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Abstract: The type-IIB supergravity solution describing a collection of regular and

fractional D3-branes on the conifold (hep-th/0002159) was recently generalized to

the case of the deformed conifold (hep-th/0007191). Here we present another gen-

eralization — when the conifold is replaced by the resolved conifold. This solution

can be found in two different ways: (i) by first explicitly constructing the Ricci-flat

Kähler metric on resolved conifold and then solving the supergravity equations for

the D3-brane ansatz with constant dilaton and (self-dual) 3-form fluxes; (ii) by gen-

eralizing the “conifold” ansatz of hep-th/0002159 in a natural “asymmetric” way so

that the 1-d action describing radial evolution still admits a superpotential and then

solving the resulting 1-st order system. The superpotentials corresponding to the “re-

solved” and “deformed” cases turn out to have essentially the same simple structure.

The solution for the resolved conifold case has the same asymptotic UV behaviour

as in the conifold case, but unlike the deformed conifold case is still singular in the

IR. The naked singularity is of repulson type and may have a brane resolution.
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1. Introduction

To construct supergravity (and string-theory) duals of less supersymmetric gauged

theories one is interested in “4 + 1 + compact space” type backgrounds with extra

p-form fluxes [1]. It is natural to try to generalize the original AdS/CFT correspon-

dence [2] by considering D3-branes in more general transverse space backgrounds,

e.g. placing them at conical singularities [3]–[6]. This idea has been developed fur-

ther [7, 8] by adding “fractional” D3-branes (D5-branes wrapped over 2-cycles) [9],

exploiting the fact that topologically the base space of the conifold (T1,1) is S2×S3.
In [8] it was argued that the dual field theory should be a non-conformal N = 1
supersymmetric SU(N +M) × SU(N) gauge theory and some key effects of intro-
ducing fractional branes were discussed, including breaking of conformal invariance

and structure of the logarithmic RG flow.

The corresponding supergravity solution describing a collection of N D3-branes

and M fractional D3-branes on the conifold was constructed in [10]. This solution

has the standard D3-brane-type metric but with the “harmonic function” replaced

by h(r) = 1 +Q(r)/r4, Q(r) = c1gsN + c2(gsM)
2 ln r/r0. The logarithmic running

of the “effective charge” Q(r) implies the presence of a naked singularity at small

r (in IR from dual gauge theory point of view). A remarkable way to avoid the IR

singularity was found [11]: one is to replace the conifold by the deformed conifold

keeping the same D3-brane structure of the 10-d metric and generalizing the 3-form

ansatz appropriately.
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The deformed conifold solution [11] has the same large r (UV) asymptotic as

the original conifold one [10] but is regular at small r, i.e. in the infrared. In [11]

some desirable properties of this background were established, including the gravity

counterparts of the existence of confinement and chiral symmetry breaking in the

dual gauge theory.

It is of obvious interest to explore further the class of backgrounds which have

similar “3-branes on conifold” type structure (potentially including also the solution

of [15]). Given the topology of the base space, there are two natural ways of smooth-

ing out the singularity at the apex of the conifold. One can substitute the apex by

an S3 (deformation) or by an S2 (resolution). Here we complement the conifold [10]

and deformed conifold [11] solutions by constructing explicitly the background corre-

sponding to the resolved conifold case.1 The type-IIB supergravity solution we find

coincides with the original background of [10] for large r but has somewhat different

(though still singular) small r (IR) behavior. The singularity of the analog of the

solutions of [10, 11] in the resolved conifold case was anticipated in [16, 17].

One may discover this solution using two different strategies. One may start

with the “conifold” ansatz for the 10-d background in [10] and generalize it in a

very simple and natural way by allowing an “asymmetry” between the two S2 parts

in the metric and in the NS-NS 3-form introducing two new functions. Assuming

the spherical symmetry as in [10] one can then obtain the resulting supergravity

equations from a 1-d action describing evolution in radial direction. Remarkably, as

in [10], the potential term in this action can be derived from a superpotential. This

is true also in the “deformed” case of [11] and is consistent with expected N = 1
supersymmetry of the resulting solution which follows then by solving the resulting

1-st order equations. In the process, one explicitly determines the metric on the

resolved conifold.

Alternatively, one may start with finding the Ricci flat Kähler metric of the

resolved conifold (which, as far as we know, was not previously given in the literature

in an explicit form) and then solve the type-IIB supergravity equations for the D3-

brane ansatz with constant dilaton and 3-form fluxes representing the inclusion of

fractional D3-branes. As in the other two (“standard” and “deformed” conifold)

cases, the complex 3-form field turns out to be self-dual. The importance of this

property was emphasized in [11, 16] and the N = 1 supersymmetry of such class of
backgrounds was recently proved in [17, 18].

In section 2 we shall review the “small resolution” of the conifold [19] and find

the corresponding Ricci flat metric explicitly.

