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PREFACE

This compilation of notes and short papers is the final result of a seminar,
entitled "String and List Processing', which was given during the summer of
1972 in the Department of Computer and Communication Sciences under the
guidance of Professors Flanigan and Riddle. The intent of the seminar was

to allow students to pursue interests in the general area of string and

list processing languages and facilities and to report the results of

their work to the seminar. Some twenty students participated in the seminar,
which met once a week, for three hours, for presentations and group discussions.
Each participant making a presentation also produced an outline for his talk
which was made available at the presentation. In addition, those taking the
seminar for academic credit were required to hand in a final report which
extended their outlines. The outlines and final reports produced are here
gathered into one volume. Further, those who reported on list and string
processing languages also each produced a sample program which demonstrates
the use of that language which they discussed; these sample programs have
also been included.

The material presented here has been given minimal editing by Professors
Flanigan and Riddle. We did attempt to correct all known logical errors in
the content of each paper; we did not correct minor misspellings and
puncuation errors which did not harm the understanding of a paper. In some
instances the sentence structure is a bit ambiguous; as long as the correct
interpretation could be determined, we left the original text unchanged.
Note, however, that we did detach the sample programs from each paper and
combined them into the final section of the volume; each paper still contains
references to the "attached sample program'", although it is not attached in
the final version.

The following page shows the topics presented in the seminar together with
the names of those who presented them. We wish to thank these participants
for their work and their presentations, which provided an enjoyable and
informative seminar. We also wish to thank the additional seminar
participants who, although they did not make presentations, provided a
responsive audience and made the seminar even more informative. We were
pleased with the seminar and enjoyed participating in it; we hope this
printed record of the seminar will carry some of the flavor of the real
thing.

L.K. Flanigan
W.E. Riddle
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W. E. Riddle
5/19/72

An Introduction to the
IPL-V Programming Language

SYMBOLS:

A. GLOBAL SYMBOLS
unique throughout program
. a letter followed by (at most) 4 digits, e.g. Al4
. two types
1. pre-defined

HXXXX accumulators and special registers
e.g. HO -"communication cell''- push-down-stack

general-purpose register

Hl -instruction address register, also
push-down

H2 -head of available space list (user never
has to use)

HS5 -condition code register, value either + or -

WXXXX  working, temporary storage
JXXXX names of basic routines (more on this below)
2. user-defined - global symbols, other than those starting
with H,W, or J; used as identifiers
B. LOCAL SYMBOLS
. have the form 9-XXXX
. used as names of sublists

. scope is local to list where used

C. ADDRESSES
. numbers which are storage addresses

. provided by system (in examples below, blank indicates occurrence
of a system provided address)

DATA TERMS: hold a piece of data

p Q DATA
et et T
0 - decimal integer
1 - decimal flt-pt 1 value
2 - alphanumeric
3 - octal

Q = 1 flags this as data in context where data is being expected.

I.A.1



CELLS: have a name and hold a value

A. format

P| Q| SYMB | LINK

SYMB is the item stored in the cell
LINK is a pointer to another cell

Q is "designation prefix'" and indicates amount of indirection
needed to get value of cell
Q = 0 value is SYMB itself
Q =1 value is SYMB field of cell named by this SYMB field
(i.e. one-level indirection)
Q = 2 two-level indirection
P is '"operation prefix', explained below.

B. Any cell is a push-down stack.
C. cell can hold an instruction

P Q SYMB LINK
operation indirection symbol link §
code indicator ym address |

. . . poBecress |

notation: let S be the symbol or value obtained from SYMB
by indirect addressing.

operation codes:

0-EXECUTE S -take next instruction from location S
(push S onto H1)

1-INPUT S -push S onto HO

2-0UTPUT S -pop a symbol from HO and put it into
SYMB field of S

3-RESTORE S -pop the pushdown stack S

4-PRESERVE S -push down S (i.e. make it possible to

store a symbol in S without destroying
the present contents)

5-LOAD S -replace current symbol at top of HO by S
(don't push)

6-STORE S -replace SYMB field of S by symbol at top
of HO (don't pop)

7-BRANCH S ~take next instruction at S if HS5 is -;

otherwise, next instruction is at LINK.

D. cell can be an element of a list.
last element on list has LINK value zero

. an element on the list may be interpreted as an instruction; or
it may merely be a symbol, naming some data item, instruction,
or list.

I.A.L
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first element of a list is a special header cell

. LINK points to cell holding first item on list;

zero indicates empty list.

. SYMB is usually zero; when non-zero it names a list

EXAMPLE LISTS

I.

II.

L1

which is interpreted as holding the values and names
of various attributes of the list.

L2

~N-
L]
~
N

~-

L4

=
C{—|0f—> | L 310 3 IR
L5 .
Bt—>Rt—3 {0 b3 W}—1|N
L1 0 The blank LINK fields actually hold
9-1 addresses of next sequential element.
9-2 Another way to write the list, using
9-3 0 explicit links, would be:
9-1 21 D L1 0 9-5
9-2 21 O
9-2 21 G 9-4 9-2 946
9-5 9-1 9-4
9-6 9-3 0

The other lists would be similar.

The 1is

t

L6 9-4
9-1
9-2
9-3 0

9-4 0
L2
L3
L4
LS 0

9-1 21 D
9-2 21 D
9-2 21 G

I1.A.3

is the same as L1 except the attributes (SIZE, LARGE) and (COLOR, BROWN)

have be

en associated with it.
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III. The list structure

L7 0
L3
L5
L1 0

would diagrammatically look like:

L7

29

4o

p
-

ROUTINES
. list of cells which are interpreted as instructions

. pre-defined routines are named JXXXX and are part of IPL system
(most all are machine code)

notation: Let items in HO stack be named 0, 1, 2, ... from the
top. Then the symbol in SYMB field of top item on
HO is (0), etc.

JO noop

J1 execute (0)

J2 test if (0)=(1) N.B. test symbol only, set H5 + if yes, - if no
J3 set H5 -

J4 set HS5 +

J5 reverse HS5

Jé interchange (0) and (1)

J110 V(1) + V(2) » V(0)

pop up ((3) ~ (1)

two 4) »~ (2) V(0) is value of symbol in SYMB field of top of HO

items E
J111 V(1) - V(2) » V(0) and pop up two items
J112 V(1) * V(2) » V(0) and pop up two items
J113 V(1) / V(2) » V(0) and pop up two items
J114 test if V(0) = V(1)
J115 test if V(0) > V(1)

J121 V(1) - V(0) and pop up one item



EXAMPLE IPL-V PROGRAMS
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These programs calculate n!, the first one iteratively and the
second one recursively.

A. Assume that Cl has the value 1, Ml contains n, and Al is to receive

answer.
F1 50 M1 M1 -~ (0)

10 A1l Al pushed onto HO

00 J121 V(M1) - V(Al)
9-1 50 C1 C1 ~» (0)

10 M1 M1 pushed onto HO

00 J115 Test V(M1) > V(Cl)

70 9-2 Branch if false

50 C1 C1 ~» (0)

10 Ml M1 pushed onto HO

10 M1 M1 pushed onto HO

00 J111 VM1)-V(C1) - V(M1)

50 Al Al -~ (0)

10 Ml M1 pushed onto HO

10 Al Al pushed onto HO

00 J112 V(MI)*V(Al) » V(A1)

00 J3 Set H5 to - }

70 9-1 Branch if HS5 is -
9-2 00 JO O Noop }
| 11 i

1PL-V Language Annotation

B. Assume that:

Al

M1

IF(M1.EQ.1) GO TO 9-2

M1

Al

GO
END

M1-1

A1*M1

TO 9-1

|

Equivalent FORTRAN

Cl contains the value 1; M1 contains X1, the name of

the cell with the value n; and M2 contains X2, the name of the cell
where the answer is to go.

F1 50
11
00
S1

00

40
10
00
10
00
70

10
10
10
00
00
30
51
10
11
00

F11

F12

Cl1

M2
J121
M1

F11 O

Wl

Wl
J121
C1
J114
F12 0

Cl1

W1

W2
J111
F11

W1

M2

W1

M2
J112 0

Cl1 - (0)

(M2) pushed onto HO
V(C1l) - V(X2)

M1) ~» (0)

preserve V(W1)

W1l pushed onto HO
V(X1) > V(W1)

Cl pushed onto HO
Test V(W1)=V(C1)
Branch if false

Cl pushed onto HO
W1l pushed onto HO
W2 pushed onto HO
V(W1)-V(C1l) » V(W2)

Restore Wl's value

M2) - (0)

W1 pushed onto HO

(M2) pushed onto HO
JlV(Wl)*V(XZ) -+ V(X2)

|

|

IPL-V Language

Annotation

Initialize value
of X2 to 1 and
put X1 on top
of stack.

Push W2's (X1's

the first time thru)
current value onto Wl
If value pushed

was 1 then stop
recursing down.

Set W2's value to
W1l's current value
minus 1 and leave the
symbol W2 on HO.

Keep recursing

Form next product

in the series
1-2-3-4.5-,..+n

and put its value

in X2

In English
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MTS SLIP

Dean W. Lucier
June 23, 1972
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SLIP (Symmetric List Processor) was developed by Joseph
Wizenbaum of M. I. T. while he was with General Electric in 1963.
He didn't hide the fact that SLIP was derived from at least four
earlier list processors, including IPL-V. From Newell's IPL-V, he
used the concept of a list of available space and many of the SLIP
functions are the same as basic processes in IPL-V. While SLIP
was originally developed for use on the IBM 7090, the principles
remain the same for MTS, even though the cell structure has changed.
The descriptions herein will be for the MTS implementation.

SLIP is a list processing system distinguished by the symmetry
of its lists; each element (cell) has both a forward and backward
link as well as a datum. It is not an independent language, but is
intended to be embedded in a high-level language like FORTRAN
which gives it great flexibility. Most SLIP processes (functions)
are written in FORTRAN, while the processes which actually deal
with the cell structure, called primitives, are written in assembly
language.

The description of SLIP can be divided into two parts:

1. The data structure which contains the information to be
manipulated.

2. The program structure which is the means of carrying out the
manipulations.

First, the cell structure as designed by Wizenbaum and

implemented on MTS consists of a pair of consecutive doublewords.

Il inkL |RILNKR
sl R LN
DAT UM

SLIP CELL
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The ID field is 3 bits long and designates what type of
cell it represents by its numeric value:
ID = 0 : this is a normal cell containing a piece of data.

=1 : the datum is the name of a list.

2 : this cell is the header of a list.
= 3 : this cell is a reader of a list.

The LNKL and LNKR fields contain the addresses of the predecessor
cell and successor cell, respectively. On every list there is
exactly one header (ID=2) cell. Therefore, an empty list consists of
one header cell which points to itself in both the LNKL and LNKR
fields.

The MRK field is 3 bits long and contains whatever information
the user designs. It is not used by the SLIP routines.

The DATUM fiéld is 64 bits long, (one doubleword or two full-
words or eight bytes). In type 0 (ID=0) cells, it may contain
anything which the user can fit into 64 bits.

A simple list looks like the following diagram:

MEMORY ADDRESS

0l0060 2]0100G0|0010020 |\ ADER

oloe?l © 00100000 |0I00G0O | ToP OF
USER DATUM ST

ol WeXeXt10) O|0I0020|0C ] OO0 BOoTTOM
USER DATUM OF LIST
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Much of the power of list processing systems is drawn from
the ability to process list structures. Therefore, the capability
of creating one list and linking it to anotler list, forming a sublist
structure, must exist.

Recall that a name cell (ID=1) has the name of a list in its
datum field. In the MTS implementation, the datum of a name cell

is divided into 4 fields as shown:

LINK TO LINK ToO DATUM OF
A HEADER o HEADER NAME CELL (ID=1)

The first and third fields are three bits long each and are
constant. The second and fourth fields are 29 bits each and each
contains the address of the same header cell, thereby providing
the link between lists. An example of a sublist structure is the

following:

Olocoo | 2 [Oloot o] O |oloojo
|

olocgo | 2 |0leoes| O [cloosgo

1

01000 |1 |0lo0c00| C|oloooo

1 |oloc&e | ¢ |olooso
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One might raise the question that when adding a cell where
does it come from? In SLIP, there exists a list of available
space (LAVS) which is actually a one-way linked list, i.e. when
cells are returned to the list, they are linked to the bottom,
and when they are retrieved, they come from the top of the list.
This is possible since SLIP has two reserved fields within its
language code which maintain the current addresses of the top
and bottom cells of the LAVS.

This scheme enables one to erase an entire list rather than
each individual cell. This is due to the reference count field
of the header cell of a list. The reference count is maintained
as the DATUM portion of a type 2 cell. Each time a list becomes a
sublist of another list, this reference count is incremented by
one. If the "parent" list is erased and thereby attached to the
LAVS, the routine for obtaining new cells from the LAVS will decrement
the reference count by one% and if the result is zero, then the
sublist is erased and linked to the bottom of the LAVS. If the
result is greater than zero, it still remains as a sublist to some
other list, and is not linked to the LAVS.

These processes bring up the question of who is responsible
for maintaining the pointers in the structures and the handling
of LAVS and other niceties? SLIP has the routines to handle these
responsibilities and therefore all the user has to do is ask for
a list to be created or a cell to be inserted or erased. SLIP
will obtain the cell or 1list, process the reference count, update

pointers, etc.

1. at the time the name cells in the "parent" list are reused.
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Finally, as part of the data structure services provided by
SLIP, it provides working storage cells which can be used as
common areas for all user subroutines in which information can be
transfered. There are 100 of these cells in consecutive doubleword
pair locations, consisting of 100 empty lists.

Looking at the routines in the program structure part of SLIP,
they consist of certain assembly language routines, which are
called primitives, and the other routines which are written in
FORTRAN, and are normally functions. The primitives extract
directly the information from the cell and store the information
into the cell and, consequently, are machine and cell structure
design dependent, whereas the other high level language routines
manipulate the lists by calling the primitives where needed. For
example, a primitive must be used to obtain the memory address
of a cell.

Therefore, one can see how flexible SLTIP is in that only the
primitives, approximately 12 in all, need really be rewritten
if the cell design is altered or a different make of computer is
used.

Like other list processing systems, SLIP allocates storage
dynamically. Therefore, before any lists can be built,the LAVS
must be initialized. This is done by the routine INITAS, acting
upon a block of storage provided by the user.

The type of nearly every SLIP quantity and function should
normally be DOUBLE PRECISION and explicitly declared for each
SLIP function called by the user in his program. A few functions
should be declared as INTEGER. Therefore, it is a good practice
to refer to CC MEMO #M197 until one becomes familiar with the

functions.
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The following is an example for setting up a list of available
space:
DIMENSION SPACE (1000)
COMMON AVSL,W(100)
I = 1000
CALL INITAS (SPACE,I)
This will create an LAVS of 500 cells and a set of empty
lists W(1)...W(100) which can be used as public storage. The
COMMON statement should be included in any user program.
In order to create a list (empty initially), there are 3

types of statements which can be used:

1 CALL LIST (LA)
2 LB = LIST (LA)
3 LB = LIST (9)

The value returned by LIST is the address of the header cell
created,stored in a double word. Therefore, the DOUBLE PRECISION
symbolic variables, LA and LB, will contain this address after
execution and can be used to refer to the list just created,
for that reason.

The argument, integer 9, causes the reference count to be
set to zero in the new header cell. Otherwise, when 9 is not used,
the reference count is initialized at 1. As noted before, the
reference count is incremented by one when it is made a sublist of
another list. Therefore, sublists initially should have a zero
reference count, so that when linked as a sublist, resulting in
an updating of the reference count, they will be erased if the

"parent" list is erased. If the reference count of a sublist

is initially one, and updated to two, the erasing of the main
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list will result in the reference count decrementing by 1 and not
reaching zero, the necessary requirement for erasure.

The statement used to erase a list is:

CALL IRALST (LA)

This decrements the reference count of a list, LA, by one and if
the result is 0, it will erase it by linking it to the bottom of the
LAVS.

There are a number of functions for placing cells on an existing
list. In all cases, the value returned is the address of the new
cell obtained.

STUFF

NEWTOP (DATUM,LA)

Il

STUFF NEWBOT (DATUM,LA)
The above statements will cause a new cell to be inserted at
the top or bottom of list LA, and the datum portion of the field
of the new cell to be filled by the contents of DATUM. A
precaution to note here is that SLIP checks the contents of DATUM
to determine if it is the address of a header cell. If it is, the
cell being created becomes a name cell (ID=1) and the appropriate
format is constructed. Therefore, the user must be sure there
will be no conflict with his data and the addresses which could
be generated. 1In most cases, this is not a problem. For example,
the attached sample program uses the datum field in a manner in
which the conflict should not arise.

Suppose a cell needs to be inserted in a location on the list
which is neither the top or bottom. This can be accomplished with

either of the following two statements:

STUFF NXTRGT (DATUM, KEEP)

STUFF

NXTLFT (DATUM, KEEP)
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The first statement will obtain a cell from LAVS, and then
insert it to the right (successor) of the cell whose address is
contained in KEEP. Then the datum is stored in the new cell.
Similarly, NXTLFT refers to the insertion left of the existing
cell using the predecessor (LNKL) pointer.

The information contained in a cell can be changed by using:

STUFF = SUBST (DATUM,KEEP)

This results in the contents of DATUM being placed in the cell
whose address is in KEEP, and then the o0ld contents of the cell are
put in STUFF. Similarly, the following functions will place data
in the top and bottom cells of a list:

SUBSTP (DATUM,KEEP)
SUBSBT (DATUM,KEEP)

There exist other extravagant routines in building lists:
LB = LSSCPY (LA)

A list, LB, is created and is an exact copy of the list, LA,
except for addresses.

INLSTL (LA,KEEP)
INLSTR (LA,KEEP)

These reoutines insert an entire list (LA), except for the
header cell of LA, as the predecessor (left) or successor (right)
of the cell whose address is in KEEP. The list LA then becomes an
empty list. For example, the bottom cell of list LA is linked to
the cell specified by KEEP and the top cell of list LA is linked
to the predecessor if INLSTL is used.

CALL DELETE (KEEP)
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This routine will erase the cell specified by KEEP and return
as a value the contents of the datum field of the cell.

The actual searching of a list is done by SLIP, after
receiving a command from the user program. Therefore, in order
to Qg;form these read functions, SLIP requires a cell to be acquired
from LAVS which he uses to keep track of the current cell in the
list structure where the user is positioned.

The reader cell (ID=3) has the following format:

D
LOFRDR

I N B
LPNTR E LINK
L

CNTR

READER CELL

The LPNTR field contains the address of the cell currently
being pointed to. The LOFRDR contains the address of the header cell
of the list currently being looked into. The LCNTR is a count of
how many levels ("depth" of sublists) the reader has descended into
the list structure. The level of the main list is represented by 0.
Each time the reader descends into a sublist, he obtains a new reader
cell and forms a stack by using the LINK field after bumping the
level counters of previous readers in the stack.

There are two types of scanning or advancing operations available
in SLIP, linear and structural. In both cases, a reader for the list
must be obtained by using:

READER = LRDROV (MAIN)
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READER contains the address of the initial (in case of a stack)
reader cell for the list specified by MAIN.

The mnemonics for the advance operations represent 3 parameters:
l.‘ type of advance
2. type of cell being searched (target)

3. direction of advance

For example:

STUFF = ADVLEL (READER,FLAG)

The first letter L signifies linear advance, whereas S is
structural. The second letter L represents in the left direction
(using predecessor links), whereas R is in the right direction.

The target specification is the letter E which signifies a search
for type 0 cells (ID = 0). The letter N represents name cell search
and the letter W represents either type.

The argument READER represents the reader cell for the list to
be searched and FLAG designates a DOUBLE PRECISION variable which
will be set to zero or non-zero depending on whether the search is
successful or not.

The following are some of the advancing operations:

ADVLER (READER,FLAG)
ADVLNL (READER,FLAG)
ADVLWR (READER,FLAG)
ADVSEL (READER,FLAG)
ADVSNR (READER,FLAG)

ADVSWL (READER,FLAG)
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For the linear advance, if the search is successful, the datum
of the matching cell is returned as a value and the flag is set to
zero. If a header cell is encountered before a match, the flag
is set to non-zero and the value returned is zero. The linear
advance moves sequentially down or up a list without descending
into the sublists.

The structural advance will descend into the sublists if a
name cell is encountered and the target cell has not been found. TIf
the target cell has not been found in the sublist, the reader returns
to the point of descension in the "parent" list and continues
the search from there. All this is done by SLIP before control is
given back to the user program. The flag is only set to non-zero,
implying failure to find the target, if the header cell of the
main list is encountered.

Some of the other routines concerning the reader are:

REED (READER) returns the datum of the cell which READER is
currently pointing to.

INITRD (READER) forces the reader to point to the head of the
current list.

LVLRVT (READER) returns to main list at the point (cell) where it
descended into the sublists.

INITRD (LVLRVT (READER)) returns reader to header cell of main list.

IRARDR (READER) the reader is erased and returned to LAVS.

Looking at the attached program listing and results, the
following functions are used:

CALL SETRAC (SPACE,TI)

CALL SLPDMP (SPACE,I)
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If the LAVS is exhausted and SETRAC has been previously called
a SLIﬁTDUMP will be produced. This dump (not a core dump) is formatted
so that tracing through the list structure is easily accomplished,
and also through the reader stack to determine which cell was
currently being pointed to at the time.
The function SLPDMP explicitly calls for a SLIP DUMP and is
good for debugging purposes. Another debugging tool is the
function F4TRBK, whcih has no arguments, but will receive control
on any type of error, and produce a SLIP DUMP before giving control

back to MTS.

Some of the advantages of SLIP stem from its feature of
being written almost entirely in a high level language. This
makes it essentially machine independent, and easily imbedded into
a language like FORTRAN. There is no extra compile time since the
routines are loaded at execution time along with the user modules,
which also makes it easy on core since only those modules used
need to be loaded.

In addition, the two-way linked lists allow lists to be bulk erased
rather than each individual cell. The retrieval time for the
bottom cell on a list is the same as the top cell and is independent
of the length of the list.

I feel SLIP would be quite valuable to a number of high level
languages like PL/1 or COBOL where the user must perform all the
operations required in list processing. Certainly, if the type
of list structure SLIP produces fits the application or vice versa,

having SLIP available would be ideal.
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STRING AND LIST PROCESSING FACILITIES OF PL/1
= AN EXTERNAL VIEW -

A, INTRODUCTION

When considering the string and list processing facilities of PL/1, the
potential user must remember that PL/1 is a general purpose language and not an
amalgam of many special-purpose languages. Thus, although PL/1 can be used to
solve almost any type of problem, in general there will be a "better" language
for the solution of any particular problem, However, if the application to be
implemented encompasses several functional areas having, for example, list
processing and computational requirements, then PL/1 with its wide range of

capabllities may be the most appropriate implementation vehicle.

Because it is a general purpose language, the various "primitives" usually
are exceedingly primitive, and the programmer is often forced to write detail
coding for routines which would have been provided had a different language been
chosen, This caveat 1s especlally true when the 1list and string processing
facilities of PL/1 are being compared to the facilities of other string and list
processing languages; a few powerful, basic manmipulations are provided, and it
is the responsibility of the programmer to use these building blocks to create

his own processing routines,

B, _STRING PROCESSING FACILITIES

The following is a minimal set of operations required for the definition
and manipulation of string data;



¢ Definition and initialization of variables and constants
e Assigment of values
# Combination of strings
@ Selection of substrings by position or content
¢ Determination of the current length of a string
The following PL/1 features form the basic support for the above set of operations;
1. String Data Attribute - Tt is possible to define an identifier as

string type date, either CHARACTER or BIT, to define its
length and whether this length is fixed or VARYING, and to
establish an initial value for the string.

2, String Data Operators - The assigmment (=) and concatenation (i)

operators, the logical operators Gﬂ,ﬁ,i), and the comparison
operators (h=, =, etc,) can be used with string data as
operands,

3. _String Built-in Functions - Of the approximately 10 built-in

functions that operate on string data, the most important and

most useful are INDEX, LENGTH, and SUBSTR.

