALF, FULL, OR DOUBLE WORD, RESPECTIVELY, THEN RESERVES
n HALF, FULL, OR DOUELE WORDS, RESPECTIVELY; LENGTHS = 2, L, 8,

EXAMPTE OF FIELD OVERLAP USING DS:

CARD

FIELDA

FIELDB
MIDD

FIELDC
FIELDD

FOR LITERALS:

RESPECTIVELY

RESERVES n BYTES; LENGTH IS n; NO ALIGNMENT FOR ALIGNMENT,
RESERVES m¥n BYTES; LENGTH IS n; NO ALIGNMENT MAY PRECEDE WITH
RESERVES n BYTES; LENGTH IS 1; NO ALIGNMENT: DS OH,OF,0D

DS OD ALIGN TO DOUBLE WORD

DS 0CL80 LENGTH = 80; NO STORAGE RESERVED

DS 0CL1O IENGTH = 10; NO STORAGE RESERVED 80

DS 0CL20 LENGTH = 203 NO STORAGE RESERVED BYTES
DS CLLO RESERVE 4O BYTES OF STORAGE TOTAL
DS OCILO LENGTH = LO; NO STORAGE RESERVED

DS CL20 LENGTH = 20; 20 BYTES OF STORAGE RESERVED

DS 10CL2 LENGTH = 23 20 BYTES OF STORAGE RESERVED

NO MULTIPLE OPERANDS -~ SINGLE OPERAND MAY HAVE MULTIPLE VALUES, IF ALLOWED
DUPLICATION AND LENGTH MUST BE UNSIGNED DECIMAL SELF DEFINING TERMS ONLY

DUPLICATION MUST BE GREATER THAN ZERO
SCALE AND EXPONENT MUST BE DECIMAL SELF DEFINING TERM ONLY (SIGN ALLOWED)

- TYPES S,Q NOT LEGAL AS LITERALS
AS A TERM HAS AS VALUE THE ADDRESS OF THE LEFT-MOST BYTE OF THE INSTRUCTION

IN WHICH THE LITERAL OCCURS

Iv.12

PROGR' M SECTIONING AND CONTROL SECTIONS (CSECTS)s
JSECT:
BASIC ASSEMBLY/LINKEDIT/LOAD UNIT IN SYSTEM
SOURCE/OBJECT MODULE = 1 OR MORE CSECTS
LOADER PROCESSING:
CSECT LOADED WHEREVER THERE IS SUFFICIENT ROOM
CSECT LOADED IN CONTIGUOUS LOCATIONS BEGINNING ON DW BOUNDARY
ALL CSECT NAMES APPEAR IN IOAD MAP
CSECT DEFINITION DURING ASSEMBLY:
[syi] START org = BLANK OR SELP DEFINING TERM
NAMES FIRST OR ONLY CSECT IN ASSEMBLY; CSECT STARTS AT org OR ZERO;
sym DEFINED (IENGTH = 1) AND MADE EXTERNAL
[s CSECT
RESETS LOCATION COUNTER TO THAT OF CSECT sym; sym DEFINED (LENGTH = 1)
AND MADE EXTERNAL
sym DSECT
RESETS LOCATION COUNTER TO THAT OF DSECT sym; FACH DSECT MUST BE NAMED;
sym IS VALID RELOCATABLE INTERNAL SYMBOL WITH LENGTH OF 1; FACH DSECT I
ASSEMBLED BUT IS NOT PART OF OBJECT MODULE; DSECTS USED TO ESTABLISH A
MNEMONIC DESCRIPTION FOR USING PURPOSES OF A STORAGE AREA
FIRST CSECT IS ASSEMBLED AT org OR AT ZERO -- REST ARE ASSEMBLED ON DW BOUNDARIES
IN ORDER OF OCCURRENCE DURING ASSEMBLY; LITERALS NOT CAPTURED BY LTORG'S
GO TO LITERAL POOL AT END OF FIRST CSECT; CSECT NAMES ARE EXTERNAL -=-
DSECT NAMES ARE INTERNAL
FOR CSECTS ASSEMBLED TOGETHER:
ALL SYMBOLS ARE DEFINED IN ALL CSECTS;
USING IN CSECT COVERS ONLY THAT CSECT == BUT USING RANGE DURING ASSEMBLY IS
INDEPENDENT OF CSECT BOUNDARIES;
NO EXTERNAL SYMBOLS NEEDED FOR COMMUNICATION;
IN EACH CSECT, ADDRESSABILITY MUST BE KSTABLISHED SEPARATELY FOR EACH OTHER
CSECT REFERENCED SYMBOLICALLY
ADDRESSABILITY OVER LITERALS MUST BE MAINTAINED OVER CSECTS
SYMBOLIC LINKAGES -~ INDEPENDENTLY ASSEMBLED CSECTS:
IN EACH CSECT ASSEMBLED, CSECT NAMES AND ENTRY NAMES (VIA ENTRY ASSEMBLER
INSTRUCTION) ARE INTERNALLY DEFINED BUT ARE MADE EXTERNALLY KNOWN--
ALL OTHER DFFINED SYMBOLS ARE PRESUMED INTERNAL ONLY
IN EACH CSECT ASSEMBLED, SYMBOLS OCCURRING IN V-TYPE ADDRESS CONSTANTS OR IN
THE EXTRN OR WXTRN ASSEMBLER INSTRUCTIONS ARE PRESUMED TO BE EXTERNALLY
DEFINED (THEY MUST NOT BE INTERNALLY DEFINED) - ALL OTHER SYMBOLS MUST
BE INTERNALLY DEFINED
EXAMPLE LINKAGES:

1. L 15,=V(SUB) 2. EXTRN SUB
BAIR 1l,15 L =A(SUB)
BALR 1,15
3. L 12,=V(DATA) e EXTRN DATA
USING DATAD,12 L 12 ,=A(DATA)

USING DATAD,12
3, AND l. PRESUME DESCRIPTIONS OF DATA PROVIDED DURING ASSEMBLY
BY DSECT NAMED DATAD
)

5. L 12,=V(DATA){ ASSUMING DATA FW ALIGNED, LOADS GPR 10
L 10,4(,12) j WITH SECOND FW OF DATA

EXAMPLE SYMBOLIC LINKAGE:

NAME

D1

CSECT
IR 10,15

USING NAME,10

L 5,=A(D1)

USING D1,5

L 15,=V(SUB)

M lh,l; [

LY
\

EXTRN S1 N <.y SUB
L 15,=A(S1)

BIR 115

\
)
DATA
CSECT |
S)
]
END ,
4
4

7 4

CSECT

ENTRY S1

USING #,15

L 11,=V(D1)

|

(REFERENCES TO D1 VIA DISPLACEMENTS
ON GPR 11)

BR 1
END

V.13

CSECT
USING DATA,5
BR i
DSECT

(SYMBOLIC DESCRIPTION OF
DATA CSECT)

END

Iv.14

1

r--------—“-—-_‘--—--

TdD

BOIB2AES

ﬁVIl

--———_---——-J

£T4D

(uotiounyg = mﬂ_\..|

wexsoxd JT) 3Tnssx “

044 x0 QHD

l
5POd UAN3OT o

- -
—““*‘A‘
qutod Lxjue]

WVYD0dd TUTIVD

u.un::P.l

-'--'--‘-"-'J

saTqelIeA
IoF
ageiols

ﬂ
I
i
[
'
|
|
!
|
i

3811
Il euried

STHD I0F Eaxe

GTYH I0F eBI®E
HIED I0J ©dIe

Jaqutod ySiy

xejutod moT &

yidue1 | Fels

BIILIABS

i ~
| S~ Seexe €}BP
!

¥

1x93 wexdoxd

W e e ST e T G = l--"L

WVHD0dd HETIVD

1
i
|
|
|
!
!
i

- em o G e m--d

9

&

o .
o !
a
]

HETIVD 8,4dTIVD

V.1
DENTMAT, ARTTHMETTC TNSTRUCTTONS:

For the follnawing instruetions, the operands are in either packed
or zoned derimal format and oneupy a field which starts at the
annrified address and extends for the smenified nupher of hytes,

Operands whirh are of nnequal length are made of egunal length hy
extending the shorter with high order zernes,

A1l nperands must be in packad decimal format exrert the operand +n
the PAMY $n=trnntion, which must be in zoned deecimal format.

A1l results will be in packed deecimal format execept the resnlt of
the UNPK instruction, which w1l he ¥n zoned decimgl format.

The results of all instruetinns al;:ays 111 the entiye +arget field,
being extended with high order zeroes if necessary,

x AP D(LGBO, U0 B ii‘iaal*ﬁa}*(iﬁz]’vas”‘ 8,1+,
b 2P DB DAL ED (CB.1+U) - ((B,1+D0) ~ [BI:D,

MP Df(L'>B:>.zt)z{t~z;%e:} _‘f_ L.¢7 ad Lzm

ne DB, Dy(LaB) €T amd Ly den Lo
C\”-J} {-B\] *D,)
v (BYeD v L-L,
e Dl (L')BD)-DLCL%B‘"‘) m\n(Lan)*i*ﬁv Lo P L\'i"‘“‘}'i\ P L;"’i@"ﬁz
R0 AN, > {1 5
i '\i?‘”* *&‘Y) }‘\k‘ e %’ LBJ#YW@Q& do
RO OISR IP

O M R T

-

W ’\\‘?-“‘\,C \i L | “ L 2 'ﬁ'amd,s\.-ﬂ
% L* __'7 Clwfi f:(ST 0.,
s z < L‘j 1% ;5 *;_7!§.; RS ? -7

S TR R fiver oo IRt

X

cr

PACK

UNPK

D.(L| ,B\.))Dz (“'I;BZ‘)

D,(1,,B), D2 (1, B,)

DL, B, Dalhs By)

V.2

wn (Lysly) - ko,
U2 E’L(‘uf&n—u, i.)t')

"”“’“Fi[B,hD.g(hwu Lty

0~ {BIDY, (s

(LB Vg) =V

(RUB 1Ty, ny) ™ Ve s

iE (v)=(v) P 0= CC
e_’h_f' ‘j@l)‘(\vi)‘.‘;‘_‘__ 4—'}&
the 2>CCLy

nLn (2*\\4 -1 3 Lg) "—>/£o

[8,1+D, == addy, 5

KB 'KQD? ~» t“{ﬁiz S

i((m&);L 1)‘5 —->{(~‘xdo\)+L4 1\%

jladde) &&z-ﬁ)g —r adde) +1y- i%

g‘oru(-l szrl(uiao neEqin
RSN -..‘Lag [{Gade)s Lyl

i((m{ n')i Ly (L)f‘)\g -){(Mlgr){» Ly- @/z.{
Lud

\&‘(,‘(o)/ZR i = ac~>
thiw

i((aw, TYREAY }‘ —>§‘(n..»s‘)+ LQ-(QD/Z)-

W (2“\4&_3"‘ 4) &\) ">,Qa'>

{_BJ#D! - ‘S\A:.‘SY‘I S

Y,Bz]{"()z =haddey

- N e :

i{(c\ddrﬁ&-tg -4 1o o) Hly -'\gqq

{((ch-ﬁt,) t, “‘ﬁ\v‘sug}-" E(&&S'\) +la -4 30'3

for L2 otept vuiil « o o g
E((z:u{chg +ly-li2 -»1)3“5_,7%} g,\d&\”\)'rl.f(\)
Wty = Yado) vla-(0% Ly
i@ad&vl)*- L z‘li}(‘?«'ﬂgc‘ \ «)‘-}(ﬁ&iﬁ)\»tf(e
i, = Q mﬁi!‘) ¥ Lr(‘.}“‘\ % 03

(pely
'z“ ())7' ¥y—l.« \ \’*éa:a Lui_b\

et WA g LG

\H\ (t)alw") YL1 @o}"‘g So 3
%

LOBICAL THNSTRULCTIONS,

MVYL

Mve

MV N

MVE

StC

DB, I,

Db (‘L)BI\) 3 DQCB;)

D48, 0,8

D(L,BY), D@,

0, 0,04,8)

R, D, B))

VI.1

Tz —— tB.l *..Dl
aote: T, w am B bt {ceid

o L L coronter “,

b, (B T+D = oddr,
(B, + D, = addey’,

¢.” ((adde,) —> (0ddr)g
((addvyyr £) —» (addry 4+
((adde)t 2) = (2ddr)t 2.5

(d .aciér&)i (.ounter))=» (addv)e{counter)

a. L-4 = couster :

B4+ O, = Q\Adv‘ %

18,1t D, = oddeyy

¢ {(adde Ny == oddnda)
fadde N4}y = {addedtdhyg

{(adder DYyq = faddeds 28 r3

o

S
\

{((&Adr}k(gmn%&v})‘gw“‘“’ A,){-@mn‘\wgq_.?

a. L1 =% covmter

(814D, =» aaary

(8,1+U, —» QAs¥,

G floddr)}, > - COETA
{(CCTNY SR GERTNLS NP

{adde o L) gy Joddr W 28 00

?“

iediv) e pederdlg.y v+ (addv povwie r)& -1
(1B Ix14D,) = AR by,

i(R\)Eiq‘i&“ m'}’ K:Bz.] * L\A 2’3 *Uz‘

CLR

Cu

CLL

NR

NC

e’

[
'——af

>

R, R,

R, 006G 8

D, BT,

D (LR U, (B,)

U, (LB, D,(8,)

‘\J t“)
.

AR §
R, D, 04,,8,)
o8, T,

D\ (L)‘B’)) DILBIT«)

VI.2

F(RY=(RY) thos O -50C
dse f, (RY<(R,) Hhans 1> CC
doe 2-»CC
note: Cowpaninon i oven all 32
30*‘5 withouwt O.M\.\ ud{.n(«uir
be fietda wituu Ha 32 b

C“CJ (“‘& QAR C\-%@\f'? %ou} [JsRvY !‘\.(-l AN Y RS
e boveen K omd (16,14 X3¢0

{‘.cc. 3(% A%, w\:r"“é‘ \t\ui ‘\“CJ\M‘:‘-,\ CUA A
52%4&6»& (et ly) ama T..vz

viote, B ioily vw (nw.rmuix

CL. aat e alee bud <om{‘>mu£._<ﬁ‘v‘~ 'S
be.ﬁesw dhe twe chanacten st A
0\ J;&w,‘ﬂx b owluch stond ot
BI+0, owd W, 140,

(RJ A (R¢> —= Q\
B A (T8, 14 1110 - &,
(IR DYAT, — [8,7+D,

Q. L“"\ —— ;‘A\?Qv‘"b

1 P 18y - .

b, -.E‘E.Q:‘ U, 27 anox, »
::l R e [
\u;.&* V™7 adar,

G, Q\ mi:ir«‘)‘)l\((o,:ﬁf,\,' . (&.ﬁ :i\‘|>'.’
(e, Y ALasdr 14) > Cadary L3
) 2 Y

(faddr)sGovte) A ((Asay pleuwres)
= (asdepoowter)

(SRR W) et e bae G ae v
\

ARD Ll o are gL e

) ¢ v o

OV QNCLeS o

% x * X

VI.3

XR K, &, Qi ohcun one bl aauee Ao urdh
% R vy Dgx 2)B ,_) AND ety uebiown ﬂ»«%c.a,p“i“ epen aheu

2 R(8),T, kW ® (Erausivi or)
X¢ D.(L,B),D,(8,)

P o v o, g ot .
'JLL\ Q‘al/icb{szj ‘;‘\. "‘?““%EEEwa?}‘
érm_“‘wM.mm~M%m CD

W RGY) JCHIEE

SLDL R, D.(8,) o. cheek Hhat R, w envem.

SRDL R0, (8, a. sheer Hhat K o epen
b. ‘

t'j ‘..‘_ - " R(}

[QL-AR 1’2&%“51

R, R4 43

[SRECN

TH EICh RN o, ((B1+D) =» hm,i;u?
b if ewp) AT, 5 COOBLLOL, Vhaw G=+0C
else g@émp‘;ﬁf ‘\Hn\\\&‘l‘{xux 3L

dse 1wl

TR DL, D, (8,) a. L= = csunter)
(RJr D - adde,
(B, 1Dy - addvy
¢, ((odde z}e{(addy)) = (addr) 4
é@ddu* ((added 49) ~(eddetd.;
((oddr At ((-(L\zi a¢,)}(Cﬁ e tae YY)
=>{addv peouniar)

o

¥

TRT

Lo

t DMK

D, (LB, 0,(8,) a.

DICL‘)‘e‘ ;‘)JIDZC%Q)

D, (4,85, Dy By)

V1.4

L= oty H
0 =» \ndexn 5
[BJ +D. -3 add\" ';,
LB, 14D, > addr, -

(wmden)eledr)
ond CJ‘»GA“;, + (addr + inde X‘)) =0
. (mo\e’.x)r'{ —— wdw;,
Lk (mdexy>(ete)
thew O - CC
due beas
£ Gamden)=gin) 4:@_\._33 L5 (L
\‘i’._;l_‘}_k}’m 1> CQ.:)
(@dde) + (i ndex)=—> % &Ri}a_m H
((adde,) K{uddr)Hinder)) -ﬁ»i&?l}
tnd

nete Haat {GRAT, ., ond inf(ZiOmzs oo uwche

WLM

E “f Wxxt ké G0, ﬁPO("U s,\,uwua_ﬁ

LOGICAL MACHINE INSTRUCTION EXAMPIES:

1.

2.

30

VI.5

MVI BUFF,C' ! PUTS BLANKS IN 80 BYTES STARTING
MVC BUFF+1(79) ,BUFF AT TOCATION BUFF

MVI 4,0 ZEROES OUT AREA A, ASSUMING L'A IS
MVC A+1(L'A=1),A AT MOST 256

CLI BYTE,X'F5! BRANCHES TO EQUAL IF BYTE CONTAINS
BE EQUAL A HEXADECIMAL F5

S 0,10,GPRS BRANCHES TO CHECKS IF GPRS O = 10
CIC GPRS(LlL), VALS CONTAIN THE SAME VALUES AS THE 11
BE CHECKS FULL WORDS STARTING AT VALS

™ BYTE,X'FO! BRANCHES TO SET IF BITS O = 3 OF
BO SET BYTE ARE ALL ONES

™ BYTE,1 BRANCHES TO UNSET IF BIT 7 OF BYTE
BZ UNSET IS ZERO

NI BYT,X'00! SETS BITS O - 7 OF BYT TO ZERO

NI BYT,X!77! ZEROES BITS O AND l OF BYT

N 6 4=X'00FFFFFF! ZEROES FIRST BYTE OF GPR 6

01 BYT,X'FF! SETS BITS O = 7 OF BYT TO ONE

01 BYT,X'EE! SETS BITS 3 AND 7 OF BYT TO ONE
XI BYT,X'00! BYT UNCHANGED

XI BYT,X'FF! ALL 8 BITS OF BYT INVERTED

XI BYT,X'88! BITS O AND) OF BYT INVERTED

THE TRANSIATE (TR) INSTRUCTION:

™ n1<L,Bl),n2<Bz)

256 FUNCTION BYTES
{

({ L e

FACH OF THE L ARGUMENT BYTES IS PROCESSED, LEFT TO RIGHT, AS FOLLOWS:
1. COMPUTE ADDRESS A = D2(B2) + ARGUMENT BYTE (I. E., USE ARGUMENT

BYTE AS INDEX)
2. REPLACE ARGUMENT BYTE BY FUNCTION BYTE AT ADDRESS A

FOR EXAMPLE, TO CONVERT EBCDIC STRING OF LENGTH L IN STR TO A STRING
IN WHICH C'O'...C'9' BECOMES X'00',..X'09' AND ALL OTHER CHARACTERS

BECOME X'FF!, COULD USEs:
TR STR(L),TAB

TAB IC

(C'0)X!'FF!,X'00010203040506070809 * ,6X'FF!

VI.6

THE TRANSLATE AND TEST (TRT) INSTRUCTION:
TRT Dy(L,B,),D,(B,)

\-—N\.w
S-S =

+ { ARGUMENT . 256 FUNCTION BYTES
. BYTES .

THE ARGUMENT BYTES ARE PROCESSED, ONE BY ONE, FROM LEFT 10 RIGHT,
AS FOLLOWS:
1. COMPUTE ADDRESS A = Do(By) + ARGUMENT BYTE (I. E., USE ARGUMED
BYTE AS INDEX)
2, IF FUNCTION BYTE AT LOCATION A IS ZERO, CONTINUE AT STEP 1
WITH NEXT ARGUMENT BYTE
3. IF FUNCTION BYTE AT LOCATION A IS NON-ZERO, THEN:
- a. ARGUMENT BYTE ADDRESS IS PLACED IN BITS 8-31 OF
GPR 13 BITS O-7 ARE UNCHANGED;
b. THE NON-ZERO FUNCTION BYTE IS PLACED IN BITS 2L-31
OF GPR 2; BITS 0-23 ARE UNCHANGED;
¢, THE TRT IS TERMINATED, SETTING THE CC.
L. AT TERMINATION OF A TRT, THE CC IS SET AS FOLLOWS:
0 ALL ARGUMENT BYTES WERE USED AND NO FUNCTION BYTES
SELECTED WERE NON-ZERO
1 A NON-ZERO FUNCTION BYTE HAS BEEN SELECTED AND ONE OR
MORE ARGUMENT BYTES HAVE NOT YET BEEN USED
2 THE LAST ARGUMENT BYTE PRODUCED A NON-ZERO FUNCTION BYT
(I. E., THERE ARE NO MORE ARGUMENT BYTES)

EXAMPLE TRT:
T0 TEST STRING STR, OF LENGTH L'STR, FOR THE CHARACTERS
+, =, AND DIGITS ONLY, COULD USE:

TRT STR,TAB
BNZ ILLEGAL

TAB DC (C'4!)X'FF!,X'00',(Ct=1=C1+1=1)X'111,X*00",
(C'0'=C'=1=1)X'OF',10X'00" ,6X'FO!

WHEN CONTROL REACHES ILLEGAL, THE FUNCTION BYTE IN GPR 2 WILL
INDICATE THE PART OF THE TABLE INDEXED BY THE ARGUMENT BYTE

EXAMPLE TRT:
THE FOLLOWING CODE TEST THE 8 BYTE STRING IN EX AND CONVERTS

IT TO A FIXED POINT NUMBER IN GPR 15 IF THE STRING IS A HEX
CHARACTER STRING (CONSISTS OF HEX CHARACTERS ONLY)

TRT EX(8),TEST TEST FOR ILLEGAL CHARACTERS

BNZ NOGOOD

MVC TEMP,EX MOVE STRING INTO TEMP

TR TEMP,TRANS-C'A' CONVERT STRING TO BINARY VALUES
PACK TEMP(9),TEMP CONVERT TO BINARY NUMBER

L 15,TEMP+) PUT INTO GPR 15

VI.7

[
o

TEMP DS D

DS CLl
TEST DC (C'A')X'FF!,6X'00',(C'0'~C'G!)X'FF',10X'00"' ,6X'FF'
TRANS DC 6AL1(#-TRANS+10),(C'0'~C'G')X'FF',10AL1(*-TRANS-47)

VII.1

SAMPLE PROGRAM 1: SUMSQ
ROUTINE SUMSQ COMPUTES THE SQUARE ROOT OF THE SUM OF THE SQUARES OF A VECTOR OF

SHORT FLOATING POINT NUMBERS AND RETURNS THE RESULT IN FPR O, SUMSQ USES THE
FOLLOWING R-TYPE CALLING SEQUENCE:

GPR O NUMBER OF ENTRIES IN VECTOR; MUST BE GREATER THAN ZERO

GPR 1 ADDRESS OF FIRST FULL WORD FLOATING POINT NUMBER IN VECTOR
THE RETURN CODES FROM SUMSQ ARE:

0 RESULT IS IN FPR O

L SOMETHING WENT WRONG -- NO RESULT

SUMSQ CSECT

LTR 0,0 TEST COUNT
BP GOOD-SUMSQ(,IS) BRANCH IF OK
1A 15,k SET ERROR RC = |
BR 1 AND RETURN
USING SUMSQ,10
GOOD ST™ 1h,12,12(13)
IR 10,15
IA 2,SAVE STANDARD ROUTINE ENTRY SEQUENCE WITH
ST 2,8(,13) SAVE AREA CHAINING AND REGISTER SAVING
ST 13,L(,2)
IR 13,2
SER 0,0 0 TO FPR O
LOOP IE 2,(,1) NEXT NUMBER TO FPR 2
MER, 2,2 SQUARE THE NUMBER
AER 0,2 ADD SQUARE TO SUM
LA 1,4(,1) UPDATE ADDRESS
BCT 0,L00P COUNT DOWN
A 15,0 SET RC TO ZERO
BZ EXIT ALL DONE IF SUM = O
STE 0,HOLD
TA 1,=A(HOLD) CALL SQRT FOR FINAL RESULT -- LEAVES SQUARE
L - 15,=V(SQRT) ROOT IN FPR O AND SETS RC = O OR L, WE
BALR 1,15 ASSUME HERE
EXIT L 13,&(13)
L 1, 12(13) STANDARD ROUTINE RETURN SEQUENCE -- RC
IM 0, 12 20(13) ALRFADY SET IN GPR 15
BR 1h
HOLD DS F HOLDS SUM IN SQUARE ROOT CALL
SAVE DS 18F SAVE AREA

END

VII.2

SAMPLY PROGRAM 2: FDELE 7
AOUTINE FDELE SEARCHES A DOUBLY-LINKED LIST STRUCTURE, IGNORING SUBLISTS, FOR

A NODE CONTAINING A SPECIFIED DATUM FIELD., IF THE NODE IS FOUND, IT IS DELETED
FROM THE LIST STRUCTURE AND A POINTER TO THE NODE IS RETURNED. IN THE LIST
STRUCTURE EACH NODE IS 12 BYTES LONG AND FULL WORD ALIGNED. THE NODE FORMAT ISt
BYTE O KEY FIELD: O = HEAD NODE; 1 = SUBLIST REFERENCE; 2 = DATUM NODE
BYTES 1-3 ADDRESS OF SUCCESSOR NODE
BYTES L=-7 ADDRESS OF PREDECESSOR NODE
BYTES 8-11 SUBLIST ADDRESS (KEY = 1) OR 32 BIT DATUM (KEY = 2)
SAMPLE LIST STRUCTURE:

//!,;;;;““°w»~ ~wm*:§;~i/) ' d1

.
| SUBLIST
O e 4 \HEAD

=
;
C ST
\ wEls
\\\; AM“//
EMPTY STRUCTURE: (gtNiv/!’ ?

FDELE USES AN R-TYPE CALLING SEQUENCE:
GPR O 32 BIT COMPARAND -~ SEARCHING FOR NODE WITH THIS DATUM VALUE

GPR 1 ADDRESS OF HEAD OF LIST STRUCTURE
POSSIBLE RETURN CODES FROM FDELE3:

d2

0 'NODE FOUND & DELETED; NODE ADDRESS IN GFR 1
b LIST STRUCTURE IS EMPTY
8 UNSUCCESSFUL SEARCH OF NON-~EMPTY LIST STRUCTURE

FDELE CSECT

USING FDELE,15 PROGRAM ADDRESSABILITY
USING NODE, 1 LIST STRUCTURE ADDRESSABILITY
C 1,SLINK TEST FOR EMPTY STRUCTURE
BNE SAVE BRANCH IF NOT
1A 15,4 EMPTY STRUCTURE EXIT -- SET RC = L
BR
SAVE L 1,SLINK GET NEXT NODE POINTER
CLI KEY,1 TEST NODE KEY
BE SAVE BRANCH ON SUBLIST REFERENCE
BH 100P BRANCH ON DATUM NODE
1A 15,8 WE'RE BACK TO THE HEAD NODE

BR 1 EXIT WITH RC = 8

VII.3

LooP C 0,DATUM TEST DATUM VALUE

BNE ~ SAVE BRANCH IF NOT EQUAL TO COMPARAND

SWPR 2,2 GOT IT -- SAVE GPRS 2 & 3

M 2,3,SLINK GET NODE'S POINTERS

ST 3,0(,2) UPDATE SUCCESSOR NODE

MVC 1(3,3),SLINK+1 UPDATE PREDECESSOR NODE

SWPR 2,2 RESTORE GPRS 2 & 3

SR 15,15 SET RC = O

BR 1], AND RETURN
NODE DSECT |
gﬁ%NK gg gF DSECT DESCRIPTION OF NODE FOR
SIE b . IMPLICIT ADDRESSING PURPOSES
DATUM DS F

END

SAMPL], PROGRAM 32

FDELE

VII.4

THIS EXAMPLE IS THE SAME AS THE PREVIOUS EXAMPLE, EXCEPT THAT HERE NO DSECT
IS USED AND ALL ADDRESSING IS EXPLICIT VIA DEFINED SYMBOLS FOR EASE OF READING

AND WRITING THE PROGRAM.

