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1. Introduction

The nature of the dark matter in the universe is one of the outstanding questions in as-

tro/particle physics. One of the favored candidates is the lightest supersymmetric (SUSY)

particle. Such a particle is weakly interacting and massive (with mass in the range 1GeV–

fewTeV), and hence is frequently characterized as a WIMP (weakly interacting massive

particle). In the minimal supersymmetric standard model (MSSM), the lightest SUSY par-

ticle in most cases is the lightest neutralino, a linear combination of the supersymmetric

partners of the photon, Z0 boson, and neutral-Higgs bosons,

χ̃01 = N11B̃ +N12W̃
3 +N13H̃

0
1 +N14H̃

0
2 , (1.1)
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where B̃ and W̃ 3 are the supersymmetric partners of the U(1) gauge field B and of the

third component of the SU(2) gauge field W 3 that mix to make the photon and Z0 boson.

(We will also use the letter χ for χ̃01.)

Much work has been done studying the possibilities for detecting these particles. Pos-

sibilities include direct detection [1], whereby the particle interacts with a nucleon in a low

temperature detector, and is identified by the keV of energy it deposits in the nucleon;

and indirect detection, whereby (1) the particles are captured in the Sun or Earth, sink to

the center of the Sun or Earth, annihilate with one another in the core, and give rise to

particles including neutrinos which can be detected by experiments on the surface of the

Earth [2, 3], or (2) the particles annihilate in the galactic halo [4] or the galactic center [5]

and produce anomalous components in the flux of cosmic rays. The interaction processes

of the lightest SUSY particle are clearly of great importance in calculations of predicted

rates for both direct and indirect detection.

In this paper we discuss some effects of CP violation on the neutralino annihilation

and scattering cross sections. The MSSM introduces several new phases in the theory

which are absent in the standard model. Supplemented by a universality condition at the

grand unification scale, only two of these are independent. In this case, one may choose

to work in a basis in which the two non-trivial CP-violating phases reside in µ and the

universal soft trilinear coupling A0 of the Higgs fields to the scalar fermions f̃ . Previously

Falk, Ferstl and Olive [6] have considered the effect on neutralino cross sections of a non-

zero phase of µ, the mixing mass parameter involving the two Higgs chiral superfields

in the superpotential. Here, on the other hand, we consider the effect on neutralino cross

sections of the case where the soft trilinear scalar couplings Af are complex numbers, where

subscript f refers to the quarks. To be specific, we will take A ≡ At = Ab with arbitrary

arg(A), and we take Im(µ) = 0 and Au = Ad = Ac = As = A` = 0 for the first and

second generations of squarks and for all sleptons. This type of model with non-universal

trilinear couplings are known [7] to be compatible with current upper limits on the electric

dipole moments of electrons and neutrons. These constraints would be tighter if one took

Au, Ad or A` to be non-zero. Let us be very clear that this choice of assumptions about

the parameters is not motivated by supergravity (SUGRA); the parameters in a SUGRA

model would in fact be quite different. Our general intent here is to take a reasonable

and simple choice of parameters which will allow us to study aspects of the effects of

CP violation.

The phase of A enters into the neutralino cross sections in two places: 1) into the squark

masses, and 2) into the Higgs sector. For example, one of the processes that contributes to

neutralino annihilation is s-channel exchange of the three neutral Higgs bosons, h, H, and

A, into final state fermions (see figure 1). The first two of these neutral Higgs bosons, h

and H, are CP even, while A is CP odd. The new aspect considered here is the possibility

of mixing between the CP-even Higgs scalars (h and H) and the CP-odd scalar A. This

mixing was first studied by Pilaftsis [8], who found that the size of CP violation can be

fairly large, i.e. of order one, for a range of kinematic parameters preferred by SUSY. He

found that a large HA mixing can naturally occur within two-Higgs doublet models either

at the tree level, if one adds softly CP-violating breaking terms to the Higgs potential, or

– 2 –
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Figure 1: Processes that contribute to neutralino annihilation and scattering and are affected

by the CP-violating phase of A. For annihilation: (a) s-channel diagrams via the three neutral

Higgs bosons h1, h2, and h3 into final state fermions f , and (b) t-channel diagrams via intermediate

squarks f̃ into final state fermions. For scattering: crossed diagrams.

at one loop, after integrating out heavy degrees of freedom that break the CP invariance of

the Higgs sector, such as heavy Majorana neutrinos. In any case, in this paper, we consider

the one-loop effects of Im(A) 6= 0 on scattering and annihilation cross sections relevant to

direct and indirect detection.

Utili/CollapseCitsThe cross section for neutralino annihilation can be enhanced. We

find typical enhancements of factors of one to four. In addition, we find new (CP vio-

lating) resonances in the cross section for neutralino annihilation that can enhance the

annihilation cross section by many orders of magnitude. Without CP violation there are

two CP-even Higgs bosons and one CP-odd Higgs boson; ordinarily, in order to conserve

CP, two neutralinos can annihilate only via the CP-odd Higgs bosons (at very small relative

velocities). Here, however, because of the CP-violating effects that mix the CP-even and

CP-odd Higgs bosons, the neutralino can annihilate via any of the three Higgs mass eigen-

states. When the annihilation of neutralinos via these new eigenstates is on resonance,

large enhancements of the annihilation cross section are possible. We stress that these

enormous enhancements only take place for narrow regimes of parameter space when the

neutralino mass is close to half the Higgs mass. When the mass is on resonance, we find

interesting effects in two different narrow regimes of supersymmetric parameter space: in

one regime, we find enhancements of up to 10–100 in the annihilation cross section today

without significant changes in the relic density of neutralinos; in the other regime of pa-

rameter space, we find enhancements of up to 106 in the annihilation cross section. In this

second case, models that ordinarily (without CP violation) have too large a relic density

to be viable are brought into a reasonable range of density. In addition, their annihilation

cross sections, which are ordinarily too low to be experimentally accessible, are enhanced to

the accessible range. These same CP-violating effects change the mass of the lightest Higgs

boson and can in some cases reduce the neutralino scattering cross section with nucleons

by factors of up to 10−7.

In section 2 we discuss our general approach. In section 3, we discuss the squark sector,

and in section 4, the Higgs sector. In section 5, we discuss experimental constraints on

the parameters. In sections 6 and 7 we give the scattering and annihilation cross sections.

In section 8, we present our results and a qualitative discussion of their consequences for

neutralino relic density and direct and indirect searches.

– 3 –
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2. General approach

The minimal supersymmetric standard model provides a well-defined calculational frame-

work [9], but contains at least 106 yet-unmeasured parameters [10]. Most of them control

details of the squark and slepton sectors, and can safely be disregarded in dark matter stud-

ies. So similarly to Bergström and Gondolo [11], we restrict the number of parameters to

6 plus one CP-violating phase: the “CP-odd” scalar mass mA (which in our CP-violating

scenario is just a mass parameter), the Higgs mass parameter µ, the gaugino mass pa-

rameter M2 (we impose gaugino mass unification), the ratio of Higgs vacuum expectation

values tan β, a sfermion mass parameter M̃ (not to be confused with the sfermion mass,

see eqs. (3.2) and (3.5) below), and a complex sfermion mixing parameter A ≡ At = Ab
for the third generation (we set the A’s of the first two generations to zero). The phase of

A is the only CP-violating phase we introduce besides the standard model CKM phase.

Note that we have taken a set of restrictive assumptions commonly used [12, 13] in

dark matter studies in the context of the MSSM. Namely, a) all trilinear parameters are

set to zero except those of the third family, which are unified to a common value at the

electroweak scale; b) all squarks and sleptons soft-mass parameters are taken as degenerate

at the electroweak scale; c) the gaugino masses are assumed to unify at the unification scale.

Let us repeat that this choice of assumptions about the parameters is not motivated by

supergravity (SUGRA); the parameters in a SUGRA model would in fact be quite different.

Our general intent here is to take a reasonable and simple choice of parameters which will

allow us to study the possible effects of CP violation. A more complete study of the joint

effects of all CP-violating terms is beyond the scope of this paper.

We use the database of points in parameter space built in refs. [11, 14, 15], setting

their Ab equal to At. Parameter values are chosen at random in the following ranges:

|µ| < 50TeV, |M2| < 50TeV, 1 < tan β ≤ 60, mA < 10TeV, M̃ < 30TeV, |At| ≤ 3M̃ .