Before any string manipulation examples can be discussed, a few comments
should be made about the more important operations and functions, The assigrment
operation is the copying of data from a source %o a receiving string with any
necessary padding/truncation on the right, If a fixed length receiving field is
longer than the source field, then blanks will be inserted on the right if it is
of CHARACTER type and binary seross will be inserted on the right if it is of
BIT type. If a VARYING receiving field is longer than the source field, no padding
will ocour since the current length field within the receiving string's dope
vector will be set accordingly. If the leugth ¢f the receiving field is less than

that of the sending field, then the excess digit/bits will be truncated. There is
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no truncation interrupt, so the programmer must test for possible truncation if

such an occurrence would cause an error,

Concatenation is the forming of one composite string from 2 or more strings;
it can be thought of as a 2-step operation, the first being the formation of a
temporary string and the second being the assigmment of that temporary string to
the indicated receiving field. All the rules of assigrment apply, and unintentional error
may occur, For example, the following statements
DECLARE S1 CHARACTER (3) INITIAL ('ABC'),
S2 CHARACTER (2) INITIAL ('DE'),
33 = Sl“saszsmm (5%
result in string S3 containing 'ABCDE' at the completion of their execution, Note
that if S1 were defined
DECLARE S1 CHARACTER (5) INITIAL ('ABC'),
then the statement
S3 = S1ll 524
results in S3 containing 'ABC ' because S1 would have been padded with blanks
during initialiszation and the temporary string 'ABC DE' would have been truncated

upon assigmment,

The SUBSTR function is the selection of a portion of a string based on its

relative position within that string., The general form of the function is

SUBSTR (string,start{,length])
where "string™ is the name of the string to be operated upon, "start" indicates
the starting location relative to the first position in the string (which is
position 1), and the optional "length* indicates the mmber of units to be in the
resultant substring. For example, if string STR were declared to contain TABCDE'
then the statement

SUBL = SUBSTR (STR,3,2)
would result in SUBL containing 'CD', SUBSTR is one of a class of function which



I.C.4

can be used on the left-hand side of an assigmment statement, and, when so used,

is known as a pseudo-variable, Given the above definition of STR, if the statement
SUBSTR (STR,3,2) = 'BF';

were executed, then the result in STR would be 'ABEFE’,

The INDEX function is used to locate a character or bit configuartion
within the specified string. A numeric value indicating the starting position of
the pattern is returned if the pattern is found; if it is not found, the value
returned is sero, For example, if it were desired to locate the first blank
character in string S, the followlng statement could be used

LOC = INDEX (S,' ');

The following examples demonstrate typical string processing manipulations

and techniques:

Example 1, The follewing code deletes all blanks from a string S by
constructing a new string consisting of the P characters to the left
of the blank concatenated with the characters which lie to the right
of it, Statement numbers 1 and 2 will be repreatedly executed until
no blanks remain in the string (a return of 0 from the INDEX function).
DO WHILE (INDEX (S,' ')== 0);

P = INDEX (S,' ') - 13
S = SUBSTR (S,1,P) || SUBSTR (S,P+2);
ENDg

Example 2, The following code reverses the characters in string S by
treating the string as two symmetric halves and interchanging the
contents of the corresponding character positions, The loop control
is L/2 since 2 characters are being moved on each iteration., Note
that if L is odd the integer arithmetic used in determining the loop
counter results in truncation but that the center character need not

be interchanged and thus no error occurs,
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L = LENGTH(S);
DOI=1TOL/2;
T = SUBSTR (S,I,1);
SUBSTR (S,I 1) = SUBSTR (S, l. I+1.17:
SUBSTR (S,l- "I+1,1) = T}
END;

Example 3, The following code performs initial verification of an input
message and has been extracted from the primary message-handling module
of an on-line system, When this module 18 invoked, a message has
already been received and assembled in TRANSACTION and its length has
been inserted in LENGTH. This code searches for the first non-blank
character in the message; if more than one character, special processing
is performed. Otherwise, the i-character transaction code is extracted
from TRANSACTION, and its validity is checked by comparing it to the
allowable codes in TRANSACTION_CODES, If it is valid, the non-sero
value returned from the INDEX function is used a$ a subscript into the
LEGAL_IN_PHASE and LEGAL_FOR_USER bit tables,

DECLARE TRANSCATION CHAR(L_TRAN) EXTERNAL,
LENGTH FIXED BINARY EXTERNAL,
TRANSACTION_CODES CHAR(2Y4) INITTAL
( ' BSVCDYGFRPMLIJNAQWTEZUXK') STATIC,
LIP_TAB (0;4) BIT (24) UNALIGNED INITIAL
(1000000000000001000001111 'B,
"111111111111101111111111'B,
'111111111111101111111111'B,
'001111111111111111111111'B,
1000000000000000000000000B) STATIC,
LEGAL_IN_PHASE (O;4,24) BIT(1) UNALIGNED DEFINED LIP_TAB,
LPU_TAB (2) BIT (24) UNALIGNED INITIAL
('111111000101111111111111'B,
"111111111111111111111111'B) STATIC,
LEGAL_FOR_USER (2,24) BIT (1) UNALIGNED DEFINED LFU_TAB,
(PHASE, USER_TYPE) FIXED BINARY;

SUBSTR(TRANSCATION,LENGTB+1,1) = ' 1

DO I = 1 TO LENGTH-1 WHILE (SUBSTR(TRANSACTION I,1) = ' '); END;
J = INDEX (SUBSTR(TRANSACTION,T+1),' ');

IF J = 1 THEN GO TO BOX9;

XACT_CODE = SUBSTR(TRANSCATION,I,1)s

T = INDEX (TRANSACTION CODES,XACT CODE);

IF I =0 THEN GO TO ERRORS;

IF LEGAL_IN_PHASE (PHASE,I) THEN GO TO ERROR9:

IF LEGAL FOR_USER THEN GO TO ERROR 10;



C. LIST PROCESSING FACILITIES

In order to implement 1ist processing applications, the following general
types of capabilities are necessary:
¢ Element definition
¢ Dynamic creation/deletion of elements
¢ Modification of element contents
¢ Selection of list elements according to contents or relative list

position

Since PL/1 was not intended to be specifically a list processing language (in
fact, the 1ist processing facilities were added after the balance of the language
design was substantially complete), it ineludes only the basic list processing
mechanisiss, leaving to the programmer the coding of many necessary functions, For
example, PL/1 does not provide a routine which automatically adds an element to a
list, However, it does provide programmer-accessible pointer data and, by permit-
ting unlike data items to be combined into a logical unit, allows the programmer
to design and code his own list building routine,

The BASED storage allocation data attribute specifies that storage is to be
assigned to its identifier when that identifier is explicitly allocated (rather
than when its containing block is astivated) and that that storage is to be
released when that identifier is explicitly freed (rather than when its containing
block is terminated). Thus, the statement

DECLARE 1 ITEM BASED (I_PTR),
can be used to identify attributes associated with ITEM and its substructure
while providing programmer control over ITEM storage allocation, Wwhen a BASED
variable is allocated, storage is obtained for an instance of that variable and a
pointer is set to locate: the beginning of the obtained storage. For example,

the statement
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ALLOCATE ITEM;
results in an instantiation of ITEM and the setting of I_PTR to the starting
location of this core, It i1s possible to explicitly name a different pointer
variable to be set when an instance of a BASED variable is allocated., For
instance,
ALLOCATE ITEM SET (P)s
causes pointer variable P to point to the first byte of the obtained storage,
leaving I_PTR undisturbed, The statement
FREE ITEM;
causes the storage located by the current contents of I_PTR to be released, while
FREE P>ITEM;
causes the instance of ITEM located by P to be released.

Associated with each reference to a BASED variable, then, is either an
explicit or implicit reference to & pointer variable. If only the BASED variable
is named in a statement, the implication is that the desired instance of the
variable is located by the pointer variable on which it is based, If a different
instance of the variable is desired, then an explicit pointer reference must be
made,

The following examples demonstrate typlcal list processing manipulations

and techniques;

Example 1, The following user code builds a one-way linked list of ITEM
elements, Since pointer variables contain addresses, it is necessary to
define a bit configurmtion that is guaranteed to be the address of
nothing, This is the NULL configuration, X'FF000000', Since there
must be some way to recognise an empty list or the end of a list, by
convention the NULL pointer indicates that there are no following

elements,



DECLARE 1 ITEM BASED (I_PTR),
2 DATA CHAR(50),
2 NEXT POINTER,
. (I_BASE,I_PREV) POINTER;
{
I_BASE,I PREV = NULL:s
3
ALLOCATE ITEM;
IF I_BASE = NULL THEN DOj;
I_BASE = I PTR;y I_PREV = I_PTR;
BXDs
ELSE DOj
I_PREV->ITEM,NEXT = I PTRs I_PREV = I_PTRj
END;
ITEM,DATA = STUFF;
ITEM, NEXT = NULLj;

3

Jne of the drawbacks of dynmmic 1list element allocation is that it is often
difficult if not impossible to predict the amount of storage required for a
particular program execution; reserving a fixed amount may result in wasted space,
or, conversely, the reserved core may not be sufficient. By specifying that a
particular area is to be used for the allocation of BASED variables, the PL/1
1ist processing programmer is able to control the amount of storage allocated to
a 1list and can take corrective action if it is exceeded, The following declaration

DECLARE T_AREA AREA;
reserves I_AREA for the allocation of BASED variables, and the statement

ALLOCATE ITEM IN (I_AREA);
causes space for one instance of ITEM to be obtained from that associated with the
variable I_AREA, As before, it is possible to set a pointer other than that
named in the declaration of the BASED variable:

ALLOCATE ITEM IN (I_AREA) SET (P);
If no sise is specified in the area declaration, a default sise of 1000 bytes is
assigned, The amount of AREA storage can be explicitly specified either absolutely
or relative to the BASED variable(s) it is to contain, For example,

DECLARE I_AREA AREA (5000);
causes 5000 bytes of area storage to be associated with I_AREA, while the statement
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DECLARE I_AREA AREA ((100) ITEM);

causes sufficient storage to contain 100 instances of ITEM to be associated with

T_AREA,

If space 1s not available within the specified area, the AREA ON condition
will be raised, and it is the responsibility of the programmer to intercept this
interrupt and to take appropriate action., Thus, at some initial point in the
progran should be a statement such as

ON AREA GO TO EMPTY_ARRA;
so that if an attempt is made to allocate an ITEM that cannot be contained in
I_AREA, control will be transferred to the designated routine.

By combining the BASED and AREA attributes, it is possible to implement an
OFFSET linkage scheme. (An OFFSET locator variable gives the displacement past
the beginning of a named based variable,)

Example 2. The following code bullds a one-way linked list using an offset
linkage scheme. Note that the based area A must be explicitly allocated
because storage 1s not assoctated with it at prologue times; this is in
contrast to Example 1 in which I_AREA was declared with the default
attribute of AUTOMATIC and had storage associated with it when its con-
taining block was entered. Note also that the declaration of the OFFSET
variables, NEXT and I_BASE, must specify the based area referenced by
the offset, Two other comments should be made about this example; the
first is that in the explicit pointer reference, LINK->ITEM,NEXT = I_PTR,
LINK must be a pointer and must contain a pointer value, The second is
that an offest variable can be set only by assigmment of a pointer
variable to it,
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DECLARE A AREA BASED (A_PTR),
1 ITEM BASED (I PTR),
2 DATA CEAR (50),
2 NEXT OFFSET (A),
LINK POINTER,
T_BASE OFFSET (A)g

3
ALLOCATE Aj
I BASE = NULL 3 -
ON AREA GO TO EMPTY AI
3
ALLOCATE;
ALLOCATE ITEM IN (A)s
IF I_BASE = NULL THEN DO;
I BASE = I_PTR; LINK = I_PTR;
END;
ELSE DO;
LINK —ITEM,NBXT = I_PTRj
LINK = I_PTR;
ENDj
ITEBM,DATA = STUFF;
ITEM,NEXT = NULL ;

3

EMPTY As WRITE FILE (LIST_FILE) FROM (A);
A = EMPTY;
I_BASE = NULL ;
GO TO ALLOCATE;

In the EMPTY_A routine above, the statement
A = BEMPTY;

causes the extent of A, which measures the number of bytes within A already
allocated, to be reset to zero, effectively freeing all the based variables
within A, Thus, when the AREA ON condition is recogniszed, the current contents
of A are written onto an external file, and A is emptied so that additional
allocations can be performed. Notice that since this chain linkage is via dis-
placements past the beginning of A, input/output operations can be performed with-
out destroying the chain,

The power of the PL/i 1ist processing facility lies in its flexibility.
Because the programmer must define and maintain his own chains, he is free to
logically structure his data in the way most appropriate to his partictlar appli-

catlon, Possible 1list structures which can be built and maintained using PL/1
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are; one-way linked 1list, multithreaded list, ring, binary tree, etc.

Example 3. In defining a tree structure, it 1s possible for each node to
contain pointers to all its children., Figure 1 below is a schematic
of such a representation, If the tree structure has a fixed branching
pattern, e.g., & binary tree, then such an approach is reasonable. If,
however, the number of daughter nodes associated with any one node is
variable, then such a structure becomes unwieldy and difficult to
manage, In such cases, each node contains exactly three pointers; to
its parent, to its next sibling, and to its first child. Figure 2 below
is a schematic of such a logical structure, and the PL/1 procedure
CHAIN will create a tree structure of this sort., It is assumed that
elements are presented to GEAIN in order from top to bottom, left to
right. The placement of the current element is determined by examining
its level number. If the level number is i, then this node is the
highest node., Otherwlise there are 3 possibilities; this is a sister of
the most recently-added node (current level number = previous level
number), this node is a daughter of the most recently-added node (current
level number) previous level number), or this node is a sister of some

previously-added node (current level number ¢ previous level number),

Figure 1 Figure 2
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CHAIN; PROCEDURE (ELEMENT);
DECLARE 1 ELBEMENT,
2 LBVEL_NUMBER FIXED,
2 IDENTIFIER CHAR (*),
1 TREE_NODE BASED (CURRENT),
2 DAUGHTER POINTER,
2 SISTER POTNTER,
2 MOTHER POINTER.
2. LEVEL_NUMBER FIXKD,
2. IDENTIFIER CHAR (LENGTH (ELEMENT , IDENTIFIER)),
LAST POINTER STATIC EXTERNAL,
TEMP POIRTER;

ALLOCATE TREE_NODEj

TREE_NODE, LEVBL NUMBER = ELEMENT,.LEVEL_NUMBER;
TREE NODE, IDENTIFIER = ELEMENT. IDENTIFIER;

Ir TREE NODE.LEVEL_NUMBER = 1 THEN DOs;

MOTHER = NULL;
L1:DAUGHTER = NULL!‘
LAST = CURRENT;

RETURN;
END;
IF TRBE_NODE.IEVEL_NUMBER = LAST — TREE_NODE,LEVEL_NUMBER THEN DOj
LAST > SISTER = CURRENT;
MOTHER = LAST —MOTHER;
GO TO Li;
END;
IF TREE_NODE.LEVEL,_ NUMBER > LAST — TREE_NODE, LEVEL,_NUMBER THEN DOj
LAST —>DAUGHTER = CURR!NT:
MOTHER = LAST;
GOTOLI:

DO HHILB (LAST — TREE_NODE, LEVEL,_NUMBER > TREE_NODE,LEVEL_NUMEER);
TEMP = LAST;
LAST = LAST—>MOTHER;
ENDs

IF LAST ~>TREE_NODE.LEVEL_NUMBER- = TREE_NODE,LEVEL_NUMBER THEN
LAST = TEMP;

LAST —>SISTER = CURRENT;

MOTHER = LAST —> MOTHER;

DAUGHTER = NULLj

SISTER = NULL;

LAST = CURRENT;

END CHAIN;

SISTER = NULLs

Example 4., It is possible to combine simple list structures in PL/1 and
to define and manipulate a compound structure, For example, the struce

ture represented in Figure 3 below consists of a two-way linked 1list
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with ringa~attached to each node, In this example, this structure
represents the logical relationships among corporate data; in the two-
way list is stored data about corporate divisions, while each ring
corresponds to the departments within a division. The following code
assumes that the lists have already been created and that the nodes are
in numeric order on division or department code, The procedure RETRIEVE
is called to access a specified node and return the indicated fleld value,
An accessing bias is assumed, and it is anticipated that division requests
are likely to be clustered; that is, the division currently requested
is 1likely to be close to that previously requested, and thus the current
search starts where the previous search ended. RETRIEVE searches up
or down the division chain until the desired division is located and
then either searches the department ring until the indicated department
is found or simply returns the requested division value.
£ 770y

Mo
\ Hf{fj’ Figure 3
°

e
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RETRIEVE: PROCEDURE (CODE1,CODE2,STATISTIC) RETURNS (VALUE);
DECLARE CODE1 PICTURE (A999),
CODE2 PICTURE (A999),
STATISTIC FIXED,
VALUE FIXED (10,2),
TANDEM POINTER STATIC EXTERNAI INITIAL (HEAD),
HEAD POINTER STATIC EXTERNAIL,
1 DIVISION BASED (TANDEM),
2 UP POINTER,
2 DOWN POINTER,
2 CODE PICTURE (A999),
2 DEPT_CHAIN POINTER,
2 VALUE(5) FIXED (10,2),



1 DEPARTMENT BASED (DEPT_RING),
2 NEIT POINTER,
2 GODE PICTURE (A999),
2 VALUE (3) RIXED (10,2)s

L1y IF CODE1 = DIVISION,CODE THEN GO TO DIV FOUNDl
IF CODR1 > DIVISION.CODE THEN DO;
TANDEM = DIVISION,DOWN;
IF TANDEM = NULL | CODB1 { DIVISION,CODE THEN DO;
13: TANDEM = HRAD;
SIGNAL CORDITION (ROT_FOUND);
ENDj
GO TO L1
END;
TANDEM = DIVISION,UP;
IF TANDRM = L& CODE1 > DIVISION,.CODE
TREN GO TO
BLSE GO TO Lis
DIVISION_FOUND;
IF CODE2 = 0 THEN DO;
VALUE = DIVISION,VALUE(STATISTIC);
RETURN;
) END;
DEPT_RING = DEPT_CHAIN;
4s IF CODE2 = DEPT CODETHENGOTODEPTFOUHD]
DEPT_RING = DEPARTMENT , NEXT;
IF DEPT RING = DEPT_CHAIN THEN GO TO L33
Go To 1k
DEPT_FOUND:
VALUE = DEPARTMENT,VALUE(STATISTIC);
RETURN;
ENDs

D, CONCLUSION

Many speclal purpose languages have been designed to solve specific problems,
but their design goals have led to rather rigid data organisations and thus to
reduced general applicability, PL/1, boing a general purpose language, is generally
applicable to any type of problem. While it allows the programmer great flexibility
in manipulating data, it does impose on him the coding of functions considered as
primitives in other languages, This is especially true when its list and string
precessing facilities are being considered, for only the most basic operations are

pm‘vidﬁ .
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II. LISP
5/25/72

In using a digital computer for numerically oriented tasks, a
programmer usually arranges the data to correspond 1n some reasonable
fashion to the linear layout of the computer memory. The data
structure most used is that of the n-dimensional array, where given

n subscripts a simple computation produces a single displacement for
the actual reference to memory. Most algebraic compilers have such
data structures as part of the language they accept, thus making it
quite easy to use these structures. At the same time, these data
structures are limited in their usefulness, since bo%h the stIructure
(here the number of dimensions) and the size are fixed at the time
the structure is created; and this time of creation is often during
translation, rather than during execution, of a program. These

structures have, nonetheless, served well in numerically oriented tasks.

If, however, one turns to areas such as symbol manipulation, infor-
mation retrieval, language translation, artificial intelligence, &and
so on, one quickly finds that the usual data structures are unable
to handle the demands of the programs. This occurs both cdue TO the
fixed size of the structures and to the nature of the structure.
That is, in the above areas we find that the size of the data may
vary tremendously, from moment to moment during execution, and it
becomes imperative to have variable-size data structures and to

be able to create and destroy these data structures at will curing
execution. Thus, the discipline by which memory is used must De

dynamic, at any given time allowing the current program to acgulir

()

ct
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N

more memory or give up memory (but be able to retrieve it la

needed).

There 1s no reason why n-dimensional arrays could not be handled
in a dynamic manner, being created upon demand and destroyed wi
the need. for them disappears; this is, in fact, possible In most
recent operating systems. However, the fact that arrays have a fixed
structure denies\these data structures the utility necessary Ifor syi-
bol manipulation and other such applications. In fact, in many non-
numeric computer applications, it is the structure, and not the value,

~

of the data which is manipulated. Consider, as an example, the
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organization of an encyclopedia. Here we have the gross structure:
paragraph = set of sentences
section = set of paragraphs
volume = set of sections

encyclopedia = set of volumes

where we assume the sentence as the basic element. Over a1 this

structure 1is imposed the usual ordering of information by aliphabetl
criteria at several levels; a dictionary produces Keys for finding
speciiic sections. Note, now, that the probtem of information

retrieval is ore of stIructure; that is, obtaining inform
the encyclopedia (as a data structure) is independent ©
information (except for keywords used in a dicticnary sear
depencent upon the structure of the data. To add new e

the encyclopedia, 1t is necessary to insert new data at se

0 <
]
ol 1
[
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levels (vclume, section, paragraph, sentencel); fixed structures are

not convenient for such tasks.

To handle data in which structure, as well as content, is importan
programmers have turned to list representations of the deta. Lists
(and list structures) provide the flexibility needed, often at the
cost of storage (for pointers) and time (for list processing). It
1s interesting *to note that to solve the problems of storage nhand

in multiprogramming. and timesharing systems, with their dynamic demand:
upon memory, these systems are in general using list-type storage

organization.

To make the use of list structures reacily available, a number o

list processors have been produced. These processors tend <o fall

0
[
fv
8]
0Q
[}

into one of two groups: those that are part of an algebrai
uage (often via subroutines), such as FLPL (4) or SLIP (5); and

those that are written to directly manipulate lists and list structures
of varying types, such a IPL-V (6), CORAL (7), L° (8), and LISP? 1.5

(9, 106, 11) or LISP 2 (12, 13). We will here consider only LIS2 1.5
for comparisons QI the various list processors, sce refercences 1% and
5. Tor & general introduction to list processing independent of
particular languages, see Foster (3). Also, the saction on 1ist and
string processing in Rosen (1) contains several papers of interest.
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In the remainder of this paper, "LISP 1.5" will be abbreviated to

"LISP".

LISP is a formal methematical language, desigred originally to repre-
sent the partial recursive functions defined on a class of symbolic
expressions known as S-expressions (11). Programs in LISP are written

o in the form of S-expressions.

, and data in LISP is al
r

s s S s
en applied to a large number of non-numeric areas (10).

The most elementary type of S-expression is the atomic symbol or

the atom. An atomic symbol is 'a string of one to thirty capital

alphabetic characters (A...Z) and/or numeric characters (0...89), the
first of which is alphabetic. Such symbols are atomic in that they are
viewed as distinct, separate entities in LISP. (An atomic symbol may
itself represent a complex structure; 1t is atomic because it 1is

viewed as a single elemen*t, and its structure is thus not part oI the
structure of containing elements.) An S-expression 1s built ou

o)
atomic symbols and the three delimiters "(",")", and "." as Iollows:

a. An atomic symbol is an S-expression;
b. If S5 and s, are S-expressions, then (81'52) is an S-expression.
Only expressions constructed from application of these two rules are

S-expressions. Some sample S-expressions are:

A

(A.B)

(A.(B.C))

((A.B).C)
((A.B).(C.D))
((X.Y) . (X.(Y.(Z.A))))

~
fu
[/}

Internally, S-expressions are represented as binary trees (i.e.
tree structures in which each node has two branches). 3Because o
there 1s a graphical notation (9,16) which indicates this ty:

<
structure and which often aids in understanding LISP structures. In
c

s

this notation, we represent each node in the binary tree stiru

with the symbol




wnich indicates the left and right branches from the ncde.

ly write Iin the symbol, so that (A.2) is

L4

& | 8
(Such notation should not be confused with the true situstion; an
atomlc symbol 1s represented internally as a pointer o *the definitio
of the symbol.) Figure II-1 gives more examples of the
structure. Note 1in the last two examples of Figure II-1 +that su
expressions may or may not be repeated in the structure without

effect upon the S-expression.

'.l
H
e
0n

ct

The dct notation as defined above is sufficient to represent al

structures in LISP and is the basic concept of the programming

language. Tor convenierice, however, LISP allows a second way To writ
S-expressions: that of list notation. A list is written in the form

<Sl’82’53”"’sn)
or in the form

(sjﬂszgs3u..‘ﬁsn) where @l represents one or more blanks
wnere s, 1s an S-expression. Such a list is interpreted as the
S-expression

(sl.(sz.(s3.(...(sn.NIL)...))))
where NIL is a special atomic symbol recognized as the terminater of
& list. The empty list () and NIL represent the same element. Thus
we have:

(A B) = (A.(B.NIL))

(A B C) = (A.¢B.(C.NILY))

(A) = (A.NIL)
A list mey have sublists:

(A (B C)) ¥ (A.((3.(C.NIL)).NIL))
(CA B) C) = ((A.(B.NIL)).NIL)

(CA) (B)) = ((A.NIL).((B.NIL).NIL))
(CA) B) £ ((A.NIL).(B.NIL))
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(A (3.2 =(A.({B.C).NIL))
(z.C)(D = (A.((B.C) LNILDD)

Zicte that any list structure or S-expression may be written in

a
otation. Not all S-expressions may be written in 1is
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wever. In particular, & list structure can D¢

c
+ notation only if each sublist, and the list ZItsell, terminates

Lis
with a NIL. Thus, (A.B) cannct be written in list notation. <Iigure
shows the graphics for scme list and mixed notation S-expressions.

stated earlier, LISP is a language in which functions of S-express-

s c

ions may be written; we now introduce some elementary Iunctilons of

ressions. Function names will be written with lower cease

rs; their arguments will be placed in square brackets scepareated
: z

lons. S-expregsions will be written with capital letters

usly defined.

(1

Trhe First elementary function is one which constructs S-expressions
and is hence named cons. It has two arguments from which it builds
an S-expression:

consiX;Y] = (X.Y)

cons[ (A.B);C] = ((A.B).C)
Note that the arguments and the value of cons are S-expressions; hence,
composition is possible:

consl{cons[A3;B];C] = ((A.B).C)

cons[ (A);cons[B;NIL]] ((A).(B.NIL))
((A).(B))

Two additicnal primitive functions, car and ccr, are cdefined I0

3

uq
[

v

procuce subexpressions of an S-expression; they each have a sin
T

®
<

fu
3

gunent, and each is undefined if the argument is atomic.
\

are cefined by:

carl (A.B)] A

cdr[ (A.B)]
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cone Ly using the lambda notation of Church (28). In thls notation,
an exoHression iike y + 5x 1s called & form To convert a Icrm IO
a function, one must specify the dummy arguments and the form. Tnis

—

amdcallxy3x,5. . 5% 1511

-

where the X. are argumeats and f is a form. Thus,

is the name of & function of two arguments whose value 1s Iound DYy
substituting the values of the arguments into the form y+Sx. Noze
that we may now add the values of the arguments to the above notaticn

to get & function value:

lambcdallx;yl;y+5x1[3;10] = 25

lambda[[xl;...;xpj;f]

is the name of a functi¢on, while
5 -7 . . . £ . .
‘ambddLLXl,...,Xn],IJ [yl,...,yn]

the value of the function for the argument values [yj;...;yﬁf.
-~ s

H3ob
B I )

herefore, the definition of absolute walue now Dbecomes
lambdal[x];[x<0»-x;T+x14

and this may be applied to arguments.

To use this notation with recursive function definitions reguires
further notation, since we*must De able within the o
indicate (recursively) that the whole definition is to be appiiecd.
To sclve this problem, the label notation is introduced:

label [ajel
states that the expression e has the name a. We may now wri
previous function definitions as follows (this is now LIS?-1likxe
notation):

label[ff jlambdallx];latomlxI+w;T+ff [carlx1111]
labellabsjlambdallx];[x<0+-x;T+x]]]
label[fact;lambda[[n];[n50+l;T+n*fact[n-£]]]]

labellgecd;lambdallx;yl;Ix>y+gecly;x]l;
rem{y;x1=0+%x;Tsgedlremly;x]3x11]]
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usly, one of the problems in writing LISP programs is proper

b

0]

leg

v
a ting! One may write function definitions using elthcr the

log
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he label format; the label format is needed only 1f the
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fu
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ion is to be given a name. This naming is necessary in re-
ve

o}

ct

b,
[
o}
0
’J

si function definitions since one must be able to reference

0

"

u
the definition from within the definition.

Now let us consider some functions which operate on S-expressions:
a. subst [x3y;z]
This function gives the result of substituting the S-expressic

fcr all occurrences of the atomic symbol y in the

-

S-expression z: the definition is

subst = lambdallx;yj;zl;latom[z]l+
Leqlzyyl»x;T+2]1;T+
cons{substlx;y;carlzll;
substlx;y;cdr(z]11]]

b. equal [x;y]
This 1is a predicate whose value is T 1f x and y are the

same S-expression; its definition:

equal = lambdallx;yl;[latom[x]~
[atomlyJ+eqlx;y];T~F];
equallcar[x]l;carlyllsequal
(edrix];cdrlyll;T™=>F1]

¢. null [x]
This 1s a precicate whose value is T if x is the S-expression

NIL; its definition:

null = lambdallxJ;latom[x]~
eqlx;NIL];T+F]]

é. maplist [x;f
This is a function with arguments x ancd f, where x is an
S-expression and f is a function from S-expressions to S-
expressibns; maplist applies the function { tTo each sud-
expression of the S-expression x, producing an S-express-
ion whose elerws.nts are the corresponding results; its

definition:
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maplist = lambdallx;fl;[nulllx]~
NIL;T+cons[f(x];maplistl{ecdrix];fJ]]]]

Now let us consider a more complicated function, one which computes
the partial derivative of an expression written in a Polish-prefix-
like notation. The S-expressions to be differentiated are written

according to the rules:

1. an atomic symbol is an allowed expression;

2. If €1s€55:+-58 are allowed expressions, then so are
(PLUS e, e, ... en)
(TIMES ey €y .o en)
Thus, the mathematical expression
X(X+A)(X+B)

would be written
(TIMES X (PLUS X A) (PLUS X B))

Our rules of differentiation are the standard prules for partial

differentiation:

dx  _

ax -4

ay .