In section 3 we shall show how the geometry of M10 = R1,3×(resolved conifold)
changes in the presence of D3-branes, i.e. find the analog of the standard D3-brane

solution [20, 21] in case when the transverse 6-space is replaced by the resolved

1Various aspects of branes on resolved conifold were discussed, e.g. in [12, 13, 14].
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conifold (the coefficient in the metric is a harmonic function on the 6-space). In con-

trast to the D3-brane on the conifold [5] the short distance limit of this supergravity

background does not have an AdS5 factor and is singular. We shall compare this

D3-brane solution with the one in the case of the deformed conifold [11]. We consider

a radially symmetric solution corresponding to 3-branes smeared over a 2-sphere at

the apex. In [13] the 3-branes were instead localized at a point on S2. The choice

of point corresponds to giving expectation values for scalar fields in the dual field

theory, breaking gauge symmetry and conformal invariance. The solution in [13]

was non-singular in IR, approaching AdS5 × S5. It seems that the averaging over
S2 causes a singularity (present also in analogous D3-brane solution with deformed

conifold as transverse space).2

In section 4 we shall generalize the D3-brane solution of section 3 to the presence

of fractional D3-branes on the resolved conifold. We shall analyze the limits of the

solution and show that it has a short-distance singularity. This is a repulson-type

singularity, so one may hope that it may be resolved by the mechanism of [22].

In section 5 we shall explain how the same solution can be obtained from a

1-d action for radial evolution admitting a superpotential, i.e. by solving a system

of 1-st order equations as in [10]. We shall point out that a similar superpotential

exists also in the deformed conifold case of [11]. As we shall demonstrate in the

process, making simple ansatze for the 6-d part of the metric and identifying the

1-st order systems associated with the Ricci-flatness equations allows one to find

the explicit forms of the resolved and deformed conifold metrics in a straightforward

way. Identifying explicitly the 1-st order system (whose existence is expected on the

grounds of residual supersymmetry) is useful for generalizations and for establishing

a potential correspondence between the radial evolution on the supergravity side and

the N = 1 supersymmetric RG flow in the dual gauge theory.

2. Metric of resolved conifold

The purpose of this section is to write down explicitly the Ricci flat metric on the

resolved conifold following the detailed discussion in [19]. Though it is not possible

to introduce a globally well-defined metric on the resolved conifold, one can find a

metric on each of the two covering patches. The conifold can be described by the

following quadric in C4:
∑4

i=1w
2
i = 0.

3 This equation can be written as

detW = 0 , i.e. XY − UV = 0 ,
W = 1√

2

(
w3 + iw4 w1 − iw2
w1 + iw2 −w3 + iw4

)
≡
(
X U

V Y

)
. (2.1)

2We are grateful to I. Klebanov for this suggestion and explaining the relation to [13].
3More details on the topological structure of the resolved conifold as a C2 bundle over CP1 can

be found in [19].
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The resolution of the conifold can be naturally described in terms of (X, Y, U, V ).

Resolving the conifold means replacing the equation XY − UV = 0 by the pair

of equations (
X U

V Y

)(
λ1
λ2

)
= 0 , (2.2)

where λ1λ2 6= 0. Note that (λ1, λ2) ∈ CP1 (any pair obtained from a given one by
multiplication by a nonzero complex number is also a solution). Thus (λ1, λ2) is

uniquely characterized by λ = λ2/λ1 in the region where λ1 6= 0. Working on this
patch a solution to (2.2) takes the form4

W =
(−Uλ U

−Y λ Y

)
. (2.3)

Thus (U, Y, λ) are the three complex coodinates characterizing the resolved conifold

in the patch where λ1 6= 0.
The conifold metric is gmn̄ = ∂m∂n̄K, where K is the Kähler potential. In contrast

to the the cases of the conifold or the deformed conifold, here the Kähler potential

is not a globally defined quantity, and is not a function of only the radial coordinate

defined by

r2 = tr(W†W) = (1 + |λ|2)(|U |2 + |Y |2) . (2.4)

Following the analysis of [19], based on the transformation of the coordinates in the

overlap region, one concludes that the most general Kähler potential is of the form

K = F (r2) + 4a2 ln(1 + |λ|2) , (2.5)

where F is a function of r2 and a is the “resolution” parameter (a = 0 is the conifold

case). Thus the metric is

ds2 = F ′ tr(dW†dW) + F ′′| tr(W†dW)|2 + 4a2 |dλ|2
(1 + |λ|2)2 , F ′ ≡ dF

dr2
. (2.6)

The Ricci tensor for a Kähler metric is Rmn̄ = −∂m∂n̄ ln det gmn̄, where for the metric
in (2.6)

det gmn̄ = F
′(F ′ + r2F ′′)(4a2 + r2F ′) . (2.7)

The Ricci-flatness condition implies

γ′γ(γ + 4a2) =
2

3
r2 , γ ≡ r2F ′ , γ′ ≡ dγ

dr2
, (2.8)

which is integrated to give

γ3 + 6a2γ2 − r4 = 0 . (2.9)

4In the region where λ1 is allowed to be zero we have λ2 6= 0 and thus the general solution can
be written as W =

(
X −Xµ
V −V µ

)
, where µ = λ1/λ2.
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We set the integration constant to zero, assuming that γ(0) = 0 (as should be true

in the a = 0 case of the conifold).5 The real solution is6

γ = −2a2+4a4N−1/3(r)+N1/3(r), N(r) ≡ 1
2
(r4−16a6+√r8 − 32a6r4) . (2.10)

In the conifold case a = 0 we have γ = r4/3 [19]. Note also that

γ(r → 0) = 1√
6a
r2− 1

72a4
r4+O(r6) , γ(r →∞) = r4/3−2a2+O(r−4/3) . (2.11)

To write down the resolved conifold metric explicitly we will parametrizeW in terms
of the two sets of Euler angles, exploiting the fact that the resolved conifold solution

for W has SU(2)× SU(2) symmetry7

U = rei/2(ψ+φ1+φ2) cos
θ1
2
cos

θ2
2
, Y = re

i
2
(ψ−φ1+φ2) sin

θ1
2
cos

θ2
2
,

λ = e−iφ2 tan
θ2

2
. (2.12)

