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the simplest possible solution has a singular horizon. We derive the system of second

order equations in the radial variable whose solutions may have regular horizons.

Keywords: Duality in Gauge Field Theories, D-branes, Black Holes in String

Theory, AdS-CFT Correspondance.

mailto:buchel@itp.ucsb.edu
mailto:klebanov@feynman.princeton.edu
mailto:cpherzog@princeton.edu
mailto:lpandoz@umich.edu
mailto:tseytlin@pacific.mps.ohio-state.edu
http://jhep.sissa.it/stdsearch?keywords=Duality_in_Gauge_Field_Theories+D-branes+Black_Holes_in_String_Theory+AdS-CFT_Correspondance
http://jhep.sissa.it/stdsearch?keywords=Duality_in_Gauge_Field_Theories+D-branes+Black_Holes_in_String_Theory+AdS-CFT_Correspondance


J
H
E
P
0
4
(
2
0
0
1
)
0
3
3

Contents

1. Introduction 1

2. Non-extremal generalization of the KT ansatz 3

3. Basic equations 5

3.1 Effective 1-d action for radial evolution 5

3.2 The superpotential and the extremal KT solution 6

3.3 The full system of 2-nd order equations 7

4. A singular non-BPS generalization of the KT solution 8

5. General non-extremal pure D3-solution and its regular and singular

cases 11

5.1 Standard regular non-extremal D3-brane solution 12

5.2 Special singular non-extremal D3-brane solution 13

6. Discussion 14

A. Non-BPS solution with non-constant dilaton and w = 0 15

1. Introduction

In this paper we study non-extremal generalizations of the KT solution [1], which

describes regular and fractional D3-branes at the apex of the conifold. The extremal

KT solution is crucially dependent on the presence of Chern-Simons terms in type

IIB supergravity. These terms cause the RR 5-from flux to vary radially. Indeed,

while in regular D3-brane solutions dF5 = 0, here the 3-form field strengths are

turned on in such a way that the right-hand side of the equation

dF5 = H3 ∧ F3 (1.1)

does not vanish. In fact, the 5-form flux increases without bound for large r. In [2]

this behavior was attributed to a cascade of Seiberg dualities in the dual N = 1
supersymmetric SU(N)× SU(N +M) gauge theory.
∗Also at Lebedev Physics Institute, Moscow.
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Further examples of supergravity backgrounds with varying flux were constructed

in [2]–[5]. In particular, it is important to understand the resolution of the naked sin-

gularity present in the KT solution. The proposal of [2] is that the conifold becomes

deformed. As a result of this deformation the extremal KS solution is perfectly non-

singular and without a horizon in the IR, while it asymptotically approaches the KT

solution in the UV (for large ρ). The mechanism that removes the naked singularity

is related to the breaking of the chiral symmetry in the dual SU(N) × SU(N +M)
gauge theory. The Z2M chiral symmetry, which may be approximated by U(1) for

large M , is broken to Z2 by the deformation of the conifold [2].

In [6] a different mechanism for resolving this naked singularity was proposed.

It was suggested that a non-extremal generalization of the KT solution may have

a regular Schwarzschild horizon “cloaking” the naked singularity. The dual field

theory interpretation of this would be the restoration of chiral symmetry at a finite

temperature Tc [6]. One expects that turning on finite temperature in the field the-

ory, which translates into non-extremality on the supergravity side [7, 8], leads to

restoration of the chiral symmetry above some critical temperature Tc.
1 The sym-

metry restoration is part of the deconfinement transition at Tc for this particular

N = 1 gauge theory. The proposal of [6] is that the description of the phase with
restored symmetry involves a regular Schwarzschild horizon appearing in the asymp-

totically KT geometry. This proposal is analogous to the fact that the N = 4 SYM
theory, which is not confining, is described at a finite temperature by a black hole

in AdS5 [7, 8]. The difference is that in our case the T = 0 theory exhibits con-

finement and chiral symmetry breaking [2]. So, the regular Schwarzschild horizon

should appear only for some finite Hawking temperature. This would be a rather

unusual and, to our knowledge, unstudied phenomenon from the supergravity point

of view.

One implication is that, at temperatures below Tc, there should be non-extremal

generalizations of the KS solution which are free of horizons, just like the extremal

solution. The absence of a horizon is a manifestation of confinement, as evidenced

by the resulting area law for Wilson loops or, alternatively, by counting of degrees

of freedom. Once the horizon appears, the Bekenstein-Hawking entropy associated

with it typically scales as N2 where N is the relevant number of colors. This factor

indicates that the color degrees of freedom are not confined. If there is no horizon,

then the entropy could only appear through string loop effects which would make it of

order N0, in agreement with color confinement. It is interesting, therefore, to study

this theory as a function of the temperature, and to identify the phase transition

where the chiral symmetry is restored.