3= 0 (y # x)

-—-—-—d(U+V) :g_"_l-t- 9.!.
dx dx dx

d(u®v) _ du dv

—ax - T Va&x T Y&

' The definition of the differentiation function is:

diff = lambdally;x];[atom[yl~+
[eqly;x]+ONE; T+ZERO];
eqlcar[y];PLUS]+cons[PLUS;
maplistledrlyl;lambdallz];
difflcarlzl;x]]]]seqlcarlyl;
TIMES]J+cons[PLUS;maplist
[cdrlyl;lambdallz];cons
[TIMES;maplistledr(y];iambda
[wljmeqlz;wircarlw]l;T+

diff fecar [ w 13x11111111]
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If this function 1s applied to
(TIMES X (PLUS X A) (PLUS X B))
the resulting S-expression is
(PLUS (TIMES (PLUS X A) (PLUS X B))
(TIMZS X (PLUS X B)) (TIMES
X (PLUS X A))) |

It 1s possible to write a universal LISP function evalquozte [fn;x]
which for any two S-expressions fn and x, where fn must have a

value wnich is a function name, produces the result of applying the
function fn to the arguments %x. That is, given a function cefinition
fn and a set of arguments x, evalquote is able to produce the result
of fnlxJ; nence evalquote is a universal LISP function. Note, noweve
that we have not been writing functions as S-expressions so far; in
fact, we have used what Mc Carthy calls M-expressions to write
functions. M-expressions use small alphabetic characters, sguare
brackets, and semicolons. Therefore, to use our universal Iunction
evalquote, it is necesséry to rewrite our M-expressions as S-expressi

The following transformation rules effect this conversion:

1. If e is an S-expression, it is replaced by (QUOTZ g)
2. Lower case variable and function names are written in upper
case; thus, car becomes CAR
3. f[el;...;en] becomes (f' ei .o eﬁ), where prime denotes
transformation; thus, conslcar(x];cdr[x]] becomes
(CONS (CAR X) (CDR X))
4. [pl+el;...;pn*en] becomes (COND (pi ei) . (pé eg))
5. lambda[[xl;...;xn];€] becomes (LAMBDA (xi ces xg) g')
8. labella;e] becomes (LABEL a' ¢')
Applying these rules, T becomes (QUOTE T), fflcar[x]] becomes
(FF (CAR X)), and [atom[x]+x;T+fr[car[x]]] becomes (COND ((ATCM X) X)
((QUOTE T) (FF (CAR X)))). Further, our function ff now becomes
(LABEL FF (LAMBDA (X) (COND ((ATOM X) X) ((QUOTE T) (FF (CAR X)),
and our function equal becomes (LABEL EQUAL (LAMBDA (X Y)
(COND ((ATOX X) “(COND ((ATOM Y) (2Q X Y)) ((QUOTE T) (QUOTEZ ©))))
((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y))) (QUOTE T) (QUCTE r)»
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Thus, we have that the functions which we have been writing in
M-expressions can be written as S-expressions. Note that t
means that LISP is a language in which data and program are written
in the same languages: S-expressions. Further, the LISP interpreter
itself is nothing more than the function evalquote, as far as the
user is concerned. Thus, knowing this function definition tells the
user all he need know about the LISP language. Due to its complex~-
ity, the definition of evalquote is not given here. (See McCarthy,
et. al., (9).) :

The LISP system has a rather large set of builtin (predefined)

functions and predicates for the user. Both integer and floating

-

[

point arithmetic and constants are available in the system.
pure LISP, a function definition, via label or lambda, is presented,
together with arguments, and the function is evaluated Zor those
arguments according.to evalquote. The function definitions are then
lost; that is, function;definition via label &nd lambca is one-shot
affair. Since this is obviously an inconvenient mode of operation,
the programmer may use a define function to permanently cdefine (for
a run) a set of functions, thereafter calling these functions Dby
name as he does for cons, car, cdr, et. al.. Also, a program node
is available through which a limited amount of control tr
among LISP statements may be excercised during function evaluation.
This is similar to procedures in ALGOL and PL/I. Thus, for examp.e,
a function LENGTH, which counts the number of elements in the Top
level of a list, may be written as:

DEFINE (((LENGTH (LAMBDA (X)

(PROG (U V)

(SETQ V Q)
(SETQ U X)
A (COND ((NULL U) (RETURN V)))
(SETQ U (CDR U))
(SETQ V (ADD1 V))
(GO AX)))))

In words, this may be read as:

length is function of one arg x
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it is a program with two
program variables u and v
store 0 in v
store X 1in u
A if u contains NIL, program is finished,
value is content of v
store cdr u into u
store v+l in v
loop back to A and continue

The programmer may mix defines and progs to his heart's content to
produce LISP programs! In the absence of the prog feature, the
above function would have to be recursively defined:

DEFINE (((LENGTH (LAMBDA (M)
(COND ((NULL M) 0) (T (ADD1
(LENGTH (CDR M)))))))))

Once defined, the length function may be applied as if it were a

builtin funection: !

(LENGTH (A B C)) = 3
(LENGTH ((A B) (C D)) = 2

The representation of an atom in LISP is actually a list structure.
The pointer to an atom points to this structure. An atom has an
association list on which is kept its current definition and other
information (including the fact that it is an atom and the BCD

print name of the atom). There are LISP functions which allow

the user to manipulate the association list of an atom, so controcl
may be excercised over the current contents of this association list

for any atom.

Storage in LISP is quite dynamic. LISP places a large area oI memory
into free storage, and this area is formed into a free storage list.
When a cons 1s executed, an element is taken from the free storage
list and used ta create the new element. If there is no element
remaining on the free storage list, the the LISP interpreter sweeps
through its list storage (plus some other areas), finds those cells
which are currently not being used, and returns these cells to the

free storage list; this operation is known as garbage collection. It
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is done automatically, so the user need never be aware of it or
concerned with it. Here again the use of list structures provides
a facility vital to the interpreter.
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n LISP, it may be pointed out that CAR and

) RLTURNS (POINTER)
IM BASZD (P),
2 LZFT, 2 RIGHT) POINTER;
. RETURN (LETT);

COR: ZNTRY (?) RETURNS(POINTER)
RZTURN (RIGHET): END CAR;j;

ne LISP CONS function may be written as

et

and
CONS: PROCZDURE (2,Q) RETURNS(POINTER)
DECLARE 1 ILEM BASED (PT),
(2 L, 2 R, P, Q) POINTER;
ALLOCATE ZLZM; L = P; R s Q;
RETURN (PT); END;

Actually, to be'precise, a LISP node should be defined as

DZCLARE 1 ELZM BASEZD (P),
2 LZIT POINTER,
2 RIGET POINTER,
2 IND BIT (&),
wnere IND is ‘an indicator which identifies the type of infcrmation
pointed to by the LEFT and RIGHT pointers in the node.

0£U1‘(34u‘.ﬁeyn49 114)'.&9bg4°kyh an Pl./l?
AEkﬂuunuua 4&2;*. ello 'KUhDQgMD ,Qﬁfyhgéuh4gcJ
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INTRODUCTION

First I shall list items not discussed in the paper:

I have not gone into the simulation capabilities of the
language at all.

Noise words may be left out, or certain alternatives used.
These possibilities have not been discussed, except as
they appear in the examples.

Many functional words have alternates (symbols or words).
Again these have not been discussed except for examples.
Many other capabilities of the language have not been
discussed due to a lack of "time and space". Discussion

usually includes the more simple aspects of the language.

Complaints include:
The language is very incomplete on the 360. Copy #*SIM2NEWS
for details.
It is fairly difficult to get a non-trivial (and in many
cases a trivial) program to run.
Simscript is very expensive. Example V cost over $10.00
to compile and run!!!
Error messages are very poor. In the example on the
following page, the error is in line 27. the "ONE" should

be a "1".



27

28
29
30
31

32
33
34
35

36
37

LXK &
L E-X-5-J

% &3
L. &-X-X-4
* &% % &

*+ e

% 0o
& %
L R-X-8
% a e

»wes
aaal
rEx-x}
X% X

st 3
L X 2
[ X X X

PRINT ONE LINE AS FOLLOWS

READ C IN SCIENTIFIC NOTATION,
READ C AS 7/,
WRITE C AS B 12,

E(9,3)

I.E« AS E(9,3)

EC(9,3)

PRINT 1| LINE AS FOLLOWS

TYPE 0 TO STOP.,

OR 1 TO CONTINUE

READ E

IF E EQUALS 0, GO TO STOP

OTHERWISE, GO TO START

*STOP* STOP

END
ERFOR OF TYPE 1 INVOLVING “PRINT® AT STATEMENT l&.
ERROR OF TYPE 1 INVOLVING ‘ONE’ AT STATEMENT 12.
ERROR GF TYPE 1 INVOLVING °‘LINE’ AT STATEMENT 12-.
ERROR OF TYPE 1 INVOLVING °AS” AT STATEMENT 12.
ERROR OF TYPE 1 INVOLVING ‘FOLLOWS“® AT STATEMENT 12.
ERROR OF TYPE 1 INVOLVING “IN” AT STATEMENT 13.
ERROR OF TYPE 1 INVOLVING °SCIENTIFIC® AT STATEMENT 13,
ERROR OF TYPE 1 INVOLVING °NOTATION’ AT STATEMENT 13.
ERROR OF TYPE 1 INVOLVING “,° AT STATEMENT 13.
ERROR OF TYPE 1 INVOLVING ‘1.E’ AT STATEMENT 13.
ERKOR OF TYPE 1 INVOLVING “AS* AT STATEMENT 13,
ERROR OF TYPE 1 INVOLVING ‘E” AT STATEMENT 13-
ERROR OF TYPE 1 INVOLVING °¢° AT STATEMENT 13.
ERROR OF TYPE 1 INVOLVING “9° AT STATEMENT 13.
ERROR OF TYPE 1 INVOLVING “,° AT STATEMENT 13-
ERROR OF TYPE 1 INVOLVING “3° AT STATEMENT 13-,

OF TYPE 1 INVOLVING °)°* AT STATEMENT 13.

ERROR

I.E.
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SECTION I

In this section we shall discuss the aspects of SIMSCRIPT II
which are prerequisite to the utilization of its set abilities.

Inoput/Output

The program in EXAMPLE.I gives many examples of different
input and output formatting, and.the two pages which follow it
consist of two runs of the program with sample data.

Notice that spacing between data items is not critical

~with the simple read statement. One blank is all that is
necessary, but more may be used, if desired. The onrnly time
that I ran into trouble with the simple statements was i=n
the run at the bottom of the third page of this example, where
I read ASDFG into A. I did not, however, have time to trace
this down before the writting of this paper.

In the first run, 12 was read into the left two digits
of a five digit integer using a B 8, I 5 format. The result
was the storing of 12000. It should also be pointed out that
unless a new record is specified ("/"), a Bin format item in
a read statement will cause the next piece of:data to be re=zd
peginning at column n of the same record from which the last
read statement read.

I encountered much trouble =ith exponential (scientific)
notation on input (possibly on output, also). Again I lacked

time to trace this down to determine if it was my problem, or

the compiler's.
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EXAMPLE T

PREAMPLE

DFEFINE A AS AN ALPHA VARIABLE
NORMALLY», MODE IS INTEGER
DEFINE B AND E AS VARIABLES

DEFINE C AND F AS KREAL VARIABLES
DEFINE D AS A 1-DIMENSIONAL ARRAY
END
PRINT 1 LINE THUS
B IS 12 AND THE SUBSCRIPT SIZE OF ARRAY D
READ B '
RESERVE D(®*) AS B
*START* PRINT 1 LINE WITK B AS FOLLOWS
A IS A4, C IS D(7.,2)» AND D 1S OF LENGTH #* AND A3
READ A,C AND D
SKIP 3 OUTPUT LINES
PRINT 1 LINE WITH A,B,C AS FOLLOWS
#uue 1S ALPHA, B = %%, AND C = ®e# a0
SKIP 2 OUTPUT LINES
FOR I = 1 TO B, PRINT 1 LINE WITH I AND D(I)> THUS
THE #% UALUE OF D IS #&% .,
SKIP 4 OUTPUT LINES
PRINT 4 LINES WITH B AS FOLLCWS
A 1S 5 LETTERS BEGINNING IS CLOUMN 1
E IS IS BEGINNING IN CLOUMN 8
C IS D(7,2) BEGINNING IN COLUMN 16

D IS A 1 BY #% ARRAY BEGINNING IN COLUMN 27 AS I3 AND

*EVERY 4TH COLUNMN

> 27
* 26

v

28
29
/s /
30
31
32
33
34
35

.

VVYVVVVY sy
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37
38
39
40
41
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42

READ ALE AND C AS />, B 1, A 5, B 8, 1 5, B 16, D(7,2),

FOR I = 1 TO B» READ D(I) AS S 1, I 3

WRITE A,E AND C AS *, B 25, A 5, B 35, I S» B 45, D(7,2)

FOR I = 1 TO B, WRITE DCI> AS I 3, S 3

SKIP-3 OUTPUT LINES

PRINT 1 LINE AS FOLLOWS

READ F IN SCIENTIFIC NOTATION, I«E. AS E(12,3)
READ F AS 7/, E(12,3)

WRITE F AS-B 12, E(12,3)

PRINT 1 LINE AS FOLLOWS
TYPE 0 TO STOP, OR 1 TO CONTINUE
READ E
IF E EQUALS 0, GO TO STOP
ELSE GO TO START
*STOP * STOP

END



B IS I2 AND THE SUBSCRIPT SIZE OF ARRAY D
A IS A4, C IS D(7,2)» AND D IS OF LENGTH 4 AND A3

DFGH 32+1 45 67 78 345

DFGH IS ALPHA, B = 4, AND C = 3210

THE 1 VALUE OF D IS 45
THE 2 VALUE OF D IS 67 »

THE 3 VALUE OF D IS 78 =
THE 4 VALUE OF D IS 345 »

A IS S LETTERS BEGINNING IS CLOUMN 1
E IS 15 BEGINNING IN CLOUMN 8

C IS D(7,2) BEGINNING IN COLUMN 16
D IS A1l BY 4

. ARRAY BEGINNING IN COLUMN 27 AS I3 AND EVERY 4TH COLUNN
ABCDE 12 348 - 456 234 12 2

ABCD 12000 3480

456 234 12 2

READ C IN SCIENTIFIC NOTATION, I.E. AS E(12,3)
1.000E 00

1.000E 00 TYPE 0 TO STOP» OR 1 TO CONTINUE

I

.E.

6



A IS A4, C 1S D(7,2), AND D IS OF LENGTH 4 AND A3
KKL S56.1 6 45 234 1

 KKL 1S ALPHA, B = 4» AND C = 56410

THEE 1 VALUE OF D IS 6 -
THE 2 VALUE OF D IS .45, -,
THE 3 VALUE OF D IS 234 -
THE 4 VALUE OF D IS 1 o

A IS S5 LETTERS BEGINNING IS CLOUMN 1

E IS IS BEGINNING IN CLOUNMN 8
C IS D(7,2> BEGINNING IN COLUNMN 16

D IS A1 BY 4
ARRAY BEGINNING IN COLUMN 27 AS I3 AND EVERY 4TH COLUMN

ABCDEFG1234567845.333333331234567890123456789
ABCD 12345 - 4533

123 567 901 345

READ C IN SCIENTIFIC NOTATION, I+Ee AS EC12.,3)

1-456E 05
AT LOCATION 50094A
#aceasteat ERROR NUMBER 124 ##tconceed

REAL NUMBER TOO LARGE FOR INPUT

ERROR RETURN

I.E.

e e St A e o s - oo — S e A

B IS I2 AND THE SUBSCRIPT SIZE OF ARRAY D

A IS A4, C IS D(7,2)» AND D 1S OF LENGTH 4 AND A3

ASDFG 2.4 2 3 4 5
AT LOCATION 504C3C
CALLED FROM 500338

L2 2 X2 2 X2 X X7 ERROR NUMBER 128 A A A 22 2 22X X J

INVALED CHARACTER IN *"D” OR "E" FORMAT DURING INPUT
#ERROR RETURN. '
p 4 N
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The Preamble
The Preamble of a SIMSCRIPT II program written at this level

is used to declare mode (the normal mode is real if not explicitly
changed), to declare that a particular name is associated with

an array, and to declare the dimension of each array. The
dimension of each array must be declared in the preamble, but

the subscript size is declared in an executable RESERVE statement
when storage is actually allocated. The preamble must end with
an END statement. The sample programs is this paper contain

several samples of preambles.

General Information and Examples

Table I describes the fact that arrays are stored with a
set of pointers for each dimension. This design coupled with
the fact that a RELEASE statement must be executed to return
arrays to free storage, while resetting an array pointer without
a release statement will not return the array to free storage,
allows dynamic construction of a "ragged table". The first
program of EXAMPLE II will construct such a table in the form
of a tree, while the second program will search the tree for
a given entry.

Tables II and III list functions available to the SIMSCRIPT Il
i1ser. PFunctions of Table II use a calling sequence such as:

LET SQ.N=SQRT.F(N)

or ADD SQRT.F(N® + M%) TO SUM

while functions of Table III are called with a COMPUTE statement.

For example:
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FOR I =1 TO 100 WITH X(I) LESS THAN N

COMPUTE NX = THE NUMBER, SUMX AS THE SUM,

MEANX AS THE MEAN OF X(I)
After execution of these statements, NX will contain the number
of X(I) which were less than N, SUMX will be the sum ot these
X(I), and MEANX will be thewr average.

EXAMPLE III is fairly straight forward. Comments are
enclosed in double quote marks ("..."), while statement labels
are between single quotes ('...'). Labels are not, however,
enclosed when referred to within a statement.

In EXAMPLE III, I suspect that information should be read
into the 4-dimensional array called CAPACITY in the statement
noted "READ INITIAL DATA.' This information would consist of
the initial number of seats available for each route, with
respect to the class of travel and the type of carrier (e.g.

train, airplane, bus).
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Table Il

. COLUMN POINTER . EILFMENTS
¢ ‘ {305 17]
[x(i 1

X(1.1.%) A B

X(1,2.%)

X(1,3,%)

X(2.1.%)

X(2.2.%)

ROW POINTER
4

X(i*,

X(2,3.*)
{

. X@.*.*) X(3, i,') [T
BASE POINTER _ |

Y

X(®, 0 *) g | X(3,%,%)

X(3.2.%) h]_ X(3

X(3,3.%) X33 D

X(4,%.*)
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r

X(5.%2)

X(4, 1,*%)

s Nl ettt}
S
P
-
—
(3
=

X(4.2,%)
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e B BS
2z
.J.

»
-
=

X(4, 3.*) o

\

VoA g

d ¢ | > ¢
o s o«
. Iy -.‘
)

x(sl 10.) bl

X(5. 2,*) S

’ X(S, 3. 1)
3,*
 X(5 3,*) ‘ —-{ )




L *PRINT®

EXAYPLE II2

PREAMBLE NORMALLY, MODE IS INTEGER
DEFINE LEVEL AND TREE AS 1-DIMENSIONAL ARRAYS

END

READ N RESERVE LEVEL(*) AS N
FOR I=1 YO N .

0o

‘ RESERVE TREE(*) AS 2**(I=1) READ TREE
LET LEVEL(I)-TREE(*) LET TREE(*)=0

i

READ CODE
FOR I=1 TQ N,

00
. LET TREE(*)=LEVEL(I)
ggR J=1 T0 2**(I-1),

IF TREE(J) EQUALS CODE, GO TO PRINT
OTHERWISE
LoopP
Loor
PRINT 1 LINE WITH CODE AS FOLLOWS
UNABLE TO FIND AN AhCESTOR WITH THE CODE "=

ST0P
PRINT 1 LINE WITH CODE, J AND I AS FOLLORS;

ANCESTOR ** FOUND IN POSITION * OF LEVEL * .

STOP
END

I.E.11



Table ITS

SIMSCRIPT II LIBRARY FUNCTIONS
Name Argumente Operation Punction Mode Restrictions
ABS.F' - |el -_: :: :-}g wode of argument nooe
max.ft 0100 000000, value of largest INTEGER 1f all argumente INTEGER | mome
argument REAL {f one argument REAL
N FY ® 002000000, | value of smallest INTEGER 1if a1l arguments INTEGER | none
’ . argument REAL 1f one ergumeat REAL
WO.F* | e, o,-TRUNC.F(e, /a)%, | INTEGER 1f a1l argusents INTEGER | o, ¢ 0
REAL 1f eme argumeat REAL
*
OIV.F o 00 TRUNC.F(.l/oz) INTEGER :l ;-: ., INTEGER;
e
INT.F' Y valus of e rounded INTEGER wone
¢ to an integer
REAL.F' . value of e expressed| REAL acoe
as a decimal oumber ‘
FRAC.F e fractional part ef REAL o must be REAL
. o3 o=TRUNC.F(e)
TRUNC, F . integer part of INTEGER e must be REAL
ep o=FRAC.F(e)
SIGN.F Y 11f e > 0 INTEGER none
Oife=0
-l 4f e < 0
SFIELO.F | mome see Sec. 3-13 INTEGER free=fora 1ispet -
. ouly
EFIELO.F | nome ses Sec, 3-13 INTEGER free-forn inpet
. ouly
DIM.F v aumber of elemente INTEGER v a pointer
f{a array pointed teo
SQRT.F . 3 REAL e >0 and REAL
EXP.F . axp(e) = EXP.Coae REAL e must be REAL
LOG.E.F - log (e) REAL e > 0 and REAL
L06.10,F ' Loslo(o) REAL e > 0 and REAL
SINF ° ltn(o} REAL o REAL and ex-
pressed in radiens
cos.F . coe(e) REAL e REAL and ex=
. precsed ia radians
TANF e tan(e) REAL @ REAL and ex-
preseed ia radiame
ARCSIN.F Y arcein(e) REAL “l<ex ] and
REAL
ARCCOS , F . arccos(s) REAL “l<eg] and
REAL
ARCTANF o8, .tc:n(oxloz) REAL - (.X'.Z) ¥ €0,0)
and REAL
'a-&;—.k-.u-mumu-nmmm-.m.



I.E.13

Table ITT*

STATISTICAL NAMES USED IN THE COMPUTE STATEMENT

Alternative or

Statistic Abbreviation Computation

NUMBER NUM Number of ftems selected f{n the
iteration

SUM Sum of the selected values of the
expression ’

MEAN AVERAGE, AVG SUM/NUMBER

SUM.OF . SQUARES $SQ Sum of squares of the gselected values
of the expression

MEAN. SQUARE MSQ SUM.OF.SQUARES/NUMBER

VARIANCE VAR MEAN.SQUARE - MEAN#*2

STD,DEV STD SQRT.F(VARIANCE)

MAXIMUM MAX Maximum value of the selected values
of the expression

MINIMUM MIN Minimum value of the selected values -
of the expression

MAXIMUM(e) MAX (e) Value of computed € using the coatrol
variable values that produce the
expression with the MAXIMUM value

MINIMUM(e). MIN(e) Same as MAX(e) but for minimum
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EXATPLE III?

PREAMBLE

NORMALLY, MODE IS INTEGER

DEFINE COSTS AS A 2-DIMENSIONAL ARRAY

OLFINE MODE,FACTORS AND CLASS.FACTORS AS 1-DIMENSIONAL ARRAYS
DEFINE CAPACITY AS A 4-DIMENSIONAL ARRAY

DEFINE FROM, TO,MODE AND CLASS AS '*'GLOBAL'* VARIABLES

END

MAIN
READ NFROM, NTO, NMODE,NCLASS  ''READ MAXIMUM DIMENSIONS
RESERVE COSTS(*,*) AS NFROM BY NTO, MODE.FACTORS(*) AS NMODE,
CLASS.FACTORS(*) AS NCLASS,CAPACITY(*,*,*,*) AS NFROM
BY NTO BY NCLASS BY NMODE
READ COSTS, CLASS.FACTORS,MODE.FACTORS ''READ INITIAL DATA
'REQUEST'  READ FROM,TO, MODE CLASS '
*INQUIRE'  CALL RESERVATION YIELDING ANSWER
IF ANSWER EQUALS 1
NOW FIND.COST YIELDING PRICE
PRINT 1_LINE WITH MODE,CLASS,FROM,TO,PRICE THUS
MODE * CLASS * RESERVATION FROM ** TQ ** IS AVAILABLE FOR *** DOLLARS
GO TO ''NEXT CUSTOMER'' REQUEST
OTHERWISE ''FIND OTHER SPACE
SUBTRACT 1 FROM CLASS
IF CLASS IS GREATER THAN 0 GO TO INQUIRE
OTHERWISE  LET CLASS=NCLASS
SUBTRACT 1 FROM MODE .
IF MODE IS GREATER THAN 0 GO TO INQUIRE
OTHERWISE PRINT 1 LINE WITH FROM AND TO LIKE-THIS
THERE IS NO TRANSPORTATION AVAILABLE FROM ** TO ** TODAY
GO TO REQUEST
END ''OF MAIN ROUTINE''

ROUTINE FOR RESERVATION YIELDING ANSWER

IF CAPACITY(FROM,TO,CLASS,MODE) IS GREATER THAN O
SUBTRACT 1 FROM CAPACITY(FROM,TO,CLASS,MODE)
LET ANSWER=1  RETURN

ELSE  LET ANSWER=0  RETURN

END

ROUTINE TO FIND,COST YIELDING SUM
LET SUM=COSTS(FROM,T0)*CLASS. FACTORS(CLASS)*MODE FACTORS(MOOE)

BETURN  END
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SECTION II

In this section we will be discussing Entities, Attributes,
and Sets, and their associated declarations and operations.

We begin with these definitions:

"An ENTITY is a program element, much like a variable, that
exixts in a modeled system. It is like a subscrivted
variable in that it has values, called ATTRI3UTES, associated
with it that, when assigned specific values, define a 6
particular configuration or state of the entity."

"Sets...are collections of entities organized by systems
of pointers. Set owners point to the first and last
members of sets; set members point to one another. Sets
are like arrays in that they are composed of elements

that can be identified and manipulated, but are unlike
arrays in their method of organization and their dynamic 7
and changeable, rather than static and fixed, nature."

We begin the study of these "objects" with a discussion

of the Preamble in order to understand how they:are declared.

The Preamble

Entity classes are given attribute catagories in the Preamble, -
Any attribute that any member of an entity class may have nust

be declared in the Preamble. if a member is later to be given

it. TFor example, suppose an entity class--MAN has the following
attributes: Age, Dependents, and a Social Security Number.
This could be declared as follows:

EVERY MAN HAS AN AGE, SOME DEPENDENTS AND A
SOCIAL.SECURITY.NUMBER
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If another entity has the attribute AGE, it must occur
in the same relative position as it did in MAN. (i,e.

EVERY DOG HAS AN AGE AND A BREED
is o.k., but

EVERY DOG HAS A BREED AND AN AGE
is not.) This is because AGE(entity) is translated into
"the value found in the first word of the record indexed by the
value entity" (where entity may be MAN or DOG in the above
example) ..

There are two types of entities, temporary entities, and
permanent entities, which will be discussed later. Every
entity must be declared to be one or the other of these in
the Preamble. The statements: TEMPORARY ENTITIES and
PERMANENT ENTITIES precede the lists of each type (i.e. the
EVERY statements).

It is important to remember that entities are not created
in the Preamble (i.e. no storage space is allocated to an
entity because it appears in the Preamble), but a class of
entities must appear in the Preamble before it can be created
in the program. Also remember that if only one member of an
entity class has a particular attribute, that attribute still
must be declared for that entity class (i.e. it is possible for
any member of that class to have that attribute).