Then the resolved conifold metric takes the form

ds26 = γ′dr2 +
1

4
γ

2∑
i=1

(
dθ2i + sin

2 θidφ
2
i

)
+
1

4
γ′r2

(
dψ +

2∑
i=1

cos θidφi

)2
+

+ a2(dθ22 + sin
2 θ2dφ

2
2) . (2.13)

Note that the parameter a introduces asymmetry between the two spheres. Defining

the veilbeins

eψ = dψ +
2∑
i=1

cos θidφi , eθi = dθi , eφi = sin θidφi , i = 1, 2 , (2.14)

the metric can be written as

ds26 = γ
′dr2 +

1

4
γ′r2e2ψ +

1

4
γ
(
e2θ1 + e

2
φ1

)
+
1

4
(γ + 4a2)

(
e2θ2 + e

2
φ2

)
. (2.15)

As follows from (2.11), for small r the S3 (ψ, θ1, φ1) part of the metric shrinks to

zero size while the S2 (θ2, φ2) part stays finite with radius a.

Since γ′d(r2) = dγ and γ′ = 2r2

3γ(γ+4a2)
it is very convenient to consider γ as a new

radial coordinate introducing

ρ2 ≡ 3
2
γ . (2.16)

5One could keep the integration constant in (2.9) which would lead to more general geometries.

These more general geometries are compatible with metrics on the conifold that are not the cone

over T1,1 but are nevertheless Kähler, Ricci-flat metrics.
6This expression applies for all r2 > 0 provided for r2 < 4

√
2a3 one uses the cubic root (−1)1/3 =

1+i
√
3

2 (while N becomes complex, γ stays real).
7Here ψ = ψ1 + ψ2, and (θ1, φ1, ψ1) and (θ2, φ2, ψ2) correspond to the two SU(2)’s.
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This allows one to avoid the issue of how to define the expression (2.10) in different

regions. Then using (2.8) and (2.9) the resolved conifold metric can be written

simply as

ds26 = κ
−1(ρ)dρ2 +

1

9
κ(ρ)ρ2e2ψ +

1

6
ρ2
(
e2θ1 + e

2
φ1

)
+
1

6
(ρ2 + 6a2)

(
e2θ2 + e

2
φ2

)
, (2.17)

where

κ(ρ) ≡ ρ2 + 9a2

ρ2 + 6a2
. (2.18)

This is the explicit SU(2)×SU(2) invariant form of the resolved conifold metric which
we shall use in what follows.8 When the resolution parameter a goes to zero or when

ρ →∞ it reduces to the standard conifold metric with T1,1 = SU(2)× SU(2)/U(1)
as the base [19, 23]

(ds26)ρ→∞ = dρ
2 + ρ2

[
1

9
e2ψ +

1

6

(
e2θ1 + e

2
φ1
+ e2θ2 + e

2
φ2

)]
. (2.19)

For small ρ the metric (2.17) reduces to

(ds26)ρ→0 =
2

3
dρ2 +

1

6
ρ2
(
e2ψ + e

2
θ1
+ e2φ1

)
+ a2

(
e2θ2 + e

2
φ2

)
. (2.20)

This shows once again that near the apex (ρ = 0) the S3 part shrinks to zero size

while the radius of S2 (θ2, φ2) part approaches finite value equal to a.

3. D3-branes on resolved conifold

As is well known, given a Ricci flat 6-d space with the metric gmn one can construct

the following generalization of the standard [20, 21] brane solution (see, e.g. [4, 24,

25])

ds210 = h−1/2(y)dxµdxµ + h1/2(y)gmn(y)dymdyn , (3.1)

F5 = (1 + ∗)dh−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , Φ = const , (3.2)

where h is a harmonic function on the transverse 6-d space:

1√
g
∂m (
√
ggmn∂nh) = 0 . (3.3)

Let us solve (3.3) for the resolved conifold metric (2.17) assuming h = h(ρ). Using

that
√
g = 1

108
ρ3(ρ2 + 6a2) sin θ1 sin θ2 we get

h = h0 +
2L4

9a2ρ2
− 2L

4

81a4
ln

(
1 +
9a2

ρ2

)
, (3.4)

8It is easy to check directly that this metric is indeed Ricci flat.
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where we have chosen the integration constant so that in the a→ 0 (or, equivalently,
large ρ) limit the solution approaches the standard flat space or conifold one

h(ρ→∞) = h0 + L4

ρ4
. (3.5)

For small values of the radius ρ we get9

h(ρ→ 0) = b2

ρ2
, b2 =

2L4

9a2
, (3.6)

so that the 10-d metric becomes

(ds210)ρ→0 =
ρ

b
dxµdxµ +

b

ρ
(ds26)ρ→0 (3.7)

= b

[
y2

b2
dxµdxµ +

8

3
dy2 +

1

6
y2
(
e2ψ + e

2
θ1
+ e2φ1

)
+ a2y2

(
e2θ2 + e

2
φ2

)]
,

where y =
√
ρ and we used the expression (2.20) for the short-distance limit of the

resolved conifold metric.