FDELE
NODE
KEY
SLINK
PLINK
DATUM

SAVE

LOOP

CSECT
EQU
EQU
EQU
EQU
EQU
USING
C
BNE
1A
BR

L
CLI
BE
BH
TA
BR

C
BNE
SWPR
M
ST
MVC
SWPR
SR
BR
END

e PoNaN

FDELE, 15

NODE , SLINK(,NODE)
SAVE

15,k

1

NODE , SLINK(,NODE)
KEY(NODE) ,1

SAVE

10OP

15,8

1

0,DATUM(,NOLE)
SAVE

2,2

2,43 ,SLINK(NODE)
3,PLINK(,2)

8ASE REGISTER CONTAINING NODE ADDRESS
KEY FIELD DISPLACEMENT

SUCCESSOR FIELD DISPLACEMENT
PREDECESSOR FIELD DISPLACEMENT

DATUM FIFLD DISPLACEMENT

PROGRAM ADDRESSABILITY

TEST FOR FMPTY STRUCTURE

BRANCH IF NOT

EMPTY STRUCTURE EXIT -= SET RC = I

GET NEXT NODE POINTER

TEST NODE KEY

BRANCH ON SUBLIST REFERENCE
BRANCH ON DATUM NODE

WE'RE RACK TO THE HEAD NODE
EXIT WITH RC = 8

TEST DATUM VALUE

BRANCH IF NOT EQUAL TO COMPARAND
GOT IT -- SAVE GPRS 2 & 3
GET NODE'S POINTERS

UPDATE SUCCESSOR NODE

1(3,3),SLINK+1(NODE) UPDATE PREDECESSOR NODE

2,2
15,15
1

RESTORE GPRS 2 & 3
SET RC = O
AND RETURN

VII.S

PROGRAM SAMPIE Lz CONVERT
GIVEN A STRING OF CHARACTERS OF LENGTH N, ROUTINE CONVERT SEARCHES THE STRING FOR

OCCURRENCES OF INTEGER STRINGS AND CONVERTS SUCH INTEGER STRINGS TO FIXED POINT
BINARY NUMBERS STORED IN A VECTOR GIVEN AS AN ARGUMENT., CONVERT OPERATES WITH
THE FOLLOWING ASSUMPTIONS:
1. FEACH INTEGER STRING ENDS IN ONE OR MORE NON-DIGITS;
2. NO INTEGER STRING CAUSES AN OVERFLOW DURING CONVERSION;
3. INTEGER STRINGS ARE CORRECTLY WRITTEN WITHOUT ARITHMETIC SIGNS.
CONVERT USES AN S-TYPE CALLING SEQUENCE WITH PARAMETERS:
ST ADDRESS OF THE CHARACTER STRING
N FULL WORD LENGTH OF THE STRING (TRUE “LENGTH)
V ADDRESS OF THE FULL WORD FIXED POINT RESULT VECTOR
THE RETURN CODES USED BY CONVERT ARE:
O ONE OR MORE NUMBERS PLACED IN V; NUMBER OF ENTRIES IN V IS IN GPR O
I’ NO ENTRIES STORED IN V
THE ALGORITHM USED BY CONVERT IS AS FOLLOWS:
1., FIND NEXT DIGIT IN CHARACTER STRING USING TRT
2, IF NO MORE DIGITS IN STRING, THEN ALL DONE
3. FIND NEXT NON=-DIGIT IN CHARACTER STRING USING TRT
e CONVERT THE INTEGER STRING TO FIXED POINT
5, STORE THE FIXED POINT RESULT IN THE NEXT RESULT VECTOR ENTRY
6, UPDATE THE RESULT VECTOR INDEX
7. RETURN TO STEP 1.
CONVERT USES GPRS AS FOLLOWS DURING PROCESSING:
ADDRESS OF REMAINING PART OF CHARACTER STRING TO BE PROCESSED
USED BY THE TRTS
INDEX ON THE RESULT VECTOR V
ADDRESS OF THE RESULT VECTOR V
ADDRESS OF THE LAST BYTE IN THE CHARACTER STRING
CURRENT TRT LENGTH OR MOVE LENGTH
255 - FOR COMPARISON PURPOSES
HOLDS FIRST DIGIT ADDRESS OF INTEGER STRING
PROGRAM ADDRESSABILITY

ON O~ ONFw o

[}

CONVERT CSECT _
USING %#,10

STM 1&,12 12(13)

IR 10,15

IA 12,SAVE

ST 12,8(,13) STANDARD ENTRY SEQUENCE

ST 13,k4(,12)

LR 13,12

SR 3 3 0 TO INDEX

L 58(51) ADDRESS OF V TO GPR L

L oli(1) ADDRESS OF N TO GPR 6

L (,6) N TO GPR 6

LTR 6, IF N LESS THAN ZERO, OR ZERO,
BNP 12 ,DONE BRANCH HERE - WE'RE DONE

L 1, (1) ADDRESS OF ST TO GPR 1

AR 6,1 ADDRESS OF IAST BYTE OF ST TO GPR 6
BCTR 6,0

1A 8,255 255 TO GPR 8 FOR COMPARISONS

17 0P

DIGIT

DONE

EXIT

EXDIG
EXCHR
PACK
SAVE
NUM
DIGIT
CHRT

SR

CR
BNH

EX
BNZ
IA

IR
IR
SR
CR
BNH
IR
EX

SR
BCTR
EX
CVB
ST

LTR
BZ

SRA

BR
TRT
TRT
PACK
DS
DS
DC
DC
END

756

7,1

DONE

758

#+6

7,8
7,EXDIG
DIGIT
1,256(,1)
LOOP

7,8
7,EXCHR

7,1
759
7,0
7,PACK
5 NUM
550(3,k)
3, h()
LOOP

15,4

0,3

EXIT
15,0

0,2
13,h(,13)

1l,12(,13)
1,12,2L(13)
1y

0(,1),DIGT
0(1) ,CHRT
NUM(8),0(,9)

18F
D

VII.6

IAST BYTE ADDRESS TO GPR 7
IBM LENGTH TO GPR 7

IF NEGATIVE LENGTH, ALL DONE
IF LENGTH GREATER THAN 255,

USE 255

LOOK FOR A DIGIT

BRANCH IF FOUND ONE

COMPUTE NEW INITTAL ADDRESS
AND THEN TRY AGAIN

SAVE DIGIT ADDRESS IN GPR 9
LAST BYTE ADDRESS TO GPR 7
IBM LENGTH TO GPR 7

IF LENGTH GREATER THAN 255,

USE 255

FIND WEXT NON=-DIGIT

NON~DIGIT ADDRESS TO GPR 7

COMPUTE INTEGER STRING LENGTH

COMPUTE IBM INTEGER STRING LENGTH
CONVERT INTEGER STRING TO PACKED DECIMAL
CONVERT PACKED DECIMAL TO FIXED POINT
STORE RESULT IN RESULT VECTOR

UPDATE RESULT VECTOR INDEX

ROUND AND ROUND WE GOy soscoee

ALL DONE = SET RC = L

'EST RESULY VECTOR INDEX

BRANCH IF NO ENTRIES IN RESULT VECTOR
HAVE ENTRIES - SET RC = O

COMPUTE NUMBER OF ENTRIES IN RESULT VECTO

STANDARD RETURN SEQUENCE

FINDS NEXT DIGIT IN CHARACTER STRING
FINDS NEXT NON«DIGIT IN CHARACTER STRING
PACKS INTEGER STRING INTO NUM

SAVE AREA

HOLDS PACKED DECIMAL NUMBERS

(€107)X'00",10X'FF* ,6X100"
(C101)X'FF*,10X100" ,6X ' FF"

VII.7

PROGRAM SAMPLE 5

PROBLEM:

Prepare, in assembly code, a program which can process a data
deck which is structured as follows., The first part of the
deck defines a number of LISP elements, giving them a name
and exhibiting their structure. E.g.,

LIST1 LIST ((A(BC))DEF)
ATOM1 ATOM B

NIL LIST 0

LIST2 LIST (A(BCc)D) (EF))
ATOM? ATOM K

The second part of the data deck specifies some composed
functions which use the now-defined elements as arguments.
The program is to read these, one at a time, and evaluate
them. E.g., »

CONS (ATOM2, CAR (LIST1))

CAAADR (LIST2)
when following the declarations given above would produce the
output:

(x A (BC))

B

a. The program is divided into several pieces which are to be assembled
separately. ‘

1.

2.

The main part of the program is a MAIN program which is

to control the reading of the data cards and the sequencing
of the subprograms which will individually calculate one of the
LISP primitive functions. In this program is therefore all
of the logic for the reading of the first part of the data
deck and the construction of the defined elements and the
necessary tables so that a reference to the name of

an element can be translated to an address of that element.
The program also contains the logic for the reading and
decoding of the functions in the second part of the data.
This part of the program assures that calls are placed to the
function subprograms in the appropriate order and that the
final result is printed.

This part of the program is also the place in which the
pools are defined and initialized as necessary. A very
simple organization is used =~ the individual data items

are used from the pool in sequential order, and linking
among the available data items in a pool is therefore not
necessary. Whenever an available data item is used, the
address of the next avalalable one may be determined by
adding the length of the data item to the address of the one

Just used,

The other parts of the program are each one of the primitive
LISP functions. They are called by the main program as needed.
There is also a garbage collection routine that is called

upon to organize the available storage into pools whenever

the previously available pools are depleted.

b. The following register usages rules are determined in advance of
code preparation.,

1.

0S (1) S calling conventions will be followed and this
fixes the use of register 13 as a pointer to the current
save area, reqister 14 as the return address for a call,
register 15 as the entry point for a called routine,
register 1 as a pointer to the parameter list, and register
0 as the value returned by the functions.

VII.8

2. Register 12 will be used as the base regisier for all
control sections,

3. Registers 9, 10, and 11 will be used to cover the storage

area used for the pools.

(Note: the programs presented below are met complete. Neither are all
of the function subprograms specified, nor is the full text of the main

program given.

Rather, the partial programs are used to give examples

of inter-program and inter-assembly referencing and the use of system
macros and system subroutines.)

c. First assembly (MAIN program and data pools) written without macros.

MAIN CSECT
USING
STM
LR
LA
ST
ST
LR
*
LM
USING
*
L
L
BALR
N L]
*
ST
*
L
L
BALR
*
B
B
B
*
CAROKAY .
CARERROR .

*

*,12
14,12,12(13)
12,15
11,SAVEAREA
11,8(0,13)
13,4(0,11)
13,11

9,11 ,ADDRS
POCLS ,9,10,11

1,=A(SCPMLIST)
15,=V(SCARDS)
14,15

CALL TO THE CAR SUBROUTINE

3, PARM

1,=A(PARMLIST)
15,=V(CAR)
14,15

*+1(15)
CAROKAY
CARERROR

* DATA FOR THIS PROGRAM

SAVEAREA DS
PARM DC
PARMLIST DS
DC
DC
SCRMLIST DC
DC
Dc
DC

(continued)

18F

F

OF

X80

AL3(PARM)
A(BUFF)
A({LENGTH)
A(MoDS)
A(LINENBR)

Since MAIN

is called by the
system as a
subroutine,

1t must conform to
calling
conventions.

establish the base registers
for the data pools

paxrt of the data card reading
code, shovwing a call to the
SCARDS system subroutine

get parameter value stored

activate
the car
function

accept the return
code and branch
to appropriate code

normal save area

holds parameter to car

(not really required) parm list
(the one and only parm) for

(parm's address) car function
narameter list

for

SCARDS

subroutine

VII.9

(continued)
BUFF DS CL80 area for input from SCARDS
LENGTH DS H number of bytes read
MODS Dc F'Q! special input modifiers
LINENBR DS F
ADDRS DC A(POOLS , POOLS+4096 , POOLS+8192)
LTORG
*
% THIS ASSEMBLY ALSO CONTAINS THE DEFINITION OF THE POOLS FOR THE DATA
POOLS CSECT
DS oD (not really necessary)
NXTN DC A(NPOOL) pointer to next avail. node
NXTP DC A(PPOOL) pointer to next avail. pointer
NPOOL DS 8000C
PPOOL DS 4000C
END MAIN
d. First assembly written with the aid of system macros.
MAIN CSECT
ENTER 12 ,SA=SAVEAREA use calling conventions
*
LM 9,11,ADDRS establish the base registers
USING P001S,9,10,11 for the data pools

*

*
CAROKAY

CARERROR

*

SCARDS BUFF,LENGTH,MODS,LINENBR (will set up parm list)

CALL TO THE CAR SUBROUTINE

ST 3,PARM get parameter value stored
CALL CAR, (=A(PARM)) ,VL (will also set up parm list)
EXTRN CAR

B *+4(15) accept the return

B CAROKAY code and branch

B CARERROR to appropriate code

* DATA FOR THIS PROGRAM

SAVEAREA DS 18F normal save area
PARM DS F holds parameter to car
BUFF DS CL80 area for input from SCARDS
LENGTH DS H number of bytes read
MODS DC F'O' special input modifiers
LINENBR DS F
ADDRS DC A(POOLS , POOLS+4096 , POOLS+8192)
*
* THIS ASSEMBLY ALSO CONTAINS THE DEFINITION OF THE POOLS FOR THE DATA
POOLS CSECT

DS oD (not really needed)
NXTN DC A(NPOOL) pointer to next available node
NXTP DC A(PPOOL) pointer to next avail. pointer
NPOOL DS 8000C
PPOOL DS 4000C

END MAIN

VII.10

e. Note that in the previdus program, SCARDS could also have been invoked

by the coding:

CALL SCARDS , (BUFF , LENG¥H ,MODS , LINENBR)
f. Second assembly (CAR function) with strict adherence to the calling
conventlions.
CAR CSECT
ENTER 12 ;SA=SAVEAREA
3
L 3,0(0,1) piek np the address of the
L 3,0(0,3) List aegugsat (valna of parm)
*
LTR 3,3 check to see that it isn't
BM ERROR an atom or a null list
*
* VALTID ARGUMENT RECEIVED
L 0,0(0,3) return the car field of first node
L 13,4(0,13)
LM i4,15,12(13)
LM 1,12,24(13)
SR 15,15
BR 14
*
¥ INVALTD ARGUMENT RECEIVED
ERROR RETURN (14,12) ,RC=d: RC=l o that MAIN‘s code will work
*
SAVEAREA DS 18F
END
g. Second assembly may be shortened becauss CAR doesn't 1) call any other
routine and 2) use any registers except 7 as work regisiers.
CAR CSECT
USTNG *,15 caxt keop 15 as base rogister
ST 3,SAVEAREA thig is only one which will be dest
%
L 3,0(0,1) pick up address of the
L 3,0(0,3) list argument (value of parm)
*
LTR 3,3 check to see that it isn’t
BM ERROR an atom or a null list
*
* VALID ARGUMENT RECEIVED
L 0,0(0,3) return the car field of first node
L. 3,SAVEAREA restore original contents
SR 15,15 set return code
BR 14 return

* TINVALID ARGUMENT RECEIVED

ERROR L 3 ,SAVEAREA
LA 15,4(0,0)
BR 14

¥*

SAVEAREA D5 I

BND

restore original contentis
set return code
return

VII.11

h. Third assembly (CONS function) showing use of a dummy control section.

CONS CSECT
ENTER 12 ,SA=MYSAVE
USING POOLAREA,9,10,11
*
LM 7,8,0(1)
L 7,0(0,7)
L 8,0(0,8)
*
L 6 ,NEXTNODE
LA 5,PTRPOOL
CR 5,6
BH OKAY
L 15,=V(GARBAGE)
BALR 14,15
LTR 15,15
BZ OKAY
RETURN (14,12) ,RC=4
¥*
OKAY LTR 8,8
BM NNNLIST
*
* SECOND ARGUMENT IS A LIST
LISTARG STM 7,8,0(6)
LR 5,6
LA 6,8(0,6)
ST 6 ,NEXTNODE
L 4,4(0,13)
ST 5,20(0,4)
RETURN (14,12) ,RC=0
*
* SECOND ARGUMENT IS AN ATOM OR A NULL LIST
NNNLIST L L ;=X *80000000°*
CR k4,8
BE LISTARG
ST 8,020,63
ST b,4(0,6
LR 8,6
LA 6,8(0,6)
CR ,6
BH LISTARG
L 15,=V(GARBAGE)
BALR 14,15
LTR 15,15
BZ LISTARG
RETURN (14,12) ,RC=4
*
MYSAVE DS 18F
¥*
POOLAREA DSECT
DS oD
NEXTNODE DS F
DS 8004C
PTRPOOL DS 4000¢

END

be conventional
these cover data pools

get the value of the
two arguments

find out the address of the
next available node in the
pool and make sure that
it is really a legal node.
If no nodes are available
then call collector routine
(note that it's a parameter-
less call) and interpret the
return code.

check the type of the
second argument

put ptrs side=-by-side in a node
save pointer to node, it's fnc value
update the pointer to the
next available node in pool
save function’s value into caller's
savearea (reg 0 location)

if the second arg is a null
list then it can be handled
above

turn second argument into a list
composed of the single atom
which was original second arg

try to get another node in which
to stick the two parts of
the result list. If the node
can be found, then let the
code above handle the
processing. Otherwise,
return error return code.

a grey fiannel savearea

this dummy control section
maps out all that needs to
be known about the pattern
of this storage area.

VIII.1

AN OVERVTIEW OF
0,S. MACRO=ASSEMBLFR TANGUAGK

7, References

1, William Vent. Assemhler=language Maeroprogramming. Computing Surveys,
1, 4 (December 1069), 183-196.

2. TRM Corporation, IBM 0.S. Assembler language. C028-6514,

3. TBM Corporation. IBM 0.5, Assembler Prograrmer's Cnide, GO2h=3756h,

3

1T. Macro-assembler language is a special programming langvage, embedded in
resnlay assembler language, the instrmetions of whiech are obeyed during
assembly and which have the effent of producing sequences of assembler
instrvntions which are later translated into machine instruetiens, The
attrittes of a macro-assembler language in general and the TBM 0.9,
version in partieular are:
. 1t 18 basically a symbol maninnlation languace
. it i3 a reascnably primitive langnuage, with many re-trictions {nnt
all of which are reported heve) and very 1ittle error checkings
. 1t allows for conditional assembly == the ability to perfornm
arithmetie, logical and eharacter manipulations a2t assembly +ime
in order to control the sequence of code which 13 assembled
« it has speecial conventions for denoting variables, labels, ete.,
ainece it is embedded in another programmine langunage
i+ normally s nsed to write "subrontires" which are inveked
dvring assembly, but the instructions ir the langvace may also

he nged within the main bodvy of the progran

1T, The veast of this overview will use +he following {TRMese) terms, The 1ist
is not meant to be complete == many more torms are defined in the rovrse
of diseussion == but rather to collect trgether some nften nsed terms some
of which, of necessity, must b» used before they c¢an he fully and nrorerly
defined, Also; the definitions indicate some of the synonyms whieh will

he need in the discussion,
« variahle svmbole: +these are the identifiers of the macro-assembler

langnages they consist of 1=7 characters, the first ™ing alphabetie,
preceded by ‘&', Caution: the meaning of =ome ‘dentifiers is
predefined and their values are avtomatically maintained by the
systems all of *hess berin with 28V and the nger should refrain

from using rames which hegin with these characters,

VIII.2

sequence svmhols: those are the labels of the maero-sssembler

language; they corsist of 1«7 rhavacters, the first being alphabetie,

preceded hy '.°'.
« symbolic varameters; these variable symbole axe the formal parameters

which receive the values of the arroments vnon invocation of 3 macro.

o ordinary symbols: symbels which ave walid within vormal assambler

language,

model statement: a manro=assembler astatapent which spesifies the

format and partial contents for a atatsrent whick ia to bs renerated,

« oonditinnal assembly stateapentas +thoge siatements AF the maecroe

assembhler languare which do net divectly ranse the peneration of

which model statements oy wagpuiar assewbley sintements nvwe veached,

. maere definition: these are the subroutines ~F Ths magerpeassembler

langnare.

macrn ingtyructinna:s theae are the rall stnlowsnts n? +he marro=

nasamhlsar Janrnage,

o kovword parametar: in forvm, thie fa a aveheiis yasareter £0)1owed hy

the character '=' follawed hy almost anv cbpdae Af Ne?68 phaprgotersy

the nee of a keyword marameter 15 svnlatned Twjew,

YV, Notation
. [.s.} indicates that the ftem enrioged in conave bearkets ia ovtional,
o the word 'hlank' indiecates that a fiald oFf ar instristion 4s 40

ha 1eft blank,

V. Maero Defirition, Basieally, this iz n suhvontiae whish pay b inveked
durtng assemhly for +he purpose »f pensyating the asseshler statements which

ave to he translated into mashire Ande, Tta faspat G

)

Headawr Wlank Ms RO RMarlk

Prototype A atatement odving the vame ~F the macro and {45

symboalic mramstars: tH'n i alsn ¢he antry point
when the definitinn i irnvolkad b 5 pasre irast-nedtion,

Red s
. Y

Ao ey

S sresend g Y e

Dertarstinna Zovie ar moave s alaseed dans oy

nasd I geansRio Flem we e S at T ey okl wavwiahlse

¢

[IR T . - o 4
ST et %14\‘] v e v Fa oy gy LA T B AV o

al s 4 PR T - U - o B
T rmme e AT Ted sl s O el AP e e<'\7~rv'§-:‘vvs-.(’>«'?"7,

ﬁqpyg Mmyvmg PR wvmv? P R TR A ﬁﬁ%ﬂﬁﬂ‘“g “0?3*+4ﬁ"11

n‘}:e-a!ﬂhj .y g«gLﬁ.‘, Sy % P P ,J ey i e 2 v\a@wlr* FS rym
! ¥ 23 » ARTTTROT Y NNS,

Trallew [cequenns epmnerlwen niank

VT,

vIT,

VIII.3

A COPY statemant with the format
blank rcopry ordinary svmbnl
may be used within the body in oxder to copy model, MEXTT, MNOTR, and

~onditional assembly statements and comments into the definition from

a file.

Program Struecture. Basically, marro definitions may not be nested and must
all appear first in the program,

o Program Outline

o First may come any sequence nf 1isting control statements
(RJECT, PRTNT, SPACE, and TITIE), ICTL or TSEN statements,
and comments,

+ Then comes the macro definitions, if anv, TInterspersed
between the macro definitions may be ary aequence of listing
contrnl statements, TCTL statements, and rcomments,

Than ecomes the derlarations of +tha varishls symbols, firat
glahal ones and then losal ones, whirh w111 he n=ad within
the model statements and ennditional as=embly statements
appearing within the main hody of the nrogran,

« Finally comes the mpain body of the prorram ineluding the
macro instruntions, model statements, and conditional
assembly statements,

« Note: the macro=assembler larguage fasilities may he nsed within +he
main bady of the rrogram as well as within +he masro definitions,
Macro definitions may appear within a macre Vlibrary (under MIS,

the library is hnoked in hy assigning 1t ta DSRN 0), Definitions
anpearing in the program are seanned first and +ake precedence

aver any definitinns which have the same name avrearing in the

1ibrary.

Tnvoking Macro Definitions, Mazra definitions ars "ealled" during assembly
hy use of a macro instrustion. The marro ingtrurtion specifies a set
of argument= which are passed nver s the corresponding symbolis parameters
2t the time of invocation.
+ The nrototype in the marro definition of the invoked macro speeifies
the farmat of the marro instruction which may he used to invoke
the definition. The format of the prototvoe is:
[symbolic parameter] rame [parameter 1ist] [comment]

whera:
+ the name is any ordinarv symhnl whirh is not already the

name of an assembler npende

« the parameter 1ist 15 2 comma=list of 0=200 symhnlie

VIII.4

rarameters or kevward varameters,
the ecomment may not anpear 17 thers is no parameter list
the parameter list and comment may he interieaved on

suecessive lineas == gea the marual forv detalls

o A manre instruction spenifiss the armuments whinh are to be assigned

as the character string valves of the aymbnalic mraneters. The
format of a macro instyuction i

, i oo
[grdinary symboi} epcode [oparand Tist] gﬁﬁmm@ntg

where:
. the operand list ard comment may be interleaved on suceessive
1lines == see the mamal for detatls
« the comment may not appear 3 the operand 1iat does not aovpear
. the operand list is a romge-list of 0200 npevands sach of
which is a string of 0«25%5 charantsrs whish conforms to the
following rules:
« 1t may not he 2 senvence saymhol
o 1t must econform to the nsnal rales for having apostrophles
within a gquoted charvarter styine
parentheses must be balarced eveavt within a quoted
rharacter string
the charactsr '=° way appear only
. a8 the firat charvartsr ov
e Within a quated chayacter atriap, or
« ingside balanced parentbhaszes
any sanquence of ampersands must have an even number
ayrept that g single ammsrsard way anpenr a9 the first
character
commas may apnasy iy within a guoted character string
or within balaneced parentheses
o blanks way appear only within 2 auoted charaster string
« Argument value massing. When a macro dafinition ig invoked hv a
macro instrustion the valnes of the nperands are ssot as the charaetor
string values of the corresnonding eveholir wpamaters in the nroto-
type of the manrn definition,
« Positional rorvespondence, Thiz s +the giapjest eass, in
whicrh the ith symbolie rarameter fn the mraneter list takes
on the value of the ith asparand in the operand 19st,
Any operand may he nmitied and ite tyailing * 7 may

also he omitted iFf 1t bhernmes trailing in the anerand

VILI.S

list, 1f a positional opevani is omittad then the
enrresponding symholic rarameter t= plven the rull
string as its value,

o Keyword corvespondence. Tn this cace the ramg of the symhalie
rarameter which is 0 receiva the valve o alan statad in the
oparand list. Sinee the corveavinder o te aynlicitly denoted
the order of tha opeyarda read not Y Yo =ama a5 the ryder
of the symbolin rarameters,

» An elemenf of the marameter 1ict = ban the form

symhniie narnmefﬂy-"{}ﬂ¥wvj]
wheye vajn@1 ae tha mame Farm s e oanera=d T tlven
above) ﬂvhﬂﬁf ot it gy ant Thaslf baoa symbalie
parameter,

e An alamant of the aperand Jint moe hae dhe forp

name = va}un?
where name 1o the gtég_,mss name ne ons aF Yha aypbojie
parametoeras but without thna T57 chacaeday and v e,
has the same form as an apapard {riven abmr !,

o Tf the areument e aritded Coro iha sowepand Tieg o tien
the valine of the symbalic royamerw o mat 4y vatue,
TF, din addttion, value, wns vt cvestfiad thes dhe
value of the ayoboiie ﬁwrwwﬂ’*“ set to the null
chararter atring.

o Mixing posttional and keyword oovosc colevon 0 Thaee tyo nodon

may ha nmad tegathay dn a2 masrs foeeee e vk 9T e o]

ploments must rre eedo 911 bavgaal nte oo T Pkl d e pvaspn
YTiat ~nd pﬂr‘fiw*‘-.f”?‘ 1lat, Tho <orpe Fraw b a e dne nf
:jr\araj«"" = mdadad alpe o7 Y boat ' Y ERESEIEE & RO ’!+_”|(\v
L N T T T R I C T T T o P O I R TIPS S ISP (P

. b

aperard Yist 1F ihpye ava po onee et Camanbe Poad) sy ine B4

VITT, Model Statepants, Thaeee fnefynntinnm In dtka pose o ascasklae "o mgen
corye o peperate vepular pamertlos clatpmerte itk ses sabesnnapt Yy
#rapglated intn machine ccde Yy tha later phacr - 0 ke asaembler,

« The format of 2 mnlel statenent =,
[namé] nperator fﬂﬁﬁ“ﬁﬂﬁ§] [*'"ﬂf“‘}
o Pame may he any of the Fnll~uing:
o ordirary symbnl

« variable svmhn]

VIII.®

« sequence symbol
« the rconcatenation of an ordinary symhol with a variable symbol
or a variable symbol with one or more additional variable
symbols.
N.B. Concatenation may ugually be denoted by
juxtaposition, But if {the second item in the
concatenation begins with a letter, digit, {1, or
',', then the two items must be separated by a
concatenation operator which is a '.',

name may not appear when the operator is either ACTR, COPY, END,

TCTI,, TSEQ, or OPSYN

. operator may be any of the following:

» a reqular assembler opcade
. any assembler pseudo=opcode except END, ICTL, ISEQ, OPSYN,
or PRINT
~ the name of another maecro definition
. variable symbol
« operands is a string composed of:
o ordinary aymbols
. Or variable symbols
« or ordinary and variable symbnls concatenated together (The

'«! concatenation operator must be used when an ordinary

symbol beginhing with a leter, a digit, (', or *.' follows

a variable symbol.)