Entities may "own" sets of entities, and they may be
"owned" by other entities, as in:

EVERY COMNUNITY OWNS A MASONS
EVERY MAN MAY BELONG TO THE MASONS
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As with attributes, the possibility of set ownersnip or

membership must be declared in the Preamble.

Note that the words HAVE and HAS denote attributes assigned
to entities; the words OWN and OWNS denote set ownership by an

entity; and the words BELONG and BELONGS denote set membership

of entities to the sets following these words.

Temporary Entities

If the temporary entity MAN is declared in the Preamble

as follows:
EVERY MAN HAS AN AGE, OWNS A FAMILY, MAY BELONG TO THE

MASONS AND HAS A BIRTH.DATE

the statement:
CREAT A. MAN CALLED JOHN

results in JOHN pointing to a record in storage which looks

like:

AGE
F.FAMTLY
L.FAVILY
N.FANILY
P.MASONS
S .MASONS
M. MASONS

BIRTH.DAT")

In this example, AGE is the value of the attribute AGE;
F.PANILY is a pointer to the first element in the set
FAMILY(JOHN); L.FAMILY is a pointer to the last element in the
set FAMILY(JOHN); P.MASONSis a pointer to the previous element
in the set of masons in his community (MASONS(ANN.ARBOR))
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(this pointer is zero if JOHN is not in the set, or if he is
the first element of the set); S.MASONS is a pointer to the
next member of the set MASONS(ANN.ARBOR) (this pointer is zero
if JOHN is not a member of the set, of if he is the last member
of the set); M.MASONS is equal to one (1) if JOHN is a member
of the masons, and is zero otherwise; N.FANMILY is the nunber

of elements in the set.  FAMILY(JOHN); and BIRTH.DATE contains

the value of the attribute BIRTH.DATE.
A temporary entity is created whenever it is needed and
destroyed individually with a destroy statement.

e.g. DESTROY THE MAN CALLED JOHN

Permanent Entities

If MAN is declared a permanent entity in the following

statement:

EVERY MAN HAS AN AGE,. ONNS A FAMILY AND MAY BELONG TO THE

MASONS

fhen every MAN is created at the same time (as contrasted with

temporary entities, which are created as needed, and their
total number is not fixed, as it is with permanent entities).
The following two sets of statements each create the entities
MAN:

READ N.MAN

CREATE EVERY MAN
or

LET N.MAN = 5

CREATE EVERY MAN
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The first two statements create the number of men read into
the variable N.MAN, a system variable setup automatically when
MAN was declared a permanent entity. In the second set of two
statements this system variable is set to five, and thus five
men are created.

When the CREATE statement is executed, storage is setup
in blocks, where each block contains the values of one
particular attribute for all of the entities of the type MAN.
(This is a completely different scheme than with temporary
entities, which have their own record containing all of the
attribute and set data for that particular entity).

A permanent entity class looks like this in storage:

laselfr. roerey o pavToy] I, pavany] pazasons) bLriasoss| [ masons
3 T T T T 7 ”
MAN (L)
MAN(2)
AN (N.MAN) J

To destroy a permanent entity, all entities of that tyve

must be destroyed at the same time. This is done by releasing

all of the entity class"s attributes. For example:

RELEASE AGE,F.FAMILY,L.FAMILY,N.FAMILY,P.MASONS,S.MASONS,i.MASONS
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Examples of Simple Set Filing Routines

The following are examples of filing and removal routines.

Their individual functions are obvious.

FILE ROVER FIRST IN KENNEL(1)

FILE ROVER LAST IN KENNEL(1)

FILE ROVER BEFORE SAM IN KENNEL(2)
FILE ROVER AFTER SANM IN KENNEL(2)
REMOVE FIRST DOG FROM KENNEL(1)
REMOVE LAST DOG FROM KENNEL(1)
REMOVE ROVER FROM KENNEL(2)

The default for FILE is LAST, so
FILE ROVER LAST IN KENNEL(1)

and

FILE ROVER IN KENNEL(1)

are equivalent.

The final two examples are easily understood and need

no further explanation.
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EXAMPLE IV

d=l14=1 An Inventory Control Program

 PREAMSLE NORMALLY MODE IS INTEGER
PERMANENT ENTITIES

EVERY ITEM-HAS A RP *'REOROZR PCINT'',
AN SCL *'STGCK CONTROL LEVEL'®,

A STOCK **AMOUNT ON HAND'',
- A DUE.IN **AMOUNT ORDERED, "NOT RECEIVED"

A DUE.OUT ' *AMOUNT OF BACK ORDERS'*
END '

MAIN READ N.ITEM CREATE EACH ITEM
FOR EACH ITEM, READ RP(ITEM),SCL(ITEM),STOCK(ITEM),DUE.IN(ITEM),
DUE.OUT(ITEM)
*READ' IF DATA IS ENDED, GO TO FINISH ELSE
READ TRANSACTION, ITEM, QUANTITY
IF TRANSACTION= 1 *'PROCESS AN ORDER

IF STOCK GE QUANTITY, SUBTRACT QUANTITY FROM STGCK
GO TO REORDER.CHECK
OTHERWISE ** INSUFFICIENT STOCK'' ADD QUANTITY-STOCK TO DUE.OUT
_ LET STOCK=0
*REORDER. CHECK®
" IF STOCK + DUE.IN- DUE.OUT LE RP,
LET ORDER= SCL+DUE.OUT-DUE: IN=STOCK
PRINT 1 LINE WITH ORDER,ITEM THUS
ORDER *** UNITS OF STOCK NO, www
ADD ORDER TO DUE.IN
REGARDLESS GO READ
OTHERWISE ' 'PROCESS A RECEIPT®®
SUBTRACT QUANTITY FROM DUE.IN
IF DUE.OUT > QUANTITY, SUBTRACT QUANTITY.FROM DUE.OUT
G0 TO READ
ELSE ADD QUANTITY-DUE.OUT TO STOCK
LET DUE.OUT=0 GO TO READ
*FINISH®
LIST ATTRIBUTES OF EACH Ty
STOP
END
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POP-2 Paul Brindle

A Data Structures Language

I. History and Aims of the language
A. Largely patterned after ALGOL,
also has elements of LISP,CPL,CUBOL,PL/I,IPL-V,J0SS,TRAC,FORMULA ALGOL
B. Block structured and algorithmic

C. Immediate execution unless in function defimition--interactive

D. Numverical facilities ignored in favor of structure manipulation

II. Basic concepts and facilities.
A. Operates on items (one-word entities)

1. Simple items--integers and reals
represented by themselves

2. Compound items--pointers to data structures and functions

3. No types at declaration--manipulate items at will
types checked at operation execution.

Ex. FUNCTION A ...
END;
VARS B;
A —>B; B(17)—> C;
4 = B; B+8—>];

B. Standard data structures

l. Lists

HD, TL 4 \ \ ¢ T2

2. Pairs \

FRONT , BACK

3. Strips (vectors) and Character strips

s TT ] 1 1 1 1 ] ]

\’*\Jom ;

J—{ 2]




I.F.2

4. Words

C C. Structures have 3 associated functions:
1. Constructor
2. Destructor
3. Doublet--accessor/updater fns for items in structure

Ex. 7 2>A;
"RALPH" -5 B;

[#A,B,L1STL%] —> ListB;

N

Lbse > l\ \]Cf I (LisTQ
“PALH : *~~—4 ! "ﬁ\[

CONS(CONSPAIR('ABQ',14),LISTB) <> LISTB;

LsTe > 7 \¢|
T / \ \‘
Q.p \ A CRALPYK" e T

\ 14
] N
D. Use of stack A , l 6\41
1. Temporary store
Ex. switch elements A,B 3A—B;

2. Parameter passage
Ex. F is function of one variable
to operate on a number mod B:

A // B; .ERASE; .F;

III. Definition capabilities

A. Functions--implicit assignments in FUNCTION type declaration
explicit assignments in LAMBDA type declaration

Ex. FUNCTION F X Y; blah blah;
END;

is same as

VARS F;
(LAMBDA X Y: blah blah; END) ~5 F;
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B. Operations
Ex. VARS OPERATION 7 ==;

FUNCTION == x y ; ... END;
IF J==P THEN

C. Partial application
Ex. Given SORT{N,TEST,DOUBLET)

§ORT (4SUBSCR%) — STRIPSORT;
SORT(SALPHATEST, SUBSCR:% )~ ALPHASORT ;

ALPHASORT(DATALENGTH(S) ) —>5;
D. Creation of new data structures

1. RECORDFNS --create new types of beads with custom fields
get necessary functions to easily link the beads
for yourself

Ex. RECORDFNS("PAIR", L0 07 ) ~>BACK -> FRONT —>DESTPAIR —>C_NSPAIR;

RECORDFNS("PERSON", (0 00 1 77 )
- AGE - SEX — SPOUSE —>SURNAME. > FORENAME
—> DESTPERSON — C.INSPERSON;

CUNSPERSON( " JOHN" , "SMITH" ,0,0,22) — JOHN;

FUNCTION MARRIAGE BOY GIRL;

IF SEX(BOY) = SEX(GIRL) THEN
PRINT(*FROWNED UPON');
ELSE
SURNAME (BOY ) =2 SURNAME (GIRL);

EBMMENT ADMITTEDLY SEXIST;
GIRL->SPOUSE (BOY);
BOY —>SPOUSE (GIRL);
CLOSE;
END;

2. STRIPFNS
Ex. STRIPFNS("CHARREXSTR" , 8) -2 INITC —»SUBSCRC
3. NEWANYARRAY

Ex.  NEWANYARRAY( (%1,N,N2,N5%J ,(LAMBDA X Y; X+Y; END),
INIT,SUBSCR) —> ARRAY;

NEWANYARRAY (%INIT, SUBSCR%)—> NEWARRAY ;

IV, Summary--POP-2 presents the user with a very pleasing simplicity of
manipulation and ability to define natural structures, making
programming easy and transparent.

V. References--POP-2 Reference Manual in Mitchie (ed.), Machine
Intelligence, Vol. 2
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DYNAMIC STORAGE MANAGEMENT William E. Riddle
5-24-72

I. Introduction

A. Dynamic storage management is effected by a set of routines (DSM routines):

which are a part of either the system supervisor or the
programming language support package,

and which provide an ability to acquire and release storage
during program execution.

B. The general benefit which accrues is an ability to delay the
binding of a storage segment's size and/or location.

For the system supervisor this facilitates increasing
overall system performance by allowing:

reuse of a storage segment for different jobs
dynamic adjustment to system load

For the higher-level language programmer this facilitates
program generality by allowing:

increased generality inherent in not having to specify
maximum data structure size

reuse of a storage segment for different data structures

data structures which have a size or organization which
changes during program execution

recursive procedures

C. The set of DSM routines must possess some or all of the following
capabilities:

selection of a storage segment from available storage and
of sufficient size to satisfy a request

. reclamation of previously allocated but presently unused
storage segments

. recombination of (either adjacent or non-adjacent) available
storage segments

D. Two gross attributes of a set of DSM routines are:

their visibility to the user - must he explicitly command
their invocation (as in PL/I) or are they implicitly invoked
as required (as in LISP)
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the general flavor of the allocation they perform:

'""large' segments to be used for ''long' periods of time such
as during the entire execution of the program which requested
the storage

''small" segments to be used for ''short' periods of time such
as during only part of the requesting program's execution

E. Most all DSM routines operate in the following general manner:
. maintain some private data structure, AVAIL, which identifies
all of the available storage which can be used to satisfy a

request

when a previously allocated storage segment is returned, update
AVAIL so that the segment is known to be available

the information specifying the size and location of the
segment:

could have been retained by the routines when the segment
was allocated

or could have been saved within the segment (either
protected or unprotected)

or could be stated by the agent who returns the segment

the newly returned segment could be combined with other
(usually adjacent) available segments

. when a request for a storage segment is received, then it is
satisfied by using the information in AVAIL to select a segment

the selected segment may be larger than requested.

if there are no segments identified by AVAIL which are large
enough to satisfy the request:

the DSM routines may refuse to satisfy the request and
 (may or may not) notify the requestor

the DSM routines may try to recombine several (adjacent or
non-adjacent) segments to obtain a large enough one

the DSM routines may try to reclaim segments which were
allocated previously and are no longer being used but
have not been returned
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II.

Sequential Allocation

All managed storage is assumed to be in one large block and there
is a dividing point such that storage above that point has been
allocated and storage below that point is still available. AVAIL
is just a pointer, FREEPOINT, to the dividing point.

A request for n bytes of storage is satisfied by allocating the
next n bytes starting at FREEPOINT.

If n is larger than amount of storage below FREEPOINT, try
to recombine unused areas which fall above FREEPOINT before
refusing to satisfy request

Upon return of a storage segment can either:

. mark it unused and leave recombination until later when it
is necessary

recombine the newly returned segment with the rest of
available storage

Two examples

1. "Stack" allocation - storage segments are returned in the
reverse order of that in which they were allocated. Used
for automatic variables in PL/I.

ALLOCATED
e e a1 g . g SR

/

AVAILABLE

e S A W A Bt m s v B At = 5 e SEA.

/\/( ™~ FREEPOINT

Last segment allocated; next to
be returned.

o P b Gt AT s 0 3 7 nb

3



2. Sequential allocation without explicit return - must
compactify allocated storage, reclaiming and recombining

available segments.

e

Used in XPL for strings.

ALLOCATED

B e SO NN

PR

II

.4

CONSTANT
CHARACTER
STRINGS

[ S

T

FREEBASE

DESCRIPTORS
pointers
into the
allocated

area

" AVAILABLE

s

4
rd
l

T T

LOWER_BOUND

FREEPOINT

FREELIMIT has a value which
is 256 short of the end of
the managed area.

Upon receiving a request for n (<256) bytes:

A. if FREEPOINT is < FREELIMIT then satisfy request and update

FREEPOINT

B. otherwise reclaim and recombine currently unused segments
in ALLOCATED portion.

try a minor compactification first

copy into DX all those descriptors in

DESCRIPTORS which point into area between
LOWER BOUND and FREEPOINT

sort DX and use result to control moving of

referenced values up toward LOWER_BOUND

compatification - same as above but work on region
between FREEBASE and FREEPOINT.

B.1.
B.1.1.
B.1.2.
B. 2.
B. 3.
to satisfy request.
B.4.

ALLOCATED region

update FREEPOINT and LOWER BOUND to point at end of

Indicates GENERAL RULE: the most work is done for the least

benefit.

if not enough storage was reclaimed, then try a major

if still not enough storage was reclaimed then refuse

T

FREELII
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E. When there is more than one pool.

1. If there are two pools point them at each other so that
limit of one is current extend of the other.

T Pt s €% P8R A b P .,:7../-/;’ y - - : ',' ;
ey Y YN LIS S
r/ kr/ / r'f, s’f I 3 § : *'_’
S UV SRR, {2 ,r’:,,.., Y A S T U P
FREEPOINT1 FREEPOINT2

2. If there are more than two:

A. Initially, space them out either evenly or according to
their estimated maximum size.

B. When one runs into another:
1. allocate more to cramped region by:
a. moving the information in next one

b. taking space away from least active region and
moving others accordingly

c. taking some space away from each region in
proportion to its activity

ITI. Non-sequential Allocation

A. Instead of having the unallocated regions (which DSM knows about)
all contiguous within one area, they may be scattered through
storage. To keep track of them, they are chained together on a
linked list and part of AVAIL holds a pointer to the start of the
chain.

B. Explicit return - no need to do reclamation since DSM routines
assume user will notify when a region is no longer needed.

1.

If segments are all the same size then treat list of available
segments as a stack, popping one off to satisfy a request and
pushing a returned segment onto the stack.

If segments vary in size then there are some problems.

a. If request is for segment of size n, then must first find
an available segment of size m > n. Then allocate n bytes

from the segment and return m-n byte segment to list of
available segments. (Don't recombine.)

5
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1. Best Fit: choose available segment such that m-n is
minimized. This has a long search time and will
proliferate small segments.

2. First Fit: choose first segment on list which has
m > n. This has shorter search time and can be
expected to generate fewer small segments. Shown in
simulation by Knuth to be better.

3. Avoid small segment proliferation by never generating
a segment of size <K. Must remember actual size.

4. Speed up best fit searching by having list ordered by
increasing size. Will increase insertion time so
very little overall gain.

When a segment is returned, just stick it back onto list.
However, if two available segments are actually contiguous,
want to combine them and have one entry on list.

1. If 1ist is kept ordered by starting address then check
successor and predecessor and combine if warranted.
Will want two way linked list.

2. Insertion is quicker if list doesn't have to be ordered.
Store some information with the block and use BOUNDARY TAG
Method (due to Knuth).

- ;

"TAG | SIZE__: TAG = 1 if available

’F? F POINTER ‘ = 0 if allocated
i 5 %
‘ - _,B—:p(_)_I,NTEBW--____M SIZE = n+8

njj i
| ; POINTERs used only in
| i available segments.

\l}h~..n,?k‘ﬂm;W,“w<»”»Aw;
{ TAG 3 SIZE i
dee. S

Neighbors of a block at location a can be checked by
looking at a-1 and a+SIZE.

3. Another way is to use the BUDDY SYSTEM (due to Knowlton).

a segment's BUDDY is a contiguous block which the
segment may be combined with

. both segment and its BUDDY have size 2k for some k.

~

if segment's address is a and segment's size 1s 2
then BUDDY'S address is a+2k (addition without carry).
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segments look like

TAG l K TAG = 1 if available
F_POINTER = 0 if allocated
.
2 POINTER needed only in
; available segments.
v

. F_POINTER is used to maintain a stack of available
segments. A separate stack is kept for each si:ze
k, 1l<k<n.

. When a request is received for segment of size 2k
first look in stack for that size. If none available,
then look for segments of size 2k+1,  If one is
available with that size, split it in half, allocate
one half and put other on 2K stack. If none available look
at 2k+2 and split it twice. Etc.

When a segment is returned, check to see if BUDDY is
free and combine if possible. Keep combining more
buddies as much as possible.

. Two problems:

1. adjacent non-BUDDYs may be available but not combined -
Knuth's simulations show that this isn't frequent.

2. there is waste if there are many instances of needing
slightly more than 2K for some k.

C. Implicit return - the primary problem now is reclamation.

1. If segments are of differing sizes need to augment algorithms to
take notice of segment size. In the rest of this section,
assume that all segments are of the same size.

2. If segments don't all have the same pattern then need some extra
information to indicate where pointers are within a segment. In
the rest of this section, assume that all segments have the same
pattern.

3. Whenever the list of available segments is empty, more segments
are reclaimed by a ''garbage collection' routine:

1. scan through entire managed area and mark all of those
segments which are still being used (assume all segments
are initially unmarked)

2. scan again, accumulating all unmarked segments into the list
of available segments and unmarking all marked segments.
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In order to be able to mark segments need to set aside a bit for
each either within the segment or in a bit table.

. The first scan through the managed area must be guided by some
information concerning the used areas. Usual situation is that
managed area is laced with list structures. In such a situation,
we assume that some table gives addresses to the heads of all the
lists. To mark, we go down each list structure -

a. At each node, push n-1 of the branch addresses onto a stack
and follow the nth. When a terminal node is reached then
pop an address off the stack and continue.

Problem: need free storage (an arbitrary amount of it) to
collect free storage.

b. Pointer Reversal Technique (Schorr & Waite)
. Don't need an extra stack. Instead, the pointer fields of
the nodes are used to hold a backward pointing chain
(built while going forward) which can be followed to

return to an as yet unfollowed branch.

. Need another bit in a two-branch node:

[ rag | otnaer | potone

} Bit

Ii
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etc.

If there are n branches from each node, need FLAG field k
bits wide where 2k-1 < n < 2k

Instead of collecting the garbage when there is no more available
space, collect it as it is generated by maintaining a reference
count. The count is increased whenever a pointer is made to
reference the node (or reference a node which references the
node). The count is decreased when a pointer is made to not
reference the node.

A. To preserve integrity, some central agent must perform all
pointer manipulation.

B. Need extra storage in each node to hold the count

C. Extra storage required may be reduced by keeping a count
only for lists and sublists. (SLIP scheme, Weizenbaum)

. three node types

‘L'W? reference count
L. L ey ar s et g e e e a1 e P P . i t Header
BPOINTER |  F_POINTER |

o o
$~-kP l-.~-~ = TPQ%Q??? Sl Reference to a list
| B_POINTER | F_POINTER

‘iv N { ‘ value S : )

1 B_POINTER |  Frpomnrgr | Valueona list

. when reference count within a header goes to zero, put it
onto the free list.

. because of pointers in header this automatically puts all
of the first level nodes on the free list.
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. the reference counts in the sublists referenced by the
list are not updated at this time.

. when a node is taken off the free list check to see if it
is of type LP.

if it is, then decrease reference count of list this
node points to and put that list on if warranted.

this way, free storage is reclaimed

as it is generated

in larger segments - whole lists at one time
. as it is needed

two problems:

1. if only part of a list is actually referenced, the whole
list must be retained because there can be only one
reference count.

2. a recursive list cannot be handled without special

processing - its reference count would always be at
least 1.

1v. References
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Weizenbaum. Symmetric List Processor. CACM 6, 9 (September 1963),
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PL/I LANGUAGE INTERNALS

III.A.1

by Morton D, Hoffman

PL/I was designed as a general purpose algorithmic language. As

such, its list processing facility is designed to fit into a more

general scheme,

To provide the most general data strueturing capability,

PL/I provides a pointer data type bringing into the external language,

a level of detail often reserved for the internal structure of other

languages,

For this reason the system cannot always know when a storage

area is no longer useful, and storage management must often be explicitly

invoked by the user,

Therefore the internals of the list processing

facility has two main components —= internal data representation and

Dynamic Storage Management,
Dynamic storage in PL/I is
divided among three classes of
variables: AUTOMATIC, CON«
TROLLED, and BASED, AUTOMATIC
storage can be efficiently re=
claimed by PL/I since only
AUTOMATIC variables are asso=
ciated with the invocation of
a block, AUTOMATIC variables
are stored in two structures -
Dynamic Storage Areas (DSA)
apd Variable Data Areas (VDA),
which together form the Run

Time Stack (RTS).
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The first of these, the Dynamic Storage Area (fig, 1) is associated
with the invocation of a block, This is thes prime area for storage
of automatic variables, The Dynamic Storage Area is also the repository
for all information of the enviromment peculiar to the block. Its
address is held in a pseudo-register; together the set of pseudo-
registers pointing to Dynamic Storage Areas is called <the display,.since
this construet now contains the description of the complete environ-
ment of a block, The Dynamic Storage Areas are chained together to
‘nrovide housekeeping for dynamic storage (i.e, if several blocks are
exited by one statement, the Dynamic Storage Areas for the intervening
block can be located through the chaining),

The Variable Data Area (VDA)

i3 quite similar to the Dynamic O{':Tf:ﬁ"T""”"""‘"?i:fj;"‘"'"“"""'7
H LadNjo i LCTITCa .
Storage Area except in its uses 4 | Chain-pack address ;
(fig. 2). One Variable Data el i 5
H aca i
! :
Area is created at the invoca- e e e e e J
Figure 2 Fcrmat of the Variable Data
tion of a block. In it reside Area (VDA)

those automatic variables
whose extent (length) is not known at compile time, Additional Variable
Data Areas may be created for library work space (since the library
routines are re-entrant, they require such external work space),. The
first such area is called the Pseudo-Register Vector Variable Data Area
(PRV VDA) and also contains the pseudo-registers, This area is allo~
eated only once, Additional Variable Data Areas for library calls may
be created in the form of seccndary Library Work Space Variable Data
Areas (IWS VDA) in blocks as needed, All the Variable Data Areas are

chained into the Dynamic Storage Area chain (Ren Time Stack).behind the
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Dynamic Storage Area for their respective blocks,

Figure 3 Structure of the Free-Core Chain for Automatic Variables

The management for Dynamic Storage Areas and Variabie Data Areas
are performed together. Initially LK or 6K of storage is requested from
the supervisor, As this storage is used, the remaining free area in
this block is reduced., When a request can no longer be satisfied, an
additional 2K block (or 2X multiple) i obtained from the supervisor,

The free core areas in these blocks are chained in a doubly-linked list
in the order of allocation (fig. 3)., When requests for core are made,
the free core chain is checked to see if there exists a free core region

large enough to satisfy the request, In the event that a 2K area is

i 1 i hl

! 2RV I | 2% _block | !

! ! | I ]

i i | Used core | ! Used core
| | | |

F——— %< a3 l l l

! { [ | |
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; —- i Lo l 1

| P | !
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; | I : |

i | i { B8lock length i b

| 1 e i [ :
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i ; prmmm oo . Pl ;
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entirely freed, the free core length will be recognized equal to the
block length (both are stored at ‘the beginning of the free core area
of the block) and the block returned to the supervisor, Since automatic
storage is always freed in the reverse order from which it is allocated,

freed storage is always at the bottom of a bloek and there is at most

one free area in any block,

S

Controlled Storage cannot be so handily managed, since variables
ean be pllocated and freed in arbitrary order, The result of this is
that all ALLOCATE statements result in requests to the supervisor for an
area large enough for the variable plus associated control information,
Every controlled variable is represented by a chaim of allocations
off a pseudo-register (figure L), When a controlled variable is
first allocated, the pseudo-register (initially zero) is set to the
address of this allocation, Each new.. allocation is chained in
immediately following the pseudo-register, The address of the previous
allocation is set in the new alloeation, forming a chain of the
generations of the controlled variable., In this scheme the chain
forms a push-down stach, and the execution of & FREE statement results

in the restoration of the previous allocation (popping the stack).
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Based storage is handled in much ths same way as controlled
storage. All storage requests are passed on to the supervisor, but
now without any area for control information, Control information
and the control stack is not needed here since 2 based variable does
not have generations associated with it,

Based storage allocated within an area is handled differently,
An area contains four words of control information, an area encom-
passing all allocated storage, and a final free area, Within the
storage area encompassing the allocated storage (fig. 5 and 6), there is a
free 1ist anchored to the third word of AREA control information, It
is organized by the largest free element on the list, The beginning
of each free element has the length of the free element and the address
of the next smaller free element, The smallest element points to a
zero word (which serves as a free element of length zsro), When a
storage request comes in, the free list is checked first, If there
are free elements large enough, the smallest such elemént is taken
off the free list, divided into an element to fit the request, and the
amount of storage left over {if any), This excess storage is put back
on the free 1list in the position determined by its size. If no element
on the free list is large enough, an allocation is made from the top of
the last region of the area, which is unallocated storage, If this
cannot satisfy the request, the request fails, resulting in a PL/I
AREA condition,

Controlled Storage and Automatie Storage allocation and freeing
are done in library module IHESA, Based variables, within and without

AREAg are controlled by module IHELSP,
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When storage in an ARFA is freed, PL/I first attempts to merge it
with an adjacent free element (and move the enlarged element to its
new pesition on the free store chain), If it cannot be merged, it is
then inserted by itself on the free list. It is not clear why the
last free element in the area is kept off the free list, Also, the
proﬁosition that it is best to satisfy an allocation from the smallest
free element large enough to satisfy the request has been brought into

sericus question by recent simylation studies,

SCanning the 2. Base elenent:
gTructure cope
ne entry for each o 1 2 TS S iU 15
cture and base P e i ettt -
laration. Each 1P 72 L 5 Tc : :
and can have one L e 4
o 17 12 25 2= 31
[ St it Sttty St bt -
IF3 74 A >
S T S S, O S —— |
1. Structure
1 =1 Dase element
[ 7 € iS5 r2 =0 ot end oI sTIsucTure
. Y =1 End of structure
I | N !
—— + -———-d L = Level of element
18 31 5 =1 Area variabnls
: —_— - - =3 Not area variable
i Cifset |
L 4 F6 = 1 Event Variaole
= 0 _XNot event variacie
' N = DimensionalizTy
IO =0 Structure
r3 = C NOotT an a.igned =it stIring
T2 =0 = 1 Aligned Dbit stIing
= = Level of structure 4 = C NOotT a varving string
=1 Varving sString
N = lity, including
édimensions A = Alignment 1n 2its (¢ to 03)
Offset = containing D =
firom start of

major struccture

7. Dope Vector Descriptor

lxnuth, Donald E., The Art of Computer Programming (Vol. 1)
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As in most languages complex data is keyed by dope vectors giving
the format of the data, However, in PL/I another level of description
is provided in the form of the Dope Vector Descriptor (WD) (fige 7)e
For an array, the Dope Vector Descriptor includes information indicating
the number of subscripts in the array. For a string it includes align-
ment and an indicator as to whether the string is varying. Its major
purpose, howeven is to indicate the variable type so that the dope
vector may be correctly read,

For structures the Dope Vector Descriptor is more complicated,

For each level in the structure, there is a dope vector descriptor

giving its level in the structure, its dimensionality (including dimen=

sions of containing sturctures) and the offset of the contalning structure

from the start of the Dope Vector Descriptor. Following the Dope

Vector Descriptor are descriptors for the elements in the structure,
Those elements include dimensions from the structure, since in PL/I,
the elements inherit the subscripting of the structure., Again, par-
allel to these Dope Vector Deseriptors are the Dope Vectors for the

structure, S . 9 -

The most straightfor- pros) ; ittoa: opiein o TTTTHR

ward of the dope vectors is MuLTipiier,

the Array Dope Vector (ADV)

(fige 8)s It contains a % """"""""""" rff:ffj———————~———-___-____;

virtual origin (the loca- ot beuna, T e

tion where all swseripts | < .=

are zero -- even if this @—————~;——~—-—-—-___--~_-____*;__“_______ K

is outside the array

v
]
e
[
1
o
[s2]
J
@)
t
O
v
8
o
Y]
H
H
(o)}
<
(@]
O
e
g
<
1)
7]
[}
(€]
H

bounds), and for each
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subscript a multiplier and upper and lower bounds., This generality
allows array operations -- since the dope vector contains not only
accessing information, but also bounds information. Arrays are
accessed by the equation:

Address =virtual origin +¥S5i#My

where Sy's are subscripts and Mi's are multipliers

Note that this allows for interleaved arrays -- arrays which have their
vectors separated in core (by equal sized areas outside the array).