The S3 part of the 10-d metric still shrinks to zero size but the size of S2 rather

than approaching the constant a now blows up at ρ = 0. It is easy to check that the

point ρ = 0 is the curvature singularity (while the Ricci scalar vanishes as for any

D3-brane solution of the type (3.2), the Ricci tensor is singular). This behaviour is to

be compared with one in the case of the D3-branes at the conifold singularity where

the short-distance limit of the geometry was regular AdS5 × T1,1 space (see [5]).
For completeness, let us compare the above solution with the one in the case

when the transverse 6-space is the deformed conifold with the metric [11, 19, 24, 26]

ds26 =
1

2
ε4/3K

[
(3K3)−1(dτ 2 + g25) + sinh2

τ

2
(g21 + g

2
2) + cosh

2 τ

2
(g23 + g

2
4)
]
, (3.8)

where ε is the deformation parameter,

K(τ) =
[
1
2
sinh(2τ)− τ]1/3
sinh τ

, (3.9)

and the 1-forms gn defined in [11] are

g1 = −ε2 + eφ1√
2

, g2 = −ε1 − eθ1√
2

, g3 =
ε2 − eφ1√
2

, g4 =
ε1 + eθ1√
2

,

g5 = eψ , (3.10)

ε1 ≡ sinψ sin θ2dφ2 + cosψdθ2 , ε2 ≡ cosψ sin θ2dφ2 − sinψdθ2 .
9It is easy to check that h does not vanish at any real value of r. Introducing x = 9a2/ρ2 and

c2 = 81a4h0
2L4 the equation h(r) = 0 becomes ln(1 + x)− x = c2 which has no x > 0 solutions.
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The harmonic function h in (3.1) is then found to be

h(τ) = h0 − h1
∫

dτ[
1
2
sinh(2τ)− τ]2/3 =



1 +

3

42/3
h1e

−4τ/3 , τ →∞(
3

4

)2/3
h1τ

−1 , τ → 0 .
(3.11)

Introducing ρ ∼ eτ/3 for large τ we recover the D3-brane on the conifold limit with

h = h0 + L
4/ρ4. For small values of τ we get

ds210 =

√
ρ

m
ηµνdx

µdxν +
m√
ρ
(ds26)ρ→0 ,

(ds26)ρ→0 = dρ2 +
1

2
ρ2dΩ22 +

ε4/3

(12)1/3
dΩ23 , (3.12)

where ρ ≡ ε2/3

25/631/6
τ , and m2 = L4ε−2(3/2)−5/2. In the short distance limit of the 6-d

deformed conifold metric the 2-sphere shrinks to zero size while the 3-sphere part has

finite radius related to the deformation parameter ε. In the 10-d metric the S2 part

still shrinks to zero size but the radius of the S3 part blows up at the point ρ = 0

which is the curvature singularity. As in the resolved conifold case, the near-core

geometry is singular. That is why to get a regular solution after adding fractional

D3-branes [11] one needs to set the “bare” D3-brane charge to zero to make possible

for the 5-form field (and thus for the Ricci tensor) to vanish at small ρ.

4. Fractional D3-branes on resolved conifold

Let us now study a generalization of the D3-brane solution of the previous section to

the case of additional 3-form fluxes, with the aim to find the analog of the solution

of [10] describing a collection of regular and fractional D3-branes on the conifold in

the case when the conifold is replaced by the resolved conifold. The ansatz for the

metric will be the same as in (3.1),

ds210 = h
−1/2(ρ)dxµdxµ + h1/2(ρ)ds26 , (4.1)

where ds26 will be the metric of the resolved conifold (2.17). Our ansatz for the

NS-NS 2-form will be a natural generalization of the ansatz in [10] motivated by an

asymmetry between the two S2 parts in the resolved conifold metric (2.17)

B2 = f1(ρ)eθ1 ∧ eφ1 + f2(ρ)eθ2 ∧ eφ2 ,
H3 = dB2 = dρ ∧ [f ′1(ρ)eθ1 ∧ eφ1 + f ′2(ρ)eθ2 ∧ eφ2 ] . (4.2)

The “conifold” ansatz [8, 10] corresponds to f1 = −f2. The ansatz for the R-R
3-form F3 is dictated by the closure condition dF3 = 0, i.e. the forms F3 and F5 will

8
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be taken in the same form as in [8, 10]10

F3 = Peψ ∧ (eθ2 ∧ eφ2 − eθ1 ∧ eφ1) ,
F5 = F + ∗F , F = K(ρ)eψ ∧ eθ1 ∧ eφ1 ∧ eθ2 ∧ eφ2 . (4.3)

Then using the metric (2.17) the 10-d duals of these forms are found to be

∗F = 108K

ρ3(ρ2 + 9a2)h2
dρ ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

∗F3 = 3Pρ

(ρ2 + 9a2)h
dρ ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ (eθ1 ∧ eφ1 − Γ2eθ2 ∧ eφ2) ,

∗H3 = −ρ
2 + 9a2

3ρh
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ eψ

(
f ′1eθ2 ∧ eφ2 + Γ−2f ′2eθ1 ∧ eφ1

)
. (4.4)

Here

Γ ≡ ρ2 + 6a2

ρ2
. (4.5)

is the ratio of the squares of the radii of the two spheres in the metric (2.17) and its

difference from 1 is a signature of the resolution (a 6= 0).
As in [10, 11] we shall assume that the dilaton Φ is constant. Then the F3

equation of motion d(eΦ ∗ F3) = F5 ∧H3 is satisfied automatically, and from the H3
equation d(e−Φ ∗H3) = −F5∧F3 one obtains the following three equations (eΦ = gs)[

f ′1(ρ
2 + 9a2)

hρ

]′
=

324gsPK

h2ρ3(ρ2 + 9a2)
,[

f ′2(ρ
2 + 9a2)

hρΓ2

]′
= − 324gsPK

h2ρ3(ρ2 + 9a2)
, (4.6)

f ′1 + Γ
−2f ′2 = 0 . (4.7)

It follows from (4.7) that for Γ = 1 one should have f2 = −f1 (modulo an irrelevant
constant) which was precisely the assumption of [10] in the a = 0 case.