TX. Some simple examnles, Figures 1, 2, and 3 show three versions of a simple
entry roint macro, first with positional parameters,; then with keyword
parameters, and finally with a mixture. Figure 4 shows examples of
concatenation. Figure 5 shows the same macro as in Figure 4 except that
it has been peppered with comments. Note that:

. ordinary comments generate a copy of themselves whenever the macro
is invoked. '

. a comment preceded by '.*‘ in eolumns 1 and 2 does not generate
anything, 1.e. is a comment within the macro-assembler languare.

. comments given at the end of mndel statements appear in the
assembler statements generated Trom the model statement,

o a variable avmbol appearing in any comment is never replaced by

its value.

VIILI.IiS

Y

ON3

%1 @3

(0*Ci%eal v

¢1 JdUaQ

((OT*9T/(2+%))1=(24%) 1xv+21+42000¢e8464Y AT
£1¢¢o00¥g 9NISN

0 na3

(e1*CiHtel 1

8644 HOV4Yd

1 44

(0¢0)0°*¢1 vl

€l d0uyd

((OT%9T/(24GT1))—(2+S1) 1 x442T1+1000¥G% LG W

€1¢10604d8 ONISH

SLY A BA UBGSAS Y LLASY OUG

SO Es[

¢

* 0¢

+6¢
+42
+Lc
+9¢
+62

2000dy +H¢
TAIX3+€2

111X3

%

4

12
+0¢2
+61
+81
+11
+91

0 no3 100048 +S 1
(€T*CYHvt el 1 1IX3+HT
0¢2%c1 Wovddd 1Ix3 €1
*x 21
GN3IA 171
1 49 01
(0¢0)*D¥3¢G1 vl 6
el 4043 8
({91 x9T1/7(2+T1Y3))} ~(2+TH3)) xH+ 2T +XANSAS3IHE* 23 *THl W A
€ T*XANSAS3HE ONIST 9
0 NC3I XANSAS3YE ¢
1239400 S+11 *3TIHMVY ¥04 3W 3A3ITI39 —-- d0YG ANV ONISN SNSO™E *° %
(€140)1%* ¢ 1 I3 ¢
24¥3¢¢d3414d3 ¥Iovsds 13 2
JYdIOVA 1
INIW3ILVLEIS 3249N0sS IWLS

HaiLla

#2000

%00C0

00000

01000

#0000

Z24Gav 1¥aQv

LOOC

L.

00CO

c10C

3440
041%

L4dE6E

CO8c

3003 1D73rdo

<7
—
i

¢

~
wJ
1
y
-
D
N5 By

) e
DO ™

PN IS NN
[}

Cy D vy (3
OO
DD

teeccc
RCCCCO

+0CCCC
aeceen
gcecocecece
ceacces

307

VIII.14

SUUp$CUVAUL Uuucw putBou Sy U4 bR LUMSASY PUE KUNSASY Y304

JO ®sn sy} jJo eydwuexs ue pue STqEBIAERA We3sAs [DHSASH U3 JO O8[] 14 MHDLd

*
* no3 SN o09
* no3 10007
491 sa TO003NO
1000r g
T10003N0*2T¢ 4T W
* no3 2000r
Je6l Sa 2000 3ND
znoor g
Z0003N0*¢T B
SN0yl iva
2+20003N0* €1 v
Z20003ND* €T 1S
TOOO03ND*2Z21¢41 WiS
SN204Y*21*41 1IvI3I4VS
ST *x ON1ISH
123S2D ING
*
GON3W
* ND3 XANSAS3T
461 SQ XANSAS31IJ3ISASY
XANS AS3F g
XONSAS31D3SAST*€l 1
13949VL3¢H1 vy
H7+XANSASILIIISASEl vl
XAONSAS3133SAS3*ET 1S
13934v1s INOANT gvIs
O0d2VA
*
ON3W
* NO3 XANSAS3r
491 SO XAONSAS3133SAST
XANS AS3r g
XAONSAS31I23SAS3¢ 20403104072 W1
TIVI3 IN0OANI
XAONSAS31D23SAS3¢20d4d03*1G4d0% W1S avig
1IvI23420d03¢1Ad0% FIvI3I4VS avis
OY¥IVKW

IN3W3ILIVIS 3D2¥NO0OS

8¢
le
+9¢
+S¢
+5¢
+C €
+2¢
+1¢
+0¢
+62
+8¢2
+12
+9¢
+52
24
14
2e
12
0¢c
61
81
L1
971
S1
%1
12 ¢
21
11
01

~ANNOTNONO

1IW1S

Jv000
39000

%9000
83100C
Jv¥000
21000
81000
29000

2d4aav 13aqQv

Jvo3
J504

%904
8104
Vo4
21C4H
8104
2904

CaLy
C3s¢

Cdiy
cags
c3cy
cCat+
Caos
23C¢

34037 1973r9o

avncec
Zvoczece
260CCC
R970CC
AN S e
HG2CC0
81CCCT
Li1oCCT
cyocae
alel ol]
«ConNeo
H0O0CCC
CNceCeo

coeece
ccaoceee

2C1

VIII.1S

*
%

491

£000r
€0000ML* 0T
*

461

»000r
»000CM1*eT
1SNcoas+»i
%+5000CML*€T
#0000ML €T
c0000ML L 01

anN3

no3
na3
sa
d
W1
no3
sd
g

R
ve
v
IS
wiS

1SNo084e 01 1IvI34VS

G114 %

ONISNH
13383

s penuL3uU0Dc e

96

* 6§
1SN9208 %S
€000 +¢¢
¢CO00ML +2¢S
+1¢g

+0¢%

000l +6%
»0000ML +8%
+1Y

+9Yy

+G%y

+HYy

+ey

+2%

1%

0%

OML 6¢

J8100
31100

%1100
827000
36100
22000
83000
71100

LARCE ISt

PAACE
J29C4

Q04
81C4
avod
J1G64
81C4
9G4

CdLy
LtV EE

1S=PAY
cQa8s
€36%
eRE
tecs
evoe

zsl00e
J2¢1CCC
J11C00
811CCC
H11CCC
$110CC
83CCCC
¥23CCC2
caceee
JeCCCC
RACCCC
£20CCC
C8eoCCC

C
C

[GN®]
oy o
a)

53
2| a

[N

VIII.16

XT. Tistae of Parameters, Tt is frequently convenient to think of several
argmments to a macrn invocation as forming an ordered collection., The
possitility of having a variable sized collection is the most interesting
asrect; more on that Jater.

+ The arguments are grouped in a comma=list enelnsed in parentheses,
ard civen as one element in the operand 1ist nf +he maero instrietion,
Only one leve] of grouping 1= allmwed, 1.8, a 193t may not appear
3% an element of a2 1iat,

The enrrespondinge parameter, either pogitinmel ~r kevword, zerves

as a name for the entire 1ist, Irdividual efjeamepts of the Jist

may be seleected by a single intsgeyevalved subteeript enclosed in

rarentheses,

Tf the subseript valne is pacitive and selerts a non-
existert element then the null ehararter string value is
nused.,

The entire positional portian »f an operand list may he referenced

as a list by v=ine the sveter variable &RVSLTIOT, |
o A single anbasript, 1,8, &SYSTIST(n), selests the nth

roritinnal arcument,

A donhle subserint, f.e, &SYSLIST(n,m), selects the

mth element of the 1ist whieh appears s the nth positional

arenment s

. Pigures B and O give examples,

VILII.17

*UO[3BOOAUT U®B 03 Sjusuniie se s$3si7T 'y HENULd

aN3 1¢
* 0¢
»1 48 +62
{0¢Civegl Vi +82
. €1 d0ug +12
({FT%91/(2+%))= (24%) 1%H+214200048%6°%% W +92
€142000¥88 9NiIsSN +5¢
0 no3 200048 +42
(€14Q0)%%¢1 Ri 111Xx3+¢2
Yel6%%) MOvaya 1113 22
* 12
%1 48 +02
{0*Cl0%sG1 vl +61
€l d40dda +81
(ST %9T/{24G6T 1} —(2+51))%»+2141000Y48%2°%51 W1 +41
€T141000U8 ONISH 4971
0 nos3 100048 45 1
teTeCciveel 3 LIX3+%1
0*(L*ST) HIvays 11x3 €1
x 1
GN3W 171
%1 38 o1
(0¢0)°dY3¢sl vl 6
€1 d0yg 8
({91 %O
XL/7(CH+(TISYI I) (2ZH+(T)ISUB)) %H+Z2 T+ XANSAS3I UG (Z)SUT“{T)ISHD W1 Fi
€ T*XAUNSAS3US 9NISN .9
0 NO3 XUNSAS3IYE ¢
H1IV3 3H1 d33X —- d40¥U GNV 9NISH SNoog 3IAVH 1111S %° %
(€ET°0)%%€1 g I3 €
Jd3 *SY¥3 HIveEWa 13 2
ODYIVA 1
IN3W31ViS 3239n0S IWLS

#0000

%2000

20000

Q0000

61000

%0000

2 daav 1 ¥gav

3440

%000 041%
20U ERES
7300 ©U8S
=3L0

JC0C C317
2100 1486
+00Q CQs8c
113ren

vioc
g10¢C

W ey oy
O QO
OO0
MY YD

(@ Nl

0O
e}
AN a)

OO

OO0
QOO0
~ Y Y

7

]

*eTqeTaeA Weishs [SITSASY U3 JO 9S(| 16 WL

VIII.18

aN3 €€
* 2¢
%1 48 +1€ 3440 V1
(0°0)1%¢s1 vl +0¢ %0000 %00C C41% S1
€T d0¥a +6¢
E{IT*9T/{Z4%)1~ (249)) xH+421+4200045g°6%+% W +872 %2000 200 €986 21
£14¢00088 9NISH +12 e
0 no3 200048 +92 cc
(c1Clo%e el 1 1L IX3462 % G000 %00C C4ags 3¢
78(6%%) MWOVEdS 1£IX3 %2
* €2
21 ¥e +22 3440 2C
t0010%GT v +12 00000 000G 0414 8¢
€1 ¢04da +0¢
(EST49T/(2+5T)) —(2+4ST) 1 %»+21+100089% 251 W +61 01000 C10C 1486 ¢
€T1¢1000¥8 9NISH +81 cc
o} no3 100098 +4 1 o
(ET¢CIHve el R 1IX3+4971 %0000 000G €QRs €«
0f(L*cT) Movaue 1IX3 61
* 71
GN3W €1
51 Hg 21
{0f0)°(2)1SITSAS3*GT v 11
. €1 4040 01
({191 /(Z+ (T T)LSITISAS3))—(2+(T11
,.hwu4m>mw-*¢+mﬂ+x02m>muxm._N.Ayhm~4m>mw..a.~_hm~4m>mw W1 &
€T1*XUNSAS3 49 ONISN g
0 N03 XANSAS3YE £
37dWVX3 ¥31VI NI ¥31139 3NOQC -- 3AVS ANV SNIST Snaeg *° 9
(€E1¢0)%eg 1 I3 S
3d3H 11 INd 04 3AVH -= ISI7T ¥31M3IWVUVd ANY L1sNSI JYdHLIx® %
3INIS 3dAL0L0Yd 3HL 30 Q1313 INIWWOD 3HL NI INIWWOD v INd LaNV3 %°* €
MIvaya I3 2
CGUIVW 1

IN3IW3LIVIS 323nGS 1WLS Z2Yaav 1daav 173rang

VIII.19

X1T. Crnditional Assembly Statements, The ststementas frn thin antesory allny
arithmetinr, logical and sharacter manimlatisne 4o % pavfarmsd at aegenhly
Hima widh dha sanlard ard seqoence Af the agaemhlaed “ratygatinne hefne
affactsd Wy the resolie of the manimlatinne, These statements may apvear
ir the matn body Af the prorvam as well as in manra Anfinttione,
« SETesymbola are the yser dafined rariables of the maecro-gssemhlor
languaga. The tyre nf a SETesvrhnl iz elther.
artthmatin (for SETA=ssywhale) with Vit cionad integer valua
hinary (or re3lly logirallry for SETRasvmbnls) with a valos
nf etthar 0 {for false) or 1 (For true)

-

. character {for SETC=symbols) with a charanter atrins yaloe
whish has at most R sharacters,

Conversion among the types is done whanaver neccagnry and possible,

and nrodunes the ewnested results, Ansther att-ihnia of a SETesymhol

is its sanpe which may he aither,

o 100al = the name is defined nply within +he tragram sermept
{pither a masrn definition ~= the main vrogvam) where 1+ is
derlared and ite initial walne (which ia sitker zern av nnll
dapandine npan its type) s set evary tima the nrasram secmert
ta vanched dvring assembly, which may be sevewral tipes “or
a panrns dafinitinn whisrh is dnyokad apvera) times
e glotal = the name fe dafirad within every gecmert yhera it

1g denlared and its initial valuys fe zat nndy nnes nd +he

heginning of the gasemhlv (nnte +that the wrwd clohal S«
naed almost hut not quite the way 14 wonld bhe for a blaoke
atryetnrad lnngnag@)

The final atiribute of a SFTeaymbnl Se yhether 14 da g eirnles variable
ar o dimencioned variable. 7F it i dimensinned:
. only a gingle dimenring 45 allowed
« 1tz size mu=t be bhetween 1 and 2500
« NDenlaration af SETwsymbnls:
. 1omal SRTesymbols ax»e derfared hv an instvueting of the form.

hlank l=dan]=nn namelted

where:

o l=darlenp 16 atther T0TA 0 TCIR. A 1017 dovending an
tha tyne of the variahles heirc Adanrlapes

o namelist is a comma=list of vavriable symhols

VIII.20

. g£lobal SET=symbols are declared within each »rnrram segment
whirh wants to referenre their value by an instruetion of the
form:

hlank g=denl-nn rame] st
where namelist is as defined ahove ard pedesleon is either
GRLA, GRIB, or CBLC depending nn the tvpe nf the variables beinc
daclared, ‘

o 3f the SET=symbol is to be dimensinonad then it appears in the
namelist of its declaration with its =ize, given as an interer
constant, ennlosed in varentheses following 1+, Tf the SET-
symbol s global then every declaration of it must anote +he
same s17Ze.

» in any set of declarations, the ome= for glohal SFTwsymbols
rust precedes those for local SET=symbals,

o Attribites, These are essentially vnredefired funrtions whish may
he used ta query sharacteristica anch as tvpe, lenoth, sealing, ete.,
of SET=symbols, nrdinary eymbnls, and symboliec parameters,

« The attrihutss nf a symhnliec parameter are those inherited
from it ecorrasponding arsument,

« The attribmtes of a 1ist are generally those of the first
jtem in the 1ist,

+ The availahle attribntes are:

o T' = retnrns a single character dennﬁiﬁg the tvoes A
indicates an A=tyve address sonstant; B indicates
a binary constants C indinntes 3 character constant g
ete,

o L' = vatnrnz an integer numher indicating the numher of
hytes allacated +o the symhol

s+ ' = snale factor of +hs symhol

T' = width of +he integer field nf +ha svmhnl

L]
L I B IR 2K BN B BE BN AN B 2R BN) LR BUEEEE 2R IR Y B]
oo, W v
inteser field arale
Fixed: T2 R¥ 7 4§ w]
Floating: TV = %10 = 1) =S¢
Packed s TPo= 2#77 - S oW]
Zaned TV =]9 w G

o K' = number of characters in an arpument, when the
argunent s a4 11gt then the count ineludes parentheses

‘and Aammas

VIII.Z21

o« N' = number of items in a list

¥' and N' may be used only inside macro definitions

&8

« Operatinmg on SETA=symbols

all evaluation is done in 32=hit signed integer arithmetie
character strings are aonverted to integers if neeessaryv: if
the string does not vepresent an integer, then an error is
raised
whan a SETA=symbol = wvaed 1in a model statement, its
absolute valve is converted to A string and leading hlanks
are deleted
the assignment statement for setting values of SETA=symbols
has the form

SETA=symbnl. SETA aynragsion
whare the synressinon ‘s romposad of variable svmabol=s ~nmhined
by the operators 4+, =, *, ard / with mrenthacas allowed for
raadability nr overriding of Adefault nrersisnns
Firvres 10 and 11 117ustrate the gee n¥ SRTdawgymhels hy
aiving tun final varsione ~f +the BRRACY manrn ~f nreviong
ayamples, first hr nsinc st Jacal SFTeswynhole and then he

neing leonal and glotal SET=gymhals,

VIII.22

*sToquAs VIMS JO 8s(i Q] dHOLIA

ON3 2
* €2

%1 u8 +22 34.L0 vVIncee

(0°0)%4sl v +12 %0000 000 C41% 51C7CC

(E1)19¢e 6y Wl +0¢ %2000 #2uC €eve6 zZ1oCcC

(cT1¢Crvtel a! HI0U+67 %0000 , _ »00C CQ8S 3CLCGO
=234 (6*%)=4 MNIvyysd M30d 81
* L1

v1 ug +91 3344C TeNccen

{(0CIve gl v +G 1 40000 %50C C41% 800COC

(e1)8%*2142L "N +%1 0€000 0eCC L1868 +772CCC

(c1*0)%*¢l R w01108+€1 %0000 %00C €Q8S €O0COC
(21%2)=d*%=24 %3vayd W01108 <21
* 171
GON3IW 01
$1 33 6
(Q0¢D)*24Y3*sal vl 8
(el)°44034(2)¥34(1})43 W7 L
((OTA9T/(2+(T1)1U3YI—(2+(1183))I%4H421 v1i3s 4403 9
(e1¢01%¢¢cl 3 13ev¥I3 S
4403 Vo1 4
1H91Y 11 00 NVD 3IM MON %° €
0=2¥34(21*%11=43 »#IvEYS 338VI3 2
0YIVNW 1

INIW31LIVLS 3D2dN0S 1WlS 24aav 13daaqv 3a62 123rgC 270

VIIT.23

GN3

%1 ¥4

(0¢01%* G v
{cl1)1oetsssy W7
{e1to)vten 1

% MIivgud

6 Vi3S

4 v1i3s

1 4

(040144 a1 vl
tel)gvezréL W1
(eT¢01%% €T R

% MIveud

21 vi3s

L vi3s

2434 149 v 199
GN3W

21 b.Rc)
(0¢0)°D0u3¢G1 v
(€T) 4403 4243 ¢ 143 W1
((OTx9T/(24+TU3))—(2+TU3))Ixb+21 vi3S
(€T40)%* el 1
4403 v121

2¥3¢ 143 V89

SINIWNOYY 3IHL 40 JWOS SSVd =%°
01 ST08WAS IVE0T9 ONISN JWIL SIHL ING ‘NIVOV AVM iHOIY 3IHL =°

Y3 MIOveud
OdI3VW

INIWILIVIS 3ID2UNOS

2t

% 1t
+0¢

+62

+87¢
HDI0H+L2
MI30u8 92
2d3 G2
143 %2
* €2
+22

+12

+0¢2
WO11049+61
wWNi1049 81
243 L1
1¥3 91
* G1

41

* €1

21

11

o1

4403
avis

avi3

~ANAOFNOM~OO

IW1S

*S8TqETIEA TEQOTZ 8Uios JO
@sn 8yl U3itMm auopdd ‘(] eandtyg ul usald sTdwexe 8y, ([T HHOODLA

#0000
#200C
#2000

%3000
0e 000
%2000

24anv 1uaay

%000
%200
%000

#0000
0e0q
%00d

3420
0419
6986
0Qes

3440
041%
2186
oass

3402 123rgo

¥y10000
910000
210000
3006000

J00C00
800000
200002
00C00C

207

VIII.24

+ Operations on SET =-symbols
« roncatenation is performed as hefare -« juxtaposition can
normally be used, but the '.' concatenation operator must
be used wheneaver the second item irn the roncatenation begins
with a letter, digit, '(*, nr *,*,
for the rest of this discussion we need the fallowinz definitian:
A rharacter expressior is a e+ring of not wmare than
255 characters enclosed in parentheses, which is composed
of ordinary and variable symbols {hoth symbolic parameters
and SET-symhols) coneatenated torether; any instance
of a variable symhol will he replaced by the value of
the variable symhol,
. a substring selection operation may he performed by using:
charanter-expression(firat Jangth)
where first and length mav not be expreasions and must
evaluate to integer values; note that the subseript selectors
may only be applied to rharacter expressions and that the
numbering of the character positions in a character expression
hering with 1
the assignment statement for setting values of SETC-symbols
has the form:
SETC=svmbol SETC CeeXTY
where c-expr is the concatenation of one or more character
expressions and substring selections
Figure 17 gives a simnle example of +the use of SETC-symbols;
i¥s admittedly ad hoe (better examples will follow) but it

shows most of the operations mentioned above,

VIII.25

*NO1SS3¥dX3

*sToquAs DLES JOo SSUSTU pU® 98N 89Ul Jo SUOTIBIISATIL T HALLL

“3IWYN O3NIJ30 ATSNOIAING 1€200KWSY (02
UILIVUYHD 40 HIONIT NVHL d31V3Y9 ONI1HISENS 40 1 NOISS3Idd4X3 1.909KSY LZ

3OVSS3IW 30027 dH0¥¥3 IWLS

SO11SON9SVYIa
ON3 r43
* 1¢g
*kx%x JOYHIT Hxox
s VEZTHSD 34 . v 4+40¢ 12€42414%493 920000
e %340 20 Y4+67¢ %493 $20000
V53D o l¢] vy 4+48¢ 134492 120000
FAkx HOUYT x%xx%x
AR E J0HQV %1 12
* 9¢
s VEEZTIES4D 24 € 44672 1223€42414€492 Vv10000
s 9€44D aJ4a a¢ 4+ %2 23€49D0 110000
s VES WD pl¢ ve 4+¢€2 12€492 $10000
J9véed J0HGV €1 2¢
* 12
+ V82140 20 +0¢ 1322€42414 400000
s8¢0 J4a g+461 ZJ 300000
1 VD 20 v+81 12 400000
gvé JC HAY 27 L1
* 91
tVHEZT 144D 20 14+61 1223€42414149D2 900000
+81440 Ja g1d+%1 231490 €00000
V1443 ple vid+e1 131492 000000
gveid J0HAY 17 21
_ * 11
ON3W o1
s+ SNO0NBI. D 3a JYd3 6
$Z2S334d3.0 30 2S334¥d3 8
+ 1S33¥d3. D 20 1S33¥d3 2
1 1S32S3:¢°,€21°34dT, J13S SN908I 9
(142)eS34NST, J13S 2S3 &
(14T1):eS4NS3, 313S 1S3 4 -
SN909342S3°*1S% 3101 €
S3INSI ¢ IYI3 J0HAV avis 2
0¥ IV 1

INIW3ILVIS 334N0S 1W1S 2Z2¥0av 1daav 3007 123re0 201

VIII.26
« Operations involving SETB=symhols
« the value of a SETB-symbol is either O or 1, having the meaning
false or true respectively
« these vaives are produced by
» the comparison of arithmetie or character values hy
using the comparison operators EQ, NE, LT, GT, TE, and
GE
» the combination of gETB-symbals, 0's, 1's, and comparisons b
using the logical operators NOT, AND, and OR
« these operators must always be preceded and followed
by at least one break character (blank, parentheses, or
single quote marks)
o conversion is done as necessary and as possible with the
intvitively expected results
« the assignment of a value to a SETB«svmbol is accomplished
by ar instruction of the form:
SETB=-symbol SETB (1~exor)
where l-expr is either a lozical constant (0 or 1), a SETB=
symbol, a comparison, or a logical expression formed from
any of these by using the logical operators.
« SETB=symbols and logircal valued expressions are most naturally
used in the control statements which are takenm up next --
examples of their use are therefore delaved until after that

discussion,

VIII.27

« Conditional Transfer and Iteration =- the final set of instructions
in the maecro-assembly language are those for effecting conditional
transfer and iteration. |

. the ANOP instruction has the form
sequence symbol ANOP blank
and serves exactly the same function as the Fortran continue

statement
« the AGO instruction has the form
[sequence symbol] AGO sequence symbol

and is used for unconditional transfer of control

. the ATF statement has the form

' [sequence symboi] ATF (l-expr)sequence symbol

| where l-expr is as defined on the previous pages the
instruction may be used to effect the conditional transfer
of control

« there are nn instructions for the direct expression of
iteration and loops must be programmed by nsing the conditional
transfer statement. There is one instretion for use in
controlling the number of times a loop is traversed, but it
is designed for error checking rather than iteration. Tt
has the form

blank ACTR expression

where expression is a SETA expression as defined in a previous
section, Tt is used to set an upper limit on the number of
ATIF and AGO instructions that should be executed local to
the appearence of the ACTR instruction, i.e. within the same
macro definition or within the main program -- the default value
for this 1imit is 4096. When that 1imit is reached, transfer
is automatically made to the next program instruction following
the macro instruction at the highest level of currently
nested macro instructions == if the 1imit is reached within
the main program rather than within a macro definition, then
transfer is made to the END statement. Note that the limit is
a local value and follows all the rules for such.

o the MEXIT instruetion has the form

[éequence symbo%] MEXIT blank

and is the same as a Fortran return statement

« the MNOTE instruection has the form

VIII.28

ssquence symbol o { et pd
|mviante synbal MNOTE {{cade],| character-string

where chatacter-strine is a’ defined in the section on SFTC
svmhols and rode is a numher between 1 and 255 (1 is assumed

1 nnde is omitted) or an *, When this instrurtion is
ennountered within a masro definition /and *+ mav appear only
within a marro definition) | tnetarpar af waniahlp qrebale
withis dhe shgranterectvive gra vorlared hy 4hats wvalnes and

the pacld fe neinted as an avwer massacs, Tre yalas of

rode 42 figured into the running account of the severity of the
errors {which affects the aunhsequent processing of the nrosranm
after assembly is finished) except wher +ha nede is *, in whish
sage the medified rharacter string ig dnet meintad as a rnmment,
the remaining figures illnetrate this fFinal aet of instrn~tions,
Pirnre 12 shows a macre For a generalized move-character
aperation ard 11lustrates the use of the ronditional tranafer
instrustions, Figures 14, 15 and 15 cive three versions of

a marre for szl nlating the fartorial of a rumbery firet hy
sonstruntine code to do the ealenlatior, +hen hy dAning the
ralenlation at as<emhly +ime with an itevative alrorithe,

and £inally hy doing the ealeulation at assemhly time with

a vecursive algorithm,

ATS

VIII.29

* ¢ PAOUTFUCD

*s}UBWe}e}s JoTqUISSB-0I0BU TRUOLIPUOD JO
esn 8y} JulqeI}snTI] OIDOEBU I830BIRYO-8AOU paz[lelsusd V