(Notice that M̃ is a sfermion mass parameter at the weak scale, see eq. (3.2) below, and that

we will limit the neutralino mass mχ < 1TeV.) There are 132,887 sets of parameter values

in the database. Hence we explore a substantial fraction of the supersymmetry parameter

space, running through different possible neutralinos as the lightest SUSY particle.

We modify the squark and Higgs couplings in the neutralino dark matter code Dark-

SUSY [16] to include a non-zero phase of A. We also add all diagrams that contribute to

neutralino scattering and annihilation and would vanish when CP is conserved.

To investigate the effects of the phase of A, we perform the following procedure. For

each of the 132,887 sets of parameter values in the database, we run through 50 values

of the phase of A, so that we effectively explore 50 × 132, 887 ∼ 6.6 × 106 models. We

loop over a circle with arg(A) varying from 0 to 2π. At each point, we check bounds on

the electric dipole moment, on the Higgs mass, on other particle masses, on the b → sγ

branching ratio, and on the invisible Z width (table 1 gives a listing of the bounds we

apply). If any of these bounds are violated, we move to the next point on the circle. If all

the bounds are satisfied, we calculate the spin-independent neutralino–proton scattering

cross section σχp. We record the two values of the phase of A where σχp is highest and

lowest, respectively, with the bounds satisfied. Then, once we have looped through all

– 4 –
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the possible values for the phase of A, we have found the two points with the maximum

enhancement and suppression of the scattering cross section. We then compare with the

scattering cross section in the case of no CP violation.

We do the same for the annihilation cross section times relative velocity σv at relative

velocity v = 0 (we recall that σ ∼ 1/v as v → 0). Thus we obtain the values of the phase

of A where σv is maximum and minimum.

3. Squark sector

The (complex) scalar top and bottom mass matrices can be expressed in the (q̃L, q̃R) basis as

M2
q̃ =

(
M2

Q̃
+m2

q+
(
T3q−eq sin2 θW

)
cos 2βm2

Z mq

(
A∗q−µRq

)

mq (Aq−µ∗Rq) M2
R̃
+m2

q+eq sin
2 θWm

2
Z cos 2β

)
, (3.1)

where q = t or b; et = 2/3; eb = −1/3; T3t = 1/2; T3b = −1/2; Rt = cot β, Rb = tanβ; and

M2
R̃
=M2

Ũ
[M2

D̃
] for t [b]. We set

M
Q̃
=M

Ũ
=M

D̃
= M̃ , (3.2)

our sfermion mass parameter. We impose this relation at the electroweak scale. Even in

the case of no CP violation, when both µ and A are real, there is mixing between the

squarks, and this matrix must be diagonalized to find the mass eigenstates. Here we take

A to be complex. Then we obtain the mass eigenstates q̃1, q̃2 from the weak eigenstates

q̃L, q̃R through the rotation

(
q̃1
q̃2

)
=

(
cos θq̃ sin θq̃e

iγq̃

− sin θq̃ cos θq̃e
iγq̃

)(
q̃L
q̃R

)
, (3.3)

where γq̃ = arg(A∗q−µRq) and the rotation angle θq̃ (−π/4 ≤ θq̃ ≤ π/4) may be obtained by

tan(2θq̃) =
2mq|A∗q − µRq|

M2
R̃
−M2

Q̃
+ (2eq sin

2 θW − T3q)m2
Z cos 2β

. (3.4)

The masses of q̃1 and q̃2 are then given by

m2
q̃1,2 =

1

2

{
M2

Q̃
+M2

R̃
+ T3qm

2
Z cos 2β ± sign(θq̃)×

×
√[

M2
R̃
−M2

Q̃
+(2eq sin

2 θW−T3q)m2
Z cos 2β

]2
+ 4m2

q

∣∣A∗q−µRq

∣∣2
}
. (3.5)

The + sign is for q̃1 and the − sign for q̃2.

The mixing in eq. (3.3) also modifies the squark couplings to the neutralino and the

corresponding quark. Writing the relevant interaction term as

Lint = q̃iχ
(
gLq̃iχqPL + gRq̃iχqPR

)
q + h.c. , (3.6)

– 5 –
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with PL = (1− γ5)/2, PR = (1 + γ5)/2, and i = 1, 2, we have
(
gKq̃1χq

gKq̃2χq

)
=

(
cos θq̃ sin θq̃e

iγq̃

− sin θq̃ cos θq̃e
iγq̃

)(
gKL
gKR

)
, (3.7)

where K = L,R,

gLL = −
√
2
(
T3qgN12 + (eq − T3q)g

′N11
)
, gRR =

√
2eqg

′N11 , (3.8)

and

gLR = gRL = − gmuN14√
2mW sinβ

(3.9)

for the up-type quarks,

gLR = gRL = − gmdN13√
2mW cos β

(3.10)

for the down-type quarks.

The expressions in this section apply to sleptons provided up-type (s)quarks is replaced

with (s)neutrinos and down-type (s)quarks with charged (s)leptons.

4. Higgs sector

4.1 Higgs masses

We evaluate the Higgs boson masses in the effective potential approach. The radiatively

corrected Higgs boson mass matrix can be written as

M2 =




m2
Z cos2 β +m2

A sin2 β +∆11 −(m2
A +m2

Z) sin β cos β +∆12 ∆13

−(m2
A +m2

Z) sinβ cos β +∆21 m2
Z sin2 β +m2

A cos2 β +∆22 ∆23

∆31 ∆32 m2
A


 (4.1)

in the basis H1, H2, H3. Here ∆ij = ∆ji are the radiative corrections coming from quark

and squark loops, with ∆13 and ∆23 arising from CP violation. We take ∆11, ∆12, and

∆22 from ref. [17].

∆11 =
3g2

16π2m2
W

[
m4
b

cos2 β

(
ln
m2
b̃1
m2
b̃2

m4
b

+ 2Zb ln
m2
b̃1

m2
b̃2

)
+

+
m4
b

cos2 β
Z2b g

(
m2
b̃1
,m2

b̃2

)
+

m4
t

sin2 β
W 2
t g
(
m2
t̃1
,m2

t̃2

)]
, (4.2)

∆22 =
3g2

16π2m2
W

[
m4
t

sin2 β

(
ln
m2
t̃1
m2
t̃2

m4
t

+ 2Zt ln
m2
t̃1

m2
t̃2

)
+

+
m4
t

sin2 β
Z2t g(m

2
t̃1
,m2

t̃2
) +

m4
b

sin2 β
W 2
b g(m

2
b̃1
,m2

b̃2
)

]
, (4.3)

∆12 =
3g2

16π2m2
W

[
m4
t

sin2 β
Wt

(
ln
m2
t̃1

m2
t̃2

+ Ztg(m
2
t̃1
,m2

t̃2
)

)
+

+
m4
b

cos2 β
Wb

(
ln
m2
b̃1

m2
b̃2

+ Zbg(m
2
b̃1
,m2

b̃2
)

)]
, (4.4)

– 6 –
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where

Wq =
Re(µAq)− |µ|2Rq

m2
q̃2
−m2

q̃1

, (4.5)

Zq =
Re(µAq)Rq − |Aq|2

m2
q̃2
−m2

q̃1

, (4.6)

g(m2
1,m

2
2) = 2− m2

1 +m2
2

m2
1 −m2

2

ln
m2
1

m2
2

. (4.7)

We have rewritten ∆13 and ∆23 from ref. [8] in a way that shows their proportionality to

Im(µA).

