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Abstract: We study the blowing-up of the four-dimensional Z3 orientifold of An-

gelantonj, Bianchi, Pradisi, Sagnotti and Stanev (ABPSS) by giving nonzero vac-

uum expectation values (VEV’s) to the twisted sector moduli blowing-up modes.

The blowing-up procedure induces a Fayet-Iliopoulos (FI) term for the “anomalous”

U(1), whose magnitude depends linearly on the VEV’s of the blowing-up modes. To

preserve the N = 1 supersymmetry, non-Abelian matter fields are forced to acquire

nonzero VEV’s, thus breaking (some of) the non-Abelian gauge structure and de-

coupling some of the matter fields. We determine the form of the FI term, construct

explicit examples of (non-Abelian) D and F flat directions, and determine the sur-

viving gauge groups of the restabilized vacua. We also determine the mass spectra,

for which the restabilization reduces the number of families.
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1. Introduction

With the advent of the duality symmetries of M-theory [1] a new domain of string

vacua (previously considered as strongly coupled) have become accessible for study.

Such dual four-dimensional string vacua with N = 1 supersymmetry should provide

a fruitful domain for studying novel phenomenological implications of string theory.

In particular, the Type I string orientifolds [2, 3, 4] provide a promising set of new

string vacua, where the techniques of the open-string theory allow for a quantitative

study of the gauge structure, mass spectrum and (certain) couplings in the effective

theory. The four-dimensional orientifolds [5, 6] with N = 1 supersymmetry are thus

particularly well suited for phenomenological studies.

One of the interesting features of the N = 1 orientifolds is that in general they

contain a set of “anomalous” U(1)’s and the breaking of these U(1)’s is inherently

related to the blowing-up procedure. The massless chiral superfields, formed from

the Neveu-Schwarz-Neveu-Schwarz (NS-NS) and Ramond-Ramond (R-R) fields ap-

pearing in the twisted sector of type IIB orientifolds, are blowing-up moduli whose
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nonzero vacuum expectation values (VEV’s) correspond to the geometric smoothing-

out (blowing-up) of the orientifold singularities. These fields play an instrumental

role in the cancellation [7, 8, 9] of the triangular gauge anomalies via the Green-

Schwarz mechanism. In addition, their coupling to the gauge superfields [10] con-

tributes to the D term of the “anomalous” U(1), and its structure is fixed by the

anomaly cancellation constraints. Thus, the Fayet-Iliopoulos (FI) term is induced

when the blowing-up modes acquire nonzero VEV’s. To maintain the anomalous

U(1) D flatness of the blown-up orientifold, additional matter fields in the theory

have to acquire nonzero VEV’s subject to the constraint that the F flatness and

the D flatness of the rest of the gauge sector is maintained. The generic effect of

the blowing-up procedure and subsequent vacuum restabilization is then the spon-

taneous breaking of the gauge symmetry as well as the decoupling of a number of

matter fields in the effective theory. In particular, the number of families in the

effective theory may be reduced.

It is instructive to contrast the blowing-up and the accompanying vacuum resta-

bilization of Type I orientifolds with the blowing-up of perturbative heterotic string

orbifolds. There, the blowing-up of the orbifold singularities [11] and the restabiliza-

tion of vacuum due to the anomalous U(1) [12, 13, 14, 15] are somewhat disconnected

and the two procedures are different from those on the Type I side. For the (2, 2)

orbifolds, i.e. those with the spin and gauge connection identified (analogs of such

constructions on the Type I side are non-existent), there is no “anomalous” U(1) and

the blowing-up modes (twisted sector moduli) are charged under the enhanced gauge

symmetry that commutes with the discrete gauge connection [16, 17]. (This is in

contrast to those of the Type I orientifolds which are total singlets.) Their nonzero

VEV’s fully break the enhanced gauge symmetry that at the orbifold limit commutes

with the discrete spin connection and decouple some matter states; the procedure

geometrically corresponds to blowing-up the orbifold singularities producing smooth