CT 3UNDIA

UNFA 9¢
WOUd 34 U{NI TR 43094019 JAN 33
AGCxy 1073 vV13s 3405 ¥t
d NV I1SVv1® ¢¢
d30U7° J9v l¢e
96 Z-N33 v1i3S NIT3 T1¢g
T+4 103 v13S ¥yl23 0O¢
WOH4 2 4(2G62) *34074+0 4y JAN 6¢
3G 2x3d 103 V1iaS 4403 €7¢
LSVTI*(UNDDT) 41v L2
(962 34T NI T13) i3S IND2D3 97
dONV 43371° &¢
C vids 4103 %<2
SNOTLDNEASNT DAN %° €2
30 Y39wWNN FiVIddidddy 3H1L NMOU AVT M3N ° 27
dONV IN2D* 17
NSEA3 7 vi3s N33 é
dINV N3T4°* 61
INCO® JOV 81
314347 Vi3S NFI3 L1
NS (WTYE 3T 19 317471) 31v ADS * 91
SC1313 OMI 3HL 40 ¥31Y8JHS %°* G1
3HL 40 HI9N3 T 3HL SI J3A0W 36 01 SHILIVEVHD 40 YIGNNN FHL %x°* H1
LIX3n £1
+J131d AILOVUVHD V. LON ST WOd 4%, F1ONA 21
ACS® 4D DI WIEAT . 1) 31v X34 11
11 X3n 01
¢Q131d MIUDVHVHD ¥ 1ON SI O1%9.¢ FIONNW &
AUS* (oD 03 U134 1) J1v g
SANVYIdO IH1 40 ALITVO3T IHL ¥O3IHO 1SYId4 %x°* ¢
* no3 I38VI3 9
¢ dILIVEVHD I AOW 0371 WHINIO, éx JLONW S
INOD3 £1371 4
FH40G3 YD IENITIY vidT €
WIdd4343 17 3ADA 138vI3 ¢
CYIVA 1
IN3KILIVIS 3D2AH1DS 1nAnLS ZHGUY T Haay 304D 133740 2307

VIII.30

penutgjuodre e (T HHNDIL

ATGA3SSV S IHL N1 03907774 INIWIEVLES T

SlNIWIL VLS J1ONW 12e00WEY %S

40vSS Ik 4000 wnAM3 N7 1

SOTALSONDVYIC

ON3 23
« 19
= SG d1SviON D9 ovVaQ
0210 Sa JulS 56 VeSO
0CeID¢ SG HdlS 8G 90l
00G1D Sa VolS LG 100
* 9¢
x GG
Q114 ¥31IVHvYHD v 10N SI d1SvION %9
% nS3 JuTHL+ES 216o
d3LOVEVYHD 3 AUW O3Z ITIVHANTD ¢ x 2%
BESVIION®DHLS GAOA JdiHL 16
® U5
J81S*(02) 0+5ud 1S JAA +5% VBGOC 2337200 v8Gd 9304 €120 2000
%k EivE! ON333S+e ¥ 2000
A3 LIV HVYHD 3 AOKW O3ZI1IvHINIGD &% LYy
Ju1StEalLs AATJN OND3235 9%
® %
GuiSe{H») GO 24V 1S DAA +HH ©@3200C 1130 90¢4 2113 4220 9giec
Gy 1S¢€(952Z) O+yd 1S DAnA +¢Yy @030 <1000 90¢4 2104 4420 00GC
* ng3 1Sd1=+2% cCc ol
W3 1OVHVHD 3 AOK Q37 TIVu3INID&x 1%
du£S4vd LS IADA 1Ssld 0%
Cl4x ONTSN 5¢ (1089
¥ Bt

x Le

VIII.31

****DINUTFUOD

332349343

XOWSASS T dnd LT

dinI LI ENIAIT

XOANSASRS

0 0sd=%dW31"

N3 ¢dn 313

140009

IVIYOIIVY 3HL 40 NCGLAIVIMIvI 404

eSes DIWVI Y04 Q3ISN IAY GOCTI ONY NIATTZ,. 4%
T+N3I AI3

T+N3A33
diIMNS*(NIANZSITI
93Y3

(93393 D3 %2 /9367)

GNdA
ol
138
s 10
34

)

v
v

s$U JO UOT3ETNOTED
8y3 JOJF 8pod 8Yj} S3ONLISUOD YOTYM OIO®W V 4] HUNLIJA

XOGNSAS3 3

XJINSAS3IT

134vis

JGUD LDNYLSNID % °

F10NA
Vi3S
dINV
v13sS

41v
v1i3ds
#13S

agaos
d IAS *®
N 3A 33

N3A 33
N3A3S 13

41vd d431S193d JU3-N3A3 NV 129 % °

NIAFSI3 8337
GJ33*NIA33 Y121
dW3l13 Vies

D34 3N iov3d
CduIVA

INIWILIVLS

1389v3

32¥13S

~ NN~ OO
—t

LALS Z240daV 1douv 4402 133 rao 2081

[

VIII.32

SO WD 804 03 SN 3dv ¢

S 2 WD HOd4 g3 sn

34dv

S

1O d=
N3
€42 bl |
PgoXslen R« 138
G¢2 A
<0003 34
10ad=4¢ 2
Lt v
1¢¢ v

IUNY 28x%
2L 1ov4
S Vi3S
Gé¢ el
10001¢2 104
sy 4 A
10003 3d
s Oad=472 2
94?2 v
1¢¢ v

ONY $6x
c€¢9 10v3
C vi3<

STéx% IN1SN
dWF 43 vige

penutluod****] HHNDIA

06

5%

& WY
20003+t ¥
+9%
20001 +6YH
+HYy

+¢Yy

+2%

+i*

oY%

5¢

dAZLl3 BEC
& L€
10003+9¢
+G¢
TOCLTI+%¢C
+e e
+7¢
+1¢
+3J &
£¢
1A
Le
2
G Z
Y7
= €¢

Q
2.
N0
o
LY

200U

4000
2000
L320C
16000

21000

910060
2€0d0
9aC00
10000

0GLoCeLo

£Zel
85234 069%

S 01
3204 ObiYy
Cedd4 0Ces
L0000 0o 1y
1000 CE1%

0104 0Z29%

7104 CRLY
el 0C6s
38006 021+
100C &1y

e CGUUQ

gzeeoe

VeGuoo
ec00C0
220000
CzZ00G00
210000
gl1CGOC

210000
21coooe
croeeno
3000600
30CCO00
00000
(SIsRf el

00000

VIII.33

SAT3RIOYT UB SULST jU S93B[NOTED YOTYM OIOEW V QT FUNOIA

s 0% 0C, 4=
1020 4=

1070G44=472
L

1 02L.d=14¢
£¢9

GT14x%

¢33 .3 =933

d40071°
T-¥ 133
d 103=%4%
aN3* (0 D3 ¥10%v)
N3
T
4103433
WH IT¥09TV 3ATIVE3ILI
I3YIINT

ON3
&

1

10vd
™

1

1oVv4
*

ONISN
&

(N3A
1 13dvs
dIONV aN3©*

JoV
vi3ds Y103
vi3s 43
41v 43371°
vi3s 3103
vi3s 43

| SO0 ¢

NV A8 3INIJQ %x°
12vd 139vas

O¥IVA

INZW3IVLS 324103

*Wy3TIOoBTE

sl

%

£l

’Z
+1¢ 30030
a¢

61

+81 80000
L1

91

ST

%1

el

~ N
—t -

~ NI NOM OO
pu—)

1Wd1S 2d3aav 1 y¥aav

08e10600C
63dc00000

2004 0Zes

8003 0E8e

300000
80060C

%0000¢C

000000

00Go0C

340l 133190 201

VIII.34

*uyjiI03Te

PATSINOSI ® Julsn ju S93e[NOTEO UYOTUM OIOBUW V 9] HUNOIJ

¢eWNDIV3 4 4=453 43

9343 IX3INB*Q0¥dT
T-N3

N3 %=WNIJDV3

N3 * (0 03 N3]
G0dd3*1x3N3
O343ENIWNIDIVY3

D3YTANT T
0349% *N3

anN3

1
190v4

1
10Vv4

ONISN

ONIW
1
dCNV
1 IX3A
113vd
V13S
Vi3S
41V
V131
110Vvd
OYIVA

ONIAW
110v4d
10vg
OY¥IVA

8¢

Lz

92

* G2

+%2

(4

* 2
T38VI$ +12
0¢

* 61

81

x L1

91

J1368VI3 61
GN3*® +1
€1

139vis 1
IX3INs 11
(Sa ki)

4

13gvn
b3

13€va3
38 V2

=N NNFTN O~ 0O

IN3IWIIVIS 334n0S 1WLES

30000

3LV

2 8Cav 1dcav

10C0CC090
ggecCCann

JCud €48g

80C4 (¢8g

3¢0D 173r4cC

plalofeinge
g8000CC

$00CCC

ccocee

ceoncono

37

IX.1
ProGriM STRTYS NS RUCRONS

{ 3 C Y
Ai% ({,‘s\ _ '“\,\9‘;;; (,;,«\«i}%vu q %’q PRI NN f‘»{t a & bow § x* LA M{l e >

) \ . T
su@uz VLHOV Qi,’ﬁ >C\M;”§ lent crd Gk O (vevie f‘*-%{‘td‘

LPSW .D\(YS\”) { ;{LEA ¥ 'D‘ EQU&_‘%\‘) — P

‘33 by N1 -t < e
SPH R, EKR‘)SM' ET’\:}W%;’:&Q%‘}

SSM DB ({BID G) = PSWE

T - $PSWE i

€ .
wve invoke Svpervisov call m'\muwp{' vovhwne

et Cx,ucl ..Qoocz Km%:; t»-ftw”

SSK QVFQ& & (I N o
‘ frvp st . & ooy o (T ol atd

Q-E)K Q\}‘Q}‘ =y :' ‘ \'«[‘im CoX . Lo { } ¢ w o
IsY b‘igé o S OIS Tov8 g.s:aut:m\:‘x ﬁmsl

:‘ Ppabdae s v, R; 16N Q,\H»,é:_r CL A Ok

oy Aanet o ST gl W 4
lm oo [roce Y WALAL By gy
i ¥

(108111 D) > 1008
£ - 00K)
gt — 181

TS [ORET

N.B. cf’pim.%aa,\ w dorodle

IX.2

STATUS SWITCHING:
CPU STATES:

Problem/Supervisor PSW bit 15 = 1/0
- privileged instructions executed only in supervisor state
(I/0, direct control, LPSW,.SSM, SSK, ISK, DIAGNOSE)

- state change requires whole new PSW

Wait/Running
- in wait state:
- no instruction fetch, but timer runs
- unmasked interrupts accepted
- state change requires whole new PSW

Masked/Interruptible
- system mask PSW bits 0-7
I1/0 & external interrupt masks
- machine check mask PSW bit 13
masks all system machine checks
- program mask PSW bits 36-39

masks for fixed point and decimal overflow,
exponent underflow, significance
- in all cases, a bit = 0 indicates ''masked off"
state changed by new PSW, or:
SSM changes system mask
SPM changes program mask

Stopped/Operating (no PSW bit)
- stopped state entered by machine malfunction or manually;
no instruction fetch, no timer update, no interrupts accepted;
left only by manual control
- in operating state, instructions are executed (if not in wait state)
and interrupts accepted (if not masked)

i

Storage Protection:
- each 2048 byte block of storage has 5 bit protection key:
bits 0-3 store protect
bit 4 fetch protect
- operation:
- store reference:
PSW/channel key compared to storage block key (4 bits);
store is permitted if:
1. keys match, or
2. PSW/channel key is zero
storage unchanged on mismatch and protection interrupt generated
- fetch reference:
fetch bit = 0 fetch not monitored
fetch bit =1 fetch permitted if storage keys match (as above)
- CPU/channel generated addresses not monitored (PSWs, CSW,)
- may protect against store or against store-§-fetch, but not against
fetch only
- storage key set by SSK & may be inspected by ISK

Interrupt System:

When interrupt occurs and CPU is masked:

a. I/0 and external interrupts remain pending
b. program and machine check interrupts ignored

When interrupt occurs and CPU is not masked:

a. current instruction completed, terminated, or suppressed

b. current PSW stored in old PSW for interrupt class

c. new PSW for interrupt class becomes current PSW for CPU -
new PSW is effective immediately and is not checked until

actually used by CPU

Interrupt classes (by priority):

class old/new PSWs interrupt code
machine check 30/70 model dependent
SVC 20/60 X'ooii' ii from SVC
program 28/68 X'ooop' p=1...F
external 18/58 X'ooee' ee=80-timer
I/0 38/78 X'ocdd' §¢ channel
dd device

for I/0 interrupts, additional information is also stored in
the CSW (channel status word), location 40, for the interrupt
routine to peruse

permanently allocated storage:

0 dw initial program loading PSW
8 dw initial program loading CCWl
10 dw initial program loading CCW2
18 dw external
20 dw SVC .
28 dw program old PSis
30 dw machine check
38 dw 1/0
40 dw CSW (channel status word)
48 fw CAW (channel address word)
4C fw unused
50 fw Timer
54 fw unused
58 dw external
60 dw SVC
68 dw progran new PSWs
70 dw machine check
78 dw I/0

80 - diagnostic scanout area

IX.3

IX.4

Suftware responsibility:

1. set up new PSW locations with appropriate mask bits and
instruction addresses

2. load and prepare interrupt routines at specified addresses

3. set current PSW to appropriate value

Integral Timer:
- 32 bit word at location 50-treated as signed integer
- low resolution timer
- bit positions 21,23 reduced by 1 every 1/60 sec, or
bit positions 21,22 reduced by 1 every 1/50 sec.
- resultant resolution = 1/300 seconds
- updated between instructions when access permitted -
may be delayed or omitted under certain conditions
- high resolution timer:
- bit 31 reduced every n 13 usec - counts at 300 cps in bit position 23
- bits 24-31 in backup internal storage-location
50 updated periodically - may be delayed or omitted under certain
conditions
- in either case:
1. external interrupt generated when timer goes negative-timer keeps
ticking
2. store/fetch reference to location 50 sets/gets full timer value
3. to change timer without losing tick:
- put new value in fullword at 54
- MVC bytes 50-57 » bytes 4C-53
- timer has new value; old value at 4C

X.1

Input/Output (I/0)

Storage
Channels T PYYY
P e |
e .
CPU(s) control *ve ACP control unit ,,,,
'lk) I/0 devices
CPUs: execute I/0 instructions

initiate asynchronous I/0 activity
monitor I/0 activity
receive interrupts for I/0 state changes

Channels: at most 7 - numbered 0 thru 6

multiplexor/selector channels

direct info flow between devices and storage - permit
concurrent CPU § I/0 activity

provide standard I/0 interface

converts CPU control info to proper signal sequences

assemble/disassemble data

provide registers for channel program execution -
decode and control channel commands

may be one or more control units hooked to given channel -
they share common bus

Control Units:
provide logical capability to control and operate I/0 device(s)

interprets channel sequences for devices

controls data transfer timing over I/O interface

provides device status to channel - control info to device
one cu may attach to 1 or 2 channels

cu may attach one or more devices

I/0 Devices:
many of these: terminals, discs, drums, data cells, printers,

readers, punches, other computers, etc.
each has unique 16 bit address:
0-3 zero
4-7 channel (0-6)
0 = multiplexor
1-6=mpx or selector
8-15 cu and device (and subchannel on mpx channel)
each path to device has unique address
contiguous address sets required for shared subchannels
or shared cus
addresses set by physical connections

X.2

Start I/0 Instruction:

sI0 D, (8,)
rightmost 16 bits of D,(B,)
taken as I/0 address

CAW (location 48) provides key and channel program address:

48: key /;{;/ / CCW Address

0 34 78 31

Key: channel protection key
CCW address: address of first (or only) CCW to be used

CC setting: 0 I/0 in progress
1 CSW stored (bits 32-47 only)
2 channel or subchannel busy
3 not operational

Once started, things continue until:
channel end (ce)
device end (de)

control unit end (cue)
error or unusual condition
All of these are signalled via an I/0 interrupt (or several of them)

program procedure:

1) establish CCW program

2) turn off I/O interrupts

3) set CAW

4) set new I/O PSW, if necessary

5) issue SIO

6) test cond code - if nonzero,
7) restore I/0 interrupts

system operation (simplified):
1) CPU executes SIO
2) CAW, first CCW - channel
3) proceed if path available
4) device address - all cus on channel
5) addressed cu logically attaches and returns its address
6) first command code - cu
7) device status byte - channel
8) SIO terminates - CPU freed
9) subchannel continues responding to cu/device service
requests and executing CCW program
10) finally will receive ce and de (sometimes cue, also),
possibly along with status bytes from device and channel

X.3

Other I/0 instructions:

TIO

HIO

TCH

D,(B,) test I/0
tests status of selected path; sets cc as for SIO

D, (B,) halt I/0
[t : s s . .

stops current operation on specified path, if there is one;
sets cc to indicate effect and status

D,(B') test channel
tests specified channel only and sets cc; cu and device

status ignored

X.4

Channel Commands (CCWs)

each command (except TIC) initiates or continues I/0 operation
max info transferred = block, as defined by device
I/0 op terminates on block or byte count

CCW format:
CoMM /// ,//
CODE | DATA ADDR FLAGS 000 /ij;iz;fj COUNT
0 78 31 32 36 37 39 40 47 48 63
DATA ADDR: address of first buffer byte
COUNT: true byte length of buffer (>0)
FLAGS: 32 (CD=1 -+ data chaining

33 CC=1 » command chaining

34 SL1=1 ~ suppress incorrect length interrupt

35 SKIP=1 » suppress info transfer (input only)

36 PCI=1 » give program controlled interrupt when

CCW used
COMM CODE: last 2 bits (if#0), or last 4 bits, determine command
all 8 bits + cu and device and may be used there as
modifiers

commands recognized:
READ mmmmmm1 0
sets channel for input and initiates
read at device

READ BACKWARD mmmm1100
as for READ, but backwards,
if device supports it

WRITE mmmmmmO0 1
sets channel for output and initiates
write at device

CONTROL ~ mmmmmm] 1
channel set up for output flow and
control op set up at device -
control function specified by
modifier bits or by data
transferred to device

TIC (transfer in channel) xxxx1000
next CCW fetched from data
address - channel not informed -
cannot TIC to TIC or have TIC
as first CCW after SIO

SENSE mmmmO0100
sets channel for input and initiates
sense op at device; device
returns detailed status info
unique to device and cu, one
or more bytes; status is that
at end of last I/0 op on device

Assembler CCW instruction:

[symb] CCW CC,DA,F,C

cC abs exp = command code

X.5

for most devices, first 6 bits
of sense info are as follows:

UTH WKW DN-=O

DA exp = data address
treated as AL3(DA)

F abs exp = flags

command reject
intervention required
bus-out check
equipment check

data check

overrun

bits 37-39 must be set to 0
assembler zeroes bits 40-47
C abs exp = true byte count

command is assembled in CCW format and aligned on double word -
skipped bytes (if any) are zeroed

Examples:

For these examples, we assume:

a. the device is similar to an IBM 1050, which is a typewriter-
like device used in most System/360 systems as the operator's

console

b. the I/0 address of the console is X'009'

c. the device commands of interest are:

READ (X'OA') reads EBCDIC bytes from the console
followed by a carriage return; input lines are
assumed to be variable length up to 100 bytes

WRITER (X'09') writes EBCDIC bytes on console followed
by carriage return

WRITEN (X'01') writes EBCDIC bytes on console and leaves
carriage at line end (no carriage return)

d. the proper masking and unmasking of I/0 interrupts is provided
by surrounding code

e. the following symbols are defined as shown in the assembly:

READ EQU
WRITER EQU
WRITEN EQU
CDATA EQU
CCOM EQU
SLI EQU
CAW EQU
OPCONS EQU

X'0A'
X'09'
X'o1'
X'80'
X'40'
X'20'
X'48'
X'009'

data chain bit

comm chain bit
suppress length bit
CAW location

op cons address

f. the storage key for all I/O is §

Example 1: read line from op console to AREA

MVC

SI10

BZ
MYCAW DC
coMM cCw
AREA DS

X.6

CAW(4,0) ,MYCAW
OPCONS (0)
0K

X'50",AL3 (COMM)
READ,AREA, SLI,L'AREA
CL100

Example 2: as above, but put first 10 bytes read in AREA and rest in BUFF

MVC

SI0
BZ
coM CCW
CCH
MYCAW DC

CAW(4,0) ,MYCAW
OPCONS (0)
0K

READ,AREA,CDATA, 10
READ, BUFF, SLI, 90
X'50",AL3(COMM)

AREA,BUFF definitions

Example 3: write the string
TOO MANY TASKS STARTED
on the operator's console:

MVC

SI0

BZ
SETC DC
CCW CCw
STR DC

Example 4: write the string
prefix MOUNT TAPE:
with no carriage return, followed by
prefix is string stored in PREFIX

MvC
SI0
BZ

MYCAW DC

COMS CCw
CCW
CCw

MESS DC

CAW(4,0),SETC
OPCONS (0)
STARTED

X'50",AL3(CCW)
WRITER,STR,0,L'STR
€'0TO0 MANY TASKS STARTED'

a read from the console;

CAW(4,0) ,MYCAW
OPCONS (0)
GOOD -

X'50",AL3(COMS)
WRITEN,PREFIX,CDATA,L'PREFIX
WRITEN,MESS,CCOMM, L 'MESS
READ, BUFF, SLI, 100

C'IMOUNT TAPE: O

PREFIX,BUFF definitions

X.7

CSW (Channel Status Word): location 40
part, or all, of CSW is filled with I/O information during:

1. SIO, TIO, HIO if cc = 1; info pertains to addressed device

2. I/0 interruption; info pertains to device whose address is in
interrupt code portion of old I/O PSW (bits 16-31 of double
word starting in location 38)

CSW format:
Key 0000 cad ‘ status count
0 34 78 31 32 47 48 63
key channel protection key
cad address of last CCW used +8

count residual count from last CCW = CCW count - # bytes transferred
status status information:

32-39 device and cu status

40-47 channel status

unit status bits:

32 Attention - Asynchronous signal from device;
may accompany de or come during SIO

33 Status Modifier - indicates cu and/or device cannot give
status

34 Control Unit End - provided by shared cu if it was
interrogated while busy, or by cu presenting unusual
condition after ce

35 Busy - device/cu is either busy or has pending interrupt -
operation not started

36 Channel End - subchannel now free; arises after last CCW
releases channel normally

37 Device End - arises at completion of I/O operation by
device; may accompany or follow ce

38 Unit Check - device/cu has sensed unusual condition;
may or may not be an error; should issue SENSE command
to device to get more info; this is a summary bit

39 Unit Exception - device has detected specific unusual
condition (EOF, for example); only one such condition
for each type of device; usually not an error condition

channel status bits:

40 PCI - (Program controlled interrupt) - CCW has been
fetched by channel with PCI bit =1

41 Incorrect Length - storage area length not same as # of
bytes requested or presented by device - suppressed by
SLI bit in CCW

42

43

44-46
47

X.8

Program check - channel has detected programming errors;

examples:
- Invalid CCW address

- Invalid CCW or CAW
(bad command code, count, data address,

- Invalid CCW sequence
(TIC to TIC, ...)

Protection check - store or fetch protect by channel on
data/CCW reference ~

Channel and interface equipment error indicators

Chaining Check - channel overrun during input with data
chaining

DYNAMIC ADDRESS TRANSIATIONs XI.1

VIRTUAL 0 1112 19]20 3
ADDRESS SN PN D
8 ASSOCIATIVE REGISTERS
CONTROL REGISTER O
0 718 31 .
STL STO '
0 11f12 19{20 31}36-38
SN PN | PRA | ACB
+*
| [INTERRUPT:)
SN TOO LARGE '
>| 0 718 30131
PTL PTO PTA
\ X
SEGMENT TABLE
4
! | INTERRUPT:
PN TOO IARGE
OR PTA = 1

0 11412 |13-15
PBA PA| CB

REAL CORE PAGE
ON PAGE BOUNDARY

(]

PAGE TABLE

XI.2

DAT CAART SYMBOLISM: .

VIRTUAL ADDRESS:

SN SEGMENT NUMBER; O - 15 OR O - 4,095
PN PAGE NUMBER; O - 255
D DISPIACEMENT; O - L0955 USED AS RIGHT HALF OF REAL CORE ADDRESS

CONTROL REGISTER Os

STL SEGMENT TABLE LENGTH IN UNITS OF.16 ENTRIES
STO SEGMENT TABLE ORIGIN; BITS 26 = 31 MUST BE ZERO

SEGMENT TABLE:

PAGE

MUST BE LOCATED ON 6l BYTE BOUNDARY; THERE WILL BE 1 SEGMENT TABLE FOR EACH
USER; THERE WILL BE ONE SEGMENT TABLE ENTRY FOR EACH USER DEFINED SEGMENT.

PTL PAGE TABLE LENGTH (IBM LENGTH)
PTO PAGE TABLE ORIGIN - MUST BE HALF WORD ALIGNED IF IN REAL CORE
PTA PAGE TABLE AVATIABILITY; IF 1, PAGE TABLE NOT AVAITABLE

TABILE:
MUST BE LOCATED ON EVEN (HALF WORD) ADDRESS; THERE WILL BE ONE PAGE TABLE

FOR EACH USER DEFINED SEGMENT (I. E., FOR EACH SEGMENT TABLE ENTRY); THERE
WILL BE 1 PAGE TABLE ENTRY FOR EACH PACE ALLOCATED TO THIS SEGMENT.

PBA PHYSICAL BLOCK ADDRESS = LEFT-MOST 12 BITS OF REAL CORE PAGE ADDRESS
PA PAGE AVAIIABILITY; IF 1, REAL CORE PAGE IS NOT AVAILABLE
CB CONTROL BITS RESERVED FOR IBM; MUST BE ZERO

ASSOCIATIVE REGISTERS:

SN SEGMENT NUMBER FROM A VIRTUAL ADDRESS
PN PAGE NUMBER FROM A VIRTUAL ADDRFSS
PBA PHYSICAL BLOCK AIDRESS FROM A PAGE TABLE
ACB ASSOCIATIVE CONTROL BITS
BIT 36 SET TO O WHEN CRO LOADED:; SET TO 1 WHEN AR LOADED
BIT 37 SET TO O WHEN CRO LOADED AND WHEN 8TH AR LOADED; SET TO 1
WHEN AR T.OADED AND WHEN AR USED IN DAT
BIT 38 MAY BE SET TO DISABLE THE AR; SET BY DIAGNOSE INSTRUCTION

DAT ALGORITHM, GIVEN VIRTUAL ADDRESS (VA) OF SN-PN-Ds

1.
20
3o

)40
5.

6.
7.

SEARCH ARS FOR ONE WITH BIT 36 = 1 AND SN«PN MATCHING THAT OF VA;
IF NO SUCH AR, GO TO STEP L;
SET AR BIT 37 TO 1; COMPUTE ADDRESS USING PBA FROM AR AND D FROM VA;

END OF DAT;
ADD SN FROM VA TO STO FROM CRO TO GET ADDRESS OF SEGMENT TABLE ENTRY;

ADD PN FROM VA TO PTO FROM SEGMENT TABLE ENTRY TO GET ADDRESS OF PAGE TABLE
ENTRY;

CONCATENATE D FROM VA WITH PBA FROM FAGE TABLE ENTRY TO GET REAL ADDRESS:
PICK LOWEST AR WITH BIT 37 = O AND ENTER THE SN, PN, AND PBA USED INTO THE
AR; SET AR BIT 37 TO 1; SET AR BIT 36 TO 1; END OF DAT.

XI.3

VIRTUAL MEMORY (VM) USING DAT:
2L, BIT ADDRESSING: L096 PAGE VM COMPOSED OF 16 SEGMENTS OF 256 PAGES EACH;

TOTAL VM IS 16,777,216 BYTES

32 BIT ADDRESSING: 1,048,576 PAGE VM COMPOSED OF L096 SEGMENTS OF 256 PAGES

EACH; TOTAL VM IS L,29L,967,296 BYTES

COMMENTS ON DATs

1.

2.