∆k3 =
3

16π2

∑

q

gAq̃1q̃1

{
1

2
(gHk q̃Lq̃L + gHk q̃Rq̃R) log

m2
q̃1

m2
q̃2

+

+

[
sin 2θq Re(e

iγqgHk q̃Rq̃L) +

+
1

2
cos 2θq (gHk q̃Lq̃L − gHk q̃Rq̃R)

]
g
(
m2
q̃1 ,m

2
q̃1

)
}
, (4.8)

where the couplings of the Higgs bosons to the squarks are

gAt̃1 t̃1 = − gm2
t

mW sin2 β

Im(µAt)

m2
t̃1
−m2

t̃2

, (4.9)

gAb̃1 b̃1 = − gm2
b

mW cos2 β

Im(µAb)

m2
b̃1
−m2

b̃2

, (4.10)

gH1 t̃L t̃L
= − gmZ

cos θW

(
T3t − et sin

2 θW
)
cosβ , (4.11)

gH1 t̃R t̃R
= − gmZ

cos θW
et sin

2 θW cos β , (4.12)

gH1 t̃R t̃L
=

gmtµ
∗

2mW sinβ
, (4.13)

gH1 b̃L b̃L
= − gm2

b

mW cos β
− gmZ

cos θW

(
T3b − eb sin

2 θW
)
cosβ , (4.14)

gH1 b̃R b̃R
= − gm2

b

mW cos β
− gmZ

cos θW
eb sin

2 θW cos β , (4.15)

gH1 b̃R b̃L
= − gmbAb

2mW cos β
, (4.16)

gH2 t̃L t̃L
= − gmb2

mW cos β
+

gmZ

cos θW

(
T3t − et sin

2 θW
)
sinβ , (4.17)

gH2 t̃R t̃R
= − gm2

b

mW cos β
+

gmZ

cos θW
et sin

2 θW sinβ , (4.18)

gH2 t̃R t̃L
= − gmtAt

2mW sinβ
, (4.19)

– 7 –
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gH2 b̃L b̃L
=

gmZ

cos θW

(
T3b − eb sin

2 θW
)
sinβ , (4.20)

gH2 b̃R b̃R
=

gmz

cos θW
eb sin

2 θW sinβ , (4.21)

gH2 b̃R b̃L
=

gmbµ
∗

2mW cos β
. (4.22)

Neglecting D terms, as we should for consistency with the CP-even part and the

vertices in our effective potential approach, the corrections ∆13 and ∆23 simplify to

∆13 =
3g2

16π2m2
W

[
m4
b

cos3 β
Xb

(
ln
m2
b̃1

m2
b̃2

+ Zbg
(
m2
b̃1
,m2

b̃2

))
+

+
m4
t

sin3 β
XtWtg

(
m2
t̃1
,m2

t̃2

)]
, (4.23)

∆23 =
3g2

16π2m2
W

[
m4
t

sin3 β
Xt

(
ln
m2
t̃1

m2
t̃2

+ Ztg
(
m2
t̃1
,m2

t̃2

))
+

+
m4
b

cos3 β
XbWbg

(
m2
b̃1
,m2

b̃2

)]
, (4.24)

with

Xq =
Im(µAq)

m2
q̃1
−m2

q̃2

. (4.25)

The key thing to notice is that the ∆k3 self-energies are proportional to Im(µA). For

µ real, they are hence proportional to Im(A).

We use the effective potential approach to obtain the Higgs masses and couplings. The

Higgs mass eigenstates hi (i = 1, 2, 3) are obtained by diagonalizing the Higgs mass matrix

including radiative corrections in eq. (4.1) through the orthogonal Higgs mixing matrix O

as

hi = OijHj . (4.26)

In practice, it is convenient to implement the diagonalization in two steps, to separate the

CP-violating contributions. First we diagonalize the “CP-even” part through

Φi = O0ijHj , (4.27)

where Φi = H,h,A for i = 1, 2, 3, respectively. The matrix O0 would be the Higgs mixing

matrix in absence of CP violation

O0 =




cosα sinα 0

− sinα cosα 0

0 0 1


 , (4.28)

with

tan(2α) =
2M2

12

M2
11 −M2

22

. (4.29)

– 8 –
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Then we further rotate to the mass eigenstates with an orthogonal matrix O ′ as

hi = O′ijΦj (4.30)

with O′ = OO0T . This two step procedure allows for a rapid introduction of CP-violating

mixing angles for the Higgs sector in the DarkSUSY code.

4.2 Higgs couplings

We will include CP-violating effects by rotating couplings of Higgs particles to other par-

ticles as described in this section. In the effective potential approach we neglect vertex

corrections. This incorporates the dominant corrections of O(g2m4
t /m

4
W ), and neglects

corrections of O(g2m2
t /m

2
W ).

There are terms in the lagrangian that couple the Higgs particles to other particles

that are linear in the Higgs fields, for example

gΦiqqΦiq̄q = gΦiqqO
′
jihj q̄q . (4.31)

Terms of this type include coupling to fermions, as shown above, and also terms such as

gWH+ΦiWH+Φi. We will define rotated couplings via

ghiab = O′ijgΦjab , (4.32)

where a and b stand for the appropriate particle name.

Those terms with two Higgs bosons in them, such as

gZΦ3ΦiZΦ3∂µΦi = gZΦ3ΦiO
′
k3O

′
jiZhk∂µhj , (4.33)

must have the couplings rotated with two multiplications by O ′, e.g.,

gZhkhj = gZAΦiO
′
jiO
′
k3 − (k ↔ j) . (4.34)

Note that, in this particular term, the appropriate antisymmetry properties are maintained,

and i takes on values 1 or 2 only.

We have carefully rotated all couplings involving one, two, or three Higgs bosons. It

is these rotated couplings that we use in the numerical code (i.e. we replace the ordinary

Higgs couplings with these rotated couplings).

As an example, we give the Higgs–quark and Higgs–neutralino vertices that appear in

the neutralino–proton spin-independent cross section.

ghiuu = − gmu

2mW sinβ

(
O′i1 sinα+O′i2 cosα+O′i3i cos β

)
, (4.35)

ghidd = − gmd

2mW cos β

(
O′i1 cosα−O′i2 sinα+O′i3i sinβ

)
, (4.36)

ghiχmχn =
1

2

(
gN∗m2 − g′N∗m1

)
×

×
[
N∗n3

(
−O′i1 cosα+O′i2 sinα+O′i3i sinβ

)
+

+ N∗n4
(
O′i1 sinα+O′i2 cosα−O′i3i cos β

) ]
+ (m↔ n) . (4.37)

Here u stands for down-type quarks and neutrinos, d stands for up-type quarks and

charged leptons.
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Bound Ref.

ΓinvZ < 502.4MeV [25]

mH± > 59.5GeV [26]

mhi > 82.5GeV [18]

mχ̃+
1
> 91GeV if mχ̃0

1
−mχ̃+

2
> 4GeV [27]

mχ̃+
1
> 64GeV if mχ̃0

1
> 43GeV and mχ̃+

2
> mχ̃0

2
[28]

mχ̃+
1
> 47GeV if mχ̃0

1
> 41GeV [29]

mχ̃+
2
> 99GeV [30]

mχ̃0
1
> 23GeV if tan β > 3 [31]

mχ̃0
1
> 20GeV if tan β > 2 [31]

mχ̃0
1
> 12.8GeV if mν̃ < 200GeV [32]

mχ̃0
1
> 10.9GeV [33]

mχ̃0
2
> 44GeV [34]

mχ̃0
3
> 102GeV [34]

mχ̃0
4
> 127GeV [31]

mg̃ > 212GeV if mq̃k < mg̃ [35]

mg̃ > 162GeV [36]

mq̃k > 90GeV if mg̃ < 410GeV [37]

mq̃k > 176GeV if mg̃ < 300GeV [35]

mq̃k > 224GeV if mg̃ > mg̃ [38]

mẽ > 78GeV if mχ̃0
1
< 73GeV [39]

mµ̃ > 71GeV if mχ̃0
1
< 66GeV [39]

mτ̃ > 65GeV if mχ̃0
1
< 55GeV [39]

mν̃ > 44.4GeV [25]

1× 10−4 < BR(b→ sγ) < 4× 10−4 [25]

|de| < 0.4× 10−26e cm [23]

|dn| < 1.79 × 10−25e cm [24]

Table 1: Experimental bounds we use in this paper. We do not include cosmological bounds nor

bounds from dark matter searches.

5. Experimental bounds

5.1 Bounds on masses

We impose experimental bounds on the invisible width of the Z 0 boson, ΓinvZ , and on

particle masses as listed in table 1.

Since the h, H, and A are rotated into new mass eigenstates bosons, we use the most

model independent constraint on the neutral Higgs masses: we take mhi > 82.5GeV. This

constraint was reported by the ALEPH group [18] at the 95% C.L. as a bound on all Higgs

masses, independent of sin2(β−α). Note that this bound, which is a 10% improvement over
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previous bounds, renders the cross section for direct detection of SUSY particles smaller by

a factor of two. This suppression arises because the dominant contribution to the scattering

cross section is via Higgs exchange and scales as σχp ∝ 1/m4
hi
.

5.2 Bounds on CP violation

We impose bounds on the branching ratio BR(b→ sγ), and on the electric dipole moments

of the electron and of the neutron de and dn.

For BR(b → sγ) we use the expressions in ref. [19], with inclusion of the one-loop

QCD corrections.

Since we assume that the only new CP-violating phase is that of A ≡ Ab = At,

the leading contribution to the electric dipole moment (EDM) arises at two-loops [20].

