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Abstract: In this short note, we try to clarify a seemly trivial but often con-

fusing question in relating a higher-dimensional physical gravitational constant to

its lower-dimensional correspondence in Kaluza-Klein reduction. In particular, we

re-derive the low-energy M-theory gravitational constant in terms of type-IIA string

coupling gs and constant α
′ through the metric relation between the two theories.
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The proper determination of eleven dimensional M-theory gravitational constant

(therefore, the eleven-dimensional Planck constant), in terms of type-IIA string cou-

pling gs and constant α
′, is important, for example, for the BFSS matrix proposal

of M-theory [1]. It is also important for whether brane modes can possibly decou-

ple from bulk gravity modes [2, 3, 4] in the so-called decoupling limit. Given the

string constant α′ (therefore the units in type-IIA string theory) and the relation-
ship between 11-D M-theory and type-IIA string theory, the 11-D M-theory physical

gravitational constant as well as the units for M-theory are also given. We therefore

expect a precise expression for the M-theory gravitational constant in terms of type-

IIA string coupling gs and constant α
′. However, there exist no unique answers in the

literature for this constant. We try to clarify, in this short note, possible confusion

about the derivations of this constant.

Let us begin with a general discussion in relating a higher-dimensional physical

gravitational constant to its lower-dimensional correspondence in dimension redec-

tion. We start with the following gravity action in dimension D

ID =
1

2κ̄2D

∫
dDx

√
− det Ĝ

[
R̂ + · · ·

]
, (1)

where ĜMN is the metric, R̂ is the Ricci scalar, the constant κ̄
2
D is usually called

gravitational constant (the Newton constant 8πGDN ≡ κ2D),1 and · · · in the above
action represents other possible fields.2

Now we wish to compactify the above action to dimension d (< D). For our

purpose, we need to consider only the massless graviton whose effective action is

Id =
1

2κ̄2d

∫
ddx
√
− det g [R + · · ·] . (2)

In obtaining the above action from eq. (1), we made the split for the higher-

dimensional coordinate xM = (xµ, yi) with M = 0, 1, . . . , D − 1, µ = 0, 1, . . . , d − 1
and i = 1, . . . , D−d. Here xµ are the coordinates of the lower-dimensional spacetime
and yi are the compactified coordinates. We therefore have the same units for both

the D-dimensional theory and the compactified d-dimensional theory. The massless

sector of the lower-dimensional theory can be obtained by assuming the higher-

dimensional fields to be independent of yi. We then simply integrate out the yi from

the action (1). By comparing the resulted action with eq. (2), we have the relation

for the gravitational constants and the compactified volume VD−d as3

κ2D = κ
2
d VD−d . (3)

1The κ without a bar corresponds to the physical gravitional constant while the one with a bar

is not necesarily a physical one, see the explanation given in the text.
2For the purpose of this paper, we need to consider only the first term in the action.
3I will make this precise when we discuss on how to reduce the low energy M-theory to the low

energy type-IIA string theory.
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We often say that the above equation, relating the higher-dimensional physical grav-

itational constant to its lower-dimensional correspondence through the physical vol-

ume measured with respect to the lower-dimensional metric, is independent of the

actual metric relation between the higher-dimensional and the lower-dimensional

theories. This is true indeed.

However, what is often ignored in practice is the implicit assumption used in

deriving eq. (3) that we choose the asymptotic metric (i.e., the underlying vacuum)

for the higher-dimensional theory to be same as that for the compactified lower-

dimensional theory.4 Only in this case, we can take the constant κ̄2 in front of

the respective action as the physical gravitational constant.5 In general, however,

the asymptotic metrics for both the higher-dimensional theory and the compactified

lower-dimensional theory are not necessarily the same because the scalars due to

the compactification develop VEV.6 If this happens, we cannot take both κ̄2D and

κ̄2d in front of the respective action in the above as physical.
7 The ignorance of

this fact is often the source of confusion in the literature. For example, the low-

energy M-theory physical gravitational constant has been given correctly in [1, 7] as

2κ211 = (2π)
8g3sα

′9/2 in terms of type-IIA string coupling gs and constant α′. But
this constant has also been given incorrectly in the literature precisely because κ̄ is

mistaken as κ.

In the remainder of this note, I will focus, as an example, on the reduction of

11-dimensional low-energy M-theory on a circle S1 to give the low energy theory of

type-IIA string. The 11-D M-theory metric is related to the type-IIA string metric as

ds211 = e
−2φ/3ds210 + e

4φ/3(dx11)2 , (4)

where φ is the dilaton in type-IIA string theory, 11-th coordinate x11 has a period

2πr with the coordinate radius r. In the above we have dropped the KK vector

4Usually we choose the asymptotic metric for the lower-dimensional theory to be minkowskian,

i.e., flat Minkowski metric ηµν = (−,+, . . . ,+), see the definition given in [7]. This is the metric
used in defining the physical gravitational constant. This is also the metric used in perturbative

string theory in defining the string tension Tf = 1/(2πα
′) or the string constant α′.