1Strictly speaking, we cannot a priori rule out the possibility that Tc = ∞. In that case, a
regular black hole in KT geometry does not exist. While this possibility seems strange, the only

way to decide the issue is to find the actual black hole solution where a regular Schwarzschild

horizon does shield the singularity.
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In order to address these questions from a dual supergravity point of view, we

need to study non-extremal generalizations of the KT and KS backgrounds. This

problem was first addressed for the KT background in [6] partly with numerical

methods. We rederive this solution analytically and show that the identification of

the horizon as r = r∗ in [6, eq. (2.60)] is incorrect because ∆1(r∗) 6= 0. The vanishing
of ∆2(r∗) is an artefact of the coordinate choice. We find a good radial coordinate
u and show that the solution derived in [6] has a singular horizon at u = ∞ which
corresponds to r = ∞ on another branch of the solution. This type of singular
horizon is deemed unacceptable in studies of black hole metrics.

Thus, the solution found in [6] does not have a regular Schwarzschild horizon

shielding the naked singularity of the extremal KT metric for sufficiently high Hawk-

ing temperature. Instead, the horizon (defined as the locus where G00 = 0) and

the singularity are coincident, independent of the choice of the non-extremality pa-

rameter. We also show that, in the limit where we remove the fractional D3-branes

(wrapped D5-branes), and leave only the regular D3-branes, the solution of [6] does

not reduce to the standard non-extremal 3-brane metric. Instead, it reduces to a non-

standard non-extremal version of a D3-brane solution whose metric has a singular

horizon.

Nevertheless, the scenario for chiral symmetry restoration proposed in [6] is very

appealing. This motivates us to introduce a more general U(1) symmetric ansatz

and to begin search for solutions that are asymptotically KT but possess regular

Schwarzschild horizons.

2. Non-extremal generalization of the KT ansatz

We start with an ansatz for the non-extremal KT background. Just as in [1] we

impose the requirement that the background has a U(1) symmetry associated with

the U(1) fiber of T 1,1. Our ansatz will be more general than that of [6]. It turns

out that in order to look for solutions which reduce to the standard non-extremal

D3-brane in the limit of zero fractional brane charge P , one should not impose self-

duality on the 3-forms away from extremality. This in turn implies that one is to

adopt a more general ansatz for the metric than in [6] and also allow for a non-

constant dilaton.

A general ansatz for a 10-d Einstein-frame metric consistent with the U(1) sym-

metry of ψ-rotations and the interchange of the two S2’s involves 4 functions x, y, z, w

of a radial coordinate u

ds210E = e
2z(e−6xdX20 + e

2xdXidXi) + e
−2zds26 , (2.1)

where

ds26 = e10ydu2 + e2y(dM5)
2 , (2.2)

(dM5)
2 = e−8we2ψ + e

2w(e2θ1 + e
2
φ1
+ e2θ2 + e

2
φ2
) ≡ e2wds25 , (2.3)
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and

eψ =
1

3
(dψ + cos θ1dφ1 + cos θ2dφ2) , eθi =

1√
6
dθi , eφi =

1√
6
sin θidφi .

Here X0 is the euclidean time and Xi are the 3 longitudinal 3-brane directions.

This metric can be brought into a more familiar D3-brane form

ds210E = h
−1/2(ρ)[g(ρ)dX20 + dXidXi] + h

1/2(ρ)[g−1(ρ)dρ2 + ρ2ds25] , (2.4)

with the redefinitions

h = e−4z−4x , ρ = ey+x+w , g = e−8x , e10y+2xdu2 = g−1(ρ)dρ2 . (2.5)

When w = 0 and e4y = ρ4 = 1/(4u), the transverse 6-d space is the standard conifold

with M5 = T
1,1. Small u thus corresponds to large distances (where we shall assume

that h, g, v→ 1, as ρ→∞) and vice versa.
The function w squashes the U(1) fiber of T 1,1 relative to the 2-spheres; it does

not violate the U(1) symmetry. A Ricci-flat 6-d space with non-trivial w is the

generalized conifold of [9]

ds26 = κ−1(ρ)dρ2 + ρ2[κ(ρ)e2ψ + e
2
θ1
+ e2φ1 + e

2
θ2
+ e2φ2 ] , (2.6)

κ(ρ) = e−10w = 1− ρ6∗
ρ6
, ρ = ey+w , ρ∗ ≤ ρ <∞ . (2.7)

This space has regular curvature, and a bolt singularity at ρ = ρ∗ is removed by
Z2 identification of the angle ψ. The limit of the standard conifold is ρ∗ → 0 or
y∗ → −∞ which corresponds to w = 0.
The extremal D3-brane on the conifold and the more general fractional D3-

brane KT solution have x = w = 0 (for their w 6= 0 analogs in the case when the
6-d space is the generalized conifold see [9]). Adding a non-constant x(u) drives

the non-extremality. For example, the non-extremal version of a D3-brane on a

standard (w = 0) conifold solution has x = au, e−8x = g = 1 − 2a/ρ4, e−4z−4x =
h = 1 + q̃/ρ4, ρ = ey+x. Our aim will be to understand how switching on the non-

extremality (x = au) changes the extremal KT solution.