Chang, Keung, and Pilaftsis [20] have calculated two-loop contributions to the electric

dipole moment (EDM) which originate from the potential CP violation due to a non-zero

phase of A. We rewrite them showing explicitly their dependence on Im(µA). They find

the electric and chromo-electric EDM of a light fermion f at the electroweak scale as

(
dEf
)
EW

= eef
3αem
64π3

Rfmf

m2
A

∑

q=t,b

ξqe
2
q

[
F

(
m2
q̃1

m2
A

)
− F

(
m2
q̃2

m2
A

)]
, (5.1)

(
dCf
)
EW

= gsef
αs

128π3
Rfmf

m2
A

∑

q=t,b

ξq

[
F

(
m2
q̃1

m2
A

)
− F

(
m2
q̃2

m2
A

)]
, (5.2)

where αem = e2/(4π) is the electromagnetic fine structure constant, αs = g2s/(4π) is the

strong coupling constant, all the kinematic parameters must be evaluated at the electroweak

scale mZ , ei is the electric charge of particle i, Rf = tanβ for f = u, c, t, Rf = cot β for

f = e, µ, τ, d, s, b, and F (z) is a two-loop function given by

F (z) =

∫ 1

0
dx

x(1− x)

z − x(1− x)
ln

[
x(1− x)

z

]
. (5.3)

The EDM of the neutron can then be estimated by a naive dimensional analysis [21, 22] as

dn = ηE
1

3

(
4dEd − dEu

)
+ ηC

e

12π

(
4dCd − dCu

)
. (5.4)

We take the numerical values ηE = 1.53 and ηC = 3.4 [22].

The CP-violating quantities ξt and ξb are given by

ξt = −
gm3

t Im(µAt)

2m2
W sin2 β(m2

t̃1
−m2

t̃2
)

(5.5)

and

ξb = −
gm3

b Im(µAb)

2m2
W cos2 β(m2

b̃1
−m2

b̃2
)
. (5.6)

As an upper bound to the contribution to the measured value of the electron EDM we take

|de| < 0.4×10−26e cm [23]. The bound on the neutron EDM is |dn| < 1.79×10−25e cm [24].

We keep only models that satisfy these bounds.
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6. Scattering cross section

The neutralino–proton scattering cross section for spin-independent interactions can be

written as

σχp =
G2χpµ

2
χp

π
, (6.1)

where µχp = mχmp/(mχ +mp) is the reduced neutralino–proton mass, and

Gχp =
∑

q

fqmp

mq

[
3∑

i=1

Re(ghiχχ)Re(ghiqq)

m2
hi

− 1

2

2∑

k=1

Re(gLq̃kχqg
R∗
q̃kχq

)

m2
q̃k

]
. (6.2)

The sum over q runs over all quarks. The coupling constants are given in eqs. (3.7)

and (4.35)–(4.37). We take [40]

fu = 0.023 , fd = 0.034 , fs = 0.14 , fc = fb = ft = 0.0595 , (6.3)

and

mu = 5.6MeV, md = 9.9MeV, ms = 199MeV ,

mc = 1.35GeV , mb = 5GeV, mt = 175GeV . (6.4)

The quark mass mq in the denominator of eq. (6.2) cancels with an identical mass in the

numerator coming from the couplings in eqs. (3.4), (3.9), (3.10), (4.35) and (4.35).

Notice that only the real part of the couplings of the Higgs and neutralinos to Higgs

bosons in eqs. (4.35)–(4.37) enter the scattering cross section. Since both gAqq and gAχχ are

purely imaginary (because Im(µ) = 0), introducing a phase in A cannot possibly enhance

the Higgs couplings in eq. (6.2). Similarly, the neutralino–squark–quark couplings can only

be suppressed for Im(A) 6= 0. However, enhancements to the scattering cross section can

still come from the Higgs or squark masses in the denominator in eq. (6.2).

7. Annihilation cross section

The neutralino–neutralino annihilation cross section times relative velocity σv is relevant

for neutralino annihilations in the center of the Earth and Sun and in the galactic halo.

An enhancement in σv may lead to a higher annihilation signal from the Earth when

the capture of neutralinos in the core has not yet reached equilibrium with their self–

annihilation. An increased σv gives directly an increased intensity of positron, antiproton,

and gamma-ray fluxes from neutralino annihilation in the galactic halo.

The neutralino annihilation cross section also determines the relic density of neutrali-

nos. In this case, there are important contributions at v 6= 0 (p-waves, etc.) in large

regions of the supersymmetric parameter space. Due to the excessive computational cost

of obtaining the relic density in presence of CP violation, in this paper we consider in

detail the v = 0 case, and postpone a complete study of the effect of CP-violating phases

on the neutralino relic density. The enhancements and suppressions of σv at v = 0 that we

obtain in the following are indications of analogous enhancements and suppressions in the
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neutralino relic density. In section 8 we present a partial discussion of the expected relic

density in those models where we find interesting CP-violating effects.

The annihilation cross section at v = 0 includes the following contributions

σv =

[
∑

f

σff + σW+W− + σZZ + σH+H− +

+ σH+W− + σH−W+ +

3∑

i=1

σhiZ +

3∑

ij=1

σhihj

]
v , (7.1)

where σXY refers to the annihilation channel χχ → XY , which is open when 2mχ ≥
mX +mY .

The annihilation cross section in each channel can be written in terms of helicity

amplitudes A as

σXY v =
λXY

128πm2
χ

∑

helicities

|A|2, (7.2)

where the amplitudes are normalized as in ref. [25] and

λXY =

√[
1− (mX +mY )2

4m2
χ

] [
1− (mX −mY )2

4m2
χ

]
. (7.3)

The DarkSUSY code already includes analytic expressions for each helicity amplitude re-

quired in eq. (7.2), with arbitrary complex couplings between the particles. Hence once we

have rotated all vertices as described in section 4, and have added all annihilation diagrams

that vanish when CP is conserved (e.g. the s-channel exchange of all Higgs bosons), the

annihilation cross section including CP violation is automatically calculated correctly by

DarkSUSY.

For future reference, we list the individual contributions to the annihilation cross sec-

tion including terms that violate CP, although we do not use the following expressions but

the amplitudes coded in DarkSUSY.

σffv =
Nfλffm

2
χ

32π

∣∣∣∣∣

3∑

i=1

4 Im(ghiff ) Im(ghiχ1χ1
)

m2
hi
− 4m2

χ − imhiΓhi
+

4gAZff Re(gZχ1χ1)(mf/mχ)

m2
Z

+

+

2∑

s=1

(∣∣∣gR
f̃sχf

∣∣∣
2
+
∣∣∣gL
f̃sχf

∣∣∣
2
)
(mf/mχ) + 2Re

(
gL
f̃sχf

gR∗
f̃sχf

)

m2
f̃s

+m2
χ −m2

f − imf̃s
Γf̃s

∣∣∣∣∣∣∣∣

2

+

+
Nfλ

3
ffm

2
χ

32π

∣∣∣∣∣

3∑

i=1

4iRe(ghiff ) Im(ghiχ1χ1
)

m2
hi
− 4m2

χ − imhiΓhi
+

+
2∑

s=1

∣∣∣gR
f̃sχf

∣∣∣
2
−
∣∣∣gL
f̃sχf

∣∣∣
2

m2
f̃s

+m2
χ −m2

f − imf̃s
Γf̃s

∣∣∣∣∣∣∣

2

, (7.4)
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σW+W−v =
λWW

8π

∣∣∣∣∣∣∣∣

2∑

c=1

λWWmχ

(∣∣∣gR
Wχχ̃+

c

∣∣∣
2
+
∣∣∣gL
Wχχ̃+

c

∣∣∣
2
)
+ 2imχ̃+

c
Im
(
gL
Wχχ̃+

c
gR∗
Wχχ̃+

c

)

m2
χ̃+
c
+m2

χ −m2
W − imχ̃+

c
Γχ̃+

c

∣∣∣∣∣∣∣∣

2

+

+
λWW

4π

∣∣∣∣∣∣

2∑

c=1

[
2(mχ/mW )2 − 1

]
mχ̃+

c
Im
(
gL
Wχχ̃+

c
gR∗
Wχχ̃+

c

)

m2
χ̃+
c
+m2

χ −m2
W − imχ̃+

c
Γχ̃+

c

∣∣∣∣∣∣

2

, (7.5)