(2, 2) Calabi-Yau three-folds [11]. On the other hand (asymmetric) orbifold and free

fermionic constructions with only (0, 2) worldsheet symmetry in general possess an

anomalous U(1). In contrast with the Type I orientifolds such perturbative heterotic

string vacua have only one anomalous U(1), whose anomaly cancellation is ensured

by the universal Green-Schwarz mechanism, due to an effective Chern-Simons (CS)

term, at the genus-one level, of the untwisted sector two-form field to the gauge field

strength[12]. The dual of this antisymmetric field-axion, along with the (untwisted

sector) dilaton field, form a scalar component of the chiral superfield, which couples

universally to the gauge sector of the theory. By supersymmetry the CS term is

accompanied by a FI term (also at the genus-one level), which is proportional to

the nonzero VEV of the dilaton field. Since this VEV determines the strength of

the gauge coupling and thus it is necessarily nonzero, these vacua necessarily have

nonzero FI terms [12, 13, 14, 15]. The structure of this FI term is universal; it is

completely fixed by the VEV of the dilaton and the trace of the anomalous U(1)
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charges. Therefore the existence of “anomalous” U(1) necessarily triggers the vac-

uum restabilization. For recent work on the systematic classification of flat directions

for a set of perturbative heterotic string vacua see, e.g., refs. [18, 19, 20].

The crucial difference in the case of the Type I orientifolds is that the blowing-up

procedure and the restabilization of vacuum are now inherently connected. Since in

general there are more than one anomalous U(1) the anomaly associated with each is

cancelled by non-universal Green-Schwarz terms, which arise due to the CS coupling

of the gauge field strengths to the twisted sector R-R two-form fields (which is dual to

the twisted sector R-R scalars -“axions”). Thus each of the anomalous gauge group

factors has a cancellation ensured by a specific combination of twisted sector R-R

axions. The non-universality of the Green-Schwarz mechanism via twisted R-R sector

axions is generic in N = 1 orientifold constructions.1 Due to supersymmetry, these

CS terms are accompanied by the corresponding FI terms, which involve a specific

combination of the twisted sector NS-NS fields-“blowing-up modes”. Consequently,

when these twisted sector dilatons acquire nonzero VEV’s, the orbifold singularity,

associated with particular fixed points where the D branes are located, is blown-up.

This procedure in turn induces non-universal FI terms, which for each anomalous

U(1) is proportional to a specific combination of the VEV’s of the blowing-up modes.

The appearance of FI term then triggers the vacuum restabilization.

The purpose of the present paper is to explore in a concrete way the effects of the

blowing-up procedure for four-dimensional N = 1 orientifolds. The explicit vacuum

restabilization triggered by the blowing-up has to be carried out, and the surviving

gauge structure and light mass spectrum determined before phenomenological im-

plications of the blown-up orientifolds can be addressed. The goal is to carry out

this procedure explicitly for specific blown-up orientifolds and to study its conse-

quences. (Unlike the four-dimensional N = 1 orientifolds, the blowing-up procedure

of six-dimensional N = 1 orientifolds is better understood and related geometrically

to blowing-up of the ADE singularities of K3 surfaces [10].)

While by now a large class of N = 1 orientifolds have been constructed [4, 5],

only specific models (usually with additional Wilson lines included) contain matter

fields which are non-Abelian singlets. These singlets could be candidates for the

restabilization of the blown-up orientifold vacua, since in such cases it should be

possible to achieve a systematic classification of flat directions, very much along the

lines developed for vacuum restabilization of the perturbative heterotic string vacua

via non-Abelian singlets [18, 19].

On the other hand, a large class of (simpler) Type I orientifold constructions have

no non-Abelian gauge singlets, and thus the vacuum restabilization of the blown-up

orientifold should necessarily proceed by giving VEV’s to non-Abelian matter fields.

1It is confirmed that at the orientifold limit there is no genus-one correction to the FI term,

calculated for the ABPSS orientifold model in ref. [22].
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In this case the classification of D flat directions is complicated by non-Abelian

D flatness constraints, and a systematic approach to the study of vacuum restabi-

lization is lacking. Nevertheless, the powerful connection between the holomorphic

gauge-invariant monomials and the D flat directions [23] (which generalizes in the

non-Abelian case to polynomials) facilitates the construction of non-Abelian D flat

directions. Applications of this approach to the vacuum restabilization of the blown-

up Type I orientifolds (without gauge singlets) will be the focal point of this paper.