Our ansatz for the p-form fields is dictated by symmetries and thus is exactly

the same as in the extremal KT case [1]:2

F3 = Peψ ∧ (eθ1 ∧ eφ1 − eθ2 ∧ eφ2) , (2.8)

B2 = f(u)(eθ1 ∧ eφ1 − eθ2 ∧ eφ2) , (2.9)

F5 = F + ∗F , F = K(u)eψ ∧ eθ1 ∧ eφ1 ∧ eθ2 ∧ eφ2 . (2.10)

2The function T in [1] is related to f by f = 1√
2
T , and we make similar rescaling of P : P =

1√
2
PKT .
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As in [1], the Bianchi identity for the 5-form, d ∗ F5 = dF5 = H3 ∧ F3, implies
K(u) = Q+ 2Pf(u) . (2.11)

In what follows, we shall derive the corresponding system of type IIB supergrav-

ity equations of motion describing radial evolution of the six unknown functions of u

— x, y, z, w, f and Φ. We shall then discuss its solutions generalizing the work in [1]

to the non-extremal case.

The simplest special fixed-point solution of our system turns out to have w = 0,

i.e. the case when T 1,1 is not squashed. If the fractional branes are present, then the

only U(1) symmetric solutions with w = Φ = 0 are the KT solution [1] and its non-

BPS generalization considered in [6]. We will discuss the latter solution in some detail

in section 4, finding its explicit analytic form and clarifying its geometry. Its horizon

turns out to be singular. A related problem is that it does not reduce to the regular

non-extremal D3-brane solution in the limit of no fractional brane charge, P → 0.
Demanding that the non-extremal solution have the correct P = 0 limit leads to

the necessity of relaxing the condition f ′ = −PeΦ+4y, i.e. that the 3-forms are self
dual. If the 3-forms are not self-dual, then Φ and w can no longer be held constant. In

the next section we derive the resulting system of second-order differential equations.

3. Basic equations

3.1 Effective 1-d action for radial evolution

As in [1], the most efficient way to derive the system of type IIB supergravity equa-

tions of motion is to follow [10, 11] and to start with the 1-d effective action for the

radial evolution.

For the metric (2.1)
√
G = 1

108
e10y−2z (up to angle-dependent factors), and com-

puting the scalar curvature we find∫
d10x
√
GR → 1

27

∫
du[5y′2 − 3x′2 − 2z′2 − 5w′2 + e8y(6e−2w − e−12w)] . (3.1)

Note that w = 0 is a consistent fixed point of the equations of motion. Replacing M5
in (2.3) by the standard T 1,1 or by S5 produces exactly the same 1-d gravitational

lagrangian. That means, in particular, that for w = 0 the regular D3-brane solution

and its non-extremal version will not change if we replace the flat transverse space

R6 with the conifold.

It is easy to see that the matter part Lm of the effective lagrangian is essentially

the same as it was in the extremal case [1] (apart from w-dependent factors): Lm
does not depend on the non-extremality function x. Thus, following [1],∫

d10x
√
G [−1

2
(∂Φ)2 + · · ·] → (3.2)

→ − 1
27

∫
du
1

8

[
Φ′2 + 2e−Φ+4z−4y−4wf ′2 + 2eΦ+4z+4y+4wP 2 + e8z(Q+ 2Pf)2

]
.
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From (3.1) and (3.2) we get the following 1-d effective lagrangian (ignoring an irrel-

evant overall numerical factor)

L = T − V , (3.3)

T = 5y′2 − 3x′2 − 2z′2 − 5w′2 − 1
8
Φ′2 − 1

4
e−Φ+4z−4y−4wf ′2 , (3.4)

V = −e8y(6e−2w − e−12w) + 1
4
eΦ+4z+4y+4wP 2 +

1

8
e8z(Q+ 2Pf)2 , (3.5)

supplemented with the “zero-energy” constraint T + V = 0.

Since the non-extremality function x does not appear in
√
G, Guu, or the angular

part of the metric, it is absent in Lm and thus is a “modulus” — it has no potential

(cf. (3.1)). Thus its dependence on u is simply linear

x′′ = 0 , x = au , a = const > 0 . (3.6)

This is just what is expected of an extra kinetic energy (i.e. the x′2 = a2 term

appearing in the “zero-energy” constraint) which spoils the BPS nature of the KT

solution for a non-constant x.