Interleaved arrays permit easy organization of structures in memory,

Strings also have dope c 23 758 25 16 31
S Z
vectors (fig. 9)e The 33:021 ! 3vte uac:evs—::-i::: _______
il Maximum lengtih | Current lengih i
String Dope Vector (SDV) A S :
Figure 9 Tormat of the String Dope
contains the address of Vector (SDV)

the string, and the maximum and current length of the string. For fixed
length strings these two length are equal, The lengths are given in
bits for BIT strings, and in bytes for CHARACTER strings, For bit
strings, the bit offset from the beginning of the of the byte is also

given, Not much more

~complicated is the String :,S ______ 15 106 3-‘
Array Dope Vector (SADV)
(fig. 10), This is { A3 ;
used for arrays of E__“”——_"_—‘__’T——_““—““-“—_—-_-:E
strings, It consist of }I;iégi;é;_jizgiiz_gglgz;‘;;Eizr;e;jzggi—_J

a standard Array Dope
Vector with a word appended to give the string length (maximum and

current), For fixed length strings these two lengths are equal, For

varying length string arrays, the current length is set to zero, and
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the array accessing algorithm yields the address of a standard string
dope vector for the individual strings. This is necessary since in this
case each string in the array has a (potentically) different length,

The final item to consider is the Structure Dope Vector. The
structure dope vector is simply the concatenation of dope vectors of
the elementary data types in the structure in the order in which they
appear. Subscripting is handled by having the subscripts inherited
by the component data elements, using the interleaving array notation to
skip over the other parts of the structure which intervene in the core
memory, This is necessary since the core data layout is exactly that
described by the external structure sitatement and mot by the organization
of accessing rules (with respect to inherited subscripting). Here it
is especially important to note the use of the dope vector descriptor
to interpret the dope vector,

Within a routine some of this information may be contained in the
code and the full data degeription may not be read, However, when
aggregrates of data are passed among routines, these mechanisms are
brought into use, With them PL/I is able to manipulate the highly com-
plex data representations at the heart of all list-processing

applications,

References (IBM Manuals):

PL/I Subroutine Library Program logic Manual
Form GY 28 - 6801

PL/I (F) Language Reference Manual
Form GC 28 - 8201

FL/I (F) Programmer's Guide
Form GC 28 - 6594

PL/I (F) Compiler Program Logic Manual
Form GY 28 - 6800



LISP INTERNALS
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Carole Hafner
June 8, 1972

0. History -~ LISP 1.5 and MIT LISP
A-list type binding Value cell binding
Linear Atom/ Value
bearch Atom =) Value
Atom/ Value Hash —) Obarray Atom =3y Value
aA.t:om—-—) Value
®
1, Atoms
A, Atom Header
[}p A(Pname) A(Plist) | A(Value)
B. Property List get " ’
A(Indl)
alue
n
A(Value2) A(NIL)
2. Syntax and Semantics
Input to READ: (APPLY FUNC (LIST (QUOTE A) X))
Value returned from READ: C)—"”————-~i§£*
A(APPLY) |
| a(ruxc) o
———©C A(NIL)
| aisT)
-'/-\
TE)
) A(NLL ——Hx) A(NIL)
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3. Functions in LISP-

A, How to invoke LISP functions:
If argument of EVAL is an atom, value of EVAL is the value of that
atom, If argument of EVAL is a list (...) then invoke (CAR (...))
as a function where (CDR (...)) is a list of its arguments.

Ex, Input to EVAL: (APPEND L1 L2)
Action of EVAL: Call function APPEND with arguments L1 and L2

(CAR (...)) must be one of the following:

a. A LAMBDA or LABEL expression,

b, An atom with a function definition on its property list,

c. An atom which has a LAMBDA expression bound to it as its value,
d. A LISP expression which will itself EVAL to one of (a-=d).

B, Defining and Accessing LISP functions:
An atom is defined as a function by having a function definition
on its property list, The following special atoms, when used as
indicators, indicate that the value to follow is a function definition,

a, SUBR - the value is a pointer to the entry point of a
machine-coded function., Arguments (a fixed number)

are EVALed before being passed.

b. FSUBR- the value is a pointer to the entry point of a

: machine-coded function, (CDR (...)) is passed
as a single argument, and is not EVALed,
c. LSUBR- the value is a pointer to the entry point of a
machine-coded function. Arguments (any number)
are EVALed before being passed.
d. EXPR - the value is a LAMBDA expression. Arguments are EVALed,
1. LAMBDA-SPREAD - arguments are bound to dummy arguments
2, LAMBDA-NOSPREAD -~ arguments are pushed on stack and
number of arguments bound to (single) dummy argument

e. FEXPR- the value is a NLAMBDA expression, Arguments are
not EVALed.

1. NLAMBDA-SPREAD - arguments bound to dummy arguments
2, NLAMBDA-NOSPREAD - list of arguments bound to single
dummy argument,

e. MACRO-the value is a NLAMBDA expression. The entire form
(+s+) is bound to a single dummy argument, The value
returned from the macro function is itself then EVALed.

If (CAR (...)) is an atom, EVAL looks for one of these indicators on
its Plist, and does the appropriate things if it finds one.

The pre-defined LISP function DEFUN is available for defining EXPRs,
FEXPRs and MACROs.
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Ex: (DEFUN CONC EXPR (LA LB)

(COND
((NULL LA) LB)
((CONS (CAR LA) (CONC (CDR LA) LB)))

)

Now: (CONC '(XY z) '"(AB C)) = (XY Z A B C)

C. Applying LISP function - recursion

Case 1, A is a SUBR,LSUBR, or EXPR,
(EVAL '(A B C)) =) First EVAL B
Then EVAL C
Use the results as arguments to function A

Case 2., A is FSUBR, FEXPR
(EVAL '(A B C)) é Just use (B C) as the argument to function A

Case 3, A is a MACRO
(EVAL "(A B C)) % Use (A B C) as the argument to function A,
When A returns a value, EVAL that &s the
value of (A B C),

4, Garbage Collection

A, General outline of method.

0. Current-celllﬁ:’ POP

(A T¢T€¢<
Entry point. Current-cell is (A . B):
A 1. If current-cell is marked go to O.
Otherwise:
¢ | 9 | € (= 2, Mark current-cell

3. Push (CDR current-cell) [Address of (E . F)]
4, Current-—celle(CAR current-cell) [(C , D]
5. Go to 1.

B, Problems
a. Pname table versus list structure
b. Atom header space versus value property
c. Concept of a T.W.A
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If time permits ., . .

4, Some special implementation details
A. Special system properties
B, Atom pointers
C. Binding conventions
D. Argument passing

5., Running Compiled code in LISP
A, Special versus local variables
B. Stack manipulation

6. The FUNARG problem and free variables in LISP

Example of a LISP macro:

(DEFUN CDDR MACRO (X) (LIST 'CDR (LIST 'CDR (LIST 'CDR (LIST 'QUOTE X)))))

Now lets EVAL (CDDR X Y 2 Q )
Step 1. Apply the function CDDR as defined to the list (CDDR X Y Z Q).

This yields the list (CDR (CDR (CDR (QUOTE (CDDR X Y Z ).

Step 2. EVAL this result and get (Z Q).
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Jim Henriksen

« History of Siascript

Ae SINSCRIPT-I, SIMSCRLIPT 1.5
1. beveloped at Rand Corp. in early o0's
2. Raa on 2nd yeneration hardware of several
manufacturers
3. Featured translation of Simscraipt into Fortraa-II
4. designed for simulatioa only

B. Simscript-11

1. Developed at Rand in late o60's

2. Runs on IBM 360

3. Features translation into 360 assembly language
4. Desiyned as a fairly general hign level lanyuage
5. lmpilementation incomglete

C. Simscript II Plus

1. Proyram product of Simulation Associates
2. Costly

De Simscript 2.5

1. Progyram product or C.A.C.l.
2. Costly

- General Projgram Structure

A. PREAMBLE - defines global variables
B. MAIN program
C. Subroutines

I. Variable modes

A. INTEGER
B« REAL
C. TEXT

» Variaole Types

A. Scaiars

Be. Arrays
1. Dimeunsionality declared at coupile time:
DEFINE X AS A 2-DIMENSIONAL ARKAY
DEFINE X AS A 1-DIMENSICNAL ARRAY
2. Storaye allocated, a la EL/I "BASED" variables, at
run tisce:
RESERVE X (*,%*) AS 10 BY J
RESERVE Y(*) AS N
3. Internai storage mode uses pointers, pointer
vectors: '
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RESERVE X(*,*) AS 5 BY
RESERVE X(*) AS 10 (**) 3

Stored as! stored as!
ELEMENTS
X(1,1)
ELEMENTS X(1,2)
(XD ROW POINTERS/( X15)
X(2) (
X(3) X X 1)
BASE POINTER . X(4) X(2.2)
* X(2.3)
X*) I § G BASE POINTER X(@*)
X(6) X(3, 1)
X(7) * 3.2
X(*,*) ——»ﬁ X(3,*) X(3.2)
X(8) X(3, 3)
X(9)
*
a0 X(4.%) X(4. 1)
X(4, 2)
X(5.*) X 9)
\ X(5. 1)
X(5.2)
X(5, 3)

4. odotatiom, aithougn clumsy, exists to wanipulate
poiaters:

PREAMBLE NORMALLY, MODE IS INTEGER
DEFINE LEVEL AND TREE AS 1-DIMENSIONAL ARRAYS
END

READ N RESERVE LEVEL(*) AS N
FOR I=1 TO N,
00
RESERVE TREE(*) AS 2**(I-1) READ TREE
LET LEVEL(I)=TREE(*) LET TREE(*)=0
LOOP
END

For N=4, the memory structure at the end of program execution looks
as follows:

LEVEL TREE
1 - 1
2 2 3
3 ""'_'"-'L;‘ 5 | 6 | 7
4 p—— | § 9 |10 | 11 | 12 | 13 | 14 | 15
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C. Eantities aund Sets
1« Entities have declared attributes and declared

( potential ] set wembersuips ana owuersnips:

EVERY MAN HAS A NAME,AND AN ADDRESS,0OWNS SOME
CHILDREN AND MAY BELONG TO THE MASONS,A CHURCH,
A FAMILY AND AN ALUMNI.CLUB

EVERY X HAS A P,A Q,A Z AND AN A
EVERY PROGRAM HAS AN ENTRY,OWNS SOME LABELS,

BELONGS TO A PREAMBLE AND HAS A LENGTH

2. Set mempersalp 1lmplemented by a stralgntrforward
systew of implicitly allocatea gointers:

COMMUNITY
F.MASONS <f——=— MAN; —&

L. MASONS P. MASONS

S. MASONS ol MAN, -~
P. MASONS-/

S. MASONS clamym— MAN, 7

P, MASONS 9

S. MASONS-——’- MAN4

P, MASONSH

S. MASONS

3. Entity storage allocation
d. Periwanent entitiles stored as arrays:

[Lectus]N  [N.cLus N

word 1

word 2

. °
L 9

word N.CITY

b. Teaporary entities stored as based structures
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4. Entity field ana bit packiag:

Declaration:

EVERY MAN HAS AN AGE(1/4), A NAME AND A SEX(1/4)

Entity record:

word 1 AGE
word 2 NAME
word 3 SEX

Declaration:

EVERY MAN HAS AN (AGE(1-8) AND NAME(9-32))

Entity record: 1 9 32
word 1 AGE NAME

Declaration:

EVERY PART HAS A (RIGHT.VALUE(2/2),LEFT.VALUE(1/2),TOTAL.VALUE)

Entity record: "~ TOTAL.VALUE
i,
”~ )
word 1 | LEFT .VALUE |RIGHT .VALUE
Declaration:

EVERY MAN HAS AN (AGE(1/4),NAME(2/4),NEIGHT(17-32))
AND OWNS A FAMILY

Entity record:

word 1 AGE NAME | WEIGHT
word 2 F.FAMILY
word 3 L.FAMILY

Declaration:

EVERY MAN HAS AN AGE(1/4),0WNS A FAMILY,HAS A (NAME(2/4)
AND WEIGHT(2/2))

Entity record:

‘word 1 | AGE

word 2 F.FAMILY

"word 3 L.FAMILY

word 4 NAME | WEIGHT




5. Special purpose -~subroutines constructed to carry
out aempnersalp functions of each set

D. Eveant notices

1. Two types
d. lnteraal
be. Exogenous - read tro# a numkbered I/0 unit

2. LOOK like a teumporary entity
d. Has implicit attributes TillE.A, the simulated
time o0f the event, anu EUNIT.A, the unit irom
whicih the event aotice was read
b. Has implicit membership iu the set EV.S

PREAMBLE
EVENT NOTICES INCLUDE ARRIVAL, WEEKLY.REPORT AND END.SIM
EVERY JOB.OVER HAS A NEXT.JOB AND OWNS SOME RESOURCES

When created, records for these event notices look like

ARRIVAL  WEEKLY.REPORT  END.SIM JOB.OVER
word 1 | TIME.A TIME.A TIME.A TIME.A
word 2 | EUNIT.A EUNIT.A EUNIT.A | | EUNIT.A
word 3 | P.EV.S P.EV.S P.EV.S P.EV.S
word 4 | S.EV.S S.EV.S S.EV.S S.EV.S
word 5 | M.EV.S M.EV.S M.EV.S M.EV.S

’ ‘ NEXT.JOB
F.RESOURCES
L. RESOURCES
N.RESOQURCES

III.C.5



3. Priority ot event - notices 1aplemented via 1ndex
into subscripted set EV.S
d. Detault priority or event notices 1S 1ih oraer

of occurrence in declaraticanse.
b. Defauit overriaden by “PRIORITY ORDER 1IS"

statement

F.EV,.S Event sets are ordered
by PRIORITY or their

I 2 I 2 L I A l \ J order of appearance

in the PREAMBLE

All sets are ordered
by BREAK TIES
specification or
time ranking

0 0 0 0
* 0 i - 0
1 1 1 1
STOP, SIMULATION ARRIVAL
0 —_
1 1
SHIPT; CHANGE
0 0
1 1
END, OF, JOB

START, JOB

II1.C.6



4.

u.

Bvent notice
de

creation

I11.C.7

Created automatically 1oL exoyeunous events:
1 At 1nitiulliication (START SIMULATION)
2. At exit frcm event roucihe
Created under program controi for iaternal

events by use ot the "SCHEDULE" statement

/. Control Stiucture = a recursive calling protocol

CSECT
USING
USIKG
B

DC
0C
oC
DC

F L
DROP
BALR

H EqQu

[
CQOUBNVNAVEWNM

Pt puo
N

*,15
H,7.8,9
F

AL2(L
AL2(0
AL2(X

AL2(T-*+10)

2,001
15
0,2

L

Fig. 1--Prologue format

1 BALR fnstruction (line 11) passes control to XREC, a SIM-

‘1 systen routine that estaiishes a eave area, and returns

‘688 of the save area's first byte in general register 6.

The

‘4, 11lustrated in Fig. 2, 1s divided into four sections.

) 5;.:eu
! Data
: (52 bytes)

— . — e —
¢ GIVING

Arguments

(4*g bytes)

YIELDING
Arguments
(4*y bytes)
- _ X
Racursive Local bytes

Variables
(4°r byces)

Tig. 2--Save area format

(

J

bytes

firet section, labeled Systes Data, contains such items as

m point of the calling routine.

‘agner.

1 values of the routine's giving arguments.

1.

Ae
B.
1.

Storage Allocation

Permanent entities,
Tewporary eantitles
Check pcol or desired size

It should not be used by
The second section, labeled GIVING Arguments, con-

The third section,

arrays -

2« GETHAIN 1f noue in pool
J. Released blocks returned tc (ools ana "branuede."

4.

continues until no

more

ladeled YIELDING Arguments, is the area in which ytielding arguczent
The fourth

section, labeled Recursive Local Variables, {s the sres in which all

values are stored prior to return to the calling routine.

rtéuiqlvc local variables of the routine are located. When a routine

1s called, XREC zeroes out the yfelding and recursive areas.

THE BODY

The routine body must conforu to several conventions concerning:

(a) accessing GIVING argu=ent values

®)

(c) accessing recursive local variables

returning YIELDING argument values

(d) wusing registers.

GIVING Argunents

General register 6 points to the first byte of the save area.
To sccess the value of the first GIVING argument, the programmer cust
refer to the first four-byte word after the Systen Data section of the
save area, i.e., the word wvhose address is 52 bytes greater than the
The first GIVING argument {s at 52(6),
The i-th giving argument 1is addressed as

contents of general register 6.
the second at 56(6), etc.
(52 + &+(1 - 1)](6).

As sn example consider the calling sequence:

//CALL GET.DATA GIVEN I,J AND K YIELDING M AND N

e value of I 1s stored at 52(6), the value of J at 56(6), snd the
value of K at 60(6).

YIELOING Arguments

The first YIELOING argument follows the last GIVING arguzent; in
general, the address of the 1-th YIELDING argument value {s
[52 + 4%g + 4*(L - 1)](6).
be stored in M when control returns to the calling routine is at 64(6)
The value that vill be atored in N fe at 68(6).

In cthe above exaople, the value cthaz wili

inaiviaual GETMAIN's

storagye davailable, tauen

FREEMALN of all ftree blocks dcne
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String and List Processing Seminar
Thursday, June 15, 1972
G. Lift

Snobol Internals

Data Organization
resident data - system things
allocated data - handled by storage management routines
all data created by source language programs
Data Representation
descriptor (Snobol's unit of storage)

used for all source data objects (often several descriptors together)

structure T F \

T field: data type code (usually)

F field: various flags eg., A flag means V field contains
pointer to allocated data region

V field: datum, or pointer to structure for datum

simple examples: integer S I{0] 5 J

pattern PlA

I is the type code for integer, P for pattern
internal objects often have other arrangements

S/360 implementation: 2 words

\Y F T
0 4 5 7

qualifier (for character strings) - 2 descriptors

T} F |V 0 |L

V: ''base" pqinter to string data

0: displacement of beginning of string from V pointer
L: string length

T,F as before

example: string ALGORITHM string OR

e
]

........

e ST TR e s i 8

AL dels] O, iele

= ALGORITHM



Data Structures

natural variables - in allocated data region

title descriptor: T field - length variable name

F field: T flag - title descriptor

N flag - natural variable

value descriptor: value of variable, or

pointer to structure

label & chain descriptors (see below)

(}]»* I;i:;-;w-j\) title

I11.D.2

o m—

descri
value ¢
label ¢

.
|
}

chain ¢

me e B s < a1

] , ! string

string (var. name) stored in consecutive descriptors following

chain descriptor, padded with blanks

example HUNTER = 5

e
note . S

means T

e e 3
S I N
e

i
b H

|

Z
15|
~
*|
J—|

}
i

s e T, o
Pon :
{
i

|
i
i

i —
o !

H
i

|

i

H

i
.

]
i

i

f
{
e d

{

S——

{HUNTER

| S

HUNTER = 'WOLF' changes value pointer to

i ey

s|A|———1y {worr )
[ s ]2 ]——p fuory
other data types (patterns, arrays ...) - represented with

blocks of descriptors, always beginning with a

title descriptor: e

[z -]

written {HUNTER}

the T field contains the number of descriptors in the block,

not counting the title descriptor

arrays: block contains a descriptor for each array entry, a
descriptor for each dimension containing the lower
bound and extent of that dimension, and header

information (# dimensions,

..)

all entries are allocated at definition

tables: block contains two descriptors for each table entry
(since an entry is an ordered pair), and header

information

user defined data types: block contains a descriptor for each
field, and two descriptors for header information

patterns: see later
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statement labels: natural variable structure with label in
'string field' has pointer to code in label descriptor

code: sequence of function and operand descriptors

function descriptors: T field: #arguments in call
F field: F "function" flag

V field: pointer to link descriptor
pair for function

operand descriptors: same form as source-language data

link descriptor pair: P e
//44? ' ___L > to function procedure

: :
H

#arguments in function definition

second descriptor used only for special functions e.g., user defined

code is arranged in a prefix code format, with each function
descriptor followd by its arguments

example: X = Y * -SIZE(Z)

" > equals

1
1] H
- -4

)
Im
w
[\S]

N O

(R o

]

[ .

-y

,--\

N <
-

) ; > multiply(*)

S A LAYy
7
|
1 F > i1 } unary
S A4 > (2}

several function descriptors may point to the same link
descriptor pair, i.e. there is usually one pair per
function. SNOBOL knows the location of all existing
link descriptor pairs
exgcuting OPSYN alters the pointer in the link descriptor
pair

literals in code are handled by a procedure 'lit' with one
argument
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N
(el

example X = Y : o - E“ k¢ -
s A —— X}
s A
X = 'Y! 2‘5 e > =
s Ay (X}
1 ‘ _F_ R 1it
S A, > X

gotos are handled by a goto function whose argument is a statement label

Strings and Variables

when string created by any source language operation, natural variable
structure used to represent it

only one copy of any string in allocated data (no 'sharing' of
substrings, though)

example: o i
1 INT) *
after executing S [AT L
X = 'AB! ce _ | \% 3 T ;_A
S ,//4 """" — -
Y = 'A' ¢! ' -
BC me,i
ABC
BRI
s Al
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table of natural variables - each string in hash code table

hash coding C (0<C<255) hashes into table of 256
'chains'; string put on that chain

hash coding N - chain ordered by increasing N
both hashes are on char. string
V field of chain descriptor has pointer to next on chain (last 0)
T field of chain descriptor contains N

access for variable (or string) involves search to determine if
already present & coreation if not

Patterns
construction

each component corresponds to 1 matching operation

component ‘:3 | %'7function descriptor
i f _4....| connector descriptor
I
1 ; -+--—+ heuristic descriptor
Lo
L

{argument descriptor]

if the matching function has no argument, there is no argument
descriptor, and the T field of the function descriptor
contains 2

R at

A5 E o

example LEN(4) / [7777

# args T S —

‘ l
i 3 i # real args
in call I 0 45

connector descriptor V field: offset of alternative (O:none)
T field: offset of subsequent (0:none)

offsets are from beginning of pattern

note the number of arguments includes alternate/subsequent and
heuristic
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example pattern

POS(0) (TAB(2) | LEN(4)) | 12d} T | *
3 F —+y --- pPos
4d 0 0
~—4 heuristics
I o}j o
3 F —3 ... tab
0 0} 8d
——3 heuristics
I 012
3 F —4) ... len
0 0:0
—3 heuristics
I 0 4

example pattern component for ARB

21 F| 44— |2 -+ null

2| F} =+—a|2 - null

2 FEi =32 ~+» farb

(advance cursor)
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Storage Management

allocation: allocate from free pointer, move free pointer down
thru allocated region

ex: allocate block of 53 =~ 1% »|s5d | T g *1
descriptors free. . , R D R

o 10! 0!

SRS AU S |

0 1 0i 0]

returned _ -~ 0 g_Q H 9%

pointer 0 ? 0 ? 0

oy

LR

free .. _ 2> N ]

pointef

note that the descriptors in the block are zeroed

ex: allocate natural (new)

variable HUNTER Pl |=> 7, 1~ F s

: ) , 150 10

free pointer~ . R S T

‘0 0 0!

prev var . .- N

on chain v . {N{ 0 . —>»next var on chain

{ free pointer™, . jo

returned ‘

. /| HUNTER
pointer K%§A.§ bl B

note some fields are zeroed, and the variable placed on the
appropriate chain
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garbage collection - useful objects are marked, then compacted into
top of allocated area

mark - M flag turned on in title block of object
marking algorithm MARK - recursive procedure

begin with basic blocks (resident data); at first flag
encountered, find title block of object pointed to

case 1: no mark on this title - mark this new
block; push pointer to old block on
SYSSTK; call MARK with new block

case 2: marked title - ignore
(this does not go thru the chains of
natural variables)

then mark any natural var. with non null label descriptor
or non null value

relocation of useful objects -

phase 1: linear pass thru allocated area - change
V pointers of marked title descriptors to
new value

phase 2: adjust all pointers (on linear pass) of
basic blocks and marked objects (using
new title V fields)

phase 3: relocate § unmark (on linear pass)
remove useless nat. var. from chains

References
not much available

Griswold, RE. Snobol4 - Structure § Implementation
Share XXXVII; 12 Aug 1971.

, Macro Implementation of Snobol4
WH Freeman, in press.
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String § List Processing Seminar
Thursday, June 22, 1972
Jim Hamilton

MTS-UMMPS Storage Allocation and Selected Applications

I. General Requirements
A. Must be completely general, i.e. must provide variable size blocks
B. Since storage allocation structures exist for as long as the system
is up, storage must never be permanently ''lost" due to causes such

as fragmentation. Hence most structures are maintained in increasing
location order.