DAT APPLIES TO PROGRAM GENERATED ADDRESSES ONLY - IT DOES NOT APPLY TO
CHANNEL ADDRESSES OR TO HARDWARE GENERATED ADDRESSES

FOR INSTRUCTION SEQUENCING, INTERNAL REGISTER KEEPS THE REAL CORE ADDRESS
OF THE NEXT INSTRUCTION TO BE EXECUTED - DAT NEEDED ONLY WHEN CROSSING
PAGE BOUNDARIES OR WHEN BRANCHING OR STATUS SWITCHING

FOR MULTIPLE CPUS, EACH CPU HAS ITS OWN DAT HARDWARE
CPU ADDRESS PREFIXING IS APPLIED AFTER DAT

DAT TIMING COSTS:

a. FOR DAT USING AN AR, TRANSLATION ADDS 150 NANOSECONDS TO EACH STORAGE
REFERENCE

be FOR DAT USING SEGMENT AND PAGE TABLES, EACH ADDRESS TRANSLATED REQUIRES
2 STORAGE REFERENCES (FOR PAGE AND SEGMENT TABLE REFERENCES) PLUS
750 NANOSECONDS, PLUS THE DATUM REFERENCE ITSELF AFTERWARDS

XI.4

REAL CORE SHARING:

SHARING OF REAL CORE BETWEEN TWO USERS (FOR RE~ENTRANT ROUTINES, FOR EXAMPLE)

MAY BE DONE IN ONE OF TWO WAYS WITH THIS SEGMENT-PAGE TABLE STRUCTURE. IN THE
FIRST WAY, EACH USER USES HIS OWN SEGMENT AND PAGE TABLES TO REACH THE SHARED

REGION. 1IN THIS CASE, THE VIRTUAL SEGMENT AND PAGE NUMBERS USED BY EACH USER

MAY BE THE SAME OR DIFFERENT. IN DIAGRAM, THIS SITUATION IS AS FOLLOWS:

USER 1 USER 2

VA2

VAl

ST ™ ST

" k

e

NOTE THAT IN THE ABOVE CASE INDIVIDUAL REAL PAGES MAY BE SHARED IN ONE OR MORE
USER SEGMENTS. THE SECOND TECHNIQUE FOR SHARING REAL PAGES IS TO SHARE PAGE
TABLES. HERE, EACH USER HAS HIS OWN SEGMENT TABLE, BUT SOME OF THE PAGE TABLES
ARE JOINT BETWEEN THE USERS SHARING REAL CORE. BY DIAGRAM, THIS SITUATION IS

AS FOLLOWS:

USER 2

VAl ‘ VA2
* ST : k ST__J(__J

REAL PACE iﬁ '

IN THIS CASE, THE TWO USERS MAY USE DIFFERENT SEGMENT NUMBERS, BUT THEY WILL

USE THE SAME PAGE NUMEERS TO REFER TO THE SAME REAL PAGE. HERE, HOWEVER, THEY
MUST ALSO SHARE THE WHOLE SEGMENT REPRESENTED BY THE SHARED PAGE TABLE. ON THE
OTHER HAND, IF THE REAL PAGE IS PAGED OUT THERE IS ONLY ONE PAGE TABLE TO MODIFY.

XI.S

EXTENDED PSW FORMAT:

BITS INTERPRETATION
0-3 SPARE - MUST BE ALL ZERQ

L DAT ADDRESS MODE: O = 2l BIT VM ADDRESSES; 1 = 32 BIT VM ADDRESSES
5 DAT CONTROL: O = NO DAT; 1 = USE DAT ON PROGRAM GENERATED ADDRESSES
6 I/0 SUMMARY MASK: O = ALL CHANNELS MASKED; 1 = SEE CR L

7 EXTERNAL SUMMARY MASK: O = ALL MASKED; 1 = SEE CR 6

8-11 PROTECTION KEY - SAME AS FOR STANDARD PSW

12-15 AMAP - AS FOR STANDARD PSW (ASCII MODE, CPU MACHINE CHECK MASK,
WAIT STATE, PROBLEM STATE)

16-17 INSTRUCTION LENGTH CODE (ILC) - AS IN STANDARD PSW

18-19 CONDITION CODE

20-23 PROGRAM MASK - AS IN STANDARD PSW

2l-31 SPARE

3263 NEXT INSTRUCTION ADDRESS (VM ADDRESS)

INTERRUPTION CODES3
IN EXTENDED PSW MODE, INTERRUPTION CODES ARE NOT STORED AS PART OF THE OLD

PSW DURING INTERRUPT PROCESSING. RATHER, INTERRUPTION CODES ARE STORED IN
MEMORY AS FOLLOWS (HEXADECIMAIL ADDRESSES):

EXTERNAL E-F

SVC 10-11
PROGRAM 12-13
MACHINE CHECK 1L-15
1/0 16-17

EXTENDED INTERRUPTIONS:

SPECIFICATION INTERRUPTS (CODE = 6):
1, EXTENDED PSW BIT L = 1 AND 32-BIT OPTION NOT INSTALLED

2, EXTENDED PSW BITS 0-3 NOT ALL ZERO
3. CONTROL BITS 13-15 OF PAGE TABLE ENTRY NOT ALL ZERO

DATA EXCEPTION (CODE = 7)s2
GENERATED IF BITS 26-31 OF CONTROL REGISTER O (THE SEGMENT TAELE REGISTER)

ARE NOT ALL ZERO
SEGMENT TRANSIATION EXCEPTION (CODE = HEX 10)s
1. SEGMENT NUMBER IN VIRTUAL ADDRESS TOO LARGE (32-BIT MODE ONLY)

2. BIT 31 OF SEGMENT TABLE ENTRY (PTA) IS 1

PAGE TRANSIATION EXCEPTION (CODE = HEX 11)s
1. PAGE NUMBER IN VIRTUAL ADDRESS GREATER THAN PAGE TABLE LENGTH (PTL)

2, BIT 12 OF PAGE TABLE ENTRY (PA) IS 1

FOR BOTH THE SEGMENT TRANSLATION EXCEPTION AND THE PAGE TRANSLATION EXCEPTION,
THE OFFENDING VIRTUAL ADDRESS IS STORED IN CONTROL REGISTER 2 AS PART OF THE

INTERRUPT PROCESSING.

XI.6

CONTROL REGISTERS:
v SEGMENT TABLE REGISTER FOR DAT
0=7 SEGMENT TABLE LENGTH IN MULTIPLES OF 16
8-31 SEGMENT TABLE ORIGIN

2 TRANSLATION EXCEPTION ADDRESS REGISTER - VIRTUAL ADDRESS IS STORED HERE
WHEN A TRANSIATION EXCEPTION OCCURS DURING DAT

i EXTENDED I/0 CHANNEL MASKS:

0-6 I/0 MASKS FOR CHANNELS O THROUGH 6
7 SUMMARY BIT - SET TO O IF BITS 0«6 ALL ZERO
8-1l I/0 MASKS FOR CHANNELS 7 THROUGH 13
15 SUMMARY BIT « SET TO O IF BITS 8«1l ALL ZERO

16-31 RESERVED - CURRENTLY UNUSED

6 EXTENDED INTERRUPT MASK BITS:2

0-1 MACHINE CHECK MASK EXTENSTONS FOR CHANNEL CONTROLLERS
2-3 RESERVED

=7 UNASSIGNED

8 EXTENDED CONTROL MODE ~ 1 = EXTENDED PSW MODE

9 CONFIGURATION CONTROT, BIT . DEFTNES WHEN PARTITIONING MAY OCCUR

10-23 UNASSIGNED
2,-31 EXTERNAL INTERRUPT MASKSa

2 TTMER

25 INTERRUPT KEY

26 MATFUNCTION ALERT « CPU 1
27 MALFUNCTION ALERT = CPU 2
28 RESERVED

29 RESERVED

30 EXTERNAL TNTERRUPT

31 RESERVED

8-1l; PARTITIONING SENSING REGISTERS ~ FOR READING CONFIGURATION CONSOLE

NOTE: 1IN THE ABOVE, “UNASSIGNED® MEANS NOT IMPIEMENTED; "RESERVED® MEANS
IMPLEMENTED BUT NOT YET ASSIGNED SPECIFIC FUNCTION. CONTROL REGISTERS
1, 3, 5, 7, AND 15 ARE UNASSIGNED. |

NOTE: A CPU MAY RUN IN STANDARD PSW MODE COR IN EXTENDED PSW MODE - THIS MODE
IS DETERMINED BY BIT 8 OF CONTROL REGISTER 6. IF RUNNING IN EXTENDED
PSW MODE, THE CPU MAY OR MAY NOT USF DAT - THIS IS DETERMINED BY BIT 5
OF THE EXTENDED PSW. FINALLY, TF USING DAT, THE VIRTUAL ADDRESSES
MAY BE 2l OR 32 BITS IN LENGTH, AS UBTHRMINED BY BIT L OF THE EXTENDED
PSW.

XI.7

IBM 2846 CHANNEL CONTROLLER (CC)s

THE 2846 CC IS USED IN 2067-2 CONFIGURATIONS AND PROVIDES:
1. CPU-CHANNEL INTERFACE
2. PROCESSOR STORAGE UNIT=CHANNEL COMMUNICATION INTERFACE
THE CCs
1. SCANS ATTACHED CHANNELS AND PROVIDES STORAGE CYCLES WHEN NEEDED
2. PROVIDES PREFIXING ON CHANNEL GENERATED STORAGE ADDRESSES
3. MONITORS PASSAGE OF I/O INTERRUPTS AND RELATED INFORMATION BACK
TO A CFU
lio MONITORS SELECTION AND INITIATION OF CHANNEL OPERATIONS
A 2846 CC MAY INTERFACE WITH:
1. UP TO TWO 2067-2 CPUs
2, UP TO EIGHT 2365-12 PROCESSOR STORAGE UNITS
3. UP TO SEVEN PHYSICAL CHANNELS (ONE 2870 MULTIPLEXER CHANNEL AND UP TO
TWO 2860 SELECTOR CHANNELS)
Lo ONE 2167 CONFIGURATION UNIT

IBM 2860 SELECTOR/2870 MULTIPLEXER CHANNELS:

DATA IS TRANSFERED IN ONE BYTE WIDTH BETWEEN I/0 DEVICES AND A CHANNEL AND IN
EIGHT BYTE WIDTHS BETWEEN CHANNELS, CHANNEL CONTROLLERS, AND STORAGE UNITS.
A 2067-2 MAY HAVE UP TO 1k CHANNELS 7 ON EACH OF 2 CHANNEL CONTROLLERS.

2860 SELECTOR CHANNEL:
SUPPORTS RATES UP TO 1.3 MILLION BYTES PER SECOND;
CHANNELS OPERATE WITH MINIMAL INTERFERENCE DUE TO OWN REGISTERS;
UP TO 8 CONTROL UNITS PER CHANNEL, WITH AT MOST ONE ACTIVE AT ONCE.

2870 MULTIPLEXER CHANNEL:
AT MOST ONE 2870 MAY BE ATTACHED TO EACH CHANNEL CONTROLLER;
BASIC MULTIPLEXER CHANNEL:

UP TO 192 SUBCHANNELS;
CAN ATTACH UP TO 8 CONTROL UNITS AND ADDRESS UP TO 192 I/0 DEVICES;

CAN OVERLAP OPERATION OF SEVERAL I/0 DEVICES IN MULTIPLEX MODE OR
OPERATE SINGLE DEVICE IN BURST MODEj
AGGREGATE DATA RATE IS 110 kb.
AUGMENTED MULTIPLEXER CHANNELs
UP TO L, SELECTOR SUBCHANNELS MAY BE ADDED, FOR A TOTAL OF 196
EACH SELECTOR SUBCHANNEL MAY ATTACH UP TO 8 CONTROL UNITS AND ADDRESS
UP T0 16 I/0 DEVICES;
SELECTOR SUBCHANNELS 1=3 HAVE MAXIMUM DATA RATES OF 180 kb, WHILE THE
FOURTH SELECTOR SUBCHANNEL HAS A MAXIMUM DATA RATE OF 100 kb
SELECTOR SUBCHANNELS MAY OPFRATE CONCURRENTLY WITH EACH OTHER AND WITH
THE MULTIPLEXER CHANNEL, BUT MAY OPERATE AT MOST ONE DEVICE AT
A TIME;

ADDITION OF SELECTOR SUBCHANNELS REDUCES THE MAXIMUM DATA RATE OF THE
BASIC MULTIPLEXER SUBCHANNEL, BUT INCREASES THE OVERALL DATA
RATE OF THE MULTIPLEXER CHANNEL.

XI.8

CILANNEL ADDRESSES AND PRIORITIES:
CHANNEL ADDRESSES ON EACH CHANNEL CONTROILER:
0 2870 MULTIPLEXER CHANNWEL
1-6 2860 SELECTOR CHANNELS
MUST USE CONSECUTIVE ADDRESSES STARTTNG AT O OR 1
COMPLETE I/0 ADDRESS IS 16 BITS IN ILENGTH 45 FORLOWS:
0-3 CHANNEL CONTROLLER ADDRESS {00, ¢k)
,=7 CHANNEL ADDRESS (00-06)
8=15 DEVICE ADDRESS ON CHANNET:
ON 2860 00 THROUGH FF
ON 28703
00=BF ON BASIC MULTTPLEXER CHANNEL
CO=CF ON SELECTOR SURCHANNEL 1
DO-DF ON SELECTOR SUBCHANNEL 2
EO-EF ON SELECTOR SURCHANNEL 3
FO-FF ON SELECTOR SUBCHANNFL L
CHANNEL CONTROLLER SERVICES ATTACHED CUANNKLS ACCORDING TO THEIR ADDRESSES
IN THE PRIORITY ORDER OF O1, 02, 03, Oh, 05, 06, 003 STORAGE UNIT
SERVICES CHANNEL CONTROLLERS IN ORDER OF ADDRESSES 00, 01; CPUs
SERVICED WHEN CHANNELS NOT REQUESTING SERVICE
DURING PROCESSING, ACTUAL DATA RATES DEPEND UPON:
1. CHANNEL PRIORITY
2. NUMBER OF CHANNELS OPERATING CONCURAENTLY
3. SPEED OF THE I/0 DEVICES OPERATING CONCURRENTLY ON THE CHANNELS
L. TYPE OF CHANNEL PROGRAMMING USED

IBM 2365-12 PROCESSOR STORAGE:

UP TO 8 2365-12s MAY BE ATTACHED TO A 2067-2 SYSTHEM3

2365 HAS BASIC STORAGE CYCLE OF 750 MANOSECONDS AND ACCESSES 8 BYTES IN PARALLEL;

EACH 2365 CONTAINS 6l PAGES = 256K BYTES = 202,14l B¥EES OF STORAGE HOUSED IN TWO
INDEPENDENT STORAGE ARRAYS OF 32 PAGHES EACH; ALL EVEN DOUBLE WORDS ARE IN
ONE ARRAY AND ALL ODD DOUBLE WORDS ARX IN THE OTHER ARRAY;

EACH 2365-12 CAN ATTACH TO UP TO FOUR STORAGE BUSES: ONE FROM EACH CPU AND ONE
FROM EACH CHANNEL CONTROLLER IN THE DUPLEX SYSTEM;

AT EACH 2365, THE CHANNEL CONTROLLER CTLOSEST TO I1 GETS FIRST PRIORITY, AS DOES
THE CPU CLOSEST TO IT; THEREFORE, PRIORITINS AT EACH STORAGE UNIT MAY NOT
BE THE SAME ORDERING OF CCs AND CPlss

INTERLEAVING OF SUCCESSIVE DOUBLE WORD REQUESTS FROM A GIVEN STORAGE UNIT IS
POSSIBLE, REDUCING ACCESS TIME TO 375 NANOSECONDS IN SUCH CASES, AND
DEPENDING UPON OTHER CONFLICTING RHEQUESTS;

STORAGE KEY IS 7 BITS IN LENGTH AND COVERS 208 BYLE BLOCKS:

0-3 STANDARD STORE PROTECTION KEY

L STANDARD FETCH PROTRECTTON BIT

5 REFERENCE BIT: SET TO 1 WACK TIME THE CORRESPONDING STORAGE BLOCK
IS REFERENCED (STORE OR FETCH

6 CHANGE BIT: SET TO 1 #ACH TIME THE CORRESPONDING STORAGE BLOCK

RECEIVES A STORAGE REFERENCE (I, B., IS CHANGED)

XI.9

IBM 2167 CONFIGURATION UNIT:

2167 IS REQUIRED IN A 2067-2 CONFIGURATION AND PROVIDES MANUAL SWITCHES FOR
THE FOLLOWING FUNCTIONS:

1.

2.
3.
.

5.

PARTITIONING: ONE SWITCH FOR EACH CORE STORAGE UNIT INTERFACE, ONE FOR
EACH CPU INTERFACE TO A CHANNEL CONTROLLER, AND ONE FOR EACH CHANNEL
INTERFACE ON DUAL-CHANNEL~-INTERFACE I/0 CONTROL UNITS;

PREFIX ACTIVATION: ONE SWITCH PER CPUj

DIRECT CONTROL ACTIVATION: ONE SWITCH PER CPU;

PROCESSOR STORAGE UNIT FLOATING ADDRESSING: ROTARY SWITCH FOR EACH 2365-12
STORAGE UNIT IN THE SYSTEM; SWITCH PICKS THE STARTING CORE ADDRESS FOR
THE UNIT; EACH UNIT CONTAINS 256K CONSECUTIVE BYTE ADDRESSES STARTING
WITH THE ONE INDICATED BY THE UNIT'S SWITCH; TOTAL SET OF ADDRESSES IN
THESE SWITCHES MUST BE CONSECUTIVE STARTING WITH ZERO;

CHANNEL CONTROLLER FLOATING ADDRESSING: ONE ROTARY SWITCH FOR EACH CPU;
MAY BE USED TO ASSIGN THE CHANNEL CONTROLLER TO BE USED BY THE CPU IN
STANDARD PSW MODE.

STATUS OF SWITCH SETTINGS MAY BE SENSED BY EITHER CPU BY STORING THE CONTROL
REGISTERS; CONTROL REGISTERS 8-1l; CONTAIN THE STATUS BITS REFLECTING THE SWITCH
SETTINGS. ALSO, BIT 9 OF CONTROL REGISTER 6 MAY BE USED TO PREVENT SWITCH
CHANGES EXCEPT WHEN ACCEPTABLE TO THE CONTROL PROGRAM.

m Far Fany fan Fan) I P
cco 7 \Sra ANV A % \¢ ' 3/ O
7 P\ pany Pany Jary Fan Fan\ /)
CC 1 \N ey \ \V AN J T\
Pa D ay Pary P oY
CPU 1 \\ U () J \N) \\w
CPD 2 7 7 Part s P n) /]
U A A4 A L\ L\ N4

PROCESSOR STORAGE UNITS (2365-12)

R R R]|y

XI.10

INSTRUCTIONS MODIFIED UNDER EXTENDED PSW MODE:
WHEN BIT 8 OF CONTROL REGISTER 6 IS 1, THE CPU OPERATES IN EXTENDED PSW MODE.
IN THIS MODE, SOME INSTRUCTIONS ARE MODIFIED IN THEIR EXECUTION, AS FOLLOWS:

BAL, BALR IF DAT IS ON, THE RIGHT-MOST 24 BITS OF THE VIRTUAL ADDRESS ARE
PLACED IN THE SPECIFIED REGISTER, AND THE FIRST BYTE OF THE REGISTE
IS SET TO THE IIC, CC, AND PM OF THE PSW

BXH, BXLE IN 32 BIT DAT, AN ADDRESS IN ONE OF THE AFFECTED REGISTERS MAX!
APPEAR TO BE A NEGATIVE NUMBER RATHER THAN A POSITIVE ADDRESS

EDMK IN 32 BIT DAT, THE ADDRESS INSERTED INTO GPR 1 IS A FULL 32 BIT
VIRTUAL ADDRESS

ISK A 7 BIT STORAGE KEY IS TAKEN FROM BITS 24-30 OF THE SPECIFIED
GENERAL REGISTER

IA A VIRTUAL ADDRESS IS PIACED IN THE SPECIFIED GENERAL REGISTER;

IN 2l; BIT DAT, THE FIRST BYTE OF THE REGISTER IS ZEROED; IN 32
BIT DAT, THE FULL 32 BIT ADDRESS IS PLACED IN THE REGISTER

LPSw THE DOUBLE WORD LOADED AS THE NEW PSW MUST CONFORM TO THE FORMAT
OF THE EXTENDED PSW

SSK THE STORAGE KEY IS PLACED INTO BITS 2L4-30 OF THE SPECIFIED GENERAL
REGISTER

SSM SETS BITS O-7 OF THE CURRENT PSW; THIS IS NOT THE SYSTEM MASK,

HOWEVER, IN EXTENDED PSW MODE; CAN BE USED TO SET THE DAT ADDRESS
MODE (BIT L), DAT CONTROL (BIT 5), I/0 SUMMARY MASK (BIT 6), AND
EXTERNAL SUMMARY MASK (BIT 7)

SvC THE IMMEDIATE FIELD FROM THE SVC IS STORED IN LOCATIONS 10-11
(HEX) INSTEAD OF WITH THE OLD PSW

TRT IN 32 BIT DAT, THE ADDRESS INSERTED INTO GPR 1 IS A FULL 32 BIT
VIRTUAL ADDRESS

NEW INSTRUCTIONS PROVIDED ON THE MODEL 672

BASR Rq,R, IF IN 32 BIT DAT, THE FULL 32 BIT VIRTUAL ADDRESS OF THE
NEXT INSTRUCTION IS PLACED IN Ry. OTHERWISE, A 2l BIT
BAS B’_|_’D2(X2’B2) REAL OR VIRTUAL ADDRESS IS PLACED IN Ry AND THE FIRST
BYTE IS ZEROED. THEN BRANCHING OCCURS.
IMC PROVIDES MULTIPLE CONTROL REGISTER LOAD/STORE. REGISTERS
Rl’RS’DZ(BZ) LOADED FROM/STORED INTO CONTIGUOUS FULL-WORDS STARTING
STMC AT THE SPECIFIED ADDRESS. REGISTER WRAP-AROUND WITH O

FOLLOWING 15. CRS 8-1l CANNOT BE LOADED. POSSIBLE
PROGRAM EXCEPTIONS INCLUDE M, A, S, AND P.

IRA Ry,Dp(%,,B,) COMPUTES THE REAL ADDRESS (TRANSLATED ADDRESS) CORRESPON]

TO THE SECOND OPERAND AND PLACES IT IN THE SPECIFIED
GENERAL REGISTER. CONDITION CODE IS SET:

0 SUCCESSFUL TRANSLATION

1 PTA = 1 OR SEGMENT NUMBER TOO LARGE

2 PA = 1 OR PAGE NUMBER TOO LARGE
TRANSLATION EXCEPTIONS ARE MASKED DURING AN LRA.
POSSIBLE PROGRAM EXCEPTIONS ARE M, A, AND S.

XII.1

MTS Manual, Volume 3, Excerpts

The following pages are excerpts from the MTS Manual, Volume 3. We have
provided here copies of that Volume 3 information of greatest use in each
of the two courses. This does not include all possible information of
interest to the courses, but the need to reference the MTS manual should
be considerably reduced. Needless to say, students are encouraged to
peruse Volume 3, and other MTS manual volumes, to gain a better under-
standing of the many facilities provided by this system.

3

i
3
w
w
.
v
s
tn
o
<
3
=
t
(&)
to
o
C2
|=¥]
O
(&)
€3]
w
)
N
A
£6]
[}
1
C
Ui

The Com* of subroutine 1iuiili.
files. Iu and use his OoWnL LipoIorl
on libr
i a automat
1ol t ules ar
ic2 cans *LIBRAR
~hls autcnotic library sear

The Coher available subroutlne 1iLIaslles are not
o resclve undefined syax o To be tchey nust
the obpijuct file name nen tae program 1s run.
{(IBM's Sclentific Subroutiae Package) wita a FORTERAN
been compiled, one might specify

(23]

A L
or
5rog

1. The object modules in the <fiie -1LO0AD+s are
togetther.
2. Thern object modules are selectively loaded zIron
lirrary) to resolve external symbols (i.e., sud
-LCAD#.
5. f-nally, if there are still unresolved external
anc LCSYMBOL are searched for the appropriate oD
Kcte that this concatenation can be 1mpliclt as
Instead of saying

$CONTINUE WITH *SSP
in CEJ as the last line and then merely say
SRUN OBJ

to get the same etffect.

10

La

B R SR
b vcaa G U

~
-

- NN !
CowEe LUl
LeS 0 JusT

Ce LU = [
B U,
nanes) Il

479 3: SUBNOUTIINE AND HAC:SC LI2sCaivTicn:

June 197C Page RQevisoed May 1vs

The following public files contain stutroutine libraries:

211 oxcept the FCRATRAN matneoitise :
described in this See BIRYN 5y°te”/‘ 1
Library: Fathematical and service Subproyraas’)
for descriptions of the others.

*SSP

*SSPHMATH

*SSPSTAT

The subroutines conteained 1n the $52 Zisrzarny <ie fully cccu-
mented in the IBY publication "Systex/2cl Scientiric Surrcut
rackage, (3602-CH-03) Version III, Erogranzer's Hanual®, I
K20-0205-3.
sore of the functicns perforzmed by S5k rodules are
by subroutines availagle in *LIERARY. 1n general the
versions are both faster and smaller and are therei
reconzzended for use in preference to the COIICSEO
rcutines. See the description of these susIigculin
vclune.

*PL1LIE
This contains subroutines that may te invokec hy BL/I ccL L.
ccde. For details, see "IEM System/36U 5 PL/I [¥] Bregroe
ger's Guide%, form (C€28-6594%, and "IEK System/360 CS kL/

Library Computational Subroutines”, form €28-6590.

*PL360LIE

This contains subroutines to support the exter
READ, WRITE, PUXNCH, and PAGE for PL300 progra
information may te found in the "PL36U User's Gui
7 of the MTS Manual.

*SLIP

The SLIP (Symmetric
implementation ot
A complete LObCE’Ft
Compunications _ci

the "SLIP User's Guide®" in Volume o of the #TS Xanual.

Processor) subroutine packa
h Weizentauxn's IBM 7090 SLIY
the language may be found ihL Ty
ACH, 1963, vol. 1o, rp 524-544. Se«

Susrcoutines

MECRC

END

CUTINE

I
AN

SUE

-

e 3 ISR
[5) I B W) Lot

@Y O ¥ i B

Do) S s 1

PR ISR RO R BT . -

e VNS | D)

T

1.
[
iy 7y
RN
N 1
SR
ol

1 o
1oy e
i o o
e gt} D A
g 1] . £
=1 (& IOEKS e]
v W o a
| 44 o
it 0 o oo
| Q 6} 4
(@) O O N
= G0 amoM o
el W wwa oa
E4| W | &
&l RN ST I W S o P Ry
=i ST QO OrH ™ @
& i O ©@ oV
T; Y j=J
ol Q w
z1 o0& o
Sl 3 a4
b o 40
< m 3}
PH
R
w w
N o
STt MR N |
! @
@
43 he)
S e N
A
o =
! -
Ry =YTe
€10 e
K i
—t
) ~
PRSP |

April 1971

Contents:
Purrose:
Usage:

Legical I/0 Uni

Parameters:

MTS 2: PUBLIC FILE DESCRIPTIONS

Page Revised May 1972

*GENLIE

The object module of the litrary-generating progran.

To generate a loader library from object modules.

The program is invoked by the $RUN coammand.

ts Referenced:

SCARDS - input object modules andsor libraries.

SERCOM - listing of diagnostics for conversational users.
SERINT - listing of diagnostics and library modules.

Only

first character of each parameter need Le given.

Only one of the parameters SEQL, POINTI, DIR, and LINE can be

specified.

The parameters must be separated by either a

comma or a blank.

XREF
NCXREF

SEQL

POINT

{LIR

- Specifies that a complete cross-reference listing

of load modules be produced. This will consist of
three parts: load modules with entry points (if
any), load modules with external references, arnd
external references with load modules.

Srecifies that LIB records are to have no pointers
so that the loader must proceed in the sequential
order. The output library may be any kind of file
or output device such as *PUNCH*, or magnetic
tapes. The first record will be a COM (comzent)
record with the date and time indicated. Each
load module follows its appropriate RIP records
and LIB record. The parameter SECL should be
specified only for output devices, since the
lcader must process every record, and hence takes
more time than for other types of libraries.