One of the immediate consequences of the vacuum restabilization with non-

Abelian fields is the breaking of the large non-Abelian gauge groups down to smaller

ones. From the phenomenological point of view, the vacuum restabilization of the

blown-up orientifold is one of a few ways to achieve smaller gauge groups with re-

duced massless particle content. In that sense, it could be viewed as complementary

to other “stringy” methods in orientifold construction, which involve spliting the

branes among different fixed points of the orbifold, turning on the background NS-

NS antisymmetric B-field, adding discrete Wilson lines (see, e.g., [6]), etc.

The paper is organized in the following way. In section 2 we describe the spectra

and the superpotential of the first four-dimensional orientifold with N = 1 supersym-

metry, constructed by Angelantonj, Bianchi, Pradisi, Sagnotti and Stanev (ABPSS

orientifold) [5]. We discuss the general procedure of anomaly cancellation and the

generation of FI terms and explicitly write down the FI term for the anomalous U(1)

of the ABPSS model. In section 3, we discuss the flatness conditions of the model

in the restabilized vacuum and the method of classifying the D flat directions. In

section 4, we present classes of D flat directions that are also F flat to all orders,

and discuss the consequences of the restabilized vacuum. In section 5, we present

the conclusions.

2. ABPSS model and anomaly cancellation

2.1 Massless spectrum and superpotential couplings of the ABPSS orien-

tifold

We choose to analyze the ABPSS model. This is a Z3 orientifold with the gauge

structure:

SO(8)× SU(12)× U(1)
and a matter content of three copies of

ψα = (8, 12)−1 , χα = (1, 66)+2 , α = 1, 2, 3 ,

which arise from the open-string sector, due to the strings stretching between the

nine-branes.
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In the Type IIB orientifold (closed string) sector, in the NS-NS sector there are

the bosonic fields of the gravity supermultiplet and the 36 (chiral) supermultiplets

corresponding to the 9 untwisted (“toroidal”) and 27 twisted (blowing-up) sector

moduli. The moduli are total gauge singlets (unlike the twisted sector moduli of the

perturbative heterotic orbifolds), whose real and imaginary components arise from

the NS-NS and R-R sector, respectively. In particular, the ABPSS orientifold has

the untwisted sector dilaton S, moduli singlets Ti (i = 1, . . . , 9) and 27 twisted sector

supermultiplets. In general, the blowing-up mode for the nine-brane sector is a sum

of all 27 twisted sector supermultiplets [8]. For simplicity, we choose to blow up the

one associated with the fixed point of the Z3 orbifold at the origin. The twisted

sectors (k = 1, 2) give the NS-NS fields Φk and the R-R two-form fields C
(2)
k (which

by duality are related to the twisted sector R-R axions Ψk). They are constrained by

the reality condition Φ1 = Φ
∗
2; C

(2)
1 = C

(2)∗
2 . In addition, the orientifold projection

removes [24] the real components of Φk and C
(2)
k (Ψk).

The renormalizable superpotential is of the form

W3 = yεαβγψ
αa
i ψβbi χ

γ
[a,b] , (2.1)

where y is a constant; α, β, γ are family indices; i is an SO(8) index; and a, b are

SU(12) indices.

In the following we shall address the nature of Chern-Simons (CS) terms in

orientifold models and derive the explicit expressions for the case of the ABPSS

orientifold.

2.2 Chern-Simons terms, Fayet-Iliopoulos terms, and anomaly cancella-

tion

The U(1) triangular gauge anomalies are cancelled via the Green-Schwarz mechanism

involving the exchange of twisted sector R-R fields Ψk (twisted axions) due to the

CS couplings [9, 10]. For the four-dimensional Type I orientifold the coupling takes

the form:

ICS =
∑
k

∫
d4x Ck ∧ eF =

∑
k

∫
d4x C

(2)
k ∧ Tr(γθk)F + · · · , (2.2)

where C
(2)
k is the R-R 2-form in the kth twisted sector; their duals are the scalar

fields Ψk. F schematically represents the gauge field strength of the anomalous

U(1), associated with the D brane located at the orientifold singularity. The matrix

γθk describes the action of the orbifold group on the Chan-Paton (CP) factors in the

kth twisted sector. For the ZN orientifold, it takes the form γθk = e−i2πkVIHI in the
Cartan-Weyl basis, where V is a 16-dimensional real vector and HI , (I = 1, . . . , 16)

are the Cartan generators of SO(32) represented by tensor products of 2 × 2 σ3
submatrices.
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The supersymmetric completion of the first term in eqn. (2.2) gives the Fayet-

Iliopoulos (FI) contribution to the action:

IFI =
∑
k

∫
d4x ΦkTr(γθk)D , (2.3)

where D is the auxiliary component of the vector multiplet which contains the gauge

field Aµ of the anomalous U(1). Hence, the FI term is given by

ξFI =
∑
k

Tr(γθkλ)Φk , (2.4)

where the sum is over twisted sectors, λ is the Chan-Paton matrix associated with the

gauge boson of the anomalous U(1). In the Cartan-Weyl basis, it takes the form λi =

Qi ·H , where Qi is a 16-dimensional real vector. For the ZN orientifold, the spectrum

of the kth-twisted sector and the (N − k)th twisted sector satisfy reality conditions,
e.g., Φk = Φ

∗
(N−k) and C

(p)
k = C

(p)∗
N−k. Furthermore, the orientifold projection projects

out the real components of Φk and C
(p)
k (see e.g. [24]). In addition, the action of the

orbifold group on the Chan-Paton indices has the following property:

Tr(γθkλ) = [Tr(γθ(N−k)λ)]
∗ . (2.5)

Then the FI term takes the form:

ξFI = 2

[N−1
2
]∑

k=1

Re(Tr(γθkλ)Φk) = (−2)
[N−1
2
]∑

k=1

Im[Tr(γθkλ)]Im(Φk) . (2.6)

Note that due to the reality constraint, the sum is only over the first half of the

twisted sectors.

A similar argument applies to the coupling between the twisted sector R-R scalar

field Ψk and the gauge field Aµ, thus yielding the CS coupling of the type:

(−2)
∫
d4x

[N−1
2
]∑

k=1

Im[Tr(γθkλ)]∂µIm(Ψk)A
µ . (2.7)

Thus the imaginary components of Φk and Ψk can be combined into the physical

moduli Rk of the ZN , Rk = Im(Φk) + iIm(Ψk) in which k goes from 1 to [
N−1
2
].

For Z3 orientifold models, which have two twisted sectors, the reality condition

on the twisted sector NS-NS scalars reduces to Φ1 = Φ
∗
2 and the FI term (2.6) then

takes the form

ξFI = −2Im[Tr(γθ1λ)]Im(Φ1) . (2.8)

The physical moduli R of the Z3 of the single twisted sector is R = Im(Φ1)+iIm(Ψ1).

A few comments are in order regarding the units appearing in front of the CS

term. The nine-brane CS term in 10 dimensions has dimension one; it is propor-

tional to
√
κ10/g10 [25]. Dimensionally reducing such a term to four dimensional
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effective theory, the prefactor gains a volume factor V
−1/4
6

√
κ4/g4. With the conven-

tion of assigning VEV’s of Re(R) in terms of dimensionless quantities (just as the

convention for the dilaton field S), the prefactor of the FI term (2.14) is of dimen-

sion 2. However, since the CS-type couplings arise from the untwisted sector, they

are absent in the four-dimensional theory of the N = 1 orientifolds. Nevertheless

we would like to argue that the dimensionful parameters of the CS term associated

with the twisted sector are of the same structure. Such a term should be calculated

in perturbative open-string theory by evaluating the disk diagram for two matter

fields at the boundary and a twisted field Ck integrated over the bulk. While this

calculation is technically involved due to subtleties of the twisted sector fields,2 the

dimensionful parameter of the resulting term is expected to have the same structure

as that obtained by a naive dimensional reduction.3

Gauge coupling corrections. Analogously, one would like to determine the cor-

rection of the twisted sector blowing-up modes to the gauge function:

f = S + δf(R) . (2.9)

Here S is the (untwisted sector) dilaton for the case of the nine-brane sector (it is the

untwisted toroidal modulus T in the case of the five-brane sector.) The coupling of

Imδf(R)FF̃ could in principle appear as the second order expansion of the Chern-

Simons term (2.2). In the case of ZN orientifolds such a term takes the form:

∑
k

∫
d4x Tr(γθkλ

2)ΨkFF̃ , (2.10)

Thus when summed over the twisted sectors only the real component of Ψk sur-

vives. However, it is projected out by the orientifold projection. Hence, the term

Imδf(R)FF̃ seems to be absent,4 indicating that δf(R) = 0, i.e. for ZN Type I

orientifolds, there seems to be no gauge coupling correction due to the twisted sector

moduli. Note that in contrast to Type I orientifold, Type II ZN orbifolds allow such

terms since the real components of the twisted sector R-R fields are not projected

out.