The constant dilaton condition implies H23 = e
2ΦF 23 , i.e. using (2.17) we get

11

f ′21 + Γ
−2f ′22 =

9g2sP
2

k2ρ2
(
1 + Γ−2

)
. (4.8)

Combined with (4.7) that gives

f ′1 = 3gsP
ρ

ρ2 + 9a2
, f ′2 = −3gsP

(ρ2 + 6a2)2

ρ3(ρ2 + 9a2)
. (4.9)

10Note that our definition of the basis of 1-forms differ from [10] by numerical factors, so that

the constant P and function K here are related to the ones in [10] by P → 1
18
√
2
P , K → 1

108K.

Also, in the case of [10] f1 = −f2 = 1
6
√
2
T .

11As in [10, 11], the axion equation is satisfied automatically since H3 · F3 = 0.
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It is easy to see from the above relations that, as in the conifold [10] and the deformed

conifold cases [11], the forms H3 and F3 are dual to each other in the 6-d sense.

This property, together with the Calabi-Yau nature of the (original, deformed or

resolved) conifold metrics implies the N = 1, d = 4 supersymmetry of the resulting
backgrounds [17, 18].

The Bianchi identity for the 5-form d ∗ F5 = dF5 = H3 ∧ F3 gives

K ′ = P (f ′1 − f ′2) , i.e. K = Q+ P (f1 − f2) . (4.10)

The symmetries of the metric ansatz imply (again, as in the other two conifold

cases [10, 11]) that to determine the function h(ρ) it is sufficient to consider the

trace of the Einstein equations, R = −1
2
∆h = 1

24
(e−ΦH23 + e

ΦF 23 ), i.e.

h−3/2
1√
g
∂ρ (
√
ggρρ∂ρh) = − 1

12
(g−1s H23 + gsF

2
3 ) = −

1

6
gsF

2
3 , (4.11)

where gmn is the 6-d metric (2.17) (g
ρρ = κ(ρ) = ρ2+9a2

ρ2+6a2
,
√
g ∼ ρ3(ρ2 + 6a2)), i.e.

[
ρ3(ρ2 + 9a2)h′

]′
= −324gsP 2ρ(1 + Γ

2)

ρ2 + 9a2
. (4.12)

Integrating this equation we get

h′ = − 36gsP
2

ρ3(ρ2 + 9a2)

(
3Q− 18a

2

ρ2
+ ln[ρ8(ρ2 + 9a2)5]

)
, (4.13)

where we have chosen the integration constant to be related to the one in (4.10).

From (4.9) we find (we omit trivial constants of integration)

f1(ρ) =
3

2
gsP ln(ρ

2 + 9a2) ,

f2(ρ) =
1

6
gsP

(
36a2

ρ2
− ln[ρ16(ρ2 + 9a2)]

)
, (4.14)

and thus from (4.10)

K(ρ) = Q− 1
3
gsP

2

(
18a2

ρ2
− ln [ρ8(ρ2 + 9a2)5]) . (4.15)

Note that (4.13) and (4.15) imply that

h′ = −108ρ−3(ρ2 + 9a2)−1K(ρ) . (4.16)

Integrating (4.13) one can find the explicit form of h(ρ) which is not very illumi-

nating as it contains the special function Li2(−ρ/3a). The constants Q and P are
proportional to the numbers N and M of regular and fractional D3-branes.
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In the large ρ (ρ� 3a) limit we reproduce the solution of [10] with its charac-
teristic logarithmic behavior

f ′1 = 3gsPρ
−1 , f ′2 = −3gsPρ−1 , K = Q+ 6gsP

2 ln ρ ,

h = h0 +
L4 + 162gsP

2(ln ρ+ 1/4)

ρ4
, (4.17)

where L4 = 27Q (and h0 = g
−1
s as we use the Einstein-frame metric).

In the short distance limit (ρ� 3a) the solution becomes

f ′1 =
gsP

3a2
ρ , f ′2 = −

12gsPa
2

ρ3
, K = Q− 6gsP

2a2

ρ2
,

h = h0 +
6Q

a2ρ2
− 18gsP

2

ρ4
. (4.18)

The form of h implies the presence of a naked singularity at ρ = ρh

ρ2h =
3Q

h0a2

(√
1 + 2h0gsP 2a4Q−2 − 1

)
. (4.19)

For small number of fractional D3-branes (P � Q) the singularity is located at

ρ2h = 3gsP
2Q−1a2.12 At the same time, the five-form coefficient K(ρ) (4.15) vanishes

at ρ = ρK , ρK =
√
2ρh > ρh.