σZZv =
λWW

16π

∣∣∣∣∣

4∑

n=1

2λZZmχ |gZχχn |2 − 2imχn Im(g2Zχχn)

m2
χn +m2

χ −m2
Z − imχnΓχn

∣∣∣∣∣

2

+

+
λWW

8π

∣∣∣∣∣∣

4∑

n=1

[
2(mχ/mW )2 − 1

]
mχn Im

(
g2Zχχn

)

m2
χn +m2

χ −m2
Z − imχnΓχn

∣∣∣∣∣∣

2

, (7.6)

σH+H−v =
λH±H±

8π

∣∣∣∣∣∣

2∑

c=1

2 Im
(
gL
H+χ1χ

−
c
gR∗
H+χ1χ

−
c

)
mχ±c

m2
χ±c

+m2
χ −m2

H±
− imχ±c

Γχ±c
+

+
3∑

i=1

gH+H−hi Im(ghiχχ)

m2
hi
− 4m2

χ − imhiΓhi

∣∣∣∣∣

2

, (7.7)

σH+W−v = σH−W+v =

=
λ3H±Wm

2
χ

16πm2
W

×

×
∣∣∣∣∣

3∑

i=1

4igWhiH± Im (ghiχχ)mχ

m2
hi
− 4m2

χ − imhiΓhi
+ (7.8)

+
2∑

c=1

(
gR
Wχχ̃+

c
gR∗
Hχχ̃+

c
− gL

Wχχ̃+
c
gL∗
Hχχ̃+

c

)
mχ+

(
gL
Wχχ̃+

c
gR∗
Hχχ̃+

c
− gR

Hχχ̃+
c
gL∗
Hχχ̃+

c

)
mχ̃+

c

m2
χ̃+
c
+m2

χ − (m2
H±

+m2
W )/2− imχ̃+

c
Γχ̃+

c

∣∣∣∣∣∣

2

,

σhiZv =
λ3hiZm

2
χ

16πm2
Z

∣∣∣∣∣∣

4∑

n=1

−2Re
(
gZχ1χng

∗
hiχnχ1

)
mχ + 2Re (gZχ1χnghiχnχ1

)mχn

m2
χn +m2

χ − (m2
hi

+m2
Z)/2− imχnΓχn

+

+
3∑

j=1

4igZhihj Im(ghjχχ)mχ

m2
hj
− 4m2

χ − imhjΓhj
− ghiZZ Re(gZχχ)

m2
Z

∣∣∣∣∣∣

2

, (7.9)

σhihjv=
λhA

64πm2
χSij

∣∣∣∣∣∣

4∑

n=1

4 Im
(
ghiχ1χng

∗
hjχ1χn

)
mχmχn+

(
m2
hi
−m2

hj

)
Im
(
ghiχ1χnghjχ1χn

)

m2
χn+m

2
χ−(m2

hi
+m2

hj
)/2− imχnΓχn

+

+

3∑

k=1

2ghihjhk Im(ghkχχ)mχ

m2
hk
−4m2

χ−imhkΓhk
+
igZhihj

(
m2
hi
−m2

hj

)
Re(gZχχ)

m2
Z

∣∣∣∣∣∣

2

. (7.10)
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Nf is 3 for quarks and 1 for leptons, Sij is a symmetry factor equal to 1 for i 6= j and

2 for i = j, ghiff and ghiχmχn are given in eqs. (4.35)–(4.37), gL
f̃χf

and gR
f̃χf

are given in

eqs. (3.7)–(3.10), and

gWhiH± =
g

2

[
O′i1 sin(α− β) +O′i2 cos(α− β) + iO′i3

]
, (7.11)

ghiZZ =
g

cos2 θW

[
O′i1 cos(β − α) +O′i2 sin(β − α)

]
, (7.12)

gZhihj =
ig

2 cos θW

[
O′i1 sin(α− β) +O′i2 cos(α− β)

]
O′j3 − (i↔ j) , (7.13)

gAZff =
gT3f

2 cos θW
, (7.14)

gL
Wχχ+

c
= −gN14V

∗
c2√

2
+ gN12V

∗
c1 , (7.15)

gR
Wχχ+

c
= +

gN∗13Uc2√
2

+ gN∗12Uc1 , (7.16)

gZχmχn =
g

2 cos θW
[Nm4N

∗
n4 −Nm3N

∗
n3] , (7.17)

gL
H+χnχ

−
c
= − cos β

[
gN∗n4V

∗
c1 +

1√
2
(gN∗n2 + g′N∗n1)V

∗
c2

]
, (7.18)

gR
H+χnχ

−
c
= − sinβ

[
gNn3Uc1 −

1√
2
(gNn2 + g′Nn1)Uc2

]
, (7.19)

gH+H−hi = −gmW

[
O′i1 cos(β − α) +O′i2 sin(β − α)

]
+

+
gmZ cos 2β

2 cos θW

[
O′i1 cos(β + α)−O′i2 sin(β + α)

]
, (7.20)

ghihjhk = − gmZ

2 cos θW

[
O′i1 cos(α+ β)−O′i2 sin(α+ β)

]
×

×
[
cos 2α(O′j1O

′
k1 −O′j2O

′
k2)− sin 2α(O′j1O

′
k2 +O′j2O

′
k1)−O′j3O

′
k3 cos 2β

]
+

+(cyclic permutations of i, j, k) . (7.21)

Here V and U are the chargino mixing matrices.

For real µ and real gaugino masses, as we assume here, the terms containing Im(gL
Wχχ̃+

c

gR∗
Wχχ̃+

c
), Im(gL

H+χ1χ
−
c
gR∗
H+χ1χ

−
c
), and Im(g2Zχχn) in eqs. (7.5)–(7.7) vanish. In addition, when

CP is conserved, the H+H− annihilation in eq. (7.7) vanishes at v = 0.

Notice that in the annihilation into fermion pairs, in the first terms under absolute

values in eq. (7.4) (see figure 1a), there can be contributions from all Higgs bosons hi for

which the imaginary part of ghiχχ is non-zero. Examining eq. (4.37) for the couplings,

recalling that the matrix elements O ′ij are real and that for real µ and real gaugino masses

N1iN1j are also real, we see that the hi contributes when O′i3 is non-zero. In the CP-

conserving case, this happens only for i = 3, i.e. for the A boson, while with CP violation

this occurs also for i = 1 and i = 2. The annihilation into ff̄ then proceeds through

exchange of all Higgs bosons, raising the possibility of resonant annihilation when 2mχ is

approximately equal to the mass of any Higgs boson. This phenomenon is peculiar to CP

violation. An example is given in figure 9 below.
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8. Results

8.1 Results for the elastic scattering cross section

In figure 2 we show the neutralino–proton elastic scattering cross section as a function of

neutralino mass for the∼ 106 values in SUSY parameter space that we consider. There is no

CP violation in the lower panel (ImA = 0), while CP violation is allowed in the upper panel.

Also shown are the present experimental bounds from the DAMA [41] and CDMS [42]

collaborations as well as the future reach of the CDMS (Soudan) [43], CRESST [44] and

GENIUS [45] experiments. In the upper panel, it is the maximally enhanced cross section

(as a function of arg(A)) that is plotted. The red (dark) points refer to those values of

parameter space which have the maximum value of the cross section for non zero Im(A)

and which are experimentally excluded at zero Im(A). The blue (grey) region refers to

those values of parameter space which are enhanced when CP violation is included and

which are allowed also at zero Im(A). The green (light grey) empty squares refer to those

Figure 2: Neutralino elastic scattering cross section (in pb) as a function of neutralino mass (in

GeV) for ∼ 106 values in SUSY parameter space. The upper panel is for the case of CP violation

via Im(A) 6= 0 while the lower panel is for the case of no CP violation. In the upper panel, it is

the maximally enhanced cross section (as a function of arg(A)) that is plotted. The red (dark)

points refer to those values of parameter space which have the maximum value of the cross section

for non zero Im(A) and which are experimentally excluded at zero Im(A). The blue (grey) region

refer to those values of parameter space which are enhanced when CP violation is included and

which are allowed also at zero Im(A). The green (light grey) empty squares refer to those values

of parameter space which have no enhancement when CP violation is included. The solid lines

indicate the current experimental bounds placed by DAMA and CDMS; the dashed lines indicate

the future reach of the CDMS (Soudan), GENIUS, and CRESST proposals.
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Figure 3: Enhancement and suppression of elastic scattering cross section for the case of CP

violating arg(A). The plot shows the ratio Rmax = σmax/σ0
max as a function of the unenhanced

scattering cross section σ0
max = max[σ(0), σ(π)]. Here σmax is the enhanced scattering cross section

and the superscript max indicates the maximal enhancement as one goes through the phase of A.