2A related calculation was given for six-dimensional untwisted sector fields in the appendix

of [10].
3In compactifications from D = 10 to D = 4, the case in which the gauge groups arises from the

five-brane world-volume theory, this relationship is modified by ratios of the compactified five-brane

world-volume and the volume of the bulk. However in the case of the nine-branes (which fill up the

full nine-dimensional spatial part of the ten-dimensional theory), the result depends only on the

volume of the six-dimensional space.
4One resolution to this problem may have to do with modifying the prescription that the sum

is done only over the first [(N − 1)/2] twisted sectors of the ZN orientifold. However, this would
have to be confirmed by explicit string calculations. We thank A. Uranga for communication on

that point.
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Anomaly cancellation. The symmetry factors in the string amplitudes for a disc

that involves three gauge fields as external legs can be determined by identifying the

effective coupling of the twisted-sector R-R fields to these gauge field strengths as

arising from the CS couplings of the type (2.2) (such a string diagram can then be

viewed as dominated by the exchange of RR fields [9]). In principle, the prefactors

of the amplitudes can be fixed by requiring the exact cancellation of the gauge

anomalies. In particular, the amplitude of the scattering of a U(1)i gauge boson and

two non-Abelian Gj gauge bosons with tree level exchange of a R-R scalar is [9]
5

Aij =
i

|P |
∑
k

CkTr(γθkλi)Tr((γθk)
−1(λj)2) , (2.11)

where |P | is the order of the orientifold group and k runs over the twisted sectors.
For a particular twist k of the ZN orbifold, Ck are given by [9]

Ck = Π
3
a=12 sin πkva, (2.12)

where va is the compact space twist vector. Aij cancels the usual field theory trian-

gular anomalies of the model [9].

2.3 Fayet-Iliopoulos term and anomaly cancellation of the ABPSS model

In the ABPSS model, the CP matrix in the Cartan-Weyl basis for the anomalous

U(1) gauge field is λ = diag{I12,−I12, 0 × I8}, in which In is the n × n identity

matrix. The γ matrices are given by

γθk = diag{eikθI12, e−ikθI12, I8}, (2.13)

where, θ = 2π/3.

The FI term of the anomalous U(1), which arises from the supersymmetric com-

pletion of the Chern-Simons couplings between the twisted sector R-R fields and the

gauge fields [10], is given by eqn. (2.4) with λ and γθk of the ABPSS model:

ξFI = −2× 12× 2 sin
(
2π

3

)
Re(R) = −24√3 Re(R) , (2.14)

where R is the twist sector moduli field. ξFI modifies the usual U(1) D term as

D → D + ξFI . (2.15)

5If the effective couplings between the R-R fields and two non-Abelian gauge bosons are deter-

mined from the expansion of the CS term of the type (2.2), and adding up the contributions from

all twisted sectors, the contributions from the kth and (N − k)th twisted sector to such an effective
term add up to zero, since the orientifold projection keeps only imaginary components of the C

(2)
k

forms. However, the string amplitude that involves the diagram with three gauge bosons as external

legs involves exchanges of R-R fields Ψk in each twisted sector separately. The total contributions

to such a string amplitude, summing over the twisted sectors, would then yield a nonzero effective

coupling that involves two non-Abelian gauge bosons and the the anomalous U(1) gauge boson, as

quoted in [9].

8



J
H
E
P
0
4
(
1
9
9
9
)
0
2
0

Therefore, the FI term is proportional to the VEV of the real component of the

twisted moduli R.

The coupling of Imδf(R)FF̃ in the case of the ABPSS orientifold could take the

form:
∑
k=1,2

∫
d4x Tr(γθkλ

2)ΨkFF̃ = 2× 12× cos 2π
3
× 2× Re(Ψ1) . (2.16)

Since the real component of Ψ1 is projected out by the orientifold projection, the

term Imδf(R)FF̃ seems to be absent (as discussed on general grounds in the previous

subsections).

In the ABPSS model, the U(1)3, U(1)×SO(8)2, and U(1) × SU(12)2 anomalies
are:

(432, −36, 18) , (2.17)

respectively.