One may expect that this naked singularity may be resolved by the enhançon

mechanism [22] (as was originally expected [10] for the singularity in the conifold

case). First, the singularity is of the right repulson type [27]. Second important

feature is the underlying SU(2) symmetry of the 6-d part of the metric (see [22,

footnote 2]). To make the argument for such resolution at a quantitative level is,

however, non trivial.13

If a mechanism similar to the one in [22] does apply in the present case, then the

geometry should “stop” at ρ = ρK before reaching the singularity at ρh. Expanding

around ρ = ρK we get

K(ρK + ρ̃) =
2Q

ρK
ρ̃+O(ρ̃2) , h(ρK + ρ̃) = h0 +

Q2

2gsP 2a4
+O(ρ̃2) . (4.20)

This is similar to the IR behavior found in the deformed conifold case [11]. In

particular, the constant value of the warp factor h at short distances should imply

again confinement in the IR.
12One obtains the same value by simply sending h0 → 0, as naively expected in the limit of
small radius.
13Reference [22] used the form of the effective action for the D6-branes wrapped over on K3

that probe the geometry. The case of D6 on K3 is similar to the case of D4 on K3 which has

been extensively discussed in the literature [28]. In the present case we are dealing with a Calabi-

Yau of dimension 6 and the D5-brane we are dealing with here is wrapping a two-cycle rather

than the whole space. Thus we have non-trivial tangent and normal bundles which will affect the

Chern-Simons term. The Dirac-Born-Infeld part of the action is also different (see [29] for details).
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5. Superpotential and first order system

Let us now demonstrate how the 1-st order system of equations and the solution

of the previous section can be derived directly without using the expression for the

resolved conifold metric. We shall follow the original approach of [10], i.e. start with

an ansatz for the 10-d metric and p-form fields which has the required symmetries,

compute the 1-d action for the radial evolution that reproduces the type-IIB super-

gravity equations of motion restricted to this ansatz, show that this action admits a

superpotential and thus obtain a 1-st order system.

As we shall explain, the same strategy applies also to the case of the deformed

conifold ansatz considered in [11]. The corresponding superpotential has essentially

the same structure as in the conifold [10] and resolved conifold case, and reproduces

the 1-st order system found in [11] thus checking its consistency.

5.1 Resolved conifold case

Let us choose the 10-d metric in the following “5+5” form

ds210 = e2p−x(e2Adxµdxµ + du2) +
[
e−6p−xe2ψ + e

x+y(e2θ1 + e
2
φ1
) +

+ ex−y(e2θ2 + e
2
φ2
)
]
, (5.1)

where A, p, x, y are functions of a radial coordinate u. Note that the metric of the

previous section (4.1) and (2.17) belongs to this class (u is related to ρ). To be able

to describe the resolved conifold case we have included the function y which measures

an “asymmetry” between the two S2 parts (y was set to zero in the “symmetric”

conifold ansatz [10]). The ansatz for the remaining fields will be the same as in (4.2)

and (4.3), i.e.14

H3 = du ∧ [f ′1(u)eθ1 ∧ eφ1 + f ′2(u)eθ2 ∧ eφ2 ] , (5.2)

F3 = Peψ ∧ (eθ2 ∧ eφ2 − eθ1 ∧ eφ1) , (5.3)

F5 = F + ∗F , F = K(u)eψ ∧ eθ1 ∧ eφ1 ∧ eθ2 ∧ eφ2 , (5.4)

K(u) ≡ Q+ P [f1(u)− f2(u)] . (5.5)

Here we have explicitly used the constraint (4.10) following from the Bianchi iden-

tity for the 5-form field (so that the Bianchi identities for all three p-form fields

are satisfied). Thus only f1 and f2 will be considered as independent functions

of u coming out of the p-form part (5.2)–(5.5) of the ansatz. We shall assume

that the axion is zero (this is consistent with (5.3)) but will keep the dilaton

Φ = Φ(u).

14In this section prime will denote derivatives over u.
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The type-IIB supergravity equations of motion follow from the action

S10 = − 1

2κ210

∫
d10x

(√−g10
[
R10 − 1

2
(∂Φ)2 − 1

12
e−Φ(∂B2)2 − 1

2
e2Φ(∂C)2 −

− 1
12
eΦ(∂C2 − C∂B2)2 − 1

4 · 5!F
2
5

]
−

− 1

2 · 4! · (3!)2 ε10C4∂C2∂B2 + · · ·
)
, (5.6)

(∂B2)... = 3∂[.B..] , (∂C4)... ≡ 5∂[.C...] , F5 = ∂C4 + 5(B2∂C2 − C2∂B2) ,
supplemented with the on-shell constraint F5 = ∗F5 [33]. The 1-d action reproducing
the resulting equations of motion restricted to the above ansatz has the following

general structure

S = c

∫
du e4A

[
3A′2 − 1

2
Gab(ϕ)ϕ

′aϕ′b − V (ϕ)
]
, (5.7)

where c = −4V ol9
2κ210
. It should be supplemented with the “zero-energy” constraint

3A′2 − 1
2
Gab(ϕ)ϕ

′aϕ′b + V (ϕ) = 0 . (5.8)

The existence of a superpotential (usually associated with residual supersymmetry,

see, e.g. [30, 31] but also [32]) means that V in (5.7) can be represented in the form

V =
1

8
Gab∂W

∂ϕa
∂W

∂ϕb
− 1
3
W 2 . (5.9)

In this case the 2-nd order equations following from (5.7) and the constraint (5.8)

are satisfied on the solutions of the 1-st order system

ϕ′a =
1

2
Gab∂W

∂ϕb
, A′ = −1

3
W (ϕ) . (5.10)

In our present case we have 6 dynamical variables ϕa = (x, y, p,Φ, f1, f2). As follows

from (5.6) in the case of the ansatz (5.1)–(5.4)

Gab(ϕ)ϕ
′aϕ′b = x′2 +

1

2
y′2 + 6p′2 +

1

4

[
Φ′2 + P 2e−Φ−2x(e−2yf ′21 + e

2yf ′22 )
]
, (5.11)

V (ϕ) =
1

4
e−4p−4x cosh 2y − e2p−2x cosh y + 1

8
e8p
(
2P 2eΦ−2x cosh 2y+

+ e−4xK2
)
, (5.12)

where we separated the gravity contributions (coming from the R10-term in (5.6))

from the “matter” ones and it is assumed that K is a combination of f1, f2 in (5.5).