3.2 The superpotential and the extremal KT solution

The crucial observation made in [1] is that the lagrangian (3.4), (3.5) has a remarkable

special structure — it admits a superpotential. Indeed, it can be be represented in

the following way

L = −3x′2 − 1
8
Φ′2 +

+ 5
[
y′ +

1

5
e4y(3e4w + 2e−6w)

]2
− 5
[
w′ − 3

5
e4y(e4w − e−6w)

]2
−

− 2
[
z′ +

1

4
e4z(Q+ 2Pf)

]2 1
4
e−Φ+4z−4y−4w(f ′ + PeΦ+4y+4w)2 −

− 2
[1
4
e4y(3e4w + 2e−6w)− 1

8
e4z(Q+ 2Pf)

]′
, (3.7)

where the last term is a total derivative and may be dropped. Let us recall that, if,

in general, V (φ) can be expressed in terms of a function W (φ) as V = −gij∂iW∂jW,

where gij(φ) is the kinetic term metric, then

L = T − V = gij(φ)φ′iφ′j − V (φ) = gij(φ′i + gik∂kW )(φ′j + gjl∂lW )− 2W ′ . (3.8)

As a result, there exists a special BPS solution of the corresponding 2-nd order

equations, satisfying

φ′i + gik∂kW = 0 , (3.9)

and thus also the zero-energy constraint. As follows from (3.7), in the present case [1]

W =
1

4
e4y(3e4w + 2e−6w)− 1

8
e4z(Q+ 2Pf) . (3.10)
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Note that W does not depend on Φ. The corresponding system (3.9) of 1-st order

equations is then [1]:

x′ = 0 , Φ′ = 0 , (3.11)

y′ +
1

5
e4y(3e4w + 2e−6w) = 0 , w′ − 3

5
e4y(e4w − e−6w) = 0 , (3.12)

f ′ + PeΦ+4y+4w = 0 , z′ +
1

4
e4z(Q+ 2Pf) = 0 . (3.13)

The equation for f in (3.13) implies self-duality of the complex 3-form field, i.e.

H3 = e
Φ ? F3.

Choosing the special solution w = 0 of the w-equation in (3.12) we then find the

KT solution [1]

x = 0 , w = 0 , Φ = 0 ,

e−4y = 4u , f = f0 − P

4
ln u , (3.14)

e−4z = 1 +K0u− P 2

2
u(lnu− 1) , K0 = Q+ 2Pf0 ,

i.e.

e−4z = h = 1 +
(
Q+ 2Pf0 +

P 2

2

)
u− P 2

2
u lnu . (3.15)

In terms of the radial variable ρ used in [1],

e4y = ρ4 =
1

4u
, f = f1 + P ln ρ ,

h = 1 +

(
Q+ 2Pf1 +

P 2

2

)
1

4ρ4
+
P 2

2ρ4
ln ρ , (3.16)

where f1 = f0 +
P
2
ln 2.

A more general extremal solution of (3.11)–(3.13) with non-zero w leads to frac-

tional D3-branes on the generalized conifold (2.6) solution of [9].3

3.3 The full system of 2-nd order equations

We would like to generalize the solution (3.15) to the non-BPS case when x′ 6= 0, i.e.
the non-extremality parameter a in (3.6) is non-zero. In order to do that we need to

start with the original 2-nd order system following from (3.4), (3.5) or (3.7), i.e. the

3For its explicit form in terms of the ρ coordinate, see [9, eqs. (4.20), (4.21)]. While the gen-

eralized conifold has, in contrast to the standard conifold, regular curvature, the back reaction of

D3-branes makes the metric singular: pure D3-branes on the generalized conifold have a horizon

coinciding with the singularity. The fractional D3-brane solution is similar to the KT one: it has a

naked singularity behind the K(u) = 0 locus.
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free equation for x (3.6) plus a coupled system for y, w, z, f and Φ

10y′′ − 8e8y(6e−2w − e−12w) + Φ′′ = 0 , (3.17)

10w′′ − 12e8y(e−2w − e−12w)− Φ′′ = 0 , (3.18)

Φ′′ + e−Φ+4z−4y−4w(f ′2 − e2Φ+8y+8wP 2) = 0 , (3.19)

4z′′ − (Q+ 2Pf)2e8z − e−Φ+4z−4y−4w(f ′2 + e2Φ+8y+8wP 2) = 0 , (3.20)

(e−Φ+4z−4y−4wf ′)′ − P (Q+ 2Pf)e8z = 0 . (3.21)

The integration constants are subject to the zero-energy constraint T + V = 0, i.e.

5y′2 − 2z′2 − 5w′2 − 1
8
Φ′2 − 1

4
e−Φ+4z−4y−4wf ′2−

− e8y(6e−2w − e−12w) + 1
4
eΦ+4z+4y+4wP 2 +

1

8
e8z(Q+ 2Pf)2 = 3a2 . (3.22)

This system has special properties reflecting the structure of the lagrangian (3.7). In

particular, there is a subclass of simple solutions for which the 1-st order equations

for f and z (3.13) are still satisfied, while (3.11) and (3.12) are replaced by their 2-nd

order counterparts. Indeed, it is easy to see that if we set f ′2 − P 2e2Φ+8y+8w = 0,
i.e. f ′ = −PeΦ+4y+4w, then (3.21) implies that z should be subject to the first-order
equation in (3.13). In this case the 3-forms are self-dual. Then it is consistent, in

particular, to keep w = 0 so that T 1,1 is not squashed. We will discuss this class of

solutions first in the next section.