Since the compact space twist vector for Z3 is v =
1
3
(1, 1,−2), one obtains

C1 = −C2 = −3
√
3. Thus, the scattering amplitudes Aij , with the γ and λ matrices

presented previously, are [9]

AU(1), (U(1),SO(8),SU(12)) =
1

3
2
(
−3√3

)
12

√
3

2

(
24
1

2
,−1, 1

2

)
= (−432, 36,−18) , (2.18)

which cancel the U(1) anomalies in eqn. (2.17).

3. Anomalous U(1) and vacuum restabilization

The appearance of the FI term for the anomalous U(1) due to the blowing-up proce-

dure requires the well known vacuum restablization procedure to preserve supersym-

metry at the string scale. Certain fields that are charged under the anomalous U(1)

are triggered to acquire nonzero vacuum expectation values (VEV’s) that cancel the

FI D term, subject to the constraints that they are both D flat with respect to the

other gauge groups and F flat, leading to a consistent “restabilized” string vacuum.

As a consequence, some fields become massive (depending on the size of the FI term,

which generally sets the scale of the VEV’s, they will either decouple or remain in

the low energy theory). In addition, the rank of the gauge group is usually reduced

as well as the number of families.

In previous work [18], techniques were developed to construct the moduli space of

the flat directions for models with an anomalous U(1) systematically. The method

utilizes the one to one correspondence of D flat directions (under both the non-

anomalous Abelian gauge groups and the non-Abelian gauge groups) with holomor-

phic gauge-invariant polynomials built out of the chiral fields in the model. For

simplicity, the flat direction analysis in [18] considered only the non-Abelian sin-

glet fields in the model, in which case the flat directions correspond to monomials

9
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(HIM’s). In particular, the superbasis, which is the set of the one-dimensional (i.e.

that depend on one free VEV) HIM’s of the model, can be constructed. Every D

flat direction can be expressed as a product of the elements in the superbasis, such

that the positivity of the VEV-squares of the fields can be satisfied automatically.

For example, if the lth HIM for the flat direction is Pl = ΠpΦ
nlp
p , then the fields Φp

have VEV’s

|〈Φp〉|2 =
∑
l

nlp|vl|2 , (3.1)

where vl is the VEV corresponding to Pl. The phase of the |〈Φp〉| can be chosen for
convenience.

The HIM’s of the superbasis are then classified according to the sign of their

contribution to DA, the D term of the anomalous U(1). Since the FI term for the

anomalous U(1) has to be cancelled by the VEV’s of certain fields in the model, the

sign of the FI term is crucial. To ensure the DA flatness constraint, the required

HIM’s should necessarily contain one or more elements that are opposite in sign to

that of ξFI .

The constraints of F flatness require that 〈∂W/∂Φp〉 = 0 and 〈W 〉 = 0 for all of
the massless superfields Φp in the model. Further consideration of these conditions

demonstrates that there are two types of dangerous terms which can lift a given

D flat direction. The first class of terms, which we denote as the WA terms, are

formed solely of the fields that are in the D flat direction. Gauge invariance dictates

that if such a term can be constructed, it can appear in the superpotential raised

to any positive power. In this case, for the D flat direction to remain F flat to all

orders in the superpotential, string selection rules must conspire to forbid the infinite

number of WA terms, which can be difficult to prove in general. We choose to adopt

a conservative strategy and do not consider D flat directions for which WA terms

can appear (with the recognition that in doing so, we may be neglecting possible flat

directions which are in fact F flat to all orders).

The other type of dangerous terms, which we denote as theWB terms, are linear

in an additional massless superfield which is not in the flat direction (i.e. which has

zero VEV), such that 〈W 〉 = 0 but 〈∂W/∂Ψ〉 may be nonzero. In this case, gauge
invariance constrains the number of WB terms to be finite, and an explicit string

calculation can be performed to determine if such terms are in fact present in the

superpotential. Thus, the flat direction can be proven to be F flat to all orders if

all such WB terms vanish. It is also possible that in certain cases the contributions

to the F term ∂W/∂Ψ from different WB terms linear in the same field Ψ (which

is not in the flat direction) could be arranged to cancel for appropriate magnitudes

and signs of the VEV’s of the fields involved.

In the present model, the D flat directions necessarily involve non-Abelian fields

due to the matter content. In principle, the problem could be simplified significantly

if only one component for each superfield which is charged under SU(12) and/or

10
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SO(8) is nonzero, such that only diagonal generators would be involved in D terms

for the non-Abelian gauge groups. In this case, the problem is similar to that of

the Abelian case (Abelian-like), and the techniques developed in [18] and described

above can be directly applied.