5In this case, for example, the metric gµν = ηµν + κhµν for small graviton fluctuation around

flat Minkowski spacetime and the Einstein-Hilbert action reduces to the cannonical form
∫
(∂h)2 +

κ(∂h)2h.
6Of course, one can always define both of the higher-dimensional metric and the lower-

dimensional one to be same asymptotically by absorbing the possible constant factor due to the

VEV of scalars into the κ̄2 in front of the action. For the higher-dimensional theory, the com-

pactified coordinates yi have to be rescaled properly with respect to the lower-dimensional metric,

see the example given later in relating M-theory to type-IIA string. Then the resulting κ2 is the

physical one. This is what Maldacena did in [5] for obtaining masses properly for BPS states in

string theory using U-duality.
7Polchinski in [6] chose both the units and metric for M-theory the same as those for string

theory. By definition, his κ211 and the compactified radius are both physical, not the usual κ̄
2
11 and

the coordiante radius r.
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field Aµ. For our purpose, Aµ is irrelevant. We take type-IIA string metric ds
2
10 as

asympotically Minkowski since that is where we quantize the perturbative type-IIA

string. That is the metric used in defining the fundamental string tension Tf =

1/(2πα′). So are the tensions for D-branes and NSNS branes. With eq. (4) and
taking D = 11 in eq. (1), we have the low energy action of type-IIA string as

I10 =
2πr

κ̄211

∫
d10x
√
− det ge−2φ [R + · · ·] , (5)

where gµν is the string metric. By definition, we have the following relation

κ̄211 = 2πr e
−2φ0 κ210 , (6)

where κ210 ≡ κ̄210 e2φ0 is the physical gravitational constant in D = 10. φ0 is the VEV
of dilaton or the asymptotic value of the dilaton and is related to the string coupling

as gs = e
φ0 .

As we stress above that eq. (3) holds true always. In the present context, it is

κ211 = 2πρ κ
2
10 , (7)

with ρ the physical radius. Let me explain why 2κ211 = (2π)
8g3sα

′9/2 given in [1, 7]
must be correct. As I mentioned above, eq. (7) should hold always true. The physical

gravitational constant 2κ210 = g
2
sα
′4 was given in [8]. As we now know that the strong

coupling of type-IIA string is just M-theory compactified on a big circle. In order

for this to be true, one needs to identify the spectrum of D0 branes with that of

momentum (Kaluza-Klein) states. This implies that the physical radius of the circle

measured in string metric is given as the inverse of mass of a single D0 brane, i.e.,

ρ = gsα
′1/2. Then we have the 11-D physical gravitational constant from eq. (7) as

given above.

From eqs. (6) and (7), we have

κ̄211
r e−2φ0

=
κ211
ρ
. (8)

We intend to determine the relation between κ11 and κ̄11 and the relation between

r and ρ unambiguously. To my knowledge, no explicit derivations for these two

relations have been given in the literature. We dare to present them here.

For our purpose, we need to consider only the asymptotic metric relation in

eq. (4), i.e.,

(ds0)
2
11 = e

−2φ0/3(ds0)210 + e
4φ0/3(dx11)2 ,

= e−2φ0/3
[
(ds0)

2
10 + (dx̃

11)2
]
, (9)

where the asymptotic string metric (ds0)
2
10 is actually minkowskian and the rescaled

11-th coordinate x̃11 = eφ0x11 with its radius r̃ = eφ0r. The first line in the
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above equation indicates clearly that the 11-D metric cannot be asymptotically

minkowskian if we insist ds210 be so.
8 The second line says that the 11-D metric

can be made asymptotically minkowskian up to a constant scaling factor e−2φ0/3 if
we rescale x11 to x̃11 as given above. In other words, the scaled radius r̃ is measured

with respect to the string metric. Because the string constant α′ is defined with
respect to the string metric, the second line in eq. (9) should be used in the following

equation.

By definition, from the above asymptotic metric relation, we have

κ211 =
κ̄211√

− det Ĝ0Ĝ−10
= e3φ0 κ̄211 , (10)

where Ĝ0 denotes the 11-D asymptotic metric given in the second line of eq. (9).

Using the above and eq. (8), we derive r = α′1/2. Then r̃ = eφ0 α′1/2 = ρ is the
physical radius measured in the string metric.

Let us provide an independent check of eq. (10). For simplicity, we consider the

reduction of a scalar field Φ(xM ) from 11-D to 10-D on a circle S1. The usual KK

reduction says

Φ(xµ, x11) =

∞∑
n=−∞

Φn(x
µ)einx

11/r , (11)

or

Φ(xµ, x̃11) =
∞∑

n=−∞
Φn(x

µ)einx̃
11/r̃ , (12)

where x11 or x̃11 is the compactified coordinate defined earlier. The 11-D wave

equation 5M5M Φ = 0 in the asymptotic region (or around the Minkowski vacuum)
becomes

ηµν∂µ∂νΦn(x
µ) =

n2

r2e2φ0
Φn(x

µ) , (13)

where we have used the first line in eq. (9), or we have

ηµν∂µ∂νΦn(x
µ) =

n2

r̃2
Φn(x

µ) , (14)

where we have used the second line in eq. (9). The mass spectrum with respect to

the 10-D Minkowski vacuum in string frame can be obtained from either of the above

equations as

M2n = −pµpµ =
n2

r2e2φ0
=
n2

r̃2
. (15)

From the above, we should identify r̃ = reφ0 as the physical radius with respect to

the string metric. The mass Mn should be identified with that of n D0 brane for the

8We can no longer rescale (ds0)
2
10 since that is the metric used in defining the string constant α

′.
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reason mentioned earlier. We therefore have r̃ = gsα
′1/2. So we have r = α′1/2. Using

eq. (8) and ρ = r̃, we obtain also eq. (10). Our discussion gives 2κ̄211 = (2π)
8α′9/2.

In summary, we explain how to obtain the physical gravitational constant for

the original higher dimensional theory if we know the physical gravitational constant

in the compactified lower-dimensional theory. In particular, we derive the relation

κ211 = g
3
s κ̄
2
11 and determine the radius r = α

′1/2 (or r̃ = gsα′1/2) unambiguously.
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