Similar expressions corresponding to the case of

y = 0 , f ′1 = −f ′2 (5.13)
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appeared in [10]. Indeed, that restriction was consistent. As follows from (5.7), (5.11)

and (5.12) the equation for y is satisfied by y = 0 if f ′21 = f ′22 . Also, the poten-
tial (5.12) depends only on one of the two combinations f± ≡ f1 ± f2, so that the
equation for f+ is satisfied automatically by f

′
+ = 0 if y = 0. The 1-d action of [10]

may be found by eliminating f+ from the action using its equation of motion and

then setting y = 0.

It is quite remarkable that, just like in the “symmetric” case considered in [10],

the more general system (5.11) and (5.12) still admits a simple superpotential W

given by the direct superposition of the gravitational and matter parts

W (ϕ) = e4p + e−2p−2x cosh y +
1

2
e4p−2xK

= e4p + e−2p−2x cosh y +
1

2
e4p−2x[Q+ P (f1 − f2)] . (5.14)

Note that the dilaton factors in the kinetic (5.11) and potential (5.12) terms con-

spire so that the superpotential does not depend on the dilaton. This implies that

Φ = const on the solution of the resulting 1-st order system of equations (5.10) for

A, x, y, p,Φ, f1, f2

x′ = −e−2p−2x cosh y − 1
2
e4p−2xK , y′ = e−2p−2x sinh y , (5.15)

p′ =
1

3
e4p − 1

6
e−2p−2x cosh y +

1

6
e4p−2xK , (5.16)

A′ = −1
3
e4p − 1

3
e−2p−2x cosh y − 1

6
e4p−2xK , (5.17)

f ′1 = PeΦ+4p+2y , f ′2 = −PeΦ+4p−2y , Φ′ = 0 . (5.18)

We see that (5.13) corresponding to the “standard” conifold case is indeed a special

solution of this more general system.

To establish the equivalence of this system with the one found in the previous

section, it is useful first to look at the “gravitational sector” equations that do not

depend on matter functions fi. Since the superpotential (5.11) is the direct sum

of the gravitational and matter terms, M10 = R4× (resolved conifold) should be a
solution to these equations with K = 0. Indeed, as follows from (5.15)–(5.17) the

factor e2p−x+2A that multiplies R4 part in (5.1) satisfies

h′ = −Khe4p−2x , h−1/2 ≡ e2p−x+2A , (5.19)

so that h (which at the end should be the same as in (4.1)) is constant if K is set

equal to 0. The equations for x, y, p with K = 0 imply

dx

dy
= − coth y , e2x = b2 sinh−2 y ,

dq

dy
= 2b3(sinh y)−4eq , e−q = b3

(cosh y − 1
3
cosh 3y

sinh3 y
− c
)
,

q ≡ 6p− x . (5.20)
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For a special choice of the integration constants b = −1
2
a2, c = 4/3 we finally

reproduce (using dy = e−2p−2x sinh y du and introducing ρ instead of u to get simple
analytic expressions) the resolved conifold metric (2.17) (cf. (5.1))

e2y =
ρ2

ρ2 + 6a2
, e2x =

1

36
ρ2(ρ2 + 6a2) , e−6p+x =

1

324
ρ4(ρ2 + 9a2) . (5.21)

The resolution parameter a is thus one of the three integration constants in the above

1-st order system.

In the presence of matter the full system (5.15)–(5.18) may be solved by first

concentrating on the equations that do not involve K, i.e. on the equation for y and

for z = x + 3p. It is useful to introduce the new radial direction t, dt = e−2p−2xdu
so that they become dy/dt = sinh y, dz/dt = −e2z + 3

2
cosh y. One then finds that

the ratios of the first and the second, and the second and the third coefficients in the

“internal” 5-d part of the metric (5.1), i.e. e−6p−x/ex+y = e−2z−y and ex+y/ex−y = e2y,
are the same as in the resolved conifold metric, in agreement with (4.1). The rest

of the equations then become equivalent (for the special choice of the integration

constants) to the system in the previous section.

5.2 Deformed conifold case

Let us now complement the discussion of the deformed conifold case in [11] by demon-

strating explicitly that the first order-system there also follows from a simple super-

potential which has essentially the same structure as (5.14).

Motivated by the form of the deformed conifold metric (3.8) and (3.10) let us

make the following ansatz for the metric (cf. (5.1))

ds2 = e2p−x(e2Adxµdxµ + du2) +
[
e−6p−xg25 + e

x+y(g21 + g
2
2) + e

x−y(g23 + g
2
4)
]
. (5.22)

The ansatz for the p-forms is the same as in [11] (cf. (5.2)–(5.5))

H3 = du ∧ [f ′(u)g1 ∧ g2 + k′(u)g3 ∧ g4] ,
F3 = F (u)g1 ∧ g2 ∧ g5 + [2P − F (u)]g3 ∧ g4 ∧ g5 +

+F ′(u)du ∧ (g1 ∧ g3 + g2 ∧ g4) ,
F5 = F5 + F∗5 , F5 = K(u)g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ,