The one to one correspondence between holomorphic gauge invariant polyno-

mials (HIP’s) and non-anomalous D flat directions [23] provides a powerful way of

searching for a more general class of D flat directions with non-Abelian fields. We

first construct a gauge invariant polynomial from the non-Abelian fields, which is a

sum of monomials involving the components of the fields. Then one monomial term

defines a D flat direction. Each field in the monomial will have the same magnitude

of the VEV (or times
√
np if the component field is raised to the np power). The D

flatness constraints for both diagonal and off-diagonal generators of the non-Abelian

gauge group are automatically satisfied. Other flat directions are gauge rotations of

the direction corresponding to a single monomial. They are equivalent to a product

of monomials from the same HIP. Each monomial introduces the same magnitude

of the VEV for each component present (or
√
np), but the phases of the VEV’s are

dictated by the gauge rotation.

One can also consider higher dimensional D flat directions (with more than one

independent VEV), formed as products of other HIP’s. The flat directions corre-

spond to products of monomials from each of the HIP’s, each with its own VEV.

Such products often have a reduced surviving gauge symmetry and massless particle

content. They are sometimes F flat (due to cancellations) for specific ratios of the

VEV’s and choices of phases, even though the directions corresponding to a single

HIP are not. For overlapping polynomials, which are products involving common

multiplets, there is a flat direction in which the common multiplets have the same

nonzero component (or involve components not connected by any single gauge gener-

ator) for each of the monomial factors, which avoids nonzero D terms for off-diagonal

generators6. The VEV’s of the nonzero components in a product are given by an

expression analogous to (3.1). For products of non-overlapping HIP’s (i.e. with no

multiplets in common), the corresponding monomials may have different orientations

in the internal symmetry space.

4. Flat directions

The F flatness conditions of the ABPSS model are

εαβγψ
αa
i ψβbi = 0 ,

εαβγψ
βb
i χ

γ
[a,b] = 0 . (4.1)

6Gauge or family rotations of that flat direction may have additional nonzero components of the

same multiplets. The D flatness of the off-diagonal generators then occurs by cancellations.

11
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The D flatness condition for SO(8) is

DI =
∑
α,a

∑
i,j

(
ψαa†i T I,ijψαaj

)
= 0 , (4.2)

where T I are generators of the vector representation of SO(8) and I = 1, . . . , 28. For

SU(12),

DJ =
∑
α,i

∑
a,b

ψαa†i T̂ Jabψ
αb
i +

∑
α

∑
a,b,c

(
χα[a,c]

)†
T Jabχ

α
[b,c] , (4.3)

where T J (T̂ J ≡ −T JT ) are the generator matrices for the fundamental (anti-
fundamental) representation of SU(12) and J = 1, . . . , 143. The D flatness condition

for the anomalous U(1) is given by

DA = −
∑
α,i,a

ψαa†i ψαai + 2
∑
α,a<b

χα†[a,b]χ
α
[a,b] + ξFI . (4.4)

Since there are no non-Abelian singlet fields in the model, the D flat directions

are necessarily formed of superfields which transform nontrivially under the non-

Abelian gauge groups. Due to the form of the superpotential and the number of

families, we have not been able to construct a D flat direction involving only one

component per multiplet, namely, the Abelian-like solution with only the diagonal

generators of SU(12) involved.

We thus concentrate on the holomorphic gauge invariant polynomial method as a

more general and powerful tool. We construct gauge invariant (under SO(8)×SU(12))
combinations of fields ψαai and/or χγ[a,b]. Any monomial from the HIP involving

particular components of the fields ψ and/or χ is a one-dimensional D flat direction.

Other D flat directions can be constructed from products of these one-dimensional

directions. We then check the F flatness constraints.

We have found classes of flat directions involving χ only, exploiting the fact that

the totally antisymmetric product χ6 is an SU(12) singlet. Different combinations of

the family indices for the six χ fields, or products of such polynomials, correspond

to different residual symmetries and spectra after vacuum restabilization. The χ

fields have U(1)A charge +2, so that these directions have DA = 0 for ξFI < 0,

i.e. for positive Re(R) in (2.14). The VEV’s of the components of the fields are

proportional to ξFI , so they interpolate smoothly to the limit ξFI = 0.