The denominator of the ratio Rmax chooses the larger value of the scattering cross section without

CP violation, i.e. for phase = 0 or phase = π. Similarly, the ratio Rmin = σmin/σ0
min is plotted; this

time the denominator chooses the smaller value of the scattering cross section without CP violation,

σ0
min = min[σ(0), σ(π)].

values of parameter space which have no enhancement when CP violation is included.

From the existence of the red points we conclude that there are indeed points in SUSY

parameter space which are ruled out experimentally when CP is conserved but are allowed

when CP is violated. By comparing corresponding points in the upper and lower panels

of figure 2, we notice that there can be enhancement or suppression of the cross section

when we allow for CP violation. There are two types of enhancement: one in which the

model without CP violation is allowed and another in which it is experimentally ruled out.

In the first case, it is possible to define a ratio between enhanced and unenhanced cross

sections, Rmax = σmax/σ0max. In the second case, when both σ(0) and σ(π) are excluded,

it is not possible to define the previous ratio. Here σmax is the maximally enhanced cross

section as one goes through the phase of A, and σ0max = max[σ(0), σ(π)] is the larger of

the unenhanced CP conserving cross sections. We plot Rmax in figure 3 as a function of

σ0max. In those models in parameter space that we have considered, we notice that the

enhancement due to CP violation is at most a factor of two.

In figure 3, we have also plotted the ratio Rmin = σmin/σ0min, which is a measure of the

maximal suppression of the neutralino–proton cross section when CP violation is included.

Here σmin is the maximally suppressed cross section as one goes through the phase of A, and

σ0min = min[σ(0), σ(π)] is the smaller of the unenhanced CP conserving cross sections. We
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Figure 4: The enhancement/suppression factors Rmax and Rmin defined in the caption of figure 3

as a function of the values φA of the phase of A where the maximum/minimum occur.

see that significant suppression of the scattering cross section, as low as 10−7, is possible,

but only for cases which are inaccessible to experiments that will run in the foreseeable

future. For cross sections larger than 10−10 pb, on the other hand, the suppression is at

most a factor of 3.

In figure 4, we show the dependence of these enhancement and suppression factors Rmax
and Rmin on the phase φA of A. The points are plotted at those values of φA at which

the maximum or minimum of the scattering cross section occurs. The two populations

correspond to the two populations visible in figure 3 at the upper right and the lower

left. We have not understood what distinguishes these two populations. Since the large

suppressions occur at low values of the unsuppressed scattering cross section, we believe

that the large suppressions are due to interference in the scattering amplitude between

different Higgs boson exchanges, since these interferences are at the origin of the small

unsuppressed cross sections [46].

8.2 Results for the annihilation cross section

We also have obtained values for the neutralino annihilation cross section σv for the case of

CP violation through the phase of A. In figure 5 we show the maximum value of σv obtained

as we vary φA as a function of neutralino mass. As in the analogous figure 2 for the scatter-

ing cross section, the upper panel includes CP violation while the lower one does not. The

distinction between red (dark), blue (grey), and green (light grey) points is as in figure 2.

Figure 6 shows the enhancement of the annihilation cross section via the ratio Rannmax =

(σv)max/(σv)0max. We see that the annihilation cross section can be significantly enhanced

for CP violation with Im(A) 6= 0. A similar ratio can be constructed for Rannmin to show
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Figure 5: Same as figure 2 but for the neutralino annihilation cross section times relative velocity

σv (in cm3/s at v = 0) as a function of neutralino mass (in GeV) for ∼ 106 values in SUSY

parameter space.

that the suppression due to CP violation can be roughly a factor of 50. The dependence of

these enhancement and suppression factors Rannmax and Rannmin on φA are plotted in figure 7.

We have used color coding in figures 6 and 7 to differentiate between resonant and non-

resonant cases. Resonances are defined to be those points with neutralino mass satisfying

2mχ − mh < 5 × 10−3mh where mh is any of the Higgs masses. Those cases without

resonance are shaded (green) and have typical enhancements by factors of one to four,

although the enhancement can be as large as a few hundred. These non-resonant cases are

perhaps the most interesting as they span a broader regime of SUSY parameter space. In

all models for which we find an enhancement in the annihilation cross section of at least

103, the enhancement is due to an s-channel resonance with the exchange of one of the

Higgs bosons h1, h2 or h3. In the resonant cases (dark points in figure 7, color coded red),

the enhancement can be as large as 106; however, again we stress that the resonant cases

only occur for a very small regime of parameter space in which the neutralino mass is close

to half the Higgs mass. See figure 9 for an example of a resonant case.

8.3 Phase dependence of the results

In the four panels in each of the figures 8–12 we display the behavior of the scattering cross

section σχp, the annihilation cross section σv, the branching ratio BR(b → sγ), and the

lightest Higgs boson mass mh1
as a function of the phase φA of A. In the third and fourth

panels we hatch the regions currently ruled out by accelerator experiments. In all four

panels we denote the part of the curves that is experimentally allowed by thickened solid

lines, and the part that is experimentally ruled out (as seen e.g. in the third and fourth

panels) by thinner solid lines.
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Figure 6: Enhancement and suppression of neutralino annihilation cross section for the case of CP

violating arg(A). The plot shows the ratioRann
max = (σv)max/(σv)0max as a function of the unenhanced

annihilation cross section (σv)0max = max[σv(0), σv(π)]. Here (σv)max is the enhanced scattering

cross section and the superscript max indicates the maximal enhancement as one goes through the

phase of A. The denominator of the ratioRnn
max chooses the larger value of the scattering cross section

without CP violation, i.e. for phase = 0 or phase = π. Similarly, the ratio Rann
min = (σv)min/(σv)0min

is plotted. Here (σv)0min = min[σv(0), σv(π)]. We have used color coding to differentiate between

resonant and non-resonant cases. Resonances are defined to be those points with neutralino mass

satisfying 2mχ − mh < 5 × 10−3mh where mh is any of the Higgs masses. Those cases without

resonance are shaded (green) and have typical enhancements by factors of one to four, although

the enhancement can be as large as a few hundred. In the resonant cases (the dark points which

are color-coded red), the enhancement can be as large as 106.

For the models shown in figures 8–12, we give the values of the input parameters and

of the neutralino mass and composition (gaugino fraction |N11|2 + |N12|2) in table 2.

In the case plotted in figure 8, the possible phases are bound by the limit on the

b→ sγ branching ratio. In the allowed regions, the scattering cross section at CP-violating

phases is suppressed, while the annihilation cross section is enhanced. The latter takes its

maximum allowed value when the b→ sγ limit is reached.

Figure 9 presents another case in which the phase of A is bounded by the b → sγ

branching ratio. Here the scattering cross section is enhanced by only 2%, while the

annihilation cross section is enhanced by a factor of ' 222 at φA ' 0.129π. This is due

to a resonant annihilation of the neutralinos through s-channel exchange of the h1 Higgs

boson (figure 1a), which occurs when 2mχ = mh1
(see the lowest panel). Notice that in

the CP-conserving case, the s-channel exchange of the CP-even h1 boson vanishes at v = 0

because for real χχh1 couplings the amplitude is proportional to χχ which is zero at v = 0.

In presence of CP violation, the χχh1 couplings are in general complex, and the amplitude

contains a contribution from χγ5χ which does not vanish at v = 0. So the h1 resonant

annihilation seen in figure 9 is only possible when CP is violated.

– 20 –



J
H
E
P
0
7
(
2
0
0
2
)
0
5
2

Figure 7: The enhancement/suppression factors Rann
max and Rann

min defined in the caption of figure 6

as a function of the values φA of the phase of A where the maximum/minimum occur. As in figure 6,

we have used color coding to differentiate between resonant and non-resonant cases. Those cases

without resonance are shaded (green) and have typical enhancements by factors of one to four,

although the enhancement can be as large as a few hundred. In the resonant cases, the dark points

(which are color coded red), the enhancement can be as large as 106; however, again we stress that

the resonant case only occurs for a very small regime of parameter space in which the neutralino

mass is very close to half the Higgs mass.

Figures 10 and 11 show two typical non-resonant cases which are experimentally al-

lowed for all values of the phase φA. In figure 10, the maximum of the scattering cross

section takes place at the CP-conserving value φA = π and the minimum at φA = 0. On

the other hand, here CP violation enhances the annihilation cross section, as can be seen

in the second panel. Notice that its maximum occurs at φA = 0.41π, which is not the point

of maximal CP violation φA = π/2. In figure 11, the annihilation cross section is enhanced

by a factor of 4.5 and the scattering cross section is in the region accessible to future dark

matter experiments.