Srecifies that LIB reccrds are to have note-point
information. The loader proceeds in seguential
order, but =skips over unneeded 1load modules
without reading them. The output library must be
a sequential file. ©POINT should be specified when
a program loads many load modules <froam the

library.
Specifies that a DIR (directory) record te con-
structed. This record consists of 12-tyte
entries, an 8-byte defined symbcl naze and its
L-byte pointer referring to its first record in
the library. Since the DIR record can have nc

more than 32767 bytes, there can be no more than

*GENLIB 155

IS 2: PUBLIC FILE DESCRIPTIONS

ige Revised Fay 1972

amples:

scription:

1ts:

April 1971

2730 different defined symbol names. Licrary load
modules follow the DIR record. The DIR record has
a pointer pointing to immediately after the last
lcad module. The 1loader does not proceec¢ 1
sequential order, but picks load modules as needeu
from the 1library. The& cutput library aust be a
sequential file. The DI« parameter should ke
specified when only a few load modules need te
loaded from the library.

LINE - Specifies that LIE reccrds are to have line nunber
pcinters., The output library must be a line file.
The line number zero will bhe date-stamped. The
necessary RIP and LIE records fcllow.
mcdules start at the line number -99999; for
successive record, the line number 1is increme
by 1.00. The LINE parameter has ©¥o advantas
(1) it is generally fast when 1o(d1ng from a s
library, (2) one <can esasily insert patcheb
the library. If many wmodules are to be lcad
the loading time is slow since the loader aust
numerous indexed read operations on the rile.

—
(@]

Ci

SHES M oY)

1«1

I3 (M ot fw

= ”/ m

IS

(S}

O b=

a
1

[{SIEN

CJ(D
uy o

$RUN *GENLIB SCARDS=SQUASH SPUHCH=LIB
$RUN *GENLIP SCARLS=A+B+{ SPUNCH=SECLIB PAR=XREF,PCINT
$RUN *GENLIB SCARDS=OLDLIB SPUNCH=NEWLIB PAR=D

Each input load module is analvzed for errors. Each module
must have at least one ESL record, and the last reccrda onmust
be an END record. It also must have at least one definea
symbol. 1Tue library module name will be the one defined on
the previous LIB record, if any, or the 7first derined
non-blank symbol in the module. If this library module nanme
is a duplicate of an earlier name, the entire load module 1is
skipped. If the module satisfies the above conditions, it is
saved in the sequential file ~SYSUT4L. When all of the input
has Leen processed, a complete cross-reference listing is
produced if the XREF parameter is specified. Any duplicate
or undefined syambols are printed. fThen, the output litrary
is produced, each load wmecdule copiea intact from -SYSUTH.
Any remaining records (such as LCS or LDT records) ipmedlate-
ly after the last load module in the input from SCARDS are
added. The program then lists sl1l litrary module names with
the correspending line numbers (if applicable) on which tney
begin. Finally, the processing time taken (in seconds and
hundredths of seconds) is printed.

See "The Dvnamic Loader® section in Volume 5 for the
description cf ithe DIR, RIP, and LIE loader recorads.
o [

(1) The output library file should be emptied before *GENLIE
is run. ’

April 1971

(2)

(3)

(4)

MTS 2: PUBLIC FILE DESCRIPTIONS

Page kevised May 1972

To generate a new library from an old 1library of type
LINE, use the following:
$RUN *GENLIB SCARDS=0LDLIB(-99999,-1) SPUNCH=NEWLIE

This reduces some of the indexed operations on CLDLIB

and, thus, reduces the processing time in generating the

new library.

All libraries of type LCIR and POINT must be copied as
$COPY OLDLIB@-TRIM NEWLIB®-TRIM

Both files must be sequential files.
All libraries of type LINE must ke copied as

$COPY OLDLIB(-99999) MEWLIE®RI

¥*GENLIB 156.1

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

June 1. ¢

CALLING CONVENTIONS

INTEODUCTION

A calling convention is a very rigid specification of the sequence of
instructions to be used by a program to transfer control to another program
(usually referred to as a subroutimne). It is very desirable altnough not
always practical to set up only one set of conventions to ve used by all
programs no matter what language <they are written in so that FORTRAN
programs may call MAD programs and assembly lanquage programs ané sSo forth.
In the MTS system the 0S type I calling conventions have been adapted as the
standard. A complete specification of these standards can be found in the
WIEM System/360 Operating System Publication, Supervisor and Data Management
Services", form C28-6646. This description shall try to bring out pertinent

details of these calling conventions.

Throughout this discussion we will refer to the terms calling progran,

prcgra which 1is in control and wants to ©pow call another progranm
(subrc ines). The called proqram is the program (subroutine) which tae
calling program wants to call. The save area is an area belonging tc the
calling program which the called program uses to save and later restore
general purpose registers. The save area has a very rigia format and is
discussed in more detail later on. A calling sequence is the actual

sequence of machine instructions which perform the tasks as specified by tne
calling conventions.

The facilities that must be provided by the calling conventions are:

1 Establish addressability and transier to the entry point.
<. Pass parameters on to the called progran.

3 Pass results back to the caliing program.

4. Save and restore general purpese and floating point registers.
Re-establish addressability and return to tne calling program.

6. Pass a return code (error ipdication) back to the calling program so

it knows how thkings went.

The remainder of <this description will describe the 0S type I calling
conventions to show how they are used and how the facilities 1listed above

are provided for.

REGISTER AND STORAGE VARIANTS OF TYPE I CALLS

The 0S Type I calling conventions actually consist of two very siamilar
calling conventions, referred to as 0SS (I) 5 Type calling conventions and 0S
(I) R Type calling conventions. The two differ only in the way parameters

Calling Conventions 15

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

% e 1970

and results are passed between the calling and called programs. The R
refers to register and the S to storage.

The 0S (I) R type calling conventions utilize the general purpose
registers 0 and 1 for passing parameters and results. This allows only two
parameters or results and cannot be generated in higher level languages as
FORTRAN. Its advantages are that calling sequences are shorter and take
less time to set up. These are very popular in 1lower-level systen
subroutines such as GETSPACE or GETFD. Fortran users needing to call
suktroutines that utilize R-type calling conventions can use the RCALL

suktroutine described in this volume.

The 0S (I) S Type calling conventions require a pointer to a vector of
address constants called a parameter list (in register 1). Since the
parameter list can be of any required length, several parameters can be
passed using 0S (I) S Type calling convention. These conventions are used
by system subroutines such as SCARDS or LINK and are generated by all
function or subprogram references in FORTRAN. Results can be passed back by
giving variables in the parameter list new values or via register 0.

PARAMETER LISTS

As stated above, a parameter list is a vector of address constants. The
parameter list must be on a full-word boundary and the entries are e-~h four
bytes 1long. The address of the first parameter is the first woir Of the
list, the address of the second parameter the second word of the list, and
so cn. For example the parameter list for the FORTRAN statement

CALL QQSV(X,Y¥,2)

might ke written in assembly code as:

PAR DC A (X) address of X
DC A (Y) address of Y
DC A(2) address of Z

Now this parameter 1list works well enough when the parameter list for the
sukroutine is of fixed length, but there is not enough information yet to
allow a subroutine to determine the length of the parameter list ana hemnce
accept variable length parameter lists. For this reason there are two types
of parameter lists, fixed length parameter lists as described above, and an
extended form of parameter 1list called a variable-length parameter list

which is described next.

Since a standard 360 computer uses 24 Dbyte storage addresses the
left-most byte of an address constant is usually zero. In a variable length
parameter list bit zero of the left-most byte of the last parameter address
constant is set to 1 to show that it is the last item 1in the list. The
example above then would be written as:

PAR DC A (X) address of X
nc A(Y) address of Y

16

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

June 1970

DC XL1'80° turn on bit zero.
DC AL3(2) address of Z

if it generated a variable-length parameter 1list. As a matter of fact
FORIRAN does generate variable-~length parameter lists. Note though that
programs expecting a fixed length parameter list will work with a variable-
length parameter list, provided it is a least as long as the fixed-length
list they are expecting, since they extract only the address part when they

use the parameters.

REGISTER ASSIGNMENTS

0f the sixteen general purpose registers, five are assigned for use 1in
the calling conventions. The use of the general registers differs slightly

depending upon whether an R or S type call is being made.

Calling Conventions 17

MTS 2: SUBROUTINE AND MACRO DESCRIPTIONS

Junc 1970

The following table specifies exactly what each register is used for during
a call:

-

Register Number Contents

0 Parameter to be passed in R type sequences.

Result to bke passed back in R and S type sequences.

Parameter to be passed in R type sequences.

Address of a parameter list in S type sequences.

Not used as a part of the calling sequence. Must be
saved and restored by the called progranm. The save
area is usually used for this.

2-12

The address of the save area provided by the calling
program to be used by the called progranm.

13

Address of the location in the <calling program to
which control should be returned after execution of

the called progranm.

14

e e e e e e e e e e e e o o e e e e e e e e e e e — o e o

Address of the entry point in the <called program at
the time of the call.

15

A return code at the time of the return that indicates
to the calling program whether or not an exceptional
condition occurred during processing of the called
progranm. The return code should be zero for a normal
return or a multiple of four for various exceptional
conditions.

,...._._..__....._._....___.q...__...._.__.,____.w-_.___-'-
o e e e e e e e e e e

General Purpose Register Linkage Conventions

Notice that it is the called program's responsibility to save and restore
registers 2-12 in the save area provided by the caliing program. There are
two reasons for this. First of all only the called program knows how many
of the registers from 2-12 it is going to use. Since a register need be
saved and restored only if it is actually going to be changed, the «called
program may be able to save some time by saving and restoring only those
registers which it will use. Secondly, the called program reguires
addressability over the area in which it will save registers upon entry,
since any attempt to acquire the aGdress of a save area would destroy some
of the registers which are to be saved. Furthermore, the save area should
not be a part of the called program since that would prevent it tfrom beiny
re-entrant (shareable). This means the calling program should provide the
save area in which registers are saved and restored. And so we have the

18

MTS 3: SUBROUTINE AND MACRO DESCRIETIONS

June .70

called program saving and restoring registers 2-12 in a save area rrovided
by the calling program.

The calling conventions are quite different with floating point regis-
ters. Since a large percentage of programs do not leave items in floating
point registers across subroutine calls it seems rather wasteful to always
save and restore the floating point registers. So the convention has been
established that the calling rrogram must save and restore those floating

point registers which contain items which are wanted. Also, programs which
return a single floating point result quite frequently do so via floating

point register 0.

RETURNING RESULTS

There are in the O0S Type I calling conventions four ways in which a
sukroutine can return a result. These are:

. Value of result in general purpose register 0.

. Value of result in general purpose register 1.

. Value of result in floating point registers. (usually 0)
. Value of a parameter from the parameter list changed.

s Wh -

The r ticular method used depends upon whether the R or S type convention
is u .d and whether the called program can be used as a function in

arithmetic statements.

The first three methods are used by R type calling conventions for all
returned results. The contents of each of the registers depends upon the
particular called program and are described in the subroutine description

for each subroutine using the R type calling conventions.

The first, third, and fourth methods are used by S type calling
conventions for all returned results. The first and third methods are used
by function subprograms whose calls can be embedded in FORTRAN and MAD
statements. The choice of general register 0 or floating point register 0
depends upon whether the result returned is integer or floating point mode,
respectively. An example of subroutines which return results in this manner
are the FORTRAN IV Library Subprograms, such as EXP, ALOG, or SIN. The
fourta method can be used by a subprogram. An example would be a subprogram

called by the statement
‘CALL. MATADD (A,B,C,H4,N)

which might add the MxN matrices A and B together and store the result in C.

SAVE AREA FORMAT

The save area is an area belonging to the calling program which the
called program uses to save and later restore general purpose registers.
The address of the save area is passed to the called program by the calling

Calling Conventions 19

MTS

2.

SUBROUTINE AND MACRO DESCRIPTIONS

Ju. 1970

program via general purpose register 13. The save area has a very rigid
forrat and is described in the table:

p—q;-—-qp-_qP—-qp—-—-—q,——qp—qp-—.--——q.uc—-p--—--—-,—._..-p-_——-.—-—._q;———-qp—_—q-—_..—-—-

il L4 1
Wword | Displacement | Contents |
i i 4

) 1 Al
1 0 | Used by FORTRAN, PL/I, and other beasties for |
| | many devious purposes. Don't touch! |

'l 4 d

1] L L

2 | 4 | Address of the save area used by the calling |
) { program. Forms a backward chain of save areas. |

| | Stored by calling program. |

i 1 i

L] L] 1

3 | 8 | Address of the save area provided by the called |
{ | program for programs it calls. Forms a forward |

| | chain of save areas. |

i [} d

L ¥ i

4 | 12 | Return address. Contents of register 1 at |
| | time of call. |

1 1 4

1 I 1
| 16 | Entry point address. Contents of register 15 |
| | at time of call. {

t + 14

6 | 20 | Register 0 contents. |
4 4 1

1 ¥ R

7 1 24 | Register 1 contents. |
i i 4

R T 1

g | 28 | Register 2 contents. {
i i |

L] R

9 | 32 | Register 3 contents. |
L i 4

L] 1 |

10 | 36 | Register 4 contents. i
I} 4 '

L} L) 1
11| 40 { Register 5 contents. |
4 i 4

1] 1

12 | 44 | Register 6 contents. |
I i I

L) L]]

13 | 48 | Register 7 contents. |
i . i ']

) L] Ll

14 | 52 | Register 8 contents. |
1 1 d

L] L 1

1° | 56 | Register 9 contents. |
+ 1 4

16 | 60 | Register 10 contents. |
y i d

L} L L

17 | 64 | Register 11 contents. |
L 1 i

Ll] L}

18 | 68 | Register 12 contents. |
A A "l

Save Area Format
There are two things to be noted about the save area format, namely who

sets what parts of the save area and how these areas might be set up.

20

The

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

June 570

calling program is responsible for setting up the second word of the save
area. This is to contain the address of the save area which was rprovided
whep the calling program was itself called. Although this is technically
set up by the calling program as a part of the call, most programs set up
the save area they will provide to subroutines they call once and leave its
address in general register 13. The work then does not need to be repeated
for each call. The called program is responsible for setting up the tnird
through eighteenth words of the save area. The called program usually saves
the general registers which it will use as a part of its initialization
procedure and restores the registers as a part of the return procedure.
Notice that the save area format is amenable to use of the store nmultiple
and load multiple instructions for saving and restoring blocks of registers.
All of this will be made clearer in the examples at the end.

Some system subroutines (notably GETSPACE, FREESPAC, and a few others) do
not require that a save area be provided for them. For these subroutines
general register 13 need not be set up before a call and its contents are
preserved by the called subroutine. The subroutines which need no save area
are clearly marked as such in the MTS subroutine descriptions. Notice that
it is all right to provide a save area to one of these subroutine; it will

simply ke ignored.

CALLING PROGRAM RESPONSIBILITIES AND CONSIDERATIONS
The calling program is responsible for the following:

1. Loading register 13 with the address of the save area and setting up
the second word of the save area.

2. Loading register 14 with the return adaress.

3. Loading register 15 with the entry pcint address.

4. Loading registers 0 and 1 with the parameters in an R type «call or
loading register 1 with the address of the parameter list in an S
type cail.

5. Saving floating point registers, if necessary.

€. Transferring to the entry point of the subroutine.

7. Restoring floating point registers, if necessary.

§. Testing the return code in register 15, if desired.

After the return from a subroutine, the status of the program will be as
follows:

1. In general, the contents of the floating point registers will be
unpredictable unless saved and restored by the calling program.
2. The contents of general registers 2 through 14 will be restored to
their contents at the time the called program was entered.
3. Tne program mask will be unchanged.
4. The contents of general registers 0, 1, and 15 may be changed.
€. The condition code may be changed.

Note that general registers 0 and 1 and floating point register 0 may

contain results in the case of R type subroutine calls or a function
sukgrogranm. General register 15 will normally contain a return code,

Calling Conventions 21

8

X
i

indicating waether or not an exceptiornail cordition occurred duri

jJune 1970

iLg proces-

0f the called program.

w7
i

onvern

t

[€D

N o ~AMCTETONATANG

DPRCGRAN RESPCNSIBILITIES adl CONSIDIRaTLIUSNS

called prograa 1is responsibie I0or tae folliowiLng:
Tae
oe
Tue
1
Lestoring T gen zore
returning to the calling prograi.
Sestoring tne progran @asx ir changed.
Loading general registers 0 and 1 or floating point register U with
the result in the case of R tvpe subroutine calls or . fuoction

SUbDELOyIram.
loading general reglster 15 with the return code
Transferring to tne return loca

i CALLLNG SEQUENCES

. wmuection will describe ana Give the assexnbly langudage Statuielis S04
cical wachine lnszructions necessary to implement 0S5 Type I culllng
T10NnS
yoical entry point might consist oI the folloWing StatelRents:
USING SUBRAZ,12 12 will e a base register
UERA STH 14,12,12(13) save registers
LR 12,15 set up 12 as toe base register
LA 11,S4V2 this is save area provided ror others
ST 11,6 (0,13) set up forward pointer
ST 13,4(0,11) set up backward pointer
LE 13,11 set up for any calls we 1ssue
LR 11,1 get parameter pointer 1nto pop-voiatile
reg.
@
€
@ .
SAVE DS 18rF save area we provide for others
idc 4 subroutine that began wilith the €ITLY SeJuchce Jiven arove, Tae
OI tae secona parameter 1o the LaLaTete: list could be put 1ntd
21 purpose register 3.with tae following sequence:
a
o
©
L 3,4(0,11) pick up second adcon Irom paraneter iist

MTS 3: SUBKOUTINE AND M¥ACKC DESCRIEZTICXNS
June 197C
L 0,3{G,3) pick up value orf parampeter
@
(]
@

TLL1d¢ 2 subroutine that Degan wita theé enIry Sequence Jiven above,
another subfoutine, SUBR3, coula be called u€ing trne following sSeguence.
wopenber that register 13 already points to the correct save area:

&
@
L]
LA 1,/ARLLST Set up parameter Llut aaaress
L 15,=V (SUBRD) set up xLLy point acdress
BALR 14,15 Sot up return address and branch to tae
subro&tLh“
3 *+4 (15) test return code via a transrer tazlive
B ACK RC=0
5 5aD1 RC=4
B BALDZ RC=6
L
@
®
ACK vee normal return to here
@
FARLIST DC A (PART) first parameter address
© .
<
@

Finally, a subroutine that begar with the entry seguenc iv
the progranm that called it with tne followlng seguence:

coula return to 3
LE 0,RESULT floating point result to FPX J.
L 13,4(0,13) Use Dack pointer to get TLlght sSave dred.
in 14,12,12(13) estore registers.
SR 15,15 lnulbut a zero return ccde (RO errors)
BR 14 return to what called us
@
[
®
It =snould be pointed out tnat altnough the above ssquence arle tvzicair of
the instructions used to implement the calling conventions, &any Variations
are possibie.
4ACECS FOR CALLING SEQUENCES
There are two Sets of macro derinitlons 1a tae MTS Macro Lizrary WLl
can Dbe used to help generate cailing sequences. TheSe are the Racros Savz,

Cailing Conventions <9

|39

e

R

w

wi
<
ti

and the macr
, CALL, and
Le entire
I10H/360.

~ T r "
0S5 BHTE

EXIT.
calling

R

and DAIT
besiaes the

SCyUEnCes

For details, see the Ra

4TS 3: SUBROUTINE AND MACRO LDESCRIPTIONS

June 1970 - Page Revised March 1972

I1/0_ROUTINES' RETURN_CODES

om a call on an input or output

The return codes that may result fr
subroutine depend on the type of the file or the device wused 1in the
coperation. In general, a return code of zero means successful ccngletion cf
the input or ocutput operation, and a return code of 4 means end-oi-rile for
An TE

an input operation and end-of-file-or-device for an output operaticn. It
the file or device being used was specified as part of an explicit
concatenation (and is not the last member of that concatenation), & return
code of 4 will cause progression to the next element of the concatenation,
and that return code will not be passed back to the caller. Thus, for

exaaple, if
SCARLCS=A+B

then when the call is made to the SCARDS subroutine after the last line in A
has been read, the file routines will signal an end-of-file, but this will
te intercepted, and the first line in B will be read instead.

Return codes greater than 4 are normally not passed back to the caller
but instead cause an error comment to be printea and control tc be returned
to command mode. There are two ways to suppress this action and gain
control 1in this situation. First, the subroutines SETIOERR and SICZRR ‘(see
descriptions in this volume) are provided to permit a global intercept of
all input/output errors. Secondly, specifying the ERRRTN modifier on an I/0
subroutine call will cause all return codes tc be passed back.

tile

A description of the return codes that may occur with a particu
a

‘!:r
or device will be found in the appropriate User's Guide. In addition,
summary is provided below:

Files:
Input 0 Successful return
4 End-of-file (sequential read)
Line not in file (indexed read)
8 Error
Qutput 0 Successful return
4 Size of file exceeded
8 Line numbers not in sequence (SEQL)
12 For future expansion, should not occur
16 For future expansion, should not cccur
20 Sequential file written with indexed modifier, cr
¥ritten with starting line number other than 1
24 File not in catalog (systeam error)
28 Hardware or systea error

I/0 Routines' Retvurn Codes 357

7S 3: SJEROUTINE AND MACRO DESCRIPTIONS

o

Page Revised March 1972 June 1970

32 Line truncated (@SP on sequential file)
36 Line padded (@SP on sequentlial file)

Magnetic Tarpe: ‘
Input 0 Successful return
4 End-of-file mark sensed
8 Load point sensed on backspace control cozmand
12 Logical end of labeled tape
16 Permanent read error (tape positioned past
, bad block) or improper control cormand
20 Should not occur
24 Fatal errors (may be due to eguipment 2alfunctic
fatal label errors in which the position or <t
tape 1is uncertain, or pulling the tape oft ot tn
end of the reel). The tape must be rewound drt
any of these errors.
28 Volume and data set label errors (only on labeled
tapes if label processing 1is enabled)
2 Error in sequence of I/0 operations Or cCOoaRands
36 Dektlocking error

Output 0 Successful return

4 End of tape strip sensed

8 Loaa point sensed on backspace control cozmana

12 Attempt to write more than ifive records in eni-of-
tape area

16 Permanent write error or improper control comaanc

20 Attempt to write on file-protected tape

24 Fatal errors (may be due to equipment maliunctiorns,
fatal label errors in which the position of tne
tape is uncertain, or pulling the tape ofr cf the
end of the reel). The tape must be rewound after
any of these errors.

28 Volume and data set label errors (orly on lareled
tapes if label processing is enabled)

32 Error in sequence of I/0 operations or commands

36 Blocking error

Paper Tape:
Input Successful return

End-of-file

End-of-tape

Invalid control conmmand

Hardware malfunction

-_ - O E O
o N

358

June 1970

Card input under HASP:

‘Input 0
4
8
Output 8

Prirted output:

Input 8
Output 0
8

Pubnched output:
Input 8

Output

@ O

¥ost other devices:

Input 0
4
8
Output 0
[
8

.
wn
[en
(¢
U
(e}
<
+3
=~
tsd
o
‘,'
i
<3
b
O
o
(@]
lww]
to
w0
(@]
j=e}
-
K1
]
[l
(e
=
n

47s 3

Page revised January 1971

Successful return
End-of-£file
Attenpt to read in column binary mode

Attempt to write on card reader

Attempt to read from printer

Successful return
Local page lizit exceeded
(user never gets control back for gloral limit

exceeded)

Attempt to read from punch

Successful return
Locel card limit exceeded o
(user never gets control back for glcbal limit

exceeded)

Successful return
End-of-file
Error

Successful return
End-of-file-or-device {if applicable]
Error

I/0 Boutines' Return Codes 359

¥TS 3: SUBROUTINE AND MACRO DESCRIETIOXNS

June 1970
I/0 _MODIFIERS

INTRODUCTION

Modifiers are used to modify the action of a specific I/0 call or a
general I/0 usage. Nodifiers may be used in I/0 subroutine calls (5CARDS,
SPRINT, READ, etc), in macro calls setting up the corresponding I/0
subroutine calls, in calls to GETFD, or as parts of FDnames given in XTS
commands. ¥Yodifiers control such functions as upper or lower case conver-
sicn, logical carriage control, machine carriage control, record ctrimzing,
etc.

In general, there are three levels of precedence in the usaje of
rodifiers. The first level of precedence is the modifiers specified on a
call to one of the I/0 subroutines. If the modifier is not specified by the
subroutine call, or when a user generated subroutine call is not relevant
(¢.9., when a $COPY command is issued), the second level of precedence,
which consists of . the moditier name as part of the FDname, applies. XNote
that the group of modifiers which can only control the action of a specific
I/G call (for example ERRRTN and NOTIFY) are not valid at this level orf
precedence. If the dction of the modifier 1is not specified by the second
level, tne third 1level of precedence, which consists of the default
specitications, applies. The default specification depends upon the tvpe Of

FDnane referenced in the I/0 call and the settings of globaA switches.
These defaults are given 1in the explanation of modifier bits below.

Fodifier specifications given at the first level of precedence will override
specifications given at the second and third levels. Modiiier specifica-
tions given at the second level will override specifications given at the
third level. This precedence process is illustrated in the diagram below.
Each mcdifier pair is treated independently in the above precedence process.

level 1: Subroutine Call Modifiers

1
|
|
level 2: FDname Usage Modifiers >
|
|
Ievel 3: Defaults >1
|
|
|
Effective
Modifers

-

[
N
(@]
<
O
£
-
rHh
[
]
o]
7]
G
Oy

MTS [: SUBROUTINE AND MACRO DESCRIPTIONS

The

June 1970

example below illustrates the three levels for controlling the TRIH

nodifier.

CALL SCARDS(REG,LEN, 16384 ,LNUYN) ———
(16384 specifies ~TRIMN)

|
- |
SCARDS=FYLE®TRIM on $RUN command ... |
|
Default is TRIM for file ..cceeeevesal]

|

i
~TRIN

CALL SCARDS(REG,LEN,O0,LNUM) ...ccce..
(0 makes no specification) .

SCARDS=FYLE®d-~TRIN

Default is TRIM for file «ceceeccccnn

CALL SCARDS(REG,LEN,O0,LNUM) .eecevecse.
(0 makes no specification) .

SCARDS=FYLE .cceececcsscsccscsccnncccs

Default is TRIM for file —m————

[> S)

3

IN

The action of the modifiers specified on a subroutine call 1is ccntrolled

Dy

subroutine.

a

fullword of modifier bits given as one of the parameters to tie
The action of the modifiers on the subroutine call apply oaly

to that specific call. There are two classes of nodifiers.

(M

(2)

362

Bits 0-7 are referenced individually and specify the options Z0r a

L

specific I/0 call. If the bit 1is set, the modifier's action 1is
enabled. 1f +the bit is not set, the default specificaticro is used
(which normally nmeans the modifier action is disabled).

Bits 8-31 are referenced in pairs and specify options for & generar 1/0
usage. For each option, one bit 1is used as an "ON" bit anda tih¢ Otaer
as an "OFF" bit. If either of tne bits, but not both, is set, t:xe
nodifier action is as specified. If neither or both of <the bits 1s
set, indicating a "don't care" condition at this level of precedernce,
the modifier name appended to the FDname 1s used. If there 1s o

MTS 3: SUBROUTINE AND MACRO DESCRIFTIONS

June 1970

nodifier name appended to the FDname, the default specification
used. The normal programming practice is to leave the wmodifier bi
zero on the subroutine call and apply the modifier names to the FDra
referenced unless the program depends upon the modifier bits teing s
for a specific subroutine «caill. Here 1s an example done first 1in
assembly language and then in FORTRAN: FORTRAN is:

1s
i ts
e
et

CALL SCARDS, (REG,LEN,HMOD,LNUY)

REG DS 20F
LEN DS H
MOD hole Xr00004000° Specifies no trimming of input lines

LNUYM DS F

INTEGER*2 LEN
DATA MOD/ZJ0004000/ Specifies no trimming
CALL SCARDS (REG,LEN,MOD,LNUN)

Note that if the subroutine call 1is set wup by & macro call, the
modifier names rather than the bits are used in the macro parameter
list. Thus the above example would become

SCARDS REG,LEN,@-TRIM,LNUM

The action of modifers applied to the FDnames 1is controlled by the
nodifier name (preceded by @) appended to the FDname. The action of the
modifiers appended to the FDname apply to all I/0 calls referencing tha:t
usage of the file or device. If the modifier name is preceded with "-'" or
-1 the other bit of the bit pair is set, which negates tne action o0i <&
modifier name. [The modifier applies only to the FDname to which 1t 1
attached.] If implicit or explicit concatentation to another FDnaze occC
the modifiers must be applied to both FDnames even if the FDnaues are
same. If the user at a terminal is prompted for an FDname, the rull FDnaxz
including the nodifiers and 1line number <range 1aust be given with each
request. The order of modifier names appended to an FDname is unimportant.
Some e€xamples are

FILE12IaUC Specifies indexed and upper case
PILE22~TRINM Specifies no trimming

SINK@NOCC Specifies no carriage control
*SINK*a-CC Specifies no carriage contrcel
RORTDBIN Specifies no BCD conversicn
FILE3@PFXacC (1, 10) Specifies prefix and carr control
FILE3@PFXa@CC(1,10)+ (20,30)acc Specifies prefix and carr coatrol

for lines 1 to 10 and carr ccntrol
for lines 20 to 30

If the modifier action is also specified on a subroutine call, the zodifier
action applied to the FDname is overridden.