In general, if we relax the 1-st order conditions (3.13) on f, z — and we will

be forced to relax them in order to have a regular horizon — the dilaton will run

according to (3.19), driven by the non-extremality x′ = a > 0. From (3.18), if

we relax the first order constraint on f , the function w will also be forced to run.

Hence, we need the more general metric (2.1) in order to have a regular horizon.

These nontrivial dilaton and w dynamics constitute a novel phenomenon specific to

the non-extremal fractional D3-brane case, a > 0 and P > 0.

4. A singular non-BPS generalization of the KT solution

Assuming that f and z are subject to (3.13), i.e.

f ′ + PeΦ+4y+4w = 0 , z′ +
1

4
e4z(Q+ 2Pf) = 0 , (4.1)

so that (3.20) and (3.21) are satisfied automatically, the remaining equations (3.17),

(3.18), (3.19) and (3.22) become

5y′′ − 4e8y(6e−2w − e−12w) = 0 , (4.2)

5w′′ − 6e8y(e−2w − e−12w) = 0 , (4.3)

Φ′′ = 0 , (4.4)
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and

5y′2 − 5w′2 − 1
8
Φ′2 − e8y(6e−2w − e−12w) = 3a2 . (4.5)

Notice that the matter and gravity parts are now decoupled: eqs. (4.2)–(4.5) would

be obtained just by looking for Ricci-flat uncharged black 3-brane solutions with a

metric in the class (2.1). Finding first the functions y and w, one is then to plug

them back into (4.1) to determine the functions f and z.

The BPS solution of (4.2)–(4.5) corresponds to a = 0 and y, w subject to (3.12),

leading to the generalized conifold space (2.6), (2.7).

We begin an analysis of the non-BPS solutions by discussing the special case

when w = Φ = 0. In this case, the T 1,1 is not squashed, and the eqs. (4.2)–(4.5)

simplify substantially. When P > 0 we will see that we recover the non-BPS gener-

alization of the KT solution first discussed in [6]. In section 5.2 we will see that in

the P = 0 limit this solution does not become the standard (regular) non-extremal

D3-brane solution. Similar singular non-BPS solutions with non-constant dilaton are

constructed in appendix A.

Integrating (4.2) and using (4.5) we find

y′ = −√b2 + e8y , b =

√
3

5
a . (4.6)

Assuming the required long-distance (u→ 0) asymptotic conditions we then have

e4y =
b

sinh 4bu
. (4.7)

Integrating (4.1) shows that

f = f∗ − P

4
ln tanh 2bu , (4.8)

i.e. f approaches a constant at large u and has the KT behavior (3.14) at small u.

The large u (short distance) behaviour is an improvement compared to the ex-

tremal KT case: since f stays positive (does not change sign) so does K which is

a derivative of e−4z (cf. (2.11), (4.1)). That means that e−4z will keep growing at
small distances, and does not go to zero. The total function h = e−4z−4x in (2.4) will
vanish only at u =∞ due to the vanishing of e−4x, i.e. here the singularity coincides
with the horizon.

This is a rather peculiar situation, different from the naked singularity of the

KT solution. The non-vanishing of the non-extremality parameter a ∼ b is obviously

crucial for this difference.4

4Other known cases of solutions where a horizon coincides with a curvature singularity include,

for example, dilatonic BPS Dp-branes [12] as well as D3-branes on generalized conifolds [9].
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Explicitly, from the equation for z in (4.1) e−4z =
∫
du [Q + 2Pf(u)], we find

that z can be expressed in terms of polylogarithms

e−4z = C +K∗u+
P 2

8b

(
Li2(−e−4bu)− Li2(e−4bu)

)
, (4.9)

where K∗ = Q+ 2Pf∗ .5

The exact analytical solution presented here realises the non-BPS KT back-

ground discussed in [6]. In particular, the equation (2.53) in [6] for the warp factor

41(τ) ≡
√
f(x) that determines the position of the event horizon is solved with the

identification6

x ≡ x(u) =
4a

3b
e−4au sinh 4bu , (4.10)

f(x) ≡ f(x(u)) = e−8au , (4.11)

provided we set a = 243
4
A. In [6], f(x?) was found numerically to vanish for x? 6= 0.

Given (4.10), (4.11) we see that this statement is incorrect. This numerical error led

to the wrong conclusion of the nonsingular horizon of the black hole solution in the

KT geometry proposed in [6].