C. Must obviously be application independent, hence such things as
garbage collection, reclaimation, compaction, etc. are impossible.
The only relocation possible is that provided by the DAT hardware,
hence the mechanisms will often be page-oriented.

II. Storage Allocation for Supervisor Subroutines
A. Requirements and properties

1. Speed - must be very fast, for commonly used block sizes
(e.g. PCBs) because of heavy usage

2. Must never run out of space, since the system will crash if
this happens; paging, plus some care in coding, avoid this
problem

3. Supervisor code is ''dependable'', so little error checking
need be done.

4. Storage demands are, in a sense, fixed, since the supervisor
itself is a closed system (requests from tasks are considered
separately in the next section).

B. Pools
1. For very fastest allocation of fixed size (8 byte) entries for

a. CPU Queue
b. WAYT Queue
c. I/0 Queue

2. Separate, pre-allocated areas with space for 255 of each type
3. Free space is simple linked list, done with offsets
4. Use of pool index allows ''pointers' to fit in one byte

C. The Page Chain

With the exception of the pools, all dynamically allocated storage
is taken from, and occasionally returned to, a page chain which is
just a simple linked list of available pages. The page chain is
constructed at initialization. All other available storage
structures are initially empty.

The Supervisor never deals with blocks of real core larger than a
page.
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GRAB-FREE Subroutines

1. For every block size less than SVCASPEC (currently 96 bytes)
there is a special chain containing blocks of the corresponding
size. Calls to FREE always return small blocks to these chains,
which are kept in LIFO order. Calls to GRAB will take a block
from the proper chain if it is non-empty; otherwise it is
allocated as described in 2.

2. There exist two chains of arbitrary size blocks, maintained in
increasing location order to allow recombination. One is for
blocks smaller than SVCABIG (currently 1024 bytes) and the
other for larger ones.

A1l blocks larger than SVCASPEC are returned to these chains,
and blocks of any size less than a page are allocated from
them, using a first fit algorithm, and splitting blocks when
necessary.

3. If a block of the desired size or larger is not available,
take a page from the page chain if there are any, and add it
to the large or small chain according to size of the request,
and try again.

4. 1If the page chain is empty, begin moving blocks from the
special chains for small blocks to the arbitrary size chains,
and continue until a large enough block has been found, or
until all are moved. The latter case is followed by a superdump.

5. An example storage layout is shown in Figure 1.
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ITI. Storage Allocation at the Task Interface
A. SVC GETBUF, GETSEGX, and FREEBUF
1. Absolute tasks (GETBUF):

Maximum of 4 buffers allowed

Maximum size one page

Does some error checking, then calls GRAB or FREE

The address and length of the allocation are recorded in
a 32 byte table pointed to from the job table

(4 buffers X 8 bytes = 32 bytes). This is done so that
the storage can be recovered if the task goes west.

2. Relocatable Tasks

a. GETBUF implies segment 4, GETSEGX specifies any of 3 through 8

b. All requests rounded up to a page boundary

c. For each task there is a PCB (Page Control Block) chain
maintained in increasing virtual address order, one PCB
per allocated virtual page.

d. Supervisor scans PCBs until it finds a large enough hole
in the desired segment, then GRABs the required number of
PCBs (24 bytes each), initializes them and inserts them in
the chain, it never explicitly allocates real core. It
implicitly references the first page, however, into which
it stores the length of the allocation.

e. For FREEBUF the PCB chain is scanned for the PCBs describing
the freed region. The real core pages, if any, are put
back on the page chain, and the PCBs are removed from the
task chain, and the Page Out Queue if necessary, and put
on the Release Page Queue, where we will leave them for
this discussion. Actually the FREEBUF routine 1is
horrendously complex (more so than any other routine
described here) but most of its complexity is irrelevant
to us.

B. SVC GETSC, FREESC

a0 oW

1. For absolute tasks only.

2. These go directly to GRAB and FREE after checking to be sure
there is at least one page on the page chain.

C. SVC GETRP , FREERP

1. Used only by the PDP to get or release pages of real core to
be attached to PCBs.

2. GETRP just takes a page from the page chain if there are at
least two pages there.

3. Otherwise it scans the small and large chains of supervisor
pages and moves any full page blocks it finds over to the
page chain. If it found any, it tries again. Otherwise it
gives up, and the PDP will try again later.

4. FREERP essentially just adds pages to the page chain, unless
they have been reclaimed or released.
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IV. Storage Allocation in MTS (GETSPACE/FREESPAC)
A. General Requirements and Properties

1. Since this is the user interface, thorough error checking must
be done.

2. It must be possible to recover the storage which has been
allocated, in case user programs or various levels of system
programs go west, or even when they terminate normally.

3. Storage management structures are maintained in system level
storage, separate from the storage being managed; there are
two reasons:

a. It is undesirable to reference VM pages before they are
needed.

b. The user cannot be trusted to confine his references to
storage which is allocated to him.

4. The VM integral must be computed, to keep the accounting people
happy.
B. Buffer Control Blocks (BCBs)

The storage allocation structure is composed of fixed size

(16 byte) buffer control blocks. These too must be allocated
and freed. This is done using a conventional LIFO free space
list. One page of BCBs is allocated initially (via SVC GETSEGX)
and more are allocated if necessary, a page at a time. All BCBs
are in segment 4.

C. Storage Management Structures
1. One may wish to look at Figure 2 while reading the following.

2. Primary buffers: Storage requests obtained from the supervisor
via SVC GETSEGX are called primary buffers. Each primary buffer
is descirbed by two primary BCBs (PBCB1 and PBCB2) and one or
more sub-buffer BCBs (SBCBs). VMI accounting is done at the
primary buffer level.

3. Each primary buffer may be divided into one or more sub-buffers.
Each sub-buffer is described by one SBCB. The SBCB also
describes the free block following the allocated block.

4. The PBCB1 blocks are linked in increasing location order, and
each points to a PBCBZ block, which points to a list of SBCBs,
which are also in increasing location order. There is a
separate list of PBCBl blocks for each segment.

D. Detailed BCB Definitions
1. PBCB1 (all entries are fullwords)

length of longest free block in buffer
location of first byte past end of buffer
link to next PBCBI

link to PBCB2 for this buffer

an oe
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PBCB2

number of sub-buffers (2 bytes)

length of buffer in pages (2 bytes)

location of first byte in buffer (4 b ytes)

number of free bytes before first sub-buffer (4 bytes)
link to first SBCB

o A0 TR

SBCB

a. storage index number (1 byte) (read volume 5 to learn
about these)

b. 1length of allocated block (3 bytes)

c. location of first byte after block (4 bytes)
d. 1length of free block following (4 bytes)

e. link to next SBCB

GETSPACE Algorithm

1.

Search PBCB1 1list for desired segmenty looking for first omne
which has a free block equal to or longer than desired. If
not found, go to step 4.

Search the SBCB list (including PBCB2) for the first free
block equal to or longer than desired. There must be one,
or we blew it. Insert a new SBCB after it to describe the
new allocation and any remaining free block.

If the free block found in 2 is equal in size to the largest
free block recorded in PBCB1, the SBCBs must be searched
again to find the new largest free size. Then we are done -
return.

Issue SVC GETSEGX; if this fails, go to step 5. Get and
initialize a PBCBl1l, a PBCB2, and one SBCB, describing the
requested allocation, plus any remaining space in the last
page. Search the PBCBls and insert the new one at the
appropriate place. Compute the VMI and new total page count.

Must be insufficient space left in this segment. If a specific
segment was requested, or if we have already tried segment 8,
tell somebody about this problem. Otherwise, increment the
segment number by one and go to step 1.

FREESPAC Algorithm

1.

Find the SBCB whose allocated block completely contains the one
being returned. This is a two step process, going down first
the PBCBls, then the SBCBs. It is a nono if its not there.

Compare the freed block to the allocated block. There are 4 cases.

a. same - this is the normal case. Update field d. of the
previous SBCB with the sum of itself and fields b. and d.
of this SBCB. Unlink and free this SBCB. Update the
maximum free block in PBCB1 if necessary. Decrement the
subbuffer count (in PBCB2); if this is zero, the entire
buffer is free, so issue SVC FREEBUF, unlink and free the
PBCBs, and do VMI accounting. Return.
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b. Starting addresses the same. Update this and previous
SBCB accordingly.

c. Ending addresses the same. Update this SBCB accordingly.

d. Neither address is the same. Get a new SBCB and insert
it before the current SBCB. You should be able to figure
out how to diddle the various fields.

3. Update the maximum free length in PBCBl1 if necessary, and return.
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UMMPS PAGING ALGORITHM Jim Hamilton

Before descending into the details of UMMPS and the PDP, it is probably
instructive to say a few words about paging algorithms in general. They
may differ in several important ways:

1. Demand paging vs. Anticipatory paging:Under demand paging, a
system will move a page to main storage only when it is
referenced. On the other hand, a system may attempt to
anticipate the need for some pages, and page them in before
they are referenced. Almost all current systems use demand
paging.

2. The algorithm may be task oriented, or system oriented. That
is, the decision as to which pages to move to and from main storage
may depend heavily on the status of the task which owns them;
this would be a task oriented algorithm. With a system oriented
algorithm all pages in the system are treated identically,
independent of their owners,

3. The replacement policy, for choosing pages to be removed from
main storage, may vary considerably. This is probably the most
important factor affecting the performance of paging systems.
There are several possibilities discussed in the literature:

a. FIFO - The oldest page in storage is chosen for removal.
This is clearly not a very good choice, but early versions
of UMMPS used it,.

b. Least Recently Used (LRU) - The page with the longest time
since last reference is chosen for paging out. Note that
this algorithm can only be approximated on the 360/67, and
most other current processors.

c. Working Set - The system keeps a record of recent references
to pages by a task and attempts to keep a 'working set' of
pages belonging to a task in core. This is a task oriented
policy, which attempts to estimate program behavior. It is
said to be a nearly optimal realizable algorithm.

d. A-Optimal - The page whose next reference is farthest in the
future is chosen for removal. This is, in some sense, an
optimal algorithm, but is unrealizable without knowledge of
future page references. It is mainly a standard for comparison.

UMMPS uses basically a system oriented demand paging algorithm with an
LRU replacement policy. The supervisor is totally responsible for these
aspects of paging and their implementation is found in the GETWP SVC,
which will be described in some detail later. The Paging Drum Processor
(PDP) is responsible for the actual transfer of pages to and from the
paging devices. In the remainder of these notes we describe 1) the
UMMPS - PDP interface, 2) the PDP, 3) UMMPS (mainly GETWP), and 4) a

day in the life of the average page.
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The UMMPS - PDP Interface
A. Data Structures:

The primary data item containing information relevant to paging is the
Page Control Block (PCB). A PCB is 24 bytes long and contains the
following items:

Virtual address

Real Address

Pointer to owning TCB
Task page chain pointer
System Queue pointer
Reference Bit

Change Bit

External Address

OIS NN

plus several other items which don't concern us here. PCBs are created
by the GETBUF SVC, and are released by the PDP.

There are four queues used by the system in managing paging. These are:

Page-In Queue (PIQ) - Pages to be brought into core from secondary
storage

Page-In Complete Queue (PICQ) - Pages which have just been brought into
core,

Page-Out Queue (POQ) - Pages which are in core, ordered approximately
from least recently used to most recently used.

Release Page Queue (RPQ) - Pages which have been released (via FREEBF SVC).
B. Special SVCs

There are five special SVCs which are used only by the PDP. These are:
GETRP - Get real page - Used to get a real page of core to read into,
for a page-in operation.

FREERC - Free real core - Used to release the core allocated to a page
after it has been paged out.

GETWP - Get Write Pages - Removes a specified number of pages from the
POQ, to be written out,

GETQS - Transfer the contents of the PIQ and RPQ to the PDP.

PDPWAIT - Tells UMMPS the PDP has nothing more to do. It will be
restarted by a completion interrupt from any of its devices, or when
UMMPS decides there is more for it to do (i.e., PIQ non-empty, or
pages need to be written.
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The Paging Drum Processor

A.

Overview - It is the responsibility of the PDP to manage the

paging devices, which currently include two drums and one disk.

Each drum holds 900 pages, and the disk holds 6400 pages, for a
total of 8200 pages. The worst case observed to date has been
something over 4000 pages, and a typical heavy load is between
2000 and 2500 pages.

The disk is used only when the drums are nearly full, and at this
time the PDP chooses pages on an LRU basis and moves them from
drum to disk. This is called page migration.

The PDP consists of two asynchronous parts: the first builds
channel programs and starts them via SVC STIO, and the second
handles the completion interrupts and posts the completion of the
paging operations.

In order to understand the operation of the PDP, it is necessary to
understand the workings of the paging drum.

100 tracks, each with its own
read-write head.

The picture shows the logical structure of the paging drum. Physically
there are 200 tracks, with 4 1/2 pages per track, but the PDP treats

it as shown, with the difference obscured by a trick in the channel
programs.

The PDP constructs channel programs for all nine slots at a time.
It will then chain these together if possible. The PDP is so
designed that the drums can be kept running for an indefinite time
with only one SIO, with reads in the appropriate slots, and with
writes filling in the rest as necessary. Using this method, writes
(i.e., page-outs) are essentially free.

PDP Data Structures - The PDP maintains a huge data block for each
drum. Each such block contains, among other things:

1. 9 Local Page-in queues, one for each slot.

2. 3 channel program buffers

3. Spaces for 27 PCB pointers for the PCBs associated with the
3 possible channel programs.

4. A bit table describing available space on the drum; organized
by slot.

5. 9 migration lists, one for each slot of PCBs ordered from least
to most recently used. (''used'" in this context means paged-in
or paged-out.)
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A local page-in complete queue

There is also a data block for the disk. Since the disk is managed
on a page at a time basis, with no attempt at optimization, this
data block contains only one local page-in queue, one channel
program, one current PCB pointer, and the bit table.

There is also a '"'global' local page-in complete queue, on which
the local PICQs from each device are collected, and whose contents
are occasionally transferred to the supervisor's PICQ.

The algorithm
Get the PIQ and RPQ via the GETQS SVC.

1.

1.

1.

1

For each PCB on the RPQ, release its external address,
free its real core page via SVC FREERC, if there is
one, and free the PCB, via FREESC SVC (Free Supervisor
Core).

For each PCB on the PIQ, add it to the end of the local
page-in queue for the appropriate slot on the appropriate
drum, or to the LPIQ for the disk. This process is called
slot sorting. If the PCB has no external address, put it
on the local PICQ now, since it must be a new page.

For each drum do the following:

2.

2.

2.

2.

2.

2.

1

2

4

5

Allocate a new channel program buffer if possible. If
not, go try the next drum.

For each slot: if the LPIQ for the slot is non-empty,
remove the top PCB, get a real page via SVC GETRP if
possible, and construct a CCW to read the page in. If
no core is available, go to step 2.3 immediately.

If there are slots available which don't contain reads,
check drum availability; if there are less than MIGTH

pages left on all drums, and if no migration is currently

in progress, take a page from the top of the migration

list for one of the available slots, and construct a CCW
to read it into a page of supervisor core. Remember that

a migration read has been started. MIGTH, the migration
threshold, is currently set to 50 pages per drum, or a total
of 100 pages, with 2 drums. This will probably be reduced
in the future.

If there are slots available which have no reads, and which
have unused tracks for writing, issue SVC GETWP, requesting
as many pages as there are available slots.

For each PCB returned by GETWP, see if it has been changed.
If not, and it'son the drum, just issue SVC FREERC. If it
has been changed, or is on the disk, free its existing
external copy, and construct a CCW to write it into one of
the available slots.

If there are still some available slots because of unchanged
pages, issue another GETWP, and go to step 2.5.
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2.7 If any reads or writes were set up in 2.2 through 2.6
above, package up the channel program and either issue
SVC STIO if no channel program is currently running, or
chain it to the end of the current channel program, with
a TIC command.

This completes the setting up of channel programs for the drums.
For the disk, do the following:
3.1 If the disk is already running, do nothing.

3.2 If the local PIQ for the disk is non-empty, issue GETRP
for a real page, and construct a CCW to read it in. Go’
to step 3.4.

3.3 If a migration read was set up in 2.3, then allocate a
disk page and construct a CCW to write it out.

3.4 If anything was done in 3.2 or 3.3, complete the channel
program but modify it so only the seek is done, then issue
SVC SIO. This way the channel is not busy during the seek.

3.5 When the seek terminates, restart the channel progranm,
doing the whole thing this time, unless we are doing a
migration write, in which case we may have to wait for the
completion of the read.

This completes the setting up of disk channel programs.

Collect the local page-in complete queues from the several
devices and add them to the 'global' local PICQ. If there are
any new pages on this queue, issue a GETRP for them. If GETRP
fails, keep these pages on this local PICQ, but put all completed
pages on the supervisors PICQ. The supervisor will eventually
find them there and restart the waiting tasks. If any channel
programs were started above, go to step 1. Otherwise PDPWAIT.
This completes part one of the PDP.

The remainder of the PDP consists of device-end and PCI (program
controlled interrupt) interrupt routines. The PDP arranges to
receive a task interrupt at the completion of any of its

channel program buffers, i.e., once every logical drum revolution,
from each drum. At such times it does the following steps:

For each PCB in the channel program just completed, do the following:

5.1 Add it to the bottom of the migration list for the
appropriate slot, if this is a drum.

5.2 If it is a read operation, add the PCB to the local PICQ
for this device. Go to step 5.4.

5.3 If it is a write operation, free the real core page, via
FREERC.

5.4 Free the channel program buffer

5.5 If this was a device end, mark the status of the device
as stopped.

5.6 Return and re-enable the interrupt.
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This completes the description of the PDP algorithm. Many
details of the actual implementation have been omitted for
simplicity, but most of the important ideas are there.

IV. The Supervisor

In this section we discuss the algorithms for the five PDP SVCs, plus
the subroutine TRANS, which is called to handle paging exceptions,

among other things. All but TRANS and GETWP are, at least conceptually,
simple, but all are mentioned briefly, for completeness.

PDPWAIT - Save the TCB pointer for the PDP (this is the
only way the supervisor knows which task is the PDP).
Remove it from the CPU queue. Save the restart address
(a parameter in GRO)

GETQS - Lock the PAGQ lock, pass the PIQ and RPQ pointers to
the PDP, set these pointers to zero, unlock, and return.
This must be an SVC because only the supervisor can do the
required locking.

There are several variables which control the page replacement policy,
as implemented in the GETRP, FREERC, and GETWP SVCs. These are:

1. NFRPGS - Number of free pages available

2. MINFRPGS - Minimum number of free pages which must be
maintained, currently =1

3. NWRTPGS - Number of pages being written out

4, WRTFRPGS - The threshold for deciding when to write
pages, currently = 15

GETRP - If the number of free pages is greater than or equal
to MINFRPGS, remove a page from the free page chain and
decrement NFRPGS. Otherwise indicate that no page is available.

FREERC - Add the page to the free page chain and increment
NFRPGS.

GETWP - A little more complicated
1. If NFRPGS + NWRTPGS > WRTFRPGS, return zero pages.

2. For several reasons, the proper operation of GETWP requires
that no CPU be relocatable. Therefore, if the other CPU is
relocatable, a WRD instruction must be executed at this point,
which causes an external interrupt to the other CPU. A flag
is then set which will hold up the other CPU until GETWP
finishes its work and resets the flag.

3. Starting at the top of the POQ, do the following for each PCB
encountered, until either getting enough pages to fill the
request, or until reaching the end of the POQ.

3.1 Update the reference and change bits in the PCB with
those in the storage keys for the real page.

3.2 Set these bits in the storage keys to zero.

3.3 1If the page has not been referenced, add it to the list
of those to be paged out. If it belongs to a non-privileged
task, page it out anyway. If it has been referenced, reset
the reference bit and move it to the end of the POQ.
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3.4 1If a page which has not been referenced belongs to a
task which is running on the other CPU, don't page
it out; instead leave it on the POQ.

3.5 Each page to be paged out is removed from its page table.
4. Update NWRTPGS, and return.

TRANS - A supervisor subroutine called by anything which needs

to reference a virtual address, which means mainly paging

exceptions, but includes other parts of the supervisor as well.

The algorithm for TRANS is:

1. Try an LRA instruction, if this works, return.

2. Search the task PCB chain, or shared PCB chain if
segment 2. If not found, simulate program interrupt 5.

3. If the page is being paged in already, chain this request
onto the previous and go schedule another task.

4. If the page is being paged-out, mark it as reclaimed,
update the page-table, and return.

5. If the page has an external address, put the PCB on the
PIQ, and schedule another task.

6. If the page has no external address, it must be new; try
to get a real page for it. If successful, return, with
the page table updated. Otherwise put it on the PIQ,
and the PDP will retry.

A Day in the Life of the Average Page
The chart on the next page illustrates the various transitions which may

be encountered by a page during its lifetime. Note: only those SVCs
are shown which deal with the particular page we are watching.
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Jon Bauer

CCS 500
June 28, '72
The Michigan Graphics Interpreter Iv.c.1
In the few pages that follow, I'll describe the major

features of the MGl routines and how they're implemented. A large
portion of the paper will be devoted to describing the MGl routines
setting the ground-work for explaining the implementation which is
actually quite straightforward.

The MGl system consists of a set of Fortran-callable routines.
They were written to be device independent and to that end, they
generate no hardware graphics commands directly. Rather, they
return graphical data which, in turn, can be used to drive hardware-
dependent graphic routines to draw the images.

The MGl system was written to manipulate graphical objects called
'elements'. Routines perform three basic operations. Elements may
be created, transformed, and recovered by calls to the appropriate
routines.

The current MGl system handles three types of elements: 'parts',
'transforms', and 'assemblies'. A part is an element which defines
a three-dimensional graphical entity in terms of points and lines.

A transform is an element which can cause a part to be scaled,
rotated, viewed in a perspective, and/or translated (moved). An
assembly is an element which defines a heirarchical relationship
between parts and subassemblies and transforms. A transform can be

applied to parts and assemblies.
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Parts

A part is completely defined by the following data...
1. A legal MGl name,
2. The number of points,
3. The homogeneous coordinates of each point, and
L, An attribute number for each point.
A call to the appropriate routine with the above information causes
the part to be created.

A ‘legal MGl name' is defined to be a string of non-blank char-
acters, left justified to a full word boundary followed by a blank.
Up to six non-blank characters may be specified. (MGl names are
also used to name transforms and assemblies.)

Four homogeneous coordinates are used to define each point of

a part. They can be written.
(HX,HY,HZ,H)

where the normal coordinates can be recovered by.

HX HY . HZ
= Y=o 1Ty

If we wish to express the normal coordinates (X,Y,Z) as homogeneous
coordinates, we could of course write (X,Y,Z,1)
The reasons for representing points using homogeneous coordinates
are.
1. Three dimensional transformations may be represented
and performed very simply in this coordinate system, and
2. Points at infinity can be described using finite numbers.
The first and more important reason should be easier to understand
after reading the next section on transforms.
Attribute numbers (one per point) are generally used to specify
the type of lines to be drawn to the corresponding points. For example,
zero might be used to indicate invisible lines and one to three may

indicate different line intensities.
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Using this convention, the shape shown in Fig. 1 could be defined by:
Point X Y V4 Attribute
1 0 0 3 0
2 2 0 3 1
3 0 2 3 1
4 0 0 3 1
5 0 0 0 1
6 2 0 0 1
7 0 2 0 1
8 0 0 0 1
9 0 2 3 0
10 0 2 0 1
11 2 0 3 0
12 ? 0 0 1

P
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REAL X(12)/0., 2., 3%0., 2., 4%0., 2%2./,

& Y(12)/2%0., 2., 3%0.,2., 0., 2%2., 2%0./,
& Z(12)/4%3., 4%0., 3., 0., 3., 0./
INTEGER IAT(J2)/0, 7*1, 0, 1, 0, 1/

CALL MGINIT (50)
CALL MGPTZ2('"WEDGE ', 12, X, Y, Z, IAT, &800)

This example creates a Part named WEDGE which may now be

manipulated by the MGI routines.
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Transforms

A transform is defined by the foilowing data.
1. A legal MGl name, and

2. ALk x4 transformation matrix.

We can also represent a set of points, for example a part, as

a matrix. A set on n points can be represented by the matrix.

m -
HX] HY] HZ] H]

ﬂXz HY2 H22 H2

HX HY HzZ H
n n n n

Multiplying such a matrix (set of points) by a transformation

yields a new matrix which represents the transformed set of points,

eg.
— - - o ~
HX, HY, HZ., H ABCD HX! HY! HZ! H!
1 1 11 FFGH 1 1 11
¢ - ] 1 I ]
HX, HY, HZ, H | X |7 ) o) - HXS HY, HZ, H)
MNOP
HX HY HZ H HX' HY'! HZ' H!
n n n n L n n n
original part transform transformed part
Let's look at some particular matrices and what they do.
ldentity
1000
0100 Causes no change.
0010
0001

Independent Scale Changes

a 000 Causes the x axis to be scaled by a factor of a.
0Obo0oO .

00 cO Causes the y axis to be scaled by a factor of b.
[9 00 1 Causes the z axis to be scaled by a factor of c.



Uniform Scale Change

o oo !
co—o
o—o0o

Translation

0 - oo

o oo =!
4O — O

Rotation About

cos ©
-sin 8
0
0

Rotation About

cos 6
0
sin 8

-0

Rotation About

[ 0
0 cos
0 -sin
0 0

—

Projection
i

0
0
0

OO —0
o —-0OO0O

Iv.C.6

0
0 Causes the part to be scaled by a factor of d.
0
1/d
5l
0 Causes the part to be shifted e units along
0 the x axis, f units along the y axis, and
1 g units along the z axis.
x Axis
sin 800
cos 6 0 Causes a part to be rotated about the
0 0 X axis by an angle of 6.
0 1]

y Axis
0 -sin 80
1 0 o
0 cos 80
0 0 1
z Axis

0 O
8 sinB 0
8 cos 8 0

0 1
0
0 Causes a part to be distorted as if it
1/v were being viewed from a point along the
]

z axis, v units from the origin.

Probably the nicest feature of this matrix representation of

transformations (and the motivation behind using the homogeneous

coordinate system)

is that the above basic transformations can be

combined in any amount and any order and the resulting more complex

transformation can also be represented as one 4 x 4 matrix.

It's easy to show this.

Suppose we wish to apply n transformations
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to a part (for example, we might want to move (translate) a part to
the origin, rotate it about the x axis, rotate it about the y axis,
enlarge (scale) it, and move it back to where we found it.) We could
multiply each point in the part by each transformation matrix (in
he proper order) to transform the part ie.
Panr X [T J X —/" X X T N 724»*:“&:461‘!
0s0 Maraix ' Z et n 4 Frgr 1
MaTrix |

- i

Or we could multiply all the transformation matrices first and apply

the resulting transformation matrix to the part to be transformed,

ie.
4 _- — ' —_ TRaws conms p
fanr X 7, X 7/, X .., X /n S Pogs
. op0 : :
Marrix - Maorrix

This buys us two things. a) Once we've computed the composite
transformation matrix, fhe computation costs for transforming a part
are reduced by a factor of n. b) We can represent any combination
of the above simple transformations, no matter how complicated, as
one 4 x 4 matrix saving storage costs and simplifying our implement-

ation of assemblies which will be described in the next section.
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FXAMPLE PrOGRAM-~pPART L & TIANSF IRMS,
TA BE RS DA CARENTEY GRAPMICS TERMIMAL.

oNeNe

REAL XO12) /00 s 2oitas e LA e e AT/,
& YO12)/2%0 . T s ft ) e s Doy Ussr tes 2x04/,
& Z12)Y2 4% 3., A*ia, e ey 3 De/,
& PI/Z3.141597/

INTEGER TATC12Y/0. 7¢%a Ny 1. O, 1/

INITIALTZE ANT O ATy Lpnne,

aon

CALL MOINTT(SO) initialize the MGl routines
CALL NOPT2CLINCE 12 XY 2 IATH2E00)

ERAST SCREFMN AND READ aMGLE.

e Xe Ne!