I/0 Modifiers 363

MTS 3. SUBROUTINE AND MACRO CESCRIPTIONS

June 1670

EXEFIANATION OF MODIFIERS

The device types discussed below in the exceptions to the derfault

rodifier

bit
tion of "Files
discussed here

ETR

TT
2741
2260
PLP8

STP

1TP

SDA
HETR

specifications are the device types as listed in the Gescrip-
and Devices" in Volume 1 of the MTS Manual. The device types

are:

Printers
Teletype terminals via IBM 2703 Transmission Control
IBM 27471 and 1050 terminals via IBM 2703 Transmission Control
IBM 2260 Display Unit
Terninals via the Data Concentrator
Track Magnetic Tape Drive
7 Track Magnetic Tape Drive
Synchronous Data Adaptor (Remote batch via IBM Controllers)
Printed output under HASP

The values indicated below with each bit specification are the values that

the wmcdifier

word for a subroutine call would have if that modifier option

only was specified.

Bit

364

31
30

SEQUENTIAL, S Value: 1 (dec) 00000001 (aex)
INDEXED, I N 2 000006002
Default: SEQUENTIAL

Exceptions: None

In general, the INDEXED modifier 1s applied only to Iline
files, while the SEQUENTIAL modifier is applied to line
files, sequential rfiles, and all types of devices. ©Note that
the SEQUENTIAL modifier and the sequential file are not
directly related. Tae paragraphs below describe the action
of this modifer pair and the results that occur when these
modifiers are not used in the normal manner.

With each 1logical wunit (or FDUB) there is a current line
pointer which contains the line number of the last record
read or written. When an I/0 operation is performed, the
current line pointer is first set to the line numrber or the
record to be read or written before the actual reag or write
occurs. After the read or write operation has cccurred, the
current line pointer will <contain the line number of the
record last read or written.

1/0 operations involving line files may be done with either
SEQUENTIAL or INDEXED speciried. A SEQUENTIAL I/C operation
occurs when the user specifies that the "next! record 1s to
be read or written. For a read operation, "next" means the

June 1970

BTS 3: SUBROUTINE AND MACRO DESCRIETICNS

record that 1s next in ascending line number order <froa
current value of the line pointer (last line read or writt
of the same logical I,/0 unit (or FDUB). If, nowever,
increment was explicity given with the FDname, the 11
number read is the current value of the line pointer plus
first nmultiple of the specified increment for which tzere
a line in the file. TFor a write operation, "next" zeans
current value of the line pointer (last line read or writt
plus the increment specified with the FDname (defaults to 1)
of the same logical I/0 unit (or FDUB). An INDEXED I/0
operation occurs when the user specifies the line nuaber of
the record to be read or written. As an example, consider
the following FORTRAN program segment.

o
=g
y W~ D

M ct
(SIS N
~ W

INTEGER*2 LEN
DATA MOD/2/ Specifies INDEXED
1 CALL READ(REG,LEN,C,LNR,2,82)
CALL WRITE (REG,LEN,MOD,LNR,3)
GO TO 1
2 CALL EXIT

This program will perform a read SEQUENTIAL and write INDZXED
using the line nunmbers from the read operation as the line
nunber specifiications for the write operation. The coagand
(assuming compilation of the above into -LOAD#)

$RUN -LOAL# 2=A 3=B
will be equivalent to

$COPY A BOI

which will copy file A into file B preserving the line
numbers of file A as the line numbers for file B. If a
series of 1/0 operations involving a given usage oI a li:xe
file are intermixed with INDEXED and SEQUENTIAL operations,
the SEQUENTIAL operation will begin sequentially with tnae
line following the 1last 1line specified in the INDEXED
operation. INDEXED ‘operations following SEQUENTIAL opera-
tions will wuse the line number given 1in that INDEXED
specification.

I/0 operations involving sequential files must be done
SEQUENTIALly. If the user specifies INDEXED on a sequential
file operation, an error message will be generated unless cthe
global switch SEQFCHK is OFF, in which case the operation
will be performed as if SEQUENTIAL was specified. Attempting
a sequential operation with a starting line number other than
1 (for example $COPY FYLE(2)) will also give aL error
comment if SEQFCHK is ON.

I/0 operations involving sequential devices, such as card
readers, printers, card punches, magnetic tape units, paper

I/0 Modifiers 305

MTS 3. SUBROUTINE AND MACRO DESCRIPTIONS

June 1970

tape units, and terminals, are inherently seguentisl and arec
normally aone SEQUENTIALly. If the SEQUENTIAL ©nmodirfier 1is
specified, the 1line number attached to the Lline 1
current value of the line pointer plus the increzent s;

1

(¢}

fied on the FDname. If the INDEXED modirier is spe
the line number attached to” the 1line 1s the line u:
specified in the calling sequence. The IXDEXED modifier is
used primarily in conjunction with the PREFIX modifier. \JNote
that the device will treat the I/0 operation as if SEQUENTIAL

were specified.

Bit 29 EBCD Value: 4 (dec) 0000600C4 (hex)
28 BINARY, BIN 8 00060C003
Default: EBCD

Exceptions: None

The EBCD/BINARY modifier pair 1is device dependent as to the
action specified. For «card readers and punches, the EBCD
nodifier specifies EBCDIC translation of the card image which
means that each card column represents one of the 25¢ 8-bit
EBCDIC character codes. The BINARY modirier specifies that
the card images are in column binary format which means that
each cara column represents two 8-bit bytes of information.
The top six and bottoa six punch positions of each coliumn
correspond to the first and second bytes respectively with
the high order two bits of each byte taken as =zero. The
printers and file routines will ignore the presence of this -

nodifier pair.

Other device support routines recognizing this modifier pair
are:

1. The Data Concentrator routines
2. The 2703 routines

3. The Paper Tape routines

4. The Audio Response Unit routines

For information on the usage of +this modifier peair in
specifications involving the devices listed above, see the
respective User's Guides in Volume 1 of the MTS Manual. The
list of device support routines recognizing this modifier 1is
volatile and subject to chanrnge without notice. Users who
wish to keep their prograrns device independent should not

specify this modifier.

366

June 1970

Bit 27
26

Bit 25
24

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

LOWERCASE, LC Value: 16 {dec) 00000010 (hex)
CASECONV, UC 32 00000020
Default: LOWERCASE

Exceptions: None

The LCWERCASE/CASECONV modifier pair is not device dependent.
If the LOWERCASE modifier is specified, the characters are
transmitted unchanged. If the CASECONV nodifier 1is speci-
fied, lower case letters are changed to upper case letters.
This translation is performed in_the user's core region. On
input operations, the <characters are read into the user's
buffer area and then translated. On output operations, the
characters are translated in the user's buffer area ard then
written out. Only the alphabetic <characters (a-z) are
affected by this modifier. [Unlike IBM programming systeas,
MTS considers the <characters ¢, ", and ! as special
characters rather than "alphabetic extenders' and thus tae (C
modifier does not convert ¢, ", and ! into @, #, and 3,
respectively.]

NOCARCNTRL, NOCC Value: 64 (dec) 00000040 (hex)
CC, STACKERSELECT, SS i 128 00000080
Default: NOCARCNTRL

Exceptions: CC for PTR, TTY, 2741, 2260, PDP8, SDA, and HPTR

The NOCC/CC modifier pair is device-dependent. This modizier
pair controls the presence or absence of logical «carriage
control (or stacker selection) on the output of records. For
printer and terminal devices, the first character oI each
record is taken as logical carriage control if this character
is a valid carriage control character and if the CC o@modifier
is specified. If +the <first <character 1is not vailid as a
carriage control character, the record is written as 1if NOCC
were specified. For further information on logical carriage
control, see the "Carriage Control'" description 1in tais
volume. For card punches, the first character of each card

image is taken as the stacker select character i1f 1t 1s a
valid logical stacker select character (0, 1, or 2) and ir
the SS modifier is specified. If the first character is not
valid as a stacker select character, the card inage 1is

IS

Ui

punched as if NOCC were specified. The SS wmoditfier
intended only for those users who are commnunicating direct
with a physical punchk (normally system prograamers) and 1
not intended for normal batch usage under HASP. Note that
the SS and CC modifiers reference the same modifier bit and
thus may be used interchangeably.

x
1
-

U<

I/0 ¥odizfiers 367

HTS

368

Bit 23
22

“: SUBROUTINE AND MACRO DESCKIPTIONS

June 1970

The Magnetic Tape routines also recognize the presence ot
this modifier pair. For this description, see the Magnetic
Tape User's Guide din Volume 1 of the HTS Fanual. The file
routines will ignore the presence of this modifier pair.

Value: 256 (dec) 00000100 (hex)
PREFIX, PFX 512 00000200

Default: ~PREFIX
Exceptions: None

The PREFIX modifier pair controls the prefixing of the
current input or output line with the current lice number.
On terminal input, the current input line number is printed
before each input line is requested. The line nunber used 1is
deterrined as specified in the description of the SEQUENTIAL
and INDEXED modifiers. An example for termimal input is

$COPY *SOURCE¥(6,,2) 92FX 2(6,,2)
6_ first input line
8 _ second input line

end of file indicator

Note that this would have the same effect with Tespect 1o
line nunbering as

SGET A
$NUK 6,2

6_ first input line
8_ second input line

°

x¥_SUNN
The current (prefix) linre number is not egquivalert to the
file line number. In the example above, the prefix liise a=zd
the file 1line numbers were explicitly meade to corresponc by
also specifying a line number range on t.e output FLraxze (troe
file A). On input from card readers and files, the PREFIX
mnodifier has no erfect. On terminal output, the current line

number is printed before each output line is written. The
line pumber used is determined as specified in the descrip-
tion of tne SEQUENTIAL and INDEXED modifiers. AR exanple for
terminal output is

$COPY A(1,10) *SINK*(100,,2)aPFX

100_ first output line
102_ second output line

June 1970

Bit 21
20

‘the PEEL (GETLINE#) modifier is specified, a line nuznlfer 1s

4TS 3: SUBROUTINE AND MACKO DESCRIPTIONS

Note again that the current line number is not eguivalent to
the file line number. On output to the printer or to a file,
the PREFIX modifier has no effect.

If the INDEXED and PREFIX modifiérs are given together for
terminal output, the line numbers reierenced by the INDIXEID
modaifier will be the sare as those produced by tae PRIFIX
modifier. As an example, consider the rollowing FCRTRAN

program segment:

INTEGER*2 LEN

DATA M0OD/200000202/ Turns on INDEXED and FREFIX
1 CALL READ(REG,LEN,0,LNR,2,82)

CALL WRITE (REG,LEN,HOD,LNR,3)

GO T0 1
2 CALL EXIT

This program will perform a read SIQUENTIAL and a write
INDEXED and PREFIX. The command (assuming compilationm oI tkhe
above into -LOAD#)

$RUN -LOAC# 2=A 3=*SINK*
is equivalent to

$COPY A *SINK*2IdPFX
which is also similar to

$LIST A

with @ slightly different formatting of the line nurbers

Value: 1024 (dec) 00000400 (hex)

PEEL, GETLINE#, 2048 00000800
RETURNLINE#
Default: -~PEEL

Exceptions: None

-

The PEEL modifier pair has two functions depending upon

whether it is specified c¢n input or on output. On input, 1if

1

extracted rfrom the front of the current input line. fThe line
nunber is converted to internal form (external wvalue i
1000) and returned in the line number paraﬁeter QdLl
read operation. See the subroutine description orf RD
READ. The remainder of the line 1s moved 1into the
region specified. As an example, consider the Icilo

FORTRAN program segment:

w \ﬁl ct

=

Ut §3
8o
et (0 O W)

wn
@)
b

=8
€

[&N

1:]
b+ ro

=

>
-

I/0 ¥odifiers 369

MTSs 3

370

SUBROUTINE AND MACRO DESCRIPTIONS

June 1970

INTEGER*2 LEN
DATA MOD/2048/

1 CALL SCARDS (REG,LEN,MOD,LNR,&2) Read with EEEL
CALL SPRINT(REG,LEN,0,LNR)
GO TO 1

2 CALL EXIT

The program will read an input line, extract the line nuaber,
and write out the line without its line number The
following sequence (assuming compilation of the above into
-LOAD#)
SRUN -LOAD# SCARDS=*%SOURCE* SPRINT=ABC
104844
12BBB
is equivalent to
$COPY *SOURCE*QGETLINE# ABC
10AA2
12BBB
Listing the file ABC will produce
$LIST ABC
1 AALA
2 BBEB
the

If the PEEL modifier is specified 1in conjunction with
INDEXED modifier, the line number of the input line can bne
used to control the destination of the 1line during output.

For exanmple:

INTEGER*2 LEN
DATA MOD1/2048/, #0D2/2/
1 CALL SCARDS (ReG,LZN,M0D1,LNR,&2) Read with PEEL
CALL SPRINT (REG,LEN,MOD2,LNR) Write INLEXED
GO TO 1
2 CALL EXIT
This prograwm will ©read an input lin¢, extract tn¢ line
nubber, and write out the line with the extracted line number
as the 1line number specification <for an 1indexea write
operation. The rollowling sequence (assuming compilation of
the above into -LOAD%)

$RUN ~-LOAD# SCARDS=*%SOURCE* SPRINT=ABC
10444
12BBB -

is equivalent to

June 1970

Bit 19
18

\

MTS 3: SUBROUTINE AND MACRCG DESCRIETIONS

Page revised January 1971

$COPY *SOURCE*QGETLINE¢ ABCal

10222
12BBB

which is also equivalent to
$GET ABC
10443
1ZBBB

Listing the file ABC will produce

$LIST ABC
10 AAR
12 BBB

Oon output, 1if the PEEL (RETURNLINE#) modifier is specirfied,
the line number of the current cutput line is returned ia the
line number parameter of the subroutine call during the write
operation. See the subroutine descriptioas of SPRINT,
SPUNCH, SERCCH, and WRITE. Tae line itself is written out
and is unaffected by the presence or absence of this
podifier. The nodifier is wused on outout <0 aid the
programmer in recording the line number of the current line

written out.

Value: 4096 (dec) 00001000 (hex)
MACHCARCNTRL, HMCC - 8192 00002000

Default: -MCC

Exceptions: None

The pachine carriage control mcdifier pair 1s device-
dependent. The MCC podifier is used for printing output {via
printers or terminals) from prograus producing cutput in
which the first byte of each line is to be used as tahe
command code in the Channel Coazand dord (CCH¥) used for
output to a 1403 (or 1443) printer. If the HCC aodifier 1is
specified and the first byte of the output lime 1is a valid
1403 CCW coammand code, the line 1is spaced accordingly and
printing starts with the next byte as column 1. I tie firse
byte is not a valid 1403 CCW command code, the entire liine 1
printed using single spacing. Spacing operations cerorzed
by machine carriage control occur after the lipme 1is priat
(as opposed to logical carriage contrcl in which the szacin
is performed before each line is printed). gz

not produce output using machine carriage control. iz b
prograzs that do (such as *ASMG and the TEYT360 progranm
internally specify XCC for their output assuming that It 1
bound for a printer. Hence MNCC need not be speciried.
the user directs the output to a file, when the Ifile
printed, MCC will have to be specified. For exanple:

0

e - ot @ .
0w~ O\ij.p

[77]

w
)
-

I/0 Moi. ..<T

TS 3:

Page revised January 1971

37z

Bit 17
16

Bit 15
14

SUBROUTINE AND MACRO DESCRIPTICKS

June 1970

$RUN *ASHG SCARDS=A SPRINT=B SPUNCH=C
$COPY B TO *SINK*adMCC

The MCC nmodifier pair is ignored for files and all devices
other than printers or terminals. Foxr zfurther information on
machine carriage control, see the %Carriage Control" descrip-
tion in this volunme.

Value: 16384 (dec) 00004000 (hex)

TRINM 32768 00008000

Default: ~TRIM
Exceptions: Line files, sequential files, and HPTX

The TRIM modifier pair is used to control the trimpming of
trailing blanks from dinput or output lines. If the TRIH
modifier is specified, all trailing blanks except QRE are
trinmed from the line. If ~TRIM is specified, the lire 1is
not changed. A trimming operation does not physically delete
the trailing blanks from the line, but only changes the line

length count.

value: 65536 (dec) 00010000 (hex)

SPECIAL, SP 131072 00020000

Default: -~SP
Exceptions: None

The SPECIAL modifier pair is reserved for device-dependent
uses. Its meaning depends upoW The particular device type
With which it is used. The device support routines recogniz-

ing this modifier pair are:

1. The File routines (sequential files only)
2. The Data Concentrator routines

3. The Paper Tape routines
4. The Audio Response Unit routines

For information on the usage of this modifier pair in
specifications involving the devices listed above, see the
respective User's Guides in Volunme 1 of the MTS Kanual. The
1ist of device support routines recognizing this modifier is
volatile and subject to change without notice. (Users who
wish to keep their programs device-independent should not

specify this modifier.

June 1970

Bit 13

Bit

Bit

12

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

Value: 262144 (dec) 00040C00 (hex)

IC 524288 , 00086000
Default: The setting of the ¢ global switch (usually OX)
Exceptions: None

The IC modifier pair controls implicit concatenation. If the
IC nmodifer is specified, implicit concatenation will occur
via the $CONTINUE WITH line. If -IC is specified inplicit

concatenation will not occur. For example, SLIST DRCondhw«IL
will 1list the file ©PROGRAM and will print $CONTINUZ WIT:
lines instead cf interpreting them as implicit COnCduGuathn
conmands. The use of tne IC modifer in I/0 subroutine calls
or as applied to FDnames will override the setting of the
implicit concatenation global switch (SET IC=0% or SET
IC=0FF) for the I/0 operations for which it is specified.

ERRRTN Value: 1073741824 (dec) 40000000 (hex)
Default: ~ERRRTN

Exceptions: None

If the ERRETN modifier is specified (bit 1 in the mpodiifier
word is 1) when an I/0 call is made, and 1rf an I/O0. error
occurs when no SETIOERR/SIOERR interception has been estas-
lished, the error return code is passed back to the callinxng
program instead of printing an error conment. This @modifier
may be used only with an I/0 subroutine call. It may not ke
used as an attribute cn an FDnanme.

NOTIFY Value: =-2147483648 (dec) 80000000 (hex)
Default: ~NCTIFY

Exceptions: None

If the NOTIFY modifier is specified (bit 0 din the =modifier

word is 1) when an I/0 subroutine call is made, on return GRO
is set to a value indicating what has nappened:

no unusual occurrence
new FDUB opened and no I/0 done
and above, reserved for future expansion

NN - O
I on

A new FDUB is opened if lupl; it concatenation occurred, 1ir a
change to the next ember of an explicit concateration 1is
effected, or if a Leplavement FDname 1s requested. This
nodifier may be used only with an I/0 supbroutine call. It
may not be used as an attribute on an FDname.

I/0 Modiriers 373

MTS 3 SUBROUTINE AND MACRG DESCRIPTIONS

June 1970
CARRIAGE CONTROL
INTECDUCTION
The term carriage control refers to the user's ability to control the
vertical spacing of his output. Carriage control is used mainly for output
to a terminal or a printer. It may also be wused to Specify CCRtroi
operations for magnetic and paper tapes. See the appropriate Users' Guides
in Volure I for details of usage. If the user has specified «carriage
control, the first character of every record (if output to a printer or a
termirnal) is interpreted as a carriage control character. For a description
of the carriage control modifiers, see "I/O ¥odifiers' in this voluce. The
carriage control character determines the vertical positioning of the output
page and 1s not part of the printed text. The control character 1is strippead
from the output record and printing begins with the second character, ratier
than replacing the first character with a blank and starting the SCINTILG
Wwith the blank. If the first character is not one of the legal <ccdes <Ifor
the particular device being -used, a default option oI single space 1s
assuned, and the first character 1s printed as part of the output text. Trne
character codes are independent of the source language used by tae
prcgrammer.
4TS supports two types of carriage control--logical and machine. 3ot
are used in the manner described above, differing only in the legal carriage
control characters and their effects. Logical carriage control 1is the more
common, and, in general, the user need not be concerned with machine
because several froyrans

carriage control. MTS supports the machine type
(rotably the assembler and TEXT/360) produce it. In most cases in waich
carriage control is desired (such as output to printers and terminals),
jefault for logical carriage control 1is oD. To select eituer machine
carriace control or no carriage control, the appropriate modifier nwust be

specified.

LOGICAL CARRIAGE CONTROL
The following table describes the logical carriage controli characters and
their effects.

(93]
-
wm

Carriage Control

b s com o Gn oo B S G o B e o — o—

MTS 2: SUBROUTINE AND MACRO DESCRIPTIONS
June 1970
| i R K
| Char- | Effect Before | Exceptions |
| acter | Printing F - ¥ 4
| i | grinter | Terminal: | Terzinal: |
i | | | IBM { Data Con- |
| | | | Controller | centrator |
— + t i t {
j blank | single space | | | {
| | { | | i
i 0 | double space { | |
i | | | |
i - { triple space | | |
| I | | |
] + | overprint previous line-- | | sst { undef?
i | print without spacing first | | |
] i | i |
| & | suppress carriage retura | undef] |
| | after printing | | i
i | { | |
|) | single space and Suppress | { ss | ss
{ | overflows | | |
| | | { {
i 1 | skip to top of next page+* | | skip 6% | skip 6
! | | { |
! 2 | skip to next 1/2 page® { | skip 6 { unde:
{ { | | |
| 4 | skip to next 1/4 page® | | skip 6 { undel
| | |] |
i 6 | skip to next 1/6 page® | | skip 6 | undef
| | | | i
| 8 | same as 6] | skip © | uncéef
f | | | |
{ : | skip to top of next physical | | undef | undef
| | page (at perforation) { | |
i |] | |
i < | skip to bottom oI physical | | undef | undef
| | page (at perforation) | | i
L A L i 1

376

1cs = single space. ,
2undef = undefined, in which case spacing defaults to single space and

the undefined character is printed as text.

3Normally, the printer automatically skips the first and last three
lines of a page. A logical carriage control character of "3I"
csupresses this skip, causing these top and bottom margins to Dbe

ignored.
sauTop" is physically three lines down from the perforation because ct
the automatic margin mentioned above.
sskip 6 lines.
6Tne lcgical page 1is divided into two halves, four quarters, and six
sixths. A logical carriage control character of 4 will, for exanpie,
position the page at the next gquarter pblock even if this may in rfact

Fe the top or the middle of a page.

June 1970

Purpose: To read a
Location: Resident
Alt. Entry: READ#
Calling Sequences:
Assemnbly:
fORTRAN:

PL/I:

MTS 3: SUBROUTINE AND ¥ACRO DESCRIPTICKS

Page Revised March 1972

SUBROUTINE DESCRIPTION

n input record from a specified logical I/0 unit.

Systenm

CALL READ, (reg,len,mod,lnum,unit)
CALL READ(reg,len,mod,lnum,unit,Srcu,...)

See the IHEREAD subroutine description.

Paraneters:

Leg

rch

is the location of the core region to which data is
to be transmitted.

is the location of a halfword (INTEGER*Z) integer
giving the number of bytes read.

is the location of a fullword of modifier bits used
to control the action of the subroutine. If rod 1is
zero, no modifier bits are specified. See the "I/0
Modifiers" description in this volune.

is the location of a fullword integer giving the
internal representation of the line number that 1is
to be read or has been read by the subroutine. TXe
internal form of the line number 1s the external
form times 1000, e.g., the internal form of line 1
is 1000, and the internal fora of lirce .0C1 1is 1.
is the location of either a fullword integer giving
the logical I/0 unit nuaber (0,00.,19), a left-
justified 8-character logical I/0 unit naze (e.g.,
SCARDS), or a fullword FDUB pointer (as returned by
GETFD) .

is the statement label to transfer to 1f the
corresponding non-zero return code is encountered.

Return Codes:

0 Successful return.

4 End-of-file.
>4 See tha "I/O Routines' Beturn Codes" description 1in

t

his volume.

READ 193

MTS 3: SJIBROUTINE AKD MACRO DESCRIPTIONS

Page Revised March 1972 June 1970

Description:

Examples:

194

All five of the above parazeters in the calling seguernce are
required. The subroutine reads a record froa the I,/0 unit
specified by unit into the region specified by reg and puts
the length of the record °(im bytes) 1into the location
specified by len. If the mod parameter (or the FDnaze
modifier) specifies the INDEXED bit, the lrun parameter oust
specify the 1line number to be read. If the rod parameter
specifies the SEQUENTIAL bit, the subroutine will put tke
line nunber of the record read into the location specified by
lnum.

There are -no default FDnames for READ.

There is a macro READ in the system macro litrary for
generating the calling segquence to this subroutine. See the
macro description for READ in this volume.

This exanple, given in assembly language and FORTRAN, calls
READ specifying an input region of 20 fullwords. The logical
I/0 unit specified is 5 and there is no modifier specifica-
tion made in the subroutine call.

Assembly: CALL READ, (REG,LEN,MOD,LNUM,UNIT)

REG DS 20F
LEN DS H
KOD DC FrO!
LNUM DS F
UNIT DC F'5¢

or

READ 5,REG,LEN subr. call using macro.

FORTRAN: INTEGER*2 LEN

CALL READ (REG,LEN,0,LNUM,5,830)

30 .

This example sets up a call to READ specifying that the input
will be read from the file FYLE.

Assenbly: LA 1,'C'FYLE '
CALL GETFD
ST 0,UNIT

CALL READ, (REG,LEN,MOD,LNUM,UNIT)

REG DS 20F

June

1970

LEX
HCL
LHUS
UNIT

FORTRAN:

30

DS o
£C Q0
DS 7
LS T

EATERULL GETED
IHTEGDR*4 ADKCFP,UNIT
CALL RCALL (GETFD,2,0,ADKCF (*FYLE

CALL READ(REG,LEN,O,LRUM,UNIT,SSO)

-

try

&3]

Lt

t

June 1970

Purrose:
Locaticn:

Alt. Entry:

MTS 3: SUBROUTINE AND MACRO DESCRIPTION
SCARDS

SUBROUTINE DESCRIPTION

To read an input record froa the Ibgical I/0 unit SCAGRDS.
Resident Systen

SCARDS#

Calling Seguences:

Description:

Assembly: CALL SCARDS, (reg,len,mod,lnunm)

PORTRAN: CALL SCARDS (reg,len,mod,lnum,&ércé,...)