Near u = 0 we get from (4.9) the same expression as in the extremal case

(a = 0, b = 0), i.e. the KT behaviour (3.15) where e−4z is 1 at u = 0 and grows as u
increases. For large u:

y = −bu + 1
4
log 2b+

1

4
e−8bu + · · · , f = f∗ +

P

2
e−4bu + · · · , (4.12)

e−4z = C +K∗u− P 2

4b
e−4bu + · · · . (4.13)

Thus e−4z always grows never reaching zero. If we define the horizon as the locus
where G00 = exp(2z − 6x) vanishes, then from these large u asymptotics, it is clear
that we have a horizon as u→∞. Moreover, from (2.1) and the differential equations
(4.1), (4.2) and (4.5), we find that the Ricci scalar in this space-time is R = P 2e6z−6y.
From the large u asymptotics, it is clear that R is singular in the limit u→∞.
We conclude that the non-BPS solution (4.7)–(4.9) does not have a horizon

shielding the naked singularity of the extremal KT solution; instead, the introduction

of non-extremality here creates a horizon at u =∞ and shifts the singularity of the
extremal KT background from a finite value of u to the same point u =∞.
In fact, if we take the P → 0 limit of (4.7)–(4.9), thus removing the fractional

branes, we still have a singular horizon at u = ∞: even though the Ricci scalar
vanishes, components of the curvature tensor blow up. The lesson is that the presence

5Note that e−4z(0) = C − π2P 2/32b. The constant C may be adjusted so that the solution has
or does not have an asymptotically flat region; the latter possibility corresponds to h(0) = 0.
6Here f and x refer to the notation in [6].
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of the fractional charge does not influence the singularity significantly. We will show

in the next section that this P = 0 limit corresponds not to the ordinary non-extremal

D3-brane solution but to a special non-BPS D3-brane solution.

5. General non-extremal pure D3-solution and its regular and

singular cases

In this section we trace the singular horizon problem of the special solution found

in the previous section to a similar problem in the P = 0 case, i.e. to singularity of

certain non-extremal generalizations of the regular extremal D3-brane solution.

In general, the system of second-order differential equations for y (3.18) and

z (3.20) has an extra free integration constant — an extra parameter of non-BPS

deformation in addition to the constant a in x in (3.6). The standard non-extremal

D3 with regular horizon [12] is a special case of a more general class of solutions.

One usually discards such more general solutions by imposing the condition that the

horizon should be regular. That condition is satisfied only for a special choice of two

free integration constants.

From the effective “7-d black hole” point of view, these more general solutions

correspond to the case when an extra scalar (the radius of the internal 3-torus)

has non-vanishing asymptotic charge. However, regular black holes should not have

scalar hair — otherwise we get a singular horizon. It is only when this extra scalar

charge is tuned to zero that we get a regular non-extremal D3-brane solution.

To consider the non-extremal pure D3-brane case let us start with the general

system of equations (3.17)–(3.22) with P = 0 and f = 0.7 To match the standard

D3-brane solution we shall also set Φ = 0 and w = 0.8 Then we are left with (3.6)

and the following system:

y′′ − 4e8y = 0 , z′′ − 1
4
Q2e8z = 0 , (5.1)

i.e.

x′ = a , y′2 = b2 + e8y , z′2 = c2 + q2e8z , q ≡ 1
4
Q , (5.2)

with the integration constants a, b, c related by the zero-energy constraint (3.22)

5b2 − 3a2 − 2c2 = 0 . (5.3)

Assuming that a, b, c ≥ 0 (so that y →∞ for u→ 0) and that h, g in (2.5) approach
1 as u→ 0, we find

e4y =
b

sinh 4bu
, e4z =

c

q sinh 4c(u+ k)
, e4x = e4au , (5.4)

7We could keep f non-constant for P = 0. That would introduce an extra potential term in the

equations for the remaining fields. Like the Φ ∼ u case discussed in appendix A, this corresponds
to having an extra scalar charge and most likely leads to a singular solution.
8The discussion of this section applies both to M5 = T

1,1 and M5 = S
5.
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where k is defined by

e4ck = q−1(
√
q2 + c2 + c) ≡ γ . (5.5)

Then (see (2.5))

ρ4 = e4y+4x =
2be4(a−b)u

1− e−8bu , g = e−8au , (5.6)

h = e−4z−4x = e4(c−a)u
[
1 +

q

2cγ
(1− e−8cu)

]
. (5.7)

At small u (large ρ) we have

g = 1− 2a
ρ4
+ · · · , h = 1 +

√
q2 + c2 − a

ρ4
+ · · · , ρ4 =

1

4u
+ · · · . (5.8)

5.1 Standard regular non-extremal D3-brane solution

The standard non-extremal D3-brane solution [12] corresponds to the case when

b = c = a , (5.9)

i.e. to a line in the 2-parameter (b, c) space. Then the constraint (5.3) is satisfied,

and (5.4), (5.5) become

e4y =
a

sinh 4au
, e4z =

a

q sinh 4a(u+ k)
, e4x = e4au , (5.10)

γ = e4ak = q−1(
√
q2 + a2 + a) . (5.11)

Note that near the horizon (u→∞)
y = y∗ − au+ y1e−8au +O(e−16au) , z = z∗ − au+ z1e−8au +O(e−16au) , (5.12)

y∗ =
1

4
ln 2a , y1 =

1

4
, z∗ =

1

4
ln
2a

qγ
, z1 =

1

4γ2
, (5.13)

while at large distances (u→ 0)

y = −1
4
ln 4u− 2

3
a2u2+O(u3) , z = −q̄u+O(u2) , q̄ = qγ−1+a =

√
q2 + a2 .