Finally figure 12 displays an example in which both CP-conserving cases are experi-

mentally excluded while some CP-violating cases are allowed. This is one of the red (dark)

points in figures 2 and 5. The φA = 0 case is ruled out by the bounds on both BR(b→ sγ)

and the Higgs mass, the φA = π case by only the bound on the Higgs mass. Notice that

the scattering cross section is of the order of 10−6 pb, in the region probed by the direct

detection experiments. The annihilation cross section peaks at φA = 3π/4; notice that

again this value is not the point of maximal CP violation φA = π/2.

8.4 Consequences for relic abundance and direct and indirect detection rates

In this paper we have calculated the effects of some CP-violating phases on the cross
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Figure 8: The four panels from top to bottom display the following: the scattering cross section

σχp in pb, the annihilation cross section σv in cm3/s, the branching ratio BR(b→ sγ)×104, and the

lightest Higgs boson mass mh1
in GeV as a function of the phase φA of A. CP-conserving phases

are φA = 0, π while all other values are CP violating. In the third and fourth panels we hatch the

regions currently ruled out by accelerator experiments. In all four panels we denote the part of the

curves that is experimentally allowed by thickened solid lines, and the part that is experimentally

ruled out by thinner solid lines. In this figure, the possible phases are bound by the limit on the

b→ sγ branching ratio. In the allowed regions, the scattering cross section at CP-violating phases is

suppressed, while the annihilation cross section is enhanced. The latter takes its maximum allowed

value when the b→ sγ limit is reached.

sections for neutralino scattering and annihilation. In this section we discuss in a quali-

tative way how we expect the relic density and the direct and indirect detection rates to

change. Computations required for a detailed evaluation of these changes will be done in

a future work.

8.4.1 Relic abundance

As shown in figure 9, we have found large enhancements of the neutralino annihilation

cross section today when there is a resonance, 2mχ = mR, where mR is the mass of a Higgs

boson. The first concern is that when the annihilation cross section is greatly enhanced,

the relic density of neutralinos will be greatly suppressed to the point where the models

are no longer of cosmological interest. Instead, we will show that there are two interesting

regimes of parameter space. In the first, the relic density is relatively unaffected while the
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Figure 9: Same notation as figure 8. The phase of A is bounded by the b → sγ branching ratio,

the scattering cross section is enhanced by only 2%, and the annihilation cross section is enhanced

by a factor of ' 222 at φA ' 0.129π, where the annihilation proceeds through the h1 resonance at

2mχ = mh1
(see bottom panel).

JEsp4 001509 JE27 004174 JE28 002656 JE26 018457 JEsp4 002809

Figure 8 Figure 9 Figure 10 Figure 11 Figure 12

µ [GeV] −331.433 −271.973 −234.128 6261.94 958.213

M2 [GeV] 390.064 106.141 338.688 12462.7 −153.256

mA [GeV] 84.2527 168.935 325.691 247.150 106.804

tan β 31.6126 4.37629 1.80096 23.9737 48.4750

M̃ [GeV] 1085.05 494.379 1856.43 12168.8 890.647

A/M̃ 2.71920 0.661158 1.88819 −2.42997 −2.05440

mχ [GeV] 191.46 54.95 172.4 6235. 77.04

|N11|
2 + |N12|

2 0.9459 0.9806 0.9571 0.4092 0.99786

Table 2: Model parameters and neutralino mass and composition (gaugino fraction) for the exam-

ples in figures 8–12.

annihilation cross section grows by a factor of up to 100. In the second, the relic density is

indeed reduced by factors of up to 105 while the annihilation cross section is increased by

factors which are an order of magnitude higher. In this latter case, models which previously

had Ωχ ∼ 104 are brought to cosmologically viable values of Ωχ ∼ 0.1. Here Ωχ = ρχ/ρc
is the ratio of the neutralino energy density to the energy density required to close the
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Figure 10: “The Duck.” Same notation as figure 8. This case is experimentally allowed for

all values of the phase φA. The maximum of the scattering cross section takes place at the CP-

conserving value φA = π and the minimum at φA = 0. The annihilation cross section is enhanced

by CP violation, as can be seen in the second panel.

universe, ρc = 1.88 × 10−29h20 g cm
−3.

We now explain the relationship between the annihilation cross section and the relic

density close to a resonance. The neutralino relic density has been widely discussed in the

literature. The relic abundance is found by solving the Boltzmann equation for the evolu-

tion of the neutralino number density. Here we use a simple and accurate approximation

for the relic neutralino density,

Ωχh
2 =

1.02 × 10−27 cm3/s

Jg
1/2
∗

, (8.1)

where g∗ is the number of effectively relativistic degrees of freedom at the time of freeze-

out, when the neutralino reaction rate is no longer fast enough to maintain equilibrium.

Defining an inverse temperature

x = m/T , (8.2)

we will take xf = m/Tf = 25 as a rough estimate of the freeze-out temperature, a number

accurate enough for our purposes. The integral J (which expresses the efficiency of post-

freeze-out annihilation) is defined as

J =

∫ ∞

xf

〈σv〉
x2

dx , (8.3)
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Figure 11: Same notation as figure 8. This case is experimentally allowed for all values of the

phase φA. The annihilation cross section is enhanced by a factor of 4.5 due to CP violation, as can

be seen in the second panel. The scattering cross section is in the range accessible to future dark

matter experiments.

where 〈σv〉 is the thermally averaged cross section. For the simple case of s-wave annihila-

tion with constant cross section independent of velocity, J can be replaced by a constant.

Hence, far from resonance, we may take

ΩNRh
2 =

1.02× 10−27 cm3/s

g
1/2
∗ (σv)NRTf/m

, (8.4)

where (σv)NR is the constant cross section far from resonance. However, when there is a

resonance, the integral J must be calculated more carefully, as previously discussed by [47]

and [48]. We follow a similar analysis here.

If (σv)pole is the cross section exactly at the pole, then the Breit-Wigner form for the

cross section near a resonance of mass mR and width ΓR is

σv = (σv)NR + (σv)pole
Γ2Rm

2
R

(s−m2
R)
2 + Γ2Rm

2
R

, (8.5)

where s = 4m2
χ/(1− v2/4) is the Mandelstam variable and v is the relative velocity in the

center-of-mass frame (taken to be 0 today). For use in relic abundance calculations, the

cross section must be thermal averaged. Once this is done, J can be written as

J =

∫ ∞

0
dvv(σv) erfc

(
v

√
xf

2

)
. (8.6)
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Figure 12: Same notation as figure 8. Here, both CP conserving cases are experimentally excluded

while some CP-violating cases are allowed. This is one of the red (dark) points in figure 5. The

scattering cross section is of the order of 10−6 pb, and lies in the region being probed by direct

detection experiments. The annihilation cross section peaks at φA = 3π/4; notice that this value is

not the point of maximal CP violation φA = π/2.

Here (σv) is the unaveraged cross section and erfc is the complementary error function.

Now using eqs. (8.1), (8.6), (8.4), and (8.5), we may write

(σv)R
(σv)NR

=

(
ΩNR
Ωχ

− 1

)
K (8.7)

with

K =

[
xf

∫ ∞

0
dvv erfc

(
v

√
xf

2

)
ε+ (u− 1)2

ε+ [u/(1 − v2/4)− 1]2

]−1
, (8.8)

where we have defined scaled variables

u =

[
2mχ

mR

]2
and ε =

[
ΓR
mR

]2
. (8.9)

Now for a resonance of a certain width ΓR and a given decrease in relic density from

the non-resonant value, Ωχ/ΩNR, we may calculate the maximum enhancement of the cross

section over its non-resonant value, (σv)R/(σv)NR, as a function of the number of widths

away from the pole,

n =
2m−mR

ΓR
. (8.10)
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Figure 13: Resonant enhancement of the cross section for neutralino annihilation as a function of

the neutralino mass m in units of the resonance width ΓR. Here mR is the resonance mass. The

two curves are for ΓR/mR = 10−3 and ΓR/mR = 10−4 (the former applies to the model in figure 9).