Parameters:

req 1s the location of the core region to waich data is
to be transzitted.

len 1is the locaticn of a halfword (INTE “2) Llnteger
giving the number of hytes to be tran ted.

nod 1is the location of a fullword of nodi oits used
to control the action of the subroutiane. Ir 1¢l is
zero, no modirfier bits are specified. See tne "I/0
Modifiers" description in this volure.

lnum is the location of a fullword dinteger Jiving the
internal representation of the line number taat is
to be read or has been read by the susroutize ae

internal form of the line number is the exterrnal
form times 1000, ©.g., the internal form oI iine 1
is 1000, and the internal form of lire .0C1 is 1.
rclb,... is the statement label to transfer to i:I t
corresponding non-zero return code 1s encountere

Return Codes:

0 Successful return.
4 End-of-file.
i

> See the "I/0 Routines! Return Codes" description 1in
this volune. -

All four of the above parameters in the calling seguc<nce are
required. The subroutine reads a <record intc <the region
specified by req and puts the length of record (irn bytes)
into the location specified by len. If the pod parazcter (cor
the FDname modifier) specifies the INDEXED bit, the lnun
parameter mwmust specify the line nunber to be read Iz e
mod parameter specifies the SEQUENTIAL bit, the u:~o"

S rout
will put the line number of the record read into tae 1locati
specified by lnunm.

&3]

N

(e

Tt

There 1s

PR

BGIAGLdulﬁ
macro éescriptio

a

g th':, C

Tris °kany&e,

SCARDS specifying an input region of 20 ~u‘lw
no modifier specification made o2 the subrou

Assemkbly:

FORTRAN:

[quiite S aulil =3
=z O bt o
[N e iR~ p]
=

SOCTINE AND MACRO DESCRIPTIIONS

e default FDrame for SCARDS is *SOURCIL*.

c¢ro SCzuDS 1 the system zac
allirg segugnce to this subrout
n for SCAXRDS in this voluxme.

given in assembly language and

CALL SCARDS, (REG,LEN,i0D,LNUN)

DS 20F
DS ot

BC FiO!
DS F
or

SCARDS REG,LzN Subr. call usiag Rmacro.

INTEGER*2 LEN

-

CALL SCARDS (REG,LEN,0,LNUM,&30)

FTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

June 1970 v Page revised July 1971

len

DU

————

=

D

SUBROUTINE DESCRIPTION

Purpose: Tc produce a dump of any or all of the following:
{1) general registers
(2) £loating point registers
(3) a specified region of core storage

Location: Fesident Systen

Calling Seguences:

Assembly: CALL SDUMP,(switch,outsub,wkarea,first,last)

Faraneters:
switch is the location of a fullword containing
svitches that govern the coantent and foraeat oI
the dump produced. The switches are assigned as

follows:

bit 31: on if hexadecina conversion of tke

core region is desired. '

30: on if n@mnexzonic conversion oI the core
region is desired

29: on if EBCDIC coaversion of the core
region is desired

28: on if double spacing is Gesired; off if
single spacing is desired

27: on if long output records (130 charac-
ters) are to be formed; of& if short
ocutput records (70 characters) are to

be formed

26: on 1if general registers are to be
dumped

25: on if floating point registers are to
be dumped

Z4: on if a core region is to be dumped
23: on if no column headers are to be

produced
outsub is the 1location of a subroutine (e9g., SPRINT)
that causes the printing, punching, etc. OI the

output line images formed by SDUXP.

wkarea is the location of a doubleword alic.od area oI
400 bytes that may be used by SDUM? as a work

area.
first is the location of the first byte of a core

MTS 3:

SUEROUTINE AND MACRC DESCRIETIONS

Page revised July 197 June 1570

Note:

region to be dunmrged. There are no boundary
requirements for this address.

last is the location of the 1last byte of a core

fegion to be dumped. There are no boundary
requirements for this address; however, an
address in last which is less than the address
in first will cause an error return.
The default case for switch (all switches off)
produces a dump as though bits 24, 25, 26, and 31
were on. Furthermore, if bit 30 (mnemonics) is on,
bit 31 (hexadecimal) is implied. Note that bits 24,
25, and 26 specify what is to be dumped, bits 27 and
28 specify the page format, and bits 29, 30, and 31
specify the interpretation(s) to be placed on the
regicn of core specified. Bits 29 through 31 have
significance only if bit 24 is on.

Return Codes:

Description: Cutpu

208

Re

0 Successful return.
4 Illegal parameters.

t_Formats

gisters:

General and flcating point registers, if requested, are
always given in 1labelled hexadecimal format. The
length of the output record is governed by the setting
of bit 27 of the switch.

Core Storadge:

Although any ccmbination of switches is acceptable, the
appearance of the dump output for a region of core
storage is determined as follows:

1« If, and c¢nly if, the mnemonic switch is on, the
unit of core storage presented in each print itea
is a halfwcrd aligned halfword.

2. If, and only if, the mnemonic switch is off and the
hexadecimal switch is gon (through intent or
default), the unit of core stoage presented in each
print item is a fullword aligned fullword.

3. If, and only if, the mnemonic and hexadecimal
switches are off but the EECDIC switch is on, the
unit of core storage presented in each print iten
is a doubleword aligned doubleword.

June 1970

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

Page revised July 1971

In all cases, the output includes

(halfwora, £fullword,
irst specified core
ound,

(1) the entire core storage unit
or dcubleword) in which the f1i
location (parameter first) is £

(2) the entire core storage unit in which the last
location (pararmeter last) is found, and

(3) all intervening storage.

Thus, the first and last printed 1items o0f a core
storage dump may include up to a maximum of seven core
bytes more tnan actually requested in the parameter

list.

If nmnemonics are requested and SDUME discovers a byte
that cannot be ‘interpreted as an operation code, then
instead of a legal mnemonic, the characters "IXXX"
appear directly below the hexadecimal presentaticn of
the halfword in <core that should have contained an
operation code. When this occurs, the mnemonicC scanner
jumps ahead as though the 1illegal operation code
specified an KR type instruction (two bytes) ané tries
to interpret the byte at the new locaticn as arn
operation code, etc. Any mnpenonic print line that
contains the "XXXX" for at least one of its entries 1is
also marked with a single "X" directly below the line
address that prefixes the hexadecizal resentatica of
that same region of core. (The IneRonic coaversioa
routine includes the Universal Instruction Set and
those instructions exclusively used by the Mcdel 67.)
To facilitate tiae location of particluer itezs 1ia the

output, line adiresses always have a zcro in the least
significant hexadecimal position. Column Aacadérs are
provided which give the value of the least signiiicant
hexadecimal digit of the address of the Zirst Lyte in
each print iteam.

A line of dots is printed to indicate that a region ci
core storage contaians identical tens. The core
storage unit used <for comparisons is halrfwcrd, rull-
word, or doubleword depending upon the type(s) of
conversion speciried. In all cases, the core storage
unit corresponding to the last iter printed tefore the
line of dots and the core storage unit for the first
item after tne line and all intervening core storage
units have identical contents. The last line 1s always
printed (even if all of its entries exactly match the
previously printed line).

SDUMP 209

P e

KTS 3:

Page revised July 1971

Example:

210

SUBROUTINE AND MACBC DESCRIETIONS

June 1970

Assembly: EXTRN SPRINT
CALL SDUMP,(SH,SPRINT,HK;FIRST,FIRST+3)

WK DS 50D
SW LC FrO
PIRST DC X'F1F2F3F4!

The above example will cause SDUMP to print the hex string
'"F1P2F3F4!'. :

June 1970

Purgose:

Locatiocn:

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

SPRINT

SUEROUTINE DESCRIPTION

To write an output record on the logical I/0 unit SERINT.
Resident Systen

SPRINT#

Calling Sequences:

Description:

Assenbly: CALL SPRINT, (reg,len,mod,lnum)

FORTRAN: CALL SPRINT (reg,len,mod,lnum,&rc4,...)

Parameters:

req is the location of the core region from which data
is to be transmitted.

len is the location of a halfword (INTEGZR*2) 1integer
giving the number of bytes to be transmitted.

mod is the location of a fullword of modirier bicts use
to control the action of the subroutine. If zod 1
zero, no modifier bits are specified. See the "I/
Modifiers" description in this volune.

lnum (optional) 1is the location of a tullwora 1latege
giving the 1internal representation oI the lin

number that is to be written or has been writtern

the subroutine. The internal <form of the line

number is the external form tinmes 1000, €.g., tae

internal form of line 1 is 100G, and the internal

form of line .001%1 is 1.

rcl4,... is the statement label to transfer to 1t the
corresponding non-zero return code is encountered.

Return Codes:

0 Successful return.

4 oOutput device is full.

>4 See the "I/O Routines' Return Codes" description 1in
this volurme.

The ' subroutine writes a record of length len (in bytes) 1rozx
the region specified by reg on the logical I/0 unit S2RINI.
The parameter lpum 1is needed only 1if the nod parazeter
specifies either INDEXED or PEEL (RETURNLINE®#) . IZ INIZXID
is specirfied, the line nuamber to be written 1s speciried ia

the record

lnum. If PEEL is specified, the line nuaber or
written is returned in lnunm.

(7
e}
=
4
i
3
[
£
~

MTS 3. SUBROUTINE AND MACRO DESCRIPTICNS

June 1970

The default FDname for SPRINT is *SINK*.

Tfhere 1is a macro SPXINT in the system macro library for
to this subroutine. See the

generating the calling secugnce
macro description for SPRINT in this volunme.
This example .given in asserbly language and FORTRAN calls
SPRINT specifying an output region < 30 bytes. No podifier
specification is made 1in tne subroutine calil.

Exanples:

Assenbly: CALL SPRINT, (REG,LEN,HOD)
REG DS 20F
MOD pc F'O?

LEN DC H¢80!

or

SPRINT REG,LEN Subr. call using macro.

FORTRAN: DATA LEN*2/80/

CALL SPRINT(REG,LEN,O)

248

¥TS 3: SUBROUTINE AND ¥ACRC DESCRIPTIONS

June 1970 ' Page revised July 1971

SUBROUTINE DESCRIPTION

M

Purpose: T¢ dump a region of the user's virtual mezory in the HT
standard format. For dumping registers, duzping vith w©he-
mcnics, and other options, see the SDUMP subroutine descrip-
tion in this vclume.

Location: Resident System

Calling Sequences:

Assembly: CALL STDDME,(switch,outsub,wkarea,first,last)

Farameters:
switch 1is the location of a fullword of inforazation.
The first hLalfword of switch is taken as the
storage index number that will be vrinted out in
ch

the heading lire. The remainder of svitch 1is
taken as a group of switches as follows:

bit 20: (Integer value = 2043) X B

If set, the call will be ign
LGADINFPO declares that the Teg
storage is part of
subroutine.

28: {Integer value = 8) DOUBLE
If this bit is set, the 13
dump will be double space
the normal single spacing

outsub is the location of a subroutine tha
called by TDDMP to "print® a 1i
subroutine is assuned to have tne sa
sequence as the SPRINT subroutine.
wkarea 1s the location of a 100-word (fullword
region which STDDMP will use as a WOrkK &
irst is the 1location of ‘the <first byte o 0
region to be dumped. There are 1o Dboundary
requirezents for this address.
last is the location of the last byte of a co
region to be dumped. There are no Dbounda
requirenents for this address; however,
address in last which is less than the addre
in first will cause an error return.

Hae 0

S

u
3
o
(W]
[€4
el
[]
wn
(V3]

MTS 3: SUEROUTIINE AND MACRO DESCRIFTIONS

Page revised July 1971

Description:

Exangple:

254

June 1970

Keturn Codes:

0 Successful return.
4 TIllegal paranmeters.

This subroutine uses the same calling sequence as the
subroutine SDUMP, but only looks at the bits and paraneters
as specified above in the calling sequence.

For each call, this subroutine "prints" (calls the output
subroutine specified in outsub) the following:

1. Blank line.

2. Heading giving information about the region of
storage. The subroutine LOADINFO is called to obtain
the information.

3. Blank line.

4., Dump of the region, with 20 (hex) bytes printed per
line. To the left of the hexadecimal dump is the
actual hex location and the relative (to the first
byte of the region) hex location of the first byte of
the line; to the right of the dump is the sane
information printed as <characters. Non-printing
‘characters (tit combinations that do not match the
standard 60 character set of printing graphics) are
replaced by periods, and an asterisk (¥) is placed at
each end of the character string to delimit it. The
lines "printed" are 133 characters long. ‘

Assenbly: EXTRN SPRINT
CALL STDDMP,(SW,SPRINT,WK,PIRST,FIRST#3)

WK LS 50D
SHW DC P10
FIRST LC X*F1F2F3F4"

The above example will cause SIDDMP to print the hex string
"F1F2F3F4".

TS 3: SUBROUTINE AND MACRC DESCRIPTICXNS

June 1970 Page Revised March 1972

SUBRCUTINE DESCRIPTION

Purpose: To write an output record on a specifiea logical I/0 unit.
Location: Resident Systen
Alt. Entry: WRITE#

Calling Sequences:
Assenbly: CALL WRITE, (reg,len,mod,lnum,unit)
FORTRAN: CALL HRITE(reg,len,mod,lnum,unit,Ercu,..J
PL/I: See the IHERITE subroutine description.

Parameters:

Ire is the location of the core region froa whica data
is to be transmitted.

len 1is the location of a halfword (INTZGER#*2) 1nteger
giving the number of bytes to be transcitted. o

pod is the location of a fullword of podifier bits used
to control the action of the subroutine. IZ zcd is
zero, no nodifier bits are specified. See the "1I/C

Modifiers® description in this voluze.

lnum is the location of a fullword integer giving the
internal representation of the line nuzder tnal is
to be written or has been written by the subrou-
tine. The internal form of the line nuzber is the
external forz times 1000, e.g., the internal LOrCE
of line 1 is 1000, and the internal form of line
.001 1s 1. ~

unit is the location of either a fullword ipteger giving
the 1logical I/0 wunit number (0,e0.,19), & left-
justified 8-character logical I/0 uanit nace (e.g.
SPRINT), or a fullword FDUB pointer (as returned Dy
GETFD) .

rcl.... is the statement label to transfer to if tre

corresponding non-zero return code 1is encountered.

-

Return Codes:

0 Successful return.
4 Output device is full.
>4 See the "I/O Routines' Keturn Codes" description 1n

this volune.

*
{251
4
(o]
1
o
(e

NG|

TS 3: SJBROUTINE AND MACRO DESCRIPTIOWNS

Page Revised March 1972

Description:

Examples:

268

The subroutine writes a record on the logical I,/0 unit
specified by urnit of length len (in bLytes) from the reogion
specified by reg. The parameter lpum is used only 1if tne 530l
parameter specifies either INDEXED or PEEL (RETURNLixI&®) . 1f
INDEXED is specified, the 1line nuamber to be written 1S5
specified in lnum. If PEEL is speciried, the line number Of
the record written is returaed in lnua.

There are no default FDnames for WRITE.

There is a macro WRITE in the systeaw macro l1liorary rorf
generating the calling sequence to tihls subroutine. See the
macro description for WRITE in this volunme.

This example given in assembly language and FORTaaN calls
WRITE specifying an output region or »0 bytes. The logical
1/0 unit specified is 6 and no modifier specification is made
in the subroutine call.

Assenmbly: CALL WRITE, (REG,LEN,MOD,LNUM,UNIT)

REG DS 20F
40D DC F'O?
LNUHM DS ¥
LEX DC H*'80"
UNIT DC Fre?

or

WRITE 6,REG,LEN Subr. call using macro.

FORTRAN: DATA LEN*¥2/80/

CALL WRITE(REG,LEN,0,LNUY,0)

This example given in assembly language sets up a <call to
WRITE specifying that the output will be written into the

file FYLE.

Assembly: LA 1,'C'FYLE !
CALL GETIFLC
ST 0,UNIT

CALL WRITE, (REG,LEN,NOD,LNUM,UNIT)

REG DS 20
LEN DS H
MOLD DC F'O?

MTS 3: SUBROUTINE AND KACRO DESCRIPTIOXS

June 1970 Page Revised harch 1572

LNUX DS iy
UNIT ES F
FORTRAN: E{TERSAL GZTFD
INTEGER*4 ADROF,UNIT
CALL RCALL (GETFD,2,0,ADROF ('FYLE *),1,UNIT)

CALL WRITE (REG,LEN,0,LNUX,UNIT,&30)

30 .

F
o1y
b4
+3
tu
t
o
O

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

June 1970

USING MACKO LIBRARIES
The Couputing Center maintains a nunber of mpacro lipraries irn public
riles. In addition the user can construct and use his own macro litraries.

Any macro library to be used when assemrbling a program must be expiicitl
mentioned when running the assembler. Up to five macro lipraries nay De
used ror one assembly. A macro library is specitied by attaching it to one
of logical units 2, 3, 4, 5, or 0 when running the assembler. For exanple,

SRUN *ASMG SCARDS=SOURCEPGM SPUNCE=0BJ 0=*SYSMAC

will use *SYSMAC as a nmacro library. The macro libraries are searched for a

definition in the order of

1. Macro library attached to logical unit 2
2. Hacro library attached to logical unit 3
3. acro library attached to logical unit 4
4. Macro library attached to logical unit 5
5. Macro library attached to logical unit O

so that

$EUN *ASMG SCARDS=IN SPUNCH=0BJ 2=MYMACLIBR O0=%SYSMAC

be expanded from MYMACLIB if it is ther

will cause a macro to e
otherwise, from *SYSHMAC. Note that any macro definitions supplied wi
assembler input will take precedence over definitions in a macro libra

The following public files coantain macro libraries:

*SYSMAC
*SYSMAC is the system macro library. These IacCILcCs are

described below.

*OSMAC

v
147]
ct
fw
3

*0SMAC contains the macro library frox IBM's Oper
It is designed to enable the assembling of 0SS p
MTS. The programs so assembled must not be
Descriptions of these macros are found in "I
Operating Systenm Supervisor and Data Marna
Instructions", form C28-6647.

oy F
Lot
.U U3

by e

‘

(@R

oG v (e n
(&4
<

(€]

Vo)

280

June 1970

*1

MTS 3: SUBROUTINE AND MACRC DESCRIPTIONS

%] contains a set of macros to implement the *1 list prccessing
language. *1 is a low-level list language similar to Lb. For
a complete description, see the "¥1 User's Guide" in Volume 7

of the MTS Manual.

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

June 1970

CONSTRUCTING A MACRO_LIBRARY

1s described below, a macro library has a rather simple structure, Snall
macro libraries can be easily constructed by hand. For constructing larger
macro libraries, the program *MACGEN is available.

Structure of a Macro Library

A macro library is a line-file containing both a directory of the zacrcs
and the macro definitions themselves.

A. The directory:

1. Each entry of the directory contains the name oI in
columrns 1-8 and the line-number of the macro ceil ier
ad

of the corresponding macro in columns 10-16. Both

2. The line-number of the first entry in the directery uwust se 1.

3. The terminating entry in the directory is a string or eight
zeros in columns 1-8.

B. The macros:

1. The line~nuaber of the nmacro-definition header of each aacro
must be a positive integral number.

2. The first macro follows the last entry im the directony.

Example:

SNUMBER 1,1

BASR 10
BAS 20
00000000
$NUMBER 10, .1
MACRO
SLABLL BASR GREGT,SREGY
ELABEL SALR SREGT,EREG2
MEND
SNUMBER 20,1
tTACRO
SLABEL BAS GREG1T,5LOC
&LABEL BAL ®1,&L0OC
MEND

282

MTS 3: SUBROUTINE AND MACRC DESCRIPTIONS

June 1970
XMACGEN

The public file *MACGEN contains a program to construct a macro likrarty.
Before the program is run, the macro definitions should be put in ine
file starting at some relatively high positive line number. The U i
ot each definition must occur c¢n an integral line number. Then *.. & 1is

run tc¢ construct the directory, which must start at line 1 of tne Iile.
*MACGEN reads the definition via SCARDS and writes the directory via SPUNCH.
An exarple might be

SRUN *MACGEN SCARDS=FILE(1000) SPUNCH=FILE (1)

1f the definitions begin in line 1000 of FILE.

The folilowing would produce a macro library from the same macros as the
previcus section:

SCREATE MAC
SNUMBER 1000

MACRO
GELABEL BASR EREG1,EREG2
GLABEL BALR EREG2,E6REG2
YEND
MACRO
&ELABEL BAS ®1,8L0C
SLABEL BAL 6REG1,86L0OC
MEND
SUNNUMBER

$RUN *MACGEN SCARDS=MAC(1000) SPUNCH=MAC

Macros 283

April 1971

Contents:
Purgose:

Usage:

MTS 2: PUBLIC FILE DESCHRIETIONS

-

The okject module of the macro library generator rrcgrar.
To generate a directory for a set of macro definiticps.

The program is invoked Lty an appropriate 3RUN ccmmand.

Logical I/C Units Referenced:

Example:

Jescription:

SCARDS - the file ccntaining a set of macro definiticns.
SPUNCH - the file which will contain the directcry.

$RUN *MACGEN SCARLS=WATMAC(1000) SPUNCH=WATMAC

An MTS-formatted line directory is rroduced on SPUNCH fcr the
set of macro definitions read through SCARDS. Entries in the
line directory occupy integral line numbers beginning with
line number one (1). The directory terminator 1is inserted
after the last macro definition has been read.

*MACGEN 167

June 1970

Purpose:
Locaticn:

Prototype:

Descrigption:

Examples:

MTS 3: SUBROUTINE AND MACRC DESCRIPDIONS

ENTEE

MACRO DESCRIPTION

To generate prolog code for the entrance to a subroutine.

*SYSHAC

[label]

ENTER reg(,SA=savarea][,LENGTH=len]{ ,TREG=tenpreg]

Parameters:

ENTER causes code for the following to be produce

SUBR
F
G

ien

is the register to Dbe est
register. It should unot be 15

savarea (optional) is a keyword paraneter SpeciIiyinj the
' location oI a save area to use. GVérea Ls
cnitted, a <call to the GETSPACEE outi s

rade to get a save area ox length ; by
(cptional) is a keyword parameter speciiyind tae

length of the save area to be orftained it

savarea is omitted. If len is omitted, 72 1s

EN
EN
EN

tempreq (optiomnal) is a keyword

temporary register to
code. If omitted, GRS
not be the sanme as reg.

[o))
ea

Generates USING *,reg

Establishes regq as the base register.
If savarea 1s omitted, a calli to GETSPACE is made to

get a save area of length len.
Establishes forward and backward links between save

areas.

TER 12
TER 9,SA=SAVAREA
TER 11,TREG=12

ENTEZR racro 305

Jun¢ 1970

Purrose:

Location:

Preototype:

Description:

Examples:

ToO reesta
with a ret
GRO.

*SYSMAC
[label] E
Parameters

Ic

This macro
entry to
the ENTER
subroutine

EXIT
EXIT
EXIT
LABEL EXIT

ouT

MTS 3: SUBROUTINE AND MACRO DESCKIPTIONS

MACRO DESCRIPTION

blish the calling program's save area and tc¢ return
urn code in GR15 and an optional returned value in

XIT [rc]{,cval]{ ,MF=£fs]

(optional) is a self defining term or the loca
0f a fullword return value to be loaded into &
If rc is omitted, the return code 1s zero. IC
be expressed as a register number ir parentaese
(optional) is a self defining term Or tIhe location
of a fullword return value to be loaded into GRJI.
It may be expressed as a register onutber in
parentheses.

(optional) specifies that the save area p
by GR13 is to be released by calling FREES

requires that the save area be properly lirnked on
the subroutine as is done by the ENTEZR macro. I
macro is used and it obtains space via the GEZTSPACE
, this space can be released by specirying EF=£fs.

4

0, (0) Return value is in GRO.

0,4 Return value 1is 4.

0,RVAL Return value is in RVAL.

EXIT Macro 309

June 1§70

Purrose:

Location:

Prctotype:

Descraption:

3 SUBRGUTINE AaND MACKO DZSCEIPTIONS

<
3
42}

IOH/360 Macros

MACRO DESCRIPTION

To generate calls to I0H/360 to perform formatted iaput and
output.

*LIBRARY

[label] RDFNT int{,(pac,...
[label]) PRFNMT fotl,(par,...
{label] PCFNMT fmt[, (parc,..

.

.

{label] WRFMT fowt{, (par,..
{label] SZRFNHT faot{, (par,..
[label] GUSFMT fot{, (par,..

e

Ll) WG G O W W

Paranmeters:

fmt specirfies the location of the IOH/300 formatr. This

muUsSt be given as a symrbolic expression. See the
"Introduction to IOH/360" in this voluaxae
description of the format language.

par specifies one simple or block gdrameter giving <the

location to be read or writte IZ a sizple

parameter is desired, this nust be bPELl “led as a

symbolic expression. If a block parazeter 1is

desired, tnls must be specified as =t©wo syabolic
expressions separated by ",...,"; for exaxmgple,

A,v..,A+20

The above macros are used to call I0H/360 Zroxz assexzly

language programs. This description covers ornly tne 108t

elementary usage oRitting many additional parazeters wialca

c a

may be specified, and several otnher related macros. z
complete description of I0#/360, see the "IOH/500 User's
Guide" in Volume 5 of the MTS Manual.

When one of these macros is executed, I0H/360 will be <called
to perform input or output according to the roramat given by
fat into or frem the locations specified by par. Any nuaber
of simple or block parameters may be speciried, aiad inzut Or
output will continue until a paraneter speciried as “O" 1s
encounterea. For this reason, the last par should e given

as "O" to terminate input or output.

By using some of the nore advancec reatures oI these acIos,
it 1s possible to compute dynamically the paraneters to e
used, specify parameters relative to Dbase registers, etc.
Those users who need the advanced reatures shoulc see the

"IOH/360 User's Guide" in Volume 5.

b1
(@]
te
\\
(0%
o
(a5
|29
o
O
t1
@]
Ui
W
-
Vel

MIS 3: SUBROUTINE AND MACRGC DESCRIPTIONS

Examples:

320

June 1970

RDLBL RDFHT INFMT, (CNT,A,...,A+10%4,0)

INFMT DC C'I, 11WF*!
CNT DS F
A DS 11E

This example will read one fullword iateger and 11 fullvord
floating-point numbers in free forpat.

PRLBL PRFMT OFMT, (NUM,RESULT,C,...,C+5%4,0)

NON Ds F
RESULT DS E
C DS 6E
OFNT DC Ct"~CASE ",I5,YRESULTS ",7KF6.2%!

This example will print one fullword integer and 7 fullvord
floating-point numbers plus the two comments din the <Iformat

specification.

June 1970

Locaticn:

Prototype:

Descrigtion:

MTS 3: SUBROUTINE AND MACRO DESCRIZIIONS

,r

RETURN

MACRO DESCRIPTION

To return control to the calling program and to signal normal
termination of the returning program?.

*SYSMAC

[label] RETURN [(£1{,r2]) J[,T)[,BRC=code]

Parameters:

rl,c2 (optional) is the range of registers 1o
restored rrom the save area to which the ad

in GR13 points. The registers should ke s

fied to cause the loading of registers 14,

through 12 when used in a LH instruction.

is not specified, only the register specizied
the r1 operand is loaded. If the operand

cnitted, the contents of the registers are n

altered.

T (optional) causes the centrol program to flag
the save area used by the returning progral
byte containing all 1's is placed in the
order byte of word 4 of the save area after
registers have been loaded.

code (optional) is the. return code to be passed
the calling program. The return code saou
have a maximum value of 4095; it will ke ? €
right-adjusted in GR15 berore the return 1
nade. If RC=(15) is coded, it indicates that
the return code has been previously loaded 1nte
GR15; in this case the contents of GR15 are not
altered or restored from the save area. (I
this operand is onmitted, the contents oI GR1
are determined by the rl,C2 operands.)

U oy
v 0

Q @
t

i
D

T
ot U1 < o ©

O b

ot
+ U fu s O

Ut

The return of control by the RETURN macro instruction 1s
always nade by executing a branch instruction using the
address in GR14. This macro can be written to restore a
specified range of registers, provide the proper returch code
in GR15, and flag the save area by the returning prograa.
See the "Calling Conventions" description in this volume for
a further explanation of save areas and their formats.

InIEM System/360 Operating Systen Supervisor Data Management and Macro
Instructions®, Form C28-6647.

RETURN Macro 333

(INIIHI/lHNIUHINHHINIII!W)IJNIIWHIMIHHIWI

3 9015 02826 3716

MTS 3: SUBROUTINE AND MACRO DESCRIPTIONS

; 4,12) ,RC=4
Examples: LAB1 RETURN (14, P
i LAB2 RETURN (5,10),T
LAB3 RETURN (5,10) ,T,RC=(15)

334

June 1970