10 CALL CKDER computek routine to erase the screen
PRINT 200

900 FORMATC'ENTER ANGLS IN DFCREFSe ')
READ 905, ANG

90S  FIRMAT(F & 1)

DEFINF AND B LLD S T

1) SCALE 1P =y 100,

QOO0

CALL MOTERC'TY ', *0Cn r, 100,200 definme a transform

2) THANSLATE 0 THAT 20 Te 19 AT JiCIN.

aaod

CALL MORTHC'T1 570 o= iy =0 Te =150, s £500) .
build up the

Y UNTATE AL pensd . transform

[oEeNe)

CALL MR 07T ", Y i 0= [y v, 000

[N e Re!
oS

~

Z

A

>

[}

-

CA"L /",T"vi . sor " 1 . » ’ 'v‘ v’ B 3 . . ~-‘ . :. o . )
c Y3 STES - .
C

- e E - ! 4 ' ! s ‘ . L " . }
C
r PR s s T
A i H i

’ J “ N .

(‘ { i[ (h‘\- [ < (" § 3 Tl
CALY ms 1T s this computekh routine draws lines
PEAD TG, ivizsible and invisible) to the
Dy T4 coordinates specified by the X

C and Y vectors.

- ERT

C

900 PAYGE
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WEDGE, Angle = -300

WEDGE, Angle = 10°
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Assemblies

An assembly is defined by the following data.
1. A legal MGl name,
2. The address of a primary transform (optional), and
3. The number of subelements (one or more)
4. One or more of the following pair:
a. The address of a subelement, and
b. The address of a secondary transform to be associated
with this subelement (optional).
A call to the appropriate routine with the above information causes
the assembly to be created.

Assemblies are used to relate parts and other subassemblies with
transformations. An assembly can be manipulated in much the same way
as a part.

As an example, consider an assembly named TOOT which consists of
two parts named PROP ( a propeller) and PLANE (the rest of the plane).
The points of TOOT may be transformed and recovered by calling the
appropriate routine and referring to 'TOOT' by name. |It's also poss-
ible to associate a transformation with TOOT's subelements PROP and
PLANE (for example, to rotate PROP about its x axis).

A simplified graphical representation of the data structure for
TOOT is.

T1

TOOT [

T2 T3

—
PROP “PLANF
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In the above diagram, Tl is the transform associated with the assembly
TOOT. T2 is a transform associated with PROP and T3 is a transform

associated with PLANE.
When the points of TOOT are to be recovered (to display the plane

for example) the data can be thought to 'flow' upward (see next diagram)

i

TOOT =~ T1

T2 T3
! {
PROP LANE

from PROP and PLANE through T2 and T3 respectively. PROP and PLANE

are called the 'subelements' of this assembly. (In this example,

the subelements are both parts, but they could be other assemblies.)
Associated with each subelement of an assembly is a 'secondary trans-
form', in this case T2 and T3. When an assembly is recovered, the points
of each subelement are transformed by the appropriate secondary
transforms. Associated with each assembly is a 'primary transform', in
this case Tl. After being transformed by secondary transforms, all

the points of an assembyy are transformed by the primary transform. It's
thus possible, in effect, to manipulate the entire assembly by trans-
forming the primary transform. (If no transformation is desired, the

identity transform can be specified.)
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List-Structure Implementation of MGl System

The MGl routines maintain a dictionary of element (part, transform,
and assembly) names along with a pointer from each name to the
element's header.

NanE PR,
]

Po.yTERK TO AN
ECEMENT HERICR

4

i X

— 2 WORS S e | wek'? 3

Headers are eight words long and of the form.

Name (s a1725)

Bac k Tyre
Prr Coor
Amovwr oF # or
7.
76476 £ LTEMS
Frim
Tran'siokm 0
P1R

(Forcowed comricuonsia gy rut FitsT WopE OF THE ELEmenT)
BACK PTR represents a back pointer into the dictionary. TYPE CODE

indicates whether the header is for a part, transform, er assembly
(1, 2, or 3). AMOUNT OF STORAGE holds the number of words of storage
being used by the element. Depending on whether the element is a
part or assembly, # OF ITEMS holds the number of points or number of
subelements respectively. (If the element is a transform, the # OF
ITEMS field is unused.) The PRIM TRANSFORM PTR field is only used
when the element is an assembly in which case it points to the pri-
mary transform of the assembly if it exists.

Nodes are six words long.



Travscorn - Nose

Fogz - Mo

HK; HY:

T2

HZ;

T,

Ia7: | CP

7.

Tea

(Foicowey con7 s6uousey BY
2 Mokt woets covmming Ty~ Tuy)
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Asstmact Nosy

Secoveney | Svsettaens
TRavs roRM Pre
Pra B
Seccwpary SuBELEMY T
RAVSFOR N ﬁ7 2
Fra

P

In the part-node, HXi’ HYi’ HZi’ and Hi represent the homo-

geneous coordinates of a point, and IATi represents the attribute

associated with the line drawn to that point (eg visible or invis-

ible).

CP represents a continuation pointer which either points

to the next part-node or is 0 indicating that the next part-node

follows contiguously.

Three contiguous transform nodes are used to hold the 16 elements

of the transformation matrix.

An assembly-node can contain two sets of pointers (in addition

to the continuation pointer which has the same function as in the

part-node).

and the secondary transform which modifies it.

Each set of pointers points to an assembly subelement

Consider the following example's simple and then more complete

diagrams to get an overview of how the dictionary, headers, and nodes

interwork.

S'/ﬁfgc’ pm CAAM

e

Awvecer

TR |

LINE2
(3.2,2)
(6,6,6)
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MGI Users' Guide, John Van Roekel (Available at Aero. Eng. Office)

Engineering Summer Conference Notes on Graphics, 1971 (On homogeneous

References:
1.
2,
coordinates)
3. Drawl:

Concomp Report #30, AD-715952
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Introduction

In the process of presenting the basics of Set Theor-
etic Data Structures (STDS), several areas will be covered.
First, the system's history and underlying philosophy will
be discussed. This will be followed by a general discussion
of information retrieval systems. Then the machine environ-
ment will be contrasted to the information environment and
the use of set theory in information systems will be explained.
This will be-followed by a discussion of system internals,

implementation and limitations,
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History and Underlying Philosophy

At the bzginning of the ConComp Project at the University
of Michigan in 1967, Project Director Franklin H. Westervelt
initiated an investigation of data structures. He felt that
present efforts in data structure development were too machine-
oriented and that future needs would not be met. His conten-
tion was that users of large data bases should not be burdened
with the intricacies of complicated data representation. In-
stead, data representation should be transparent to the user.
Thus the need for a generalized data structure arose. This
structure was not to be machine-oriented but information-oriented
(where design emphasis was placed on information content instead
of machine representation). Historically the development of
a data structure was based on a particular problem for a spe-
cific machine and then generalized. Another approach would be
to start with a general means of expressing any problem and then
adapt the general representation for a particular machine. This
approach eventually resulted in the development of Set Theoretic
Data Structures (STDS) by Set Theoretic Information Systems, Inc.
(STIS) of Ann Arbor.

It took over three years for the concept of STDS to become
a usable interface. The preliminary work in this area began
with Timothy E. Johnson and Jerome A. Feldman with Associated

Data Structures. From this work, Associated Data Structures
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introduced the functional notation

A(0) =V
Its significance is that something done in the information
environment can have an arbitrarty implementation in the ma-
chine., Functional notation has the limitation that its argu-
ments have to be single valued. For example, the square root
function f(4) = 2 by convention. But f(4) = -2 would be
equally correct. David Childs, formerly of the ConComp Project
and now with STIS, felt that set theory could be used instead
of functional notation. This doesn't pose the problem presen-

ted above since the arguments and parameters are sets, hence

£(4) = {2,-28.
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Information Retrieval Systems

In understanding why there is a need to create a more
general system, one must understand the limitations of standard
information retrieval methods and dat# structures. The tradi-
tional way to implement a retrieval system has been to determine
what questions are to be asked of the data, then to write a
program and choose an appropriate data structure to answer those
questions. Therefore one is limited to that class of questions.,
Data organization methods are utilized for storing, updating
and retrieving data. Each task demands a different data repre-
sentation to be efficient. These‘different data organizations
are used to bridge the gap between logical user requirements and
the physical realities of storage media and computer hardware.
Common data organization falls into four classifications - sequen-
tial, random; list and networks. Each one has specific assets
and limitations.

Sequential organization offers fast accessing of sequential
records but has difficulties in random accessing, inserting and
deleting records,

Random organization provides efficiency for queries and up-
dates but not for insertions and deletions. 1In addition, one is
required to have indices or keys which cause redundancy in data
representation. Sometimes dictionaries are required which in-

crease the storage overhead.,
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List organization includes rings and simple and inverted
1ist structures. In this type ¢f organization, pointers are
used to link the elements. These pointers increase the amount
of storage used even though they increase retrieval efficiency.
It is not uncommon for the pointers to take up more space than
the data.

The general network organization is one in which several
levels of pointes are used (i.e.; tree structures). This struc-
ture is a collection of access paths. Each path is used to an-
swer a specific type of questions. 7The problem with this type
of structure is that it is almost impossible to tell when an
existing path is obsoclete since the user and his program become
dependent on the paths. If all the paths are kept until the
final reoference then there exis%s,;ﬁ excessive number of paths
using an excessive amount of storage.,

Since no one representation is best or even adequate for
all retrievals because data is usually bound to a machine repre-
sentation, there exists a need for a new type of system.

E. F. Codd suggests that the relational view of data is much
superior to the existing noninferential, formated data systems.
"It provides a means of describing data with its natural struc-
ture only - that is; without superimposing any additional struc-
ture for machine representaion purposes."1 STDS epitomizes the
relational model of cdata. It provides an efficient methed (min-
imal cost) of making data transiormaticn (i.e., changing data
from one storage mode to another) without effecting the form of
the retrieval programe. 7Thz=n any retrieval requirement could be

facilitated by the selection from machine representations availabl
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Any transformation can be made subject only to the gained or lost
retrie§a1 speed versus the increase or decrease in storage require-
ments. Therefore, the information is not limited by the restric-
tions imposed by machine representation.

In order to accomplish this, the characteristics of the in-
formation had to be isolafed‘from those of the machine. Many of

the problems in data management arise as a result of failing to

recognize this distinction.

The former is the one that pervades current computer installations. It is represented byz

‘PROBLEM
STATEMENT
DEDUCTIVE MACthNAE NT
PROCEDURE ENVIRONME
STRUCTURE
SOLUTION

‘Schematically, the relationship of the IE, ME, and MES should look like this:

PROBLEM
STATEMENT

¥

DEDUCTIVE MACHINE
PROCEDURE 7 ENVIRONMENT
STRUCTURE

SOLUTION

2
Diagrams from STIS Corporation.
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Machine Environment versus Information Environment

In order to understand the distinction between the infor-
mation environment and the machine environment, it is necessary
to see which characteristics and properties are attributed to
each,

The information environment can be loosely characterized
by items, data, relationships, queries, questions and answers
while the machine environment can be described in terms of bits,
bytes, words, addresses, contents of addresses, registers, sorts,
searches and pointers. Problem statements and solutions are in-
herently a property of an information environment: as is the
deduction procedure used for obtaining the solution from the
problem statement. Problem execution is a capability of a ma-
chine environment. The transformation operations are in this
category. There exists a machine environment structure (MES)
which specifies the operational particulars of a given machine
environment. These include word size, memory size, languages
available, etc. and all the other considerations that allow a
user to interface with the machine environment. The information
environmént structure (IES) is a deductive procedure which accom-
odates the information environment.,

In most systems, the IES must be a deductive procedure ac-
comodating tke information envirenment and the additional time

and storage constraints imposed by the MES. In this case the
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IES is the same as the MES. In order to achieve separation,
two requirements must be met. First, a general deductive pro-
cedure language that's potentially expressive of any information
environment. The second requirement 15 the construction and
implementation of a language that accomodates the storage and
time constraints of the MES. Set theory with the appropriate
machine environment interface provides these properties that
are necessary for isolating the two environements. STDS pro-

vides the interface between the environments.

Since set theory provides the propertics necessary for isolating the information enciron-
ment from the machine environment, any implementation of set theory with the appro-
priate machine environment interface will suffice.

I .
IE ' ‘ME
1
| ! 1
IES STIE | ME! . MES

SET THEORETIC DATA STRUCTURE

The implementation of a setr theoretic information environment (STIE) and a muchine
environment intcrfuce (MEI) is called a set theoretic duta structure (STDS).

The feasibility of an STDS has been shown. The viability of an STDS depends completely
on the quality and caliber of the particular implementation.

SET THEORETIC DATA STRUCTURE AS AN INTERFACE
BETWEEN THE INFORMATION ENVIRONMENT
AND THE MACHINE ENVIRONMENT
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Set Theory in Information Systems

"Any data structure is actually an isomorphism between the
machine environment and the information environment preserving
the functional aspects of each."u Hence STDS is a data struc-
ture that can map the myriad relationships of the information
environment into the algorithmic world of the computer., This
data structure is machine independent since the user can access
his data without needing to know which machine is used (subject
to the limitations of certain machines). The second condition
that is necessary for isolation is satisfied since general in-
formation requests can be abstracted to set operations. Set
operations are defined in terms of results,; not in terms of the
means for obtaining results. Thus any procedure giving the cor-
rect result is legitimate.

For example, if an information requesv is expressed as a
set operation , {), given data as sets A and B with the retrieved
result as set C, then the abstraction can be stated:

AW B=CcC
In order to define this abstraction and therby prove that &) is

a valid set theoretic operation, it is necessary than an element

X is a member of T if and only if there exists a truth function
relating A, B and X (i.e.y, C = {X: ?(a,B,XfS )+ This is an ex-
istance criteria for C; not a procedure for constructing C. It

is the fact that the function is decidable that makes & a set
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theoretic operation and assures that C is defined. Nothing has
constrained how A, B or C should be structured nor what procedure
should be employed to construct C from A and B. For instance,
let ) be the same as U (union) then A U B = C. One doesn't care
how *his unioniis constructed or how the machine denotes C as

A U B. Therefore, any convenient and/or economic representation
of data (e.g., the sets A and B) fulfills the necessary and suf-
ficient condition of isolation of the information environment
from the machine environment. Hence the STDS routines are essen-
tially machine independent.

Set operations are abstractions on sets yet the term "set"®
has a vague Q?aning when applied-to an information retrieval
systeme All data can be represented as sets. A set has to be
well ordered since there ;re n! ways of ordering n records.

Thus, fhe lexicographical ordering was chosen. These sets are

a collection of n-tuples (a record) represented by blocks of
contiguous storagé. It is important to prove the assertion that
any data can be represented by a sete The method of proof will
be by examples In these;S' denotes the address of the location
that contains S and ¢ defines a null pointer. A list structure
is one of the most commonly used data structures. Consider

this linear list:

.'SV@XI‘*“"Y[}'

The only information that this structure contains is that S comes

before X *hich is followed by Y which comes before Z. This in-
formation can be denoted by a set of three ordered pairs -
{(S,X),(X,Y),(Y,Z)Z. If someone wanted to know the structural

interpretation of the 1list, it could be represented by the
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following set:
{651,5,X> , (X1,%, YD , {Y',¥,2% , 2,2, }
A set can be used to describe more complex list structures.
They can describe the individual cells of a list structure.
Let A be a set which contains only one 4-tuple:
A= {2, 6, 4, B
and let B be a set which also contains only one 4-tuple:
B = %@ype,information,forward pointer,backward pointaﬁ%

If a user wants to know what a cell looks like, all he has to
do is list A + B He will find that the type of cell is found
in the first two bytes, the information in the cell is in the
next six bytes, the pointer to the next cell is in the next four
bytes and the pointer to the previous cell is is the last four
bytes. If C is the 1list structure being described then C is a
collection of n-tuples where an n-~tuple is sixteen bytes (in
this case). This scheme can be used to describe any list struc-
ture.

It might seem hard to transform a network structure into a

set. This composite structure can be represented by the fol-

lowing set of twenty ordered pairs:
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f(g,m, (hya> <ca,£>1<a b, <a,8>ydbyid, <bycy, £, <Gk, dkycdr
69@3 é-sd>, <nyq, <myt) ,<m, 2>, {d,z)) <d,y> <d9P>)<d’e>)(°sf7}
Hence, every data structure and all types of data can be repre-
sented as a set.

Sets can be represented internally by mény different data
structures. Each different representation is referred to as a
"mode®", These data structures were developed by STIS Corp. which
take advantage of the capabilities and limitations of a specific
MES. It is through a set's transformation into these different
modes that efficiency is achieved. STIS Corp. believes that
for any retrieval request there exists a best data structure
(mode) . Sinc? sets can be transformed easily from one mode to
another, S§TIDS can provide the best data structure for each
retrieval request, if the best mode is known.

To understand the basic internal scheme of STDS, one must
understand some basic properties of sets. Every stored represen-
tation of a set must preserve all of the properties of the set.
Every representation of a particular set must behave identical-
ly under set operations. TFor example, let A be a set of students
and B be a set of Michigan residents. Then to find the set C
consisting of all students who are Miehigan residents, C would
equal the intersection of A and Be Let A have mode(6) which
may be assumed to have slow retrieval and small storage proper-
tiess Assign mode(3) to B and assume that it has fast retrieval
characteristics but requires a large amount of storage. Con-
sider the set theoretic expression AM 3 = C; C after the inter-
section operation will be of the default mode. If the mode of

A were changed from 6 to 3 or if the mode of B were changed from



Iv.D.14

3 to 6 or if both modes were changed, the resulting set C would
be exactly the same, only the time to execute the intersection

operation and the resulting default mode for C might vary.
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System Internals

STDS is constructed in five structurally independent parts:
(1) a collection of set operations, S
(2) a set of datum names, B, which point to the ith generator
set?'s header
(3) the data which is a collection of datum definitions, one
for each datum item
(4) a collection of set names, N
(5) a collection of set representations each with a name in N
STDS consists of a series of modules, most of which are set oper-
ations, written in FORTRAN which access sets through the poin-
ters in N. All info#mation between sets can be expressed as a
set theoretical expression generated from an operation in S.
Here is one of the limitations of STDS. Since all retrieval
requests have to be expressed in set theoretical expressions,
there may exist a request which cannot be transformed into those
terms. The set theoretical expressions determine what sets are
to be accessed and which operations are to be performed so that
all storage requirements are known prior to the execution of the
operations. If a request requires more storage than can be ob-
tained from the system, then the operation is not performed at
all; there is no partial completion. There are no pointers
between sets so the collection of set operations acts as the on-
ly structural tie between sets.

B is the set of datum names which is considered a block in
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set) which locates a section of core that l1ist the generator set
names that are used by the composite set. Suppose that a new
set A is created so that two new elements are added to the N
block. Let N(a) denote the generator set and N(a*) denote the
composite set. The content pointer in N(a) locates a section

of core which contains a*, the address of the data set in core.
N(a*) points to a location of storage which only contains a.

If more information, A', has to be added to A and more contigu-
ous space 13 available, the N block has to be updated. A new
generator set element a' is createds N(a') points to core which
contains a', the address of A'. Nothing happens to the section
of core pointed to by N(a). The location to which N(a*) points
is now changed to denote that A is really A U A' which contains
a and a'.

There are no pointers between sets. The N block and B
block are the only pointers in STDS. Each set has basically only
one pointer in N associated with it so that it can be easily up-
dated and relocated. Deletions can be easily accomplished. The
element that is to be deleted is replaced by the least element
of the set. The "new" set is well ordered and takes up one n-
tuple less storage so that an insertion can be easily completed.

To add a new record to a set, it is put in the next contigu-
ous location, if space is available, and then the set is re-or-
derede If there is no more contiguous space, a new set is formed
(unknown to the user) and the N block is updated as previously

describede.
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SET OPERATIONS

S

SET OPERATIONS

ADD. B-BLOCK DATUM DESCRIPTIONS
) L
Bo+l . s i _
y y | Description of
¢ 4 l1-st datum name
Bo+i & I P S
{ Description of
4 4 i-th datum nare
Bo+#8 [ ©& o DT I
Description ot
#8-th datum name

is the set of datum names:

1. B B8 = {1,2,...,18}
2. 80,8 +1,...,8 +#8 are addresses of B-block.
o

o
3. B-block contains pointers to datum descriptions

and lis;s of generator. sets, I' , using the datum
name, : ’
4. For each datum name 'i' in 8 , T, is a sub-
class of G .
SUBCLASSES OF SET REPRESENTATIONS
n-BLOCK G OR C
n*| #n
=] . I=
¢ VK - A
(generator ¢ Noti == [Cif o A 1 #xA "xeB’
sets) 1 £ Ayt " ,
KN +n*-1 5 o A A
N *n* o—] A*i [y RALS
° / y ] T
c A A !
(composite < No*J = y AEj Aortr_z "2eh!
sets) /r A
\ n,+fn Grn
S. n is the class of set names: n = {1,2,...,¢n),
6. NgsNo*l,...,n +#n are addresses of n-block.
7. Ao.A +1,...,A0*?A are addresses of elements of
B~ contained in set A .
8. G {is the class of generator sets: G = {1,...,n*-1} .
9. C 1is the class of composite sets: C = {n*,...,M} .
10. n =GuC(C
11. The Ci are subclasses of C .
12, The Gj are subclasses of G .

Storage Schema of an STDS.
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System Implementation

STDS is implemented in four sections:
1. A series of efficient sorts
2, Modular set operations
3. Garbage collection routines
4, A series of linkages.
The implementation discussed herein pertains to the demonstra-
tion version - STDS-DEMO.

There is a series of efficient algerithms which sort the
whole n-tuple lexicographically. Hence a set is composed of
records in lexical order. All of the set operations are modu-
lar routines and new operations may be added at any time with-

out disturbing those previously implemented.

The system is modular for an eventual adaptation to hard-
wired integrated circuits. STIS is currently trying to market
a "hardware data management processor" which they call Set The-
oretic Information Concentrator. This "concentrator™ 4s a hard-
ware device operationally situated between the central proces-
sing unit and the peripheral storage. The information concen-
trator interprets an I/O access as an information access and
reads from the peripheral storage device as much information as
will fi: into memory. This process permits fewer I/0 accesses
to retrieve equivalent amounts of information, thus converting
many I/0 constrined sytems into CPU bound systems. The STIC

offers many data management capabilities:



SET THEORETIC INFORMATION CONCENTRATOR

GENERAL DESCRIPTION OF A

6

A set theoretic information concentrator (STIC) is a hardware device operationally situ-
ated between a central processing unit (CPU) and peripheral storage devices (PSD's) pro-
viding the following data management capabilities:

minimization of input/output (1/0) accesses with maximization of
information content

unanticipated query capability

‘multi-user access and concurrent updating

utilization of any or all data access methods

complete data management, processing, querying, and updating
scparate control over optimization of storage size and retricval
times (S/T)

restricted access and manipulation protection from unauthorized
users

[

data base management to optimize physical placement of data for
different job loads or mixes

® frees user from concern with machifie representation of data

® no a priori restrictions on achieving “best times™, *'least storage”, and

“general interrogation™ that a given CPU and PSD will allow

data can be stored in its theoretically most compact form and then
transformed into its theoretically best retrieval form

provides information expansion through simultancous access of mul-
tiple data bases

provides scparation of information rcpresentation from storage
fepresentation

IV.D.19
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v
PRINCIPAL OF INFORMATION CONCENTRATION

USUAL COMPUTER INSTALLATION CONFiGURATION

CPU’ PSD
r.n
memory-'m ) e [
memory !
overiay

When the CPU nceds new information in memory, an 1/0 access loads the memory from
the PSD. The structure of the information in memory and the structure of the infor-
mation in the PSD are identical. If the information in the PSD is structured so that only

a small portion of usable information can fit in memory at any one time, then the host
program can become 1/0 bound.

COMPUTER INSTALLATION WITH AN INFORMATION CONCENTRATOR

cPU T PSD

memory — ® ° °

The IC interprets an 1/0 access as an information access and “‘gathers” as much infor-
mation from the PSD as will fit into memory. This process permits fewer 1/0 accesses to

retricve equivalent amounts of information, thus converting many I/0 bound problems
to CPU bound problems.
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These capabilities must be taken in light of the fact that
they are only promises as STIC is not yet an operational

reality.

When using STDS the user must keep track of the amount
of storage that is being used. The user must explicitly call
for the system's garbage collection routines or eventually run
out of storage.. Set theoretic operations can be called by
FORTRAN or PL/1 as subroutines. To accomplish this, STDS pro-
vides the necessary linkages. A set is represented as a sequen-
tial file with a maximum record size of 32,768 bytes.

The input to STDS should be a sequential file; later ver-
sions will take a line file and do the conversion for the userse.
After the data is read in by STDS, it must be converted into a
set. To be a set the valock5“B.610ck and accempalnying regions
must be updated and a set must be created. The header con-
tains the maximum length of the n-tuples in the set and the

set's cardinality, the number of n-tuples in the set.
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System Limitations

Most of the current limitations are due to the vast stor-
age requirements of set theoretic operations. The current input
limit of 255 pages causes difficulties for users with large
data bases. As stated previously, the amount of storage needed
for a set theoretic operation is determined before its execution.
Sometimes the system determines that much more storage is neces-
sary for the completion of the operation than is needed to con-
tain the end result. Thus the storage limitation will not allow
the operation to execute, even th?ugh there might be enough room.
A similar problem is caused by the inability to get enough stor-
age during peak time~sharing periodse.

Currently, STDS requires a virtual memory machine, particu-
larly the IBM System 360/67. Later versions are supposed to be
free of this limitation, however.

One common problem is the userts inability to understand
and use set theory with respect to information retrieval sys-
tems. Some users have trouble'translating their ideas into

set theoretic expressions.
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Conclusions

Set theoretic data structures are a fresh approach to the
current state of information retrieval systems. Further devel-
opment in this area by STIS Corporation and others might lead

to a universal, generalized information retrieval systeme.



Universe:

Item #

8
APPENDIX A

Description of the Demonstration Files

for STDS used in Appendix B

March 1967 Current Population Survey with

Iv.D.24

Income and Work Experience Supplements Included
(Bureau of Labor Statistics). Married, Spouse
Present, Head and Wife of Family or Subfamily,

Age of Wife 21 or over, Living in 96 of largest

104 Standard Metropolitan Statistical Areas (SMSA).

Unit

Family Files

1.
2.