In figure 13 we have plotted this enhancement for Ωχ/ΩNR = 1/2 (i.e. we have plotted

K) for the two values of ΓR/mR = 10−3 and 10−4. From eq. (8.7) we can see that the

maximum enhancement for all other values of Ωχ/ΩNR can then be obtained from the

figure by simple scaling, since (σv)R/(σv)NR ∝ (ΩNRΩχ − 1). From this plot, we can see

the first category of cases mentioned above. Here we have the relic density changing very

little (only a factor of 2) while the annihilation cross section can be enhanced by factors

of 10–100. Indeed the new resonances due to CP violation can produce enhancements of

10–100 without much affecting the relic density.

Next we turn to the second category mentioned above. In these cases, the enhancement

in σv is large, and the resulting relic density is inversely proportional to the annihilation

cross section, (σv)R/(σv)NR ' K(ΩNR/Ωχ), as can be seen from eq. (8.7) when the 1 in

the first term can be neglected. The constant of proportionality K (plotted in figure 13)

depends on the resonance width and on the number of widths away from the pole. On

resonance, i.e. 2mχ = mR, K is at least 10 for the narrow Higgs boson resonances that

appear in our study. The model in figure 9 is an example of this case. In this model,

the Higgs mass is mR ' 110GeV and the Higgs width is ΓR ' 10 MeV, corresponding

to ε = 10−6. Here we can run DarkSUSY to conclude that ΩNR ∼ 104, so that the CP

conserving version of these parameters is cosmologically impossible. However, due to the

resonant induced amplification of the cross section by a factor of 106, the cosmic abundance

is brought down to an acceptable value of Ωχ ∼ 0.1.

In conclusion, there are two interesting regimes of parameter space which do have

enhanced annihilation cross sections and also have cosmologically interesting abundances
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in the range 0.025 < Ωχ < 1: (1) enhancements of σv by factors of 10 to 100 with only

small decreases in Ωχ, and (2) enhancements of σv by larger factors with decreases in Ω

smaller by an order of magnitude.

Partial studies of the neutralino relic density in the presence of CP-violating phases

have been done in the context of supergravity [50] or string-inspired models [51], but a full

numerical study appropriate to the parameters of this paper is still lacking.

8.4.2 Direct detection

Regarding direct detection searches, those that employ spinless nuclei are directly affected

by the suppressions we find in the spin-independent neutralino–proton cross section. This

is the case of enriched detectors like 73Ge [49], which have almost exclusively spinless

nuclei. The suppression factor for such detectors would be equal to the suppression in the

scattering cross section. This is the case with the strongest effect. For all experiments in

the foreseeable future, as seen in figure 3, the cross section is reduced by at most a factor

of 3, and may be enhanced by a factor of up to 2. In future experiments capable of probing

cross sections lower than 10−10 pb, the suppression off spinless nuclei can be enormous, up

to factors of 10−7.

On the other hand, detectors which contain a fraction of nuclei with spin would still

be sensitive to the spin-dependent part of the scattering cross section, which in general

is not suppressed simultaneously to the spin-independent cross section. Anyhow, because

the spin-independent cross section with nuclei is proportional to the square of the number

of nucleons A while the spin-dependent cross section is not, the experimental sensitivity is

greatly reduced, by factors of more than 1/A2 ≈ 1000, when the spin-independent part is

suppressed. Hence, in the case when spin-dependent interaction dominates, the suppression

in the detection rate is limited to factors of 1000.

8.4.3 Indirect detection

Indirect detection searches are of two types: those looking for neutrinos from neutralino

annihilation in the Sun [2] or the Earth [3], and those looking for anomalous cosmic rays

or neutrinos from annihilation in the galactic halo [4] or the galactic center [5]. The latter

signals are directly proportional to the neutralino annihilation cross section at v = 0, and

so are proportionally affected by the enhancements and suppressions we find when we allow

for CP-violating phases in A. In other words, indirect detection rates from the galactic

halo or center can be increased by factors of typically one to four and occasionally of up

to 106.

Indirect detection from the Earth or the Sun is more complicated. As we will argue,

a non-zero value of Im(A) can change the indirect detection rate in either direction. De-

creased scattering cross sections lead to decreased indirect signals from the Earth or the

Sun, while increased annihilation cross sections lead to increased indirect signals from the

Earth or the Sun. We recall the idea behind indirect detection. Neutralinos residing in the

galactic halo pass through the Sun or Earth and some of them get captured. Then they

sink to the center of the Sun or Earth, where they annihilate with one another to give neu-

trino signals detectable in neutrino detectors on the surface of the Earth. It is clear that in
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this process, both scattering and annihilation cross sections are of crucial importance. The

maximal observable neutrino signal occurs when equilibrium is reached between capture of

particles and their annihilation. In this case the final neutrino signal depends only on the

capture rate, and so on the scattering cross section of neutralinos with the nuclei in the

Sun or the Earth. In the Sun, the most important nuclei for neutralino capture are oxygen

and hydrogen. Oxygen has zero spin; hydrogen has spin-1/2. When the spin-independent

scattering cross section is suppressed, neutralinos can still be captured in the Sun by scat-

tering off of hydrogen. Therefore we expect only a small suppression in the capture rate

in the Sun, and hence in the neutrino signals from the Sun in the case where equilibrium

is reached. On the other hand, capture by the Earth is essentially due to scattering off

of spinless nuclei, such as iron and nickel. Big suppressions in the spin-independent cross

section are therefore expected to lead to big suppressions in the capture rate in the Earth,

and hence in the neutrino signals from the Earth in the case where equilibrium is reached.

However, equilibrium may not have been reached in the age of the solar system be-

tween capture of neutralinos and their annihilation in the Earth or Sun. The timescale for

equilibration is τ = (CCA)
−1/2, where C is the capture rate and CA is the annihilation

rate. Here, C is proportional to the neutralino–nucleon scattering cross section and CA is

proportional to the neutralino annihilation cross section. Again, a suppressed scattering

cross section goes in the direction of suppressing the indirect detection rate: the capture

rate is smaller, the timescale for equilibration is longer, and the neutrino flux is not at

full strength. However, a non-zero value of Im(A) may also lead to an enhanced annihila-

tion cross section; this enhancement goes in the opposite direction of driving the system

towards equilbrium more quickly. When the annihilation rate is bigger, the timescale for

equilibration is smaller, and the system is driven towards full signal more quickly. Hence

an enhanced annihilation rate should increase the indirect detection rate from the Earth

in those cases where annihilation was not ordinarily reached (for Im(A) = 0).

In conclusion, we expect that decreased scattering cross sections lead to decreased

signals for direct detection and indirect detection from the Sun or the Earth, while increased

annihilation cross sections lead to increased signals for indirect detection.

A detailed study of the consequences of the present results on the neutralino relic

density and on direct and indirect searches of neutralino dark matter is an interesting

topic for future study.

9. Conclusions

We have examined the effect of CP violation on the neutralino annihilation and scattering

cross sections, which are of importance in calculations of the neutralino relic density and

of the predicted rates for direct and indirect searches of neutralino dark matter. Specif-

ically we have considered the case in which the only CP-violating phase in addition to

the standard model CKM phase is in the complex soft trilinear scalar couplings A of the

third generation. This phase affects the squark masses and through radiative corrections

generates a mixing between CP-even and CP-odd Higgs bosons. This mixing modifies the

neutralino annihilation and scattering cross sections in the kinematic regimes relevant for
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dark matter detection. Exploring ∼ 106 points in supersymmetric parameter space with a

non-zero phase of A, we have found that: (1) the scattering cross section may be enhanced

by a factor of up to 2; (2) the scattering cross section is generally suppressed, up to factors

of 3 in the range accessible to detectors in the foreseeable future, and even by 7 orders

of magnitude for lower cross sections; (3) the annihilation cross section can be enhanced.

Typical enhancements are a factor of one to four, but may be as large as 106 in the case of

resonant annihilation when the neutralino mass is close to half the Higgs mass. Two possi-

bilities exist when the mass is on resonance: (i) in some cases enhancement by factors of up

to 100 is possible without much changing the value of the relic density, while (ii) in other

cases the relic density is brought down by many orders of magnitude to a cosmologically

viable range and the annihilation cross section is brought up to an experimentally accessi-

ble value. We have also found cases which are experimentally or cosmologically excluded

when CP conservation is imposed but are allowed when CP conservation is violated. Some

of these cases have neutralino masses and cross sections in the region probed by current

dark matter searches. Decreased scattering cross sections may lead to decreased signals

for direct detection and indirect detection from the Sun or the Earth, while increased

annihilation cross sections may lead to increased signals for indirect detection.
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