K(u) ≡ Q+ k(u)F (u) + f(u)[2P − F (u)] , (5.23)

where F, f, k are functions to be determined and P and Q are constants. As in the

previous case (5.2), (5.3) and (5.4), we explicitly ensure that the Bianchi identities

for the p-forms are satisfied automatically. The independent functions of u which

will appear in the 1-d action (5.7) are thus A and ϕa = (x, y, p,Φ, f, k, F ). The

corresponding kinetic and potential terms in (5.7) are found to be similar to (5.11)
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and (5.12)

Gab(ϕ)ϕ
′aϕ′b = x′2 +

1

2
y′2 + 6p′2 +

1

4

[
Φ′2 + e−Φ−2x(e−2yf ′2 + e2yk′2) +

+ 2eΦ−2xF ′2
]
,

V (ϕ) =
1

4
e−4p−4x − e2p−2x cosh y + 1

4
e8p sinh2 y +

+
1

8
e8p
[
1

2
e−Φ−2x(f − k)2 + eΦ−2x[e−2yF 2 + e2y(2P − F )2]+

+ e−4xK2
]
, (5.24)

where K is the combination of the independent functions f, k, F given in (5.23). The

corresponding superpotential satisfying (5.9) again does not depend on the dilaton

and is a sum of the gravitational and matter parts, i.e. has essentially the same

structure as the previous one (5.14)

W (ϕ) = e4p cosh y + e−2p−2x +
1

2
e4p−2xK

= e4p cosh y + e−2p−2x +
1

2
e4p−2x[Q+ kF + f(2P − F )] . (5.25)

Thus there is a close similarity (“duality”) between the 1-st order systems for the

“resolved” and “deformed” cases.

From (5.10) and (5.25) we find the following set of 1-st order equations for the

independent functions A, x, y, p, f, k, F,Φ

x′ = −e−2p−2x − 1
2
e4p−2xK , y′ = e4p sinh y ,

p′ =
1

3
e4p cosh y − 1

6
e−2p−2x +

1

6
e4p−2xK ,

A′ = −1
3
e4p cosh y − 1

3
e−2p−2x − 1

6
e4p−2xK ,

f ′ = eΦ+4p+2y(2P − F ) , k′ = eΦ+4p−2yF ,

F ′ = −1
2
e−Φ+4p(f − k) , Φ′ = 0 . (5.26)

The special solution is y = 0, f = k, F = P . In this case the system (5.26) becomes

identical to (5.18)–(5.18) with f1 = −f2 = f and both reduce to the “standard”

conifold case of [10].

To show that this system contains the solution of [11] we follow the same strategy

as in the previous subsection: first analyze the subset of gravitational sector equations

to find that the ratios of the functions in the metric are the same as in the case of the

deformed conifold and then include the matter part. We again find the relation (5.19)

implying 4 + 6 factorization of the metric for K = 0. The equations for x, y, p

16



J
H
E
P
1
1
(
2
0
0
0
)
0
2
8

with K = 0 here lead to the relations which are very similar (“dual”) to (5.20),

dq/dy = 2 coth y, eq = b2 sinh2 y, q ≡ 6p − x, and dx/dy = −e−qe−3x(sinh y)−1 =
−e−3xb−2(sinh y)−3. It is useful to introduce the new radial coordinate τ so that

dy

dτ
= − sinh y , ey = tanh

τ

2
, dτ ≡ −e4pdu , (5.27)

d(x− 6p)
dτ

= 2 cosh y , ex−6p = b2 sinh2 τ , (5.28)

where b is an integration constant. The remaining equation is

dx

dτ
= e−6p−2x = ex−6pe−3x = b2 sinh2 τ e−3x ,

e3x = c+
3

2
b2
(
1

2
sinh 2τ − τ

)
. (5.29)

Choosing c = 0, b2 = 1
96
ε4 we thus reproduce the deformed conifold metric (3.8)

e−6p−x = e2p−xe−8p =
1

6
ε4/3K−2 , ex+y =

1

2
ε4/3K sinh2 τ

2
,

ex−y =
1

2
ε4/3K cosh2 τ

2
, (5.30)

where K(τ) was defined in (3.9) and ε is the deformation parameter.15
It is quite remarkable that making simple ansatze (5.1) or (5.22) for the 6-d

part of the metric one finds that the 1-d action leading to the associated Einstein

(Ricci-flatness) equations admit a superpotential, and that the solutions of the cor-

responding 1-st order systems are the resolved (2.17) and the deformed (3.8) conifold

metrics respectively!

In the general case the system (5.26) can be solved by starting with the equa-

tions that do not involve matter functions: equation for y (5.27) and the following

combination of the equations for x and p:

d(3p+ x)

dτ
= − cosh y + 3

2
e−2(3p+x) . (5.31)

This equation is solved by first introducing w = 3p+ x+ ln sinh τ . As a result,

e3p+x =

√
3

2
(sinh τ)−1

(
1

2
sinh 2τ − τ

)1/2
, (5.32)

where we set the integration constant to zero so that e3p+x is exactly the same as

in (5.30).

15Here and in the previous subsection we make a specific choice of the integration constants in

order to match the standard metrics on the conifolds. Keeping the integration constants arbitrary

produces a more general class of metrics. The existence of these more general metrics was mentioned

also in section 2.
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This implies that as in the resolved conifold case of the previous subsection, the

ratios of the coefficients in the internal 5-d part of the metric (5.22), i.e. e−6p−x/ex+y

= e−2(3p+x)−y and ex+y/ex−y = e2y, have the same values as in the deformed conifold
metric (3.8). The solution of the full system is then equivalent to that of [11] for the

“D3-brane” ansatz (4.1).
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