The one-dimensional flat directions take the form (up to a gauge rotation)

χ6 = χα1[1,2]χ
α2
[3,4]χ

α3
[5,6]χ

α4
[7,8]χ

α5
[9,10]χ

α6
[11,12] , (4.5)

where the family indices αi take the values 1, 2, or 3. This monomial is a singlet

under SO(8), with anomalous U(1) charge +12.

In addition to SO(8), which obviously remains unbroken by this class of flat

directions, the remaining unbroken gauge symmetries from SU(12) clearly contain
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SU(2)6, where each SU(2) corresponds to the indices of one of the χ fields in the

flat direction. However, since there are only three possible values of the six αi, these

are not all the unbroken generators of the original SU(12). There are additional off-

diagonal generators which remain unbroken such that the remaining gauge symmetry

is Sp(2l) × Sp(2m) × Sp(2n),7 where l, m, and n are the number of occurrences of
the direction 1, 2, and 3, respectively, and l+m+n = 6. (Of course, Sp(2) ∼ SU(2)
and the Sp(2k) factor is absent for k = 0, where k is l, m or n.) In appendix A, an

example with two χ fields is given to illustrate the survival of the Sp(4) gauge group.

There are also flat directions which are arbitrary superpositions of directions

with different family indices but the same SU(12) indices. These are equivalent

to each of the six factors having an independent direction in family space; i.e. αi
is promoted to a vector in the three-dimensional family space, with each compo-

nent having an arbitrary phase. Thus, χαi[ai,bi] → χ1[ai,bi]χ
2
[ai,bi]

χ3[ai,bi], where [ai, bi] =

[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], or [11, 12], and the VEV’s of three components in the

family space satisfy |v1[ai,bi]|2 + |v2[ai,bi]|2 + |v3[ai,bi]|2 = |v|2, where v is the VEV deter-
mined from ξFI . The generic residual symmetry is SU(2)

6, except for the special

directions for which k of the αi are aligned, in which case SU(2)
k → Sp(2k).

The space of the flat directions of this class is a subspace of the 3 × 66 dimen-
sional complex space of χα[a,b]. At a generic point (the vectors αi in the family space

are different from each other), other flat directions can be constructed by family and

phase transformations classified by U(3)/U(2) for each of the six factors χαi[ai,bi]. Of

the five generators of U(3)/U(2), one is from SU(12)×U(1)A and the other four corre-
spond to moduli. Hence, the generic points with 6 arbitrary αi form a 12-dimensional

complex moduli space. The points in moduli space that involve permutating the αi
and associated phases are equivalent by discrete gauge transformations, such as the

one which maps χα1[1,2]χ
α2
[3,4] to χ

α1
[3,4]χ

α2
[1,2]. The χ spectrum for a generic point includes

126 massive states associated with the spontaneous breakdown of SU(12)×U(1)A to
SU(2)6 (the imaginary parts are the absorbed Goldstone bosons and the real parts

are the massive scalar partners). In addition, there are 3 × 66 − 126 = 72 massless
complex χ states, 12 of which are associated with the moduli. At the special points

in the moduli space where the vectors in the family space αi are aligned, the gauge

symmetries are enhanced. There are correspondingly more massless states and fewer

associated with symmetry breaking.

To determine the spectrum for the ψ fields, consider any of the six factors of χ6.

Without loss of generality we can choose axes in family space such that 〈χα[a,b]〉 = v

for a specific α = 1, 2, or 3, with the other VEV’s vanishing. From the superpotential

W3 → 2yv(ψβai ψγbi − ψγai ψβbi ) , (4.6)

7Note that in the orientifold limit, appearance of Sp(2k) groups is usually associated with exis-

tence of five-branes. Interestingly, the ABPSS orientifold has only nine-branes, yet the blowing-up

procedure introduces Sp(2k) groups.
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(where β 6= γ 6= α) one has that ψβai , ψ
γb
i , ψ

γa
i and ψ

βb
i become massive (∼ 2y|v|),

while ψ
αa/b
i remain massless. Similarly, two of the three families become massive for

each of the 12 values of the SU(12) index. (SO(8) remains unbroken.) In the special

case of l = m = 0, n = 6, for example, ψ3ai , (a = 1..12) remain massless in the resta-

bilized vacuum. Hence, three apparent families are reduced to one. This suggests

that it may be worthwhile