(5.14)

It is only for the choice b = c = a that the metric (2.4) takes the standard non-

extremal D3-brane form [12, 13]

ds210E = h−1/2(gdX20 + dXidXi) + h
1/2[g−1dρ2 + ρ2(dM5)2] , (5.15)

g = e−8x = 1− 2a
ρ4
, ρ4 =

2a

1− e−8au , (5.16)

h = e−4z−4x = 1 +
q̃

ρ4
, q̃ = γ−1q =

√
q2 + a2 − a . (5.17)

In an often-used parametrization q = 2a sinhα coshα and q̃ = 2a sinh2 α, where the
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charge q is fixed in the extremal a → 0 limit. The mass (density) of the solution is
M =

√
q2 + a2 + 3

4
a > q, so this is the standard non-extremal black-brane type

solution with a regular horizon.

Let us note also that the choice of k = 0 in (5.10) leads to the black hole in AdS

solution, where we remove the asymptotically flat region. Then the metric is (5.15)

with

g = e−8x = 1− 2a
ρ4
, ρ4 =

2a

1− e−8au , h = e−4z−4x =
q

ρ4
. (5.18)

5.2 Special singular non-extremal D3-brane solution

The general solution with arbitrary b and c reduces to the standard extremal D3-

brane background only if we set b and c proportional to a, satisfying the con-

straint (5.3).

The simplest special case is c = 0 where z satisfies the 1-st order equation

z′ = −qe4z (cf. (5.2)). Then from (5.4) we get

e4y =
b

sinh 4bu
, e−4z = 1 + 4qu , e4x = e4au , b =

√
3

5
a , (5.19)

and thus

ρ4 = e4y+4x =
2be4(a−b)u

1− e−8bu , h = e−4z−4x = (1 + 4qu)e−4au , g = e−8au . (5.20)

This solution, which is the P = 0 limit of the solution [6] derived in section 4, has a

singular horizon at u =∞.
For small u (large distances) and in the limit a → 0, we still get the standard

asymptotic extremal D3-brane behavior

ρ4 =
1

4u
+ · · · , g = 1− 2a

ρ4
+ · · · , h = 1 +

q − a
ρ4
+ · · · . (5.21)

If we define the horizon as the place where G00 vanishes, then its location is at infinite

u. Note that there g → 0, but also h→ 0; still G00 = h−1/2g → 0.
Since b < a, the radial coordinate ρ is not a monotonic function of u: it grows

to infinity at both u = 0 and u =∞, having a minimum at finite u. Therefore, ρ is
not a good (one-to-one) coordinate, and we must instead use u to cover the entire

space-time. The same remark applies to the fractional brane generalization of (5.20),

i.e. to the solution of [6] found in section 4.

It is only in the case b = c = a of the standard D3-brane solution (5.10) that ρ

is monotonic with ρ(0) =∞, and ρ4(∞) = 2a is the position of the horizon.
The explicit form of the corresponding metric (2.4) in the special case of (5.20) is

ds210E = (1 + 4qu)
−1/2(e−6audX20 + e

2audXidXi) + (1 + 4qu)
1/2ds26 , (5.22)

ds26 =
( b

sinh 4bu

)5/2
du2 +

( b

sinh 4bu

)1/2
(dM5)

2 . (5.23)

This metric has a horizon as well as curvature singularity at u =∞. (One can check
that RmnklR

mnkl is divergent there.)
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6. Discussion

To summarize, the condition of regular horizon usually imposed on black holes ex-

cludes the special non-extremal D3-brane solution discussed in section 5.2. This

solution is special in that z satisfies the same 1-st order equation (without an extra

integration constant) as in the extremal case. For that reason it is this solution

that has the immediate simple fractional D3-brane generalization found in [6] and

described explicitly in section 4. This solution has a singular horizon, which is now

not surprising since for zero fractional D3-brane charge P , it reduces not to the stan-

dard regular D3-brane solution of section 5.1 but to the special singular solution of

section 5.2.

Let us make the comparison with [6] more explicit. Just as for the P = 0 case

discussed in section 5.2, as we increase u the radial coordinate ρ reaches a minimum

value ρ∗ and then starts increasing again. In fact, ρ(u) is exactly the same as in the
P = 0 case, eq. (5.20). In [6] ρ∗ was incorrectly identified as the horizon. But it is
not a horizon because g = e−8x is finite there — the minimum value ρ∗ is an artefact
of the coordinate choice. In this solution the coordinate u covers both branches of

the ρ coordinate. The singular horizon is located at u =∞ where ρ =∞.
The above discussion shows that in order for the non-extremal generalization of

the KT solution to reduce to the standard black D3-brane in the P → 0 limit, the
large u asymptotics have to be (see (5.10), (5.12))

u� 1 : x = au , y → −au+ y∗ , z → −au+ z∗ , (6.1)

w → w∗ , Φ→ Φ∗ , f → f∗ . (6.2)

These asymptotics guarantee the existence of a regular Schwarzschild horizon at

u = ∞, and it is natural to expect that w, f and Φ have stationary points at this
u → ∞ horizon. Then it is easy to see that our system of equations (3.17)–(3.21)
and the constraint (3.22) are indeed satisfied at large u. It is also not hard to check

that turning on P makes a small perturbation on these asymptotics.