Family

Family

Family

Family

Family

Family

SMSA

SMSA

Characteristics

Family Code Number

Primary Family
Each Subfamily or
Secondary Family

Type of Familv
Primary Family
Subfarnmily
Secondary Family

Weighta
Presence of Own Children
None
All 6-17
None Under 3, Some 3-5,
Some 6-17
All 3-5

Some Under 3

Relation of Wife to Head
of Household
Wife
Child
Other Relative
Non-Relative

CPS Unemployment Rate
0-9.7%
Over 9.7%

BLS Employment Change,
1966-67

Under .1%

0.1-9.7%

Over 9.7 %

Coding

1-11629

0-999999

> wWN

Vb WwN

0-97
98

1-97
98
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Item # Unit Characteristics Coding
9. SMSA Relative Opportunities
.001-.997 1-997
.998 or more 998
Wife Files
1. Family Family Code Number 1-11629
2. Family Primary Family 0
Each Subfamily or
Secondary Family 1-6
3. Family Race of Wife
' White 1
Negro 2
Other 3
4. Wife Age
Age at last birthday 14-98
Age 99 or over 99
5. Wife Labor Force Status, March
Not in Labor Force 1
In Labor Force 2
6. Wife Employment Status
Employed:
At work full-time 01
At work part-time 02
With a job,not at work 03
Unemployed:
Looking for work 04
Temporary lay-off 05
" New Job 06
New Job, School 07
Out of Labor Force:
"House 08
School 09
Unable 10
Unpaid,less than 15 hrs.ll
Other 12
7. Wife Recoded-Intermediate Hours

1-34 Hours
Usually full-time,
Economic 1
Usually full-time,
Other 2



Item # Unit
8. Wife
9. Wife
10. Wife

Husband Files

1. Family
2. Family
3. Husband

Characteristic

Usually part-time,
Economic
Usually part-time,
Other
35-39 Hours
40 Hours
41-47 Hours
48+ Hours
Intermediate Duration of
Unemployment not coded
l or 2

Intermediate Duration of
Unemployment

Under 4 weeks

4 weeks

5-6 weeks

7-10 weeks

11-14 weeks

15-26 weeks

Over 26 weeks

Not un€mployed

Years of School Completed
None
1-4 elementary
5-7 elementary
8 elementary
1-3 high school
4 high school
1-3 college
4 college
5 or more college

FILOW
Negative or none
Amount
$25,000 or over

Family Code Number

Primary Family
Each Subfamily or
Seconadaary Family

Age
Age at last birthday
Age 99 or over

I1V.D. 26

Coding

O~ U w

Ye)

OJdoOUn&WwWwN+-

SNV A~ WNKH

0
1-24999
25000

1-11629

0

1-6

14-98
99
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Unit

Husband

Husband

Husband

Husband

Characteristic

Labor Force Status, March

Not in Labor Force
In Labor Force
Armed Forces

Employment Status

Employed:
At work full-time
At work part-time

1v.D.27

Coding

O N =

01
02

With a job,not at work 03

Unemployed:
Looking for work
Temporary lay-off
New Job
New Job, School
Out of Labor Force:
House
School
Unable

04
05
06
07

08
09
10

Unpaid,less than 15 hrs.ll

Othgr
Armed Forces

Recoded-Intermediate Hours

1-34 Hours:
Usually full-time,
Economic
Usually full-time,
Other
Usually part-time,
Economic
Usually part-time,
Other
35-39 Hours:
40 Hours
41-47 Hours
48+ Hours
Intermediate Duration of
Unemployment not coded 1
or 2

Intermediate Duration of
Unemployment

Under 4 weeks
4 weeks

5-6 weeks

7-10 weeks
11-14 weeks
15-26 weeks
Over 26 weeks
Not unemployed

12
99

w

ONO N>

OCdonn & W =
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Item # Unit Characteristic
8. Husband | Years of School Completed
None

1-4 elementary
5-7 elementary

8 elementary

1-3 high school

4 high school

1-3 college

4 college

5 or more college

o CONOU&WN - 8
jon)
e
3

9. Husband FILOW
Negative or none
Amount 1-24999
$25,000 or over 25000

aWeight in file is 100 times the true weight.

bEach subfamily or secondary family within a primary family unit

has a separate number. Subfamilies and secondary families are
contiguous on the file to their respective primary family.
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APPENDIX 89

Example Use of STDS

#R IC47:5TusH
#EXECUTION BEGINS

** SET-THEORETIC DATA STRUCTURE: INTERACTIVE DEMONSTRATION **
(2/18/70)

FOR AN EXPLANATION ENTER "1": (See Appendix R)

?GET (H) S

FILE = CPSH1

ENTER PRINT FORMAT: (918) ‘
DONE! L(*)= 9 C(*)= 5812 ( 0.2912 SEC)

H is the set of fusbands (heads of households)(See Appendix C)

?2GET (W) R
FILE = CPSW1

ENTER PRINT FORMAT: (101I7)
DONE! L(*)= 10 T(*)= 5812 ( 0.3250 SEC)

W {8 the set of wives. See Appendix €.

?SET (UNEM, 4,6,5,7)
* DONE! L(*)=. 1 C(*)= 4 ( 0.0036 SEC)

UNEM is the 3et of codes forn "UNEMPLOYED"

?RS (5,H,UNEM, UH) |
DONE! L(*)= 9 C(*)= 95 ( 0.4715 SEC)

R
UH is set of unemployed husbands

?XPAN (2,W, UH, WUH,1)

DONE! L(*)= '~ 17 C(*)= 95 (0.5356 SEC)

WUH combineblimatcheb) the wives of unemployed husbands in a
set of 17-tuples (wife-husband nelationships)

?IGTJ (WUH, 4+11,0LDR)
DONE! L(*)= 17 C(*)=  13( 0.0023 SEC)

-

OLDR is the set of wives of unemployed husbands who ane oldenr
than thein husbands.

?RS(G,OLDR,U&EM;U§W)'
DONE! L(*)= 1 C(*)= 1 ( 0.0023 SEC)
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UNW <5 the set of unemployed wives of unemployed husbands who
are ofden than thein husbands.

?LIST(UNW,1,1,-1)
ENTER OUTPUT FORMAT: (5110)

2006 0 1 ' 57 2

-5 9 6 . 3 6520
53 2 5 9 6
6 6321

By examining this with the codes in Appendix A, it may be
seen that we have Located a 57 yean ofd wife of a 53 old
husband such that the FILOW (family Lincome Less own wages)
f§on each 48 in excess of 6000 dolLars, This may be due %o
pensions, intenest, dividends, capital gains on othen
sounces, explaining the basis of this data sample Lnstance.
Obsenve the CPU times used to §ind this result from an Ani-

giLat set of 511 Total time to do STDS
.#SIGNOFF operations = 1.644 sec.
#OFF AT 18:11.26 -

#ELAPSED TIME 1400.7 SEC.+ due fangely to typed comments!
#CPU TIME USED 10.471 SEC.+ due Langely to progham "Loading
#STORAGE USED 929.573 PAGE-SEC. and "nelocation"!
#DRUM READS 107

#APPROX. COST OF THIS RUN $2.42

#FILE STORAGE 841 PG-HR $.12

The above is an actual’STDS session retyped for greater

readability using italics to distinguish the comments.
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OPERATIONS EXTZNDED TO N-TUPLES

A ={<p,q,r,s,t>',
- <k,z,m,n,o0>,
<a,b,rc,d,e>,
<u,Vv,w,x,y>,
<f,g,h,i,j> }
I-TH DOMAIN of A

DM(1,A,C) C = %a
DM(3,A,C) C = {c

I-Td RESTRICTION of A to B

Let B = [2z,s] then for
RS(2,A,B,C)

C = [<k,z,m,n,o>}
and
RS(4,A,B,C)

C = £<Paq’rasst>}

LET A = {<name,mother,father,spouse,sex>}
GIVEN x ,find all sisters of x.

let X = {xJ and W = {female}

RS(1,A,X,B) B = |n-tuples with x in position 1]
DM(2,B,M) M = )x's mother, m/|
DM(3,B,F) F = |{x's father, f}

Rs(2,A,M,C) C = {n-tuples with m in position 2!

RS(3,A,7,D) D = {n-tuples with f in position 3j

IN(C,D,G) G = {intersection of D and C!

RS(5,G,W,H) H = [n-tuples of G, female in 5 pos.|
S

RL(DM(1,4),X,S) = }sisters of x )

[§
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Footnotes

lE. F. Codd, "A Relational Model of Data For Large Shared
Data Bank," CACM, June 1970, pp.377-387.

2S.T.I.S. Corpey, "Set Theoretic Information Concentrator,"
1972,

3Ibid.
hD. L. Childs, STIS Technical Report 1 - Development of a Set
Theoretic Data Structure, p. 3.

5p. L. Childs,"Description of a Set Theoretic Data Structure,"

ConComp Technical Report No. 3, University of Michigan,
March, 1968, Pe 50

6STIS Corp., Op. Cit.
7Ibid.
8D. L. Childs, STIS Technical Report 1,.pp.C1-C5.

9Ibid., pp. D1-D2,
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SAMPLE PROGRAMS

To provide some comparison between the various languages presented in
the seminar, a sample problem was devised and the seminar participants
provided solutions to this problem in several languages. The problem
description is on the following page; the sample programs constitute
the remainder of this section. We offer them with no further comment,
other than the comments of the authors.

.1



Simple Standard Problem for String and List
Processing Seminar Participants

Those persons who presented source language descriptions in the seminar
are requested to write a small program (whose function is described
later) for inclusion in the final seminar report. The obvious intent
is to have one problem common to all reports, so as to gain some
feeling for the differences in the various languages. The program
should function as follows:

1. the input is a variable-size set of alphabetic
strings (A,B,...,Z), each string being one to four
characters in length

2. the strings should be placed in alphabetic order
(standard dictionary sequence) by the program

3. the internal ordering mechanism should be the
construction, as a function of the input, of an
ordered binary tree (this will be discussed in class)

4. the program should then produce as output the
alphabetized list of strings.

Since there is a great deal of variation in the languages, we leave to
each of you the design of the input formats and output format. Your
program should read multiple data sets (as described in 1. and 2.);

hence you will need one or two terminator symbols. For the final report,
we would like:

1. a brief, at most one page, prose description of the
program
2. a listing of the program

3. program results (if you are able to run the program
in MTS) for the following input orderings:

a. ordered
b. reverse ordered
¢c. randomly ordered
each data set should contain
a. C CC CCCc cccc
b. at least one string < C
at least one string > CCCC

any other strings.



SLIP (Dean Lucier)

The sample program takes as input a variable number of one to four
character strings and proceeds to build a binary tree to represent their
alphabetic ordering. The input format is one string per card, left
justified with a blank used as a delimeter for the length of the character
string. A period in column one denotes the end of the set of strings
which need to be alphabetized. An asterisk in column one denotes the end
of the file.

Each string is examined to see if its duplicate is in the tree already.
A header cell is created for each new letter at each level required. At
the same time a type 0 cell is placed at the top of the list, which
contains in the datum the letter it represents and a count of the number
of times this letter, associated with previous letters by being linked as
a sublist, was the last character in the string. On each of these lists
are name cells which point to succeeding lists (letters in strings) which
followed the letter representing the node.

The routine to print out the tree structure is then quite simple.
Starting with the main list and using the structural advance, it prints
out the datum portion of all type 0 cells which have a termination count
greater than zero.

The function LCNTR(READER) provides the level of the sublist so the
string can be rebuilt for printing. An example of the list structures for
the strings ABC and AX are shown on the next page.

The MTS SLIP as shown in the program listing does have a bug in the
advance linear operations using the predecessor (left) linkage. Therefore,
when the data strings are not in order, my routine which is used to insert

a cell in front of another cell fails.
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PL/I (J. Unger)

The following program reads sets of input character strings, sequences
them by constructing a binary tree based on their relative alphabetic order,
and then prints the ordered sets of input strings.

The input data is read using stream I/O from SCARDS (default system
input). A variable number of blanks are used to separate individual
character strings within a set, while a set delimiter of '*' denotes the
end of a set of strings. The end of all the input sets is recognized as
the PL/1 ENDFILE condition.

Each string within an input set is extracted using the SUBSTR function
after the position of the first character and the number of characters
within the string have been determined using DO...WHILE... and the INDEX
function. A node representing the extracted string is then allocated and
initialized.

A new node is added to the tree using the following algorithm:

1. If the TREE_BASE is NULL, this node becomes the top of a
new tree. Otherwise, the base pointer TREE is set to

point to the top of the tree.

2. The string associated with the new node is compared to the

string in the tree node.

3. If the new value is greater, the P _RIGHT pointer is followed.
a. If P_RIGHT is NULL, i.e., there is no other node with a
value greater than the tree node's value, the new node
is inserted at this point.
b. If P RIGHT is not NULL, then there is at least one node
with a higher value, TREE is set to point to the next

node to the right, and steps 2 and 3 or 4 are repeated.

4, If the new node value is less than the tree node value,
then the P_LEFT pointer is followed.
a. If P_LEFT is NULL, i.e., there is no tree node with a

a value less than the current tree node's value, the new

node is added at this point



If P_LEFT is not NULL, there is at least one tree node
with a value less than the current tree node's value,
and TREE is set to point to the next node to the left

and steps 2 and 3 or 4 are repeated.

Once all strings have been extracted and added to the tree, the tree

node values are printed out in alphabetical order. This is accomplished

by starting at the top tree node and using the following algorithm:

1.

Follow the P_LEFT pointers until a node with P_LEFT = NULL
is encountered. This contains the (next) lowest sequenced
value and is to be printed. A flag is set to 'l' to
indicate that this node's contents have already been

printed.

. The P_RIGHT pointer associated with the node just printed

is examined. If it is not NULL, TREE is set to point to
the next node to the right, and the process starting with

1 is begun again. If P RIGHT is NULL, step 3 occurs.

The parent of the current tree node is examined. If a
back trace of a left sub-tree is occurring, the parent
node has not yet been printed (PRINT=0), so it is printed
and flagged and the process starting with 2 is begun
again. If a back trace of a right sub-tree is occurring,
the parent node has already been printed (PRINT=1), so
the process beginning with step 3 is repeated. The top
node of the tree is recognized by its NULL P_PARENT

pointer.
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SAMPLF_PROG: PRACENYRFE NPTINNS (MATIN) S

1

bt et b

ot — et el -

B R R S R

o

SAMPLE _PRNG: PRAGENURE NPTIONS (MAIN);
DFCLARF
INPUT CHAR (80),
1 NNDF RASFD (TRFF),
2 P_LFFT  PNINTFER,
2 P_RIGHT PNINTER,
? D_PARENT PNINTER,
> VAL UF CHAR (4),
> PRINT CHAR(1),
T FIXED BINARY (15,9),
J  FIXED ARTINARY (15,0),
M FIXFD RINARY (15,7),
TREF_BASE POINTER,

NFW PAINTFERS
/%
AN FNDFILE GO TN END_QOF_J0R;s
/ %
GET_NFXT:
T =13
J = 03

TRFE_RASF = MILLS
GET FNTIT (INPUT) (A(8D)) 3
/%
FXTRACT_STPING:
M =1 + J3
P T ="M TN R) WHILF (SURBSTR(INPUT,T,1) = ¢ t): FEAND;
IF SUBSTR(INPUT,T,1) = "% THFN GN TN PRINT_ROYTINE:
J = INDEX (SURSTR(INPUT,I+1)," *)s
TF J = N THFN J = INDEX (SUBRSTR(INPUT,I+1),7%7);
/% ” _
RUTLD_NODE:
ALLOCATE NNDF SET (NFW)
NEW => O_| EFT = MULL;
NFW => P_RTGHT = NULLS
NFW => P_PARENT = NULLS
NEW => PRINT = ®n1g
NEW => VALUF = SURSTR(INPUT,I,J):
[ %
ADD_TN_TREE:
TF TRFF_RBASF NIJLL THFN D33
TREF_BASF = NEW;:
A0 TN EXTRACT_STRING;S
END 3
TREF = TRFE_BASE;
COMPARF _VALUF:
IF NFW <> VALUF = VALUF THFN GJ) TO EXTRACT_STRING:

IF NFW => VALUE > VALUF L
THEN DO
IF P_RIGHT = NULL
THEN D03

P_RIGHT = NEW3:
NEW => P_PARENT = TREE;
GN TO EXTRACT_STRING;
END:

FLSF nN;
TREE = P_RIGHT:
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STMT LFVFL NFST

6N TN COMPARE_VALUES

4 1 ?
A 1 2 FNDS
4 1 1 . END 3
I 1 ELSF DN3
45 1 1 IF P_LFFT = NULL
45 1 1 THEN NN3
47 1 2 P_LFFT = NEW3
no 1 2 NFW -> P_PARFNT = TRFE;
1A 1 2 GO TN EXTPACT_STRINGS
S0 1 2 FNDS
<1 1 1 FLSF NNy
52 1 2 TRFF = P_LFFT3
<2 1 2 RN TO COMPARE_VALUES
sS4 1 2 END S
S 1 1 FND S
J*
56 1 PRIMT_POUTINF:
TRFFE = TPFF_RASE;
7 1 CHFCK_P_LEFT:
IF P_LFFT = NULL
5 1 THFEN DO
50 7 1 PUT FNTT (VALUE) (A(4))3
6N 1 1 PRINT = '1°':
61 1 1 CHFCK_P_RIGHT:
IF P_RIGHT = NULL
6? 1 THEN DN
63 1 ? CHFCK_PARFENT:
IF P_PARFENT = NULL
64 1 2 THFEN IF PRINT = *1°¢
65 1 2 THFEN GO TN GFT_NEXTS
6A 1 ? FLSF GO TN PRINT_VALUE;S
67 1 2 ELSF DNs
bR 1 2 TREF = P_PARENT;
() 1 3 IF PRINT = ']
70 1 3 THEN GO TN CHFCK_PARENTS
A 1 3 ELSE D03
72 1 4 PRINT_VALUE:
PUT EDNIT (VALUE) (A(4))3
72 1 4 PRINT = ®]1°%3
74 1 4 GO TN CHECK_P_RIGHTS
78 1 4 END3S
TA 1 K FND 3
77 1 ? FND 5
78 1 1 FLSF DNgs
70 1 2 TREF = P_RIGHT;
|n 1 2 GN TN CHECK_P_LEFTS
f 1 2 END3
’?2 1 1 FND
r13 1 ELSE DO
R4 1 1 TREFE = P_LEFT:
as 1 1 GN TO CHECK_P_LEFT;
86hA 1 1 FND
/%
87 1 ENN_OF_JNB:



SAMPLE _PRNG: PPACFNUPE NPTTINNS (MAIN)3 V.23

,TMT LFVFI. NEST

RETUPNS
faa 1 "FND SAMPLF_PRNG3S
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LISP (Carole Hafner)

LISP Program to Alphabetize Character Strings

A node on the tree is represented by a LISP cell whose CAR is the

element on the node and whose CDR is a dotted pair of the 2 daughter nodes.

When a node is created, the program automatically creates the dotted
pair, even though both daughter nodes are NIL at the time. This makes

insertion and printing algorithms very simple.



CONCEPTUAL TREE

LISP STRUCTURE:

AB

>
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INPUT FILE TO LISP
ST “ALPHA “¢MIL A B C DEF G H I JKLMHN
OP @RS TUYWRY 20
ZFUN ORDER MIL
¢PROG (¥ TREE>
E (ZET "TREE ¢LIST ¢READ> MILD>
CCOMD € CHULL ©CAR TREED X
¢FRINT “ALL-DATA-PROCESSEDY ¢STOP2) )
A CCOMD ¢ CHULL ¢SET ¥ ¢READY > (PRTREE TREE}’
¢ T ¢PUTINTREE ¥ TREE> (GO A>2>
(50 Bl
ZFUNM PUTINTREE <3 TREE>
CCOMD © CLOWER ¥ CCAR TREEYX
{COMD € ¢MULL <CADR TREED))
{RPLACA (CDR TREE> (LIST ¥ NILY»D
¢ (PUTINTREE ¥ <(CADR TREE>»X)>
CCHULL <CDDR TREEX>
{RPLACD «CDR TREE» CLIST X MILY3D
{PUTINTREE ¥ CCDDR TREEX>)33
:FUM PRTREE (TREE>
tFRINT ~ IN-FORWARD-ORDER
{FRF TREE>
tFRINT - IN-REYERSE-ORDER
{FRR TREE>
{PRINT - IN-ANOTHER-DORDER>
{FRO TREE? >
FUN FRF C(TREE>
CCOMD CONULL TREE> MILD
T (PRF (CADR TREE>» ¢PRINT ¢CAR TREE>» (FRF (CDDR TREE>2>
:FUN FPRPR (TREE>
CCOND ¢ CMULL TREE> MILY
(T ¢PRR (CDDR TREE»> C(FRINT ¢CAR TREE>> (PRR ¢CADR TREE>>>))
JEFUN PRO ¢ TREE>
(COMD CCMULL TREE 3 MNIL:
T ¢PRIMT ¢CAR TREE)» (PRO (CADR TREE> »(FRO <CDDR TREE>2»
FUM LOWER ¢LIST1 LISTE>
(FROG (23
¢ZET “2 ALPHA>
CCOND  COMULL LIST12 CRETURN T
CCE@ CCAR LIST1 » <CAR LIST2>)> ¢RETURN C(LOWER ¢CDR LIST1>
(CDR LISTE23000
1 CCOMD ¢<ER <CAR LIST1) CCAR Z3) CRETURN Tad
CCER CCAR LISTE) (CAR 2> ¢RETURN NIL»>D
(ZET “Z CCDR 233
C50 RAY3 300
IRDEF >
{ B o

12
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POP-2 (Brindle)

String & List Processing Seminar
Assigned problem, written in XPOP (POP-2)

The program consists of 6 functions and one global function call, followed
by the data. The functions:

INSERT - a general tree-inserting function which, given an
item and a function with which to tell if items
are in order (f(A,B) true iff A<B in some sense),
inserts the item in tree TREE.

BUILD - INSERT partially applied to a function comparator
of character strips - lines 17 thru 26. BUILD is
then a function of one variable, a cstrip, to insert
cstrip in tree TREE. LAMBDA notation is for nameless
function for two variables, S1 and S2

PRINT TREE - a specific function to linearize a tree of cstrip.

EXISTS - produces a truth value. I represent null pointers
by integer 0 in my tree structure. EXISTS(PTR)
tells whether a pointer exists. Could also have
been written
FUNCTION EXISTS; .DATAWORD='"'NODE' END for example
missing parameter for DATAWORD and = (in line 4)
comes from stack - truth value left on stack by EXISTS.

PR_CSTRIP - standard system routine PR prints cstrips with enclosing
primes, so I wrote this for neater O/P.

EXECUTE - performs bookkeeping for this application.

Explanation of some XPOP features:
SUBSCRC (I,STR) produces integer value of character I of cstrip STR
SP(n) spaces n in O/P, NL(n) produces n newlines,
CHAROUT takes integer code and outputs character

ITEMREAD produces next token from I/P stream as either an integer or
a cstrip

function application is effected either with FN( ) or .FN

RECORDFNS creates a record class called "NODE'" with 3 full item fields,
accessed by VAL, LEFT, & RIGHT in order. Also produces
constructor and destructor

conditionals are terminated with CLOSE; EXIT is a system macro for
RETURN CLOSE

#N (%ITEM%) denotes partial application, leaves a new function on stack
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&2 | GNTD Ls V.
g2 | FNDe

54 |EXFCUTE

& |¢ A AC C CC CCC CCCC PAUL

56 1- s

A ARC G C€CC CCC Ccrc  PpAUL
PAUL CCCC CCC CC C ABC A (ResT oF LWE §6)
57 I¢
A ARC ¢ Crf CCC CCCC PAUL

CC PAUL CCC ABC C CCCC A § (REST of cwe §7)

A ARC € CC Ccc CCCC PAUL

FND NF COMPILATION JINE 24, 1672. TIME = 21:28:45.87,
ST CARNS WERF CHECKFD.

NO FRRNRS WERE DETECTFD.

STACKING DECISINONS= 1643
SCAN 459
SYNTHESTZE 1211

nou

MAXTMUM STACK 1ISAGE
FXEC STACK S DF &3
FUNCTINN STACK:59 0OF 150
FM NFSTING:D NF 1)
CNNND NFSTING:4 NF 10
STNRAGF REMAINING
NICTIONARPY 164
PNLISH STREAM KA1
STRUCTIYRE STNRF 843

FREF STRING AREA = 20398

TOTAL TIME IN COMPILER 0:0:3.57,
SFET UyP TIMF N:0:J0.06.

ACTUAL COMPILING TIME C:0:3.49.,
CLEAN-UP TIMF AT END 0:0:0.02.

FXFCUTION TERMINATED
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SNOBOL (G. Lift)

BRIEF DESCRIPTION OF SNOBOL PROGRAM
FOR STRING-LIST PROBLEM

The tree data structure is represented by a user-defined data type.
Each node is an instance of the data type tree, having three fields.
The first field, TWIG, is a pointer to a node containing a word 'less
than" this node; STEM is the word at this node; BRANCH is a pointer to
a node containing a word ''greater than'' the word at this node. Null
pointers are used to indicate no entry. The tree always contains at
least one node, even if that node is completely empty.

There are two recursive functions to manipulate the tree.
HANG (NODE, LEAF) looks at the subtree defined by NODE to find (or create)
the proper node for the LEAF (word). If NODE has no STEM (i.e., there
is no word associated with this node) LEAF is placed on NODE. Otherwise,
LEAF is compared to STEM(NODE) to see whether it should be placed on the
right (greater than) or left (less than) subtree. If no subtree exists
in the direction chosen, a one node subtree is created. Then HANG calls
itself with the top node of the subtree and LEAF.

FALL(NODE) prints the tree in sorted order. FALL calls itself to
print the words in the left subtree of NODE, then prints the word at
NODE, and then calls itself to print the words in the right subtree of
node (i.e., a call with argument BRANCH(NODE)). Hence calling FALL with
the root node of the tree will print the entire tree.

The '"main program'" is quite simple. First an empty node is created;
this is the root node of the tree. HANG is always called with this node.
The program then reads in words, one at a time, calling HANG to put each
on the tree. When the '"'end of set'" is read, FALL is called with the root
node to print the tree in sorted order. The tree is then emptied (by
assigning a new value to the root node), and a new dataset is read in.

notes: 1) the end of dataset character is '/'".

2) words may be of any length, as long as they contain
only alphabetic characters.

3) words are read in one per line (the word should be the
first non-blank characters on the line. A word may be
terminated by any non-alphabetic character, or the end
of the line.

4) any end-of-file terminates the program.
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lebt(examole.-l)
< # < 22)1% #= 13 e
FORMATS (ix,4a4)
AL e
BALL *
C
CA
cC
CcccC
CCcc
COn
LoG
LOvVE
?aata(example,4,11)
FILE = samople2
ENTER INPUT FORMAT: (4a4)

"ENTER QUIPUT FORMAT: (ix,4a4)
g M"EXAMM FREED

DONEY L= 4 C= 10 [CPU= 0.208 ELAPSE= 38.051
?xset(example)
@ DONE! L= 4 C(C= 10 [CPU= 0.009 ELAPSE= 3.42)
?$1 sample? N
> ] LOVE
> 2 BALL
> 3 C
> 4 con
> 5 AT
> 6 CcCcCC
> 7 DOG
> 8 CA
> 9 CcCC
> 10 BALL _
> 1 CcC
# END OF FILE

?list(example,~1)
[l < # < 221t #= 13

FORMATS (1x,4a4)
AT
"BALL
C
CA
CC

cceC
CcCcce

~ COA
DOG

“LOVE
?