Since in the P → 0 limit we need to keep c = a in the equation (5.2) for z, we

are forced to give up the 1-st order equations for z and f (4.1), i.e. the self-duality

of the 3-forms. In turn, the equations (3.19) and (3.18) for Φ and w then receive

sources and it is no longer possible to have solutions with Φ = 0 and w = 0. The

reason for this special role of w is that our ansatz for the forms (2.8)–(2.10) breaks

the symmetry between ψ and other directions of M5. The lack of self-duality of the

3-forms causes the T 1,1 to become squashed at finite u.

Now we face a formidable task of solving the complete 2-nd order system of

equations (3.17)–(3.22), looking for special non-singular solutions which interpolate

between the KT asymptotics (3.14), (3.15) at small u and the Schwarzschild horizon

asymptotics (6.1), (6.2) for large u. Such solutions will be discussed in a future

publication.
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A. Non-BPS solution with non-constant dilaton and w = 0

Here we discuss singular solutions with a non-constant dilaton,

Φ = 4pu . (A.1)

Now the zero-energy constraint is

5y′2 − 5w′2 − e8y(6e−2w − e−12w) = 3a2 + 2p2 . (A.2)

We find

e4y =
b

sinh 4bu
, 5b2 = 3a2 + 2p2 . (A.3)

The functions f and z are then determined from (4.1).

If we keep a and p independent and take P = 0, then we do not get the standard

non-extremal D3-brane solution but rather its generalization with non-zero dilatonic

charge. If a = 0 but the non-vanishing dilaton charge p 6= 0, we recover the conifold
analog of the singular generalization of the extremal D3-brane solution discussed

in [14, 15]. The fractional 3-brane case with non-zero P still leads to a singular

solution.

It is therefore necessary to relate p and a, i.e. to demand that

p = ma , b = na , n =
[1
5
(3 + 2m2)

]1/2
. (A.4)

The relation (A.4) is needed in order to get back the KT solution (and not its other

non-BPS generalization with running dilaton) in the limit a = 0. Then a plays the

role of the non-extremality parameter which “drives” the solution away from the

BPS point of the KT background (3.15).

One particularly simple possibility is m = 1, i.e.

p = b = a . (A.5)

Then eqs. (4.1) become

f ′ +
aPe4au

sinh 4au
= 0 , (e−4z)′ = Q+ 2Pf , (A.6)
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so that

f = f∗ − P

4
ln(e8au − 1) , (A.7)

which of course reduces to the KT expression in (3.14) in the BPS a = 0 limit

(f0 = f∗ − P
4
ln 8a). f goes in the same log u way for small u (large distances) and

linearly with u for large u (small distances), a novel behaviour.

The equation for z gives

e−4z = C +K∗u− 2aP 2u2 − P 2

16a
Li2(e

−8au) , (A.8)

C = 1 +
P 2π2

96a
, K∗ = Q+ 2f∗P ,

where C is such that z(0) = 0 to have the standard long distance limit. Explicitly,

for small u we reproduce the KT asymptotic behaviour

e−4z = 1− P 2

2
u log u+

[
K∗ +

1

2
P 2(1− ln 8a)

]
u+O(u2) , (A.9)

while for large u

e−4z = −2aP 2u2 +K∗u+O(e−8au) , (A.10)

indicating the presence of a special point at finite u where e−4z vanishes.9

This point is a curvature singularity. According to (2.4), (2.5), h = e−4z−4x, so
that h = 0 at finite u. Note that g = e−8x and ρ = ey+x are still finite there, so this
is a naked singularity. Just as in the KT case, the derivative of z or (e−4z)′ = K(u)

becomes zero at u = u0 before we reach that singular point: e
8au0 = 1 + 2P−1eK0.

Since the derivative of e−4z changes sign, that means e−4z reaches a maximum at
u = u0 and then goes to zero.

Above we considered the case of p > 0 when the string coupling eΦ = e4pu

grows at small distances. One finds a somewhat nicer behaviour of the metric in the

opposite case of m = −1, i.e.
p = −b = −a . (A.11)

Now for large u the string coupling becomes weak and f → f∗. This produces a
solution with a singular horizon at u =∞. For example, if we choose Q+2Pf∗ = 0,
then e−4z approaches a constant for large u. The horizon is singular because the
string-frame metric becomes

ds2string → e−8audX20 + dXidXi + e
−12audu2 + e−4au(dM5)2 ,

so that the longitudinal volume stays finite but the transverse volume vanishes at

the horizon.

9Numerical analysis confirms that there exists a finite value of u were z goes to infinity. The

behaviour of e−4z is similar to that of the 1 + u − u2 function: its starts at 1, grows reaching a
maximum, and then goes to zero at approximately us = 1.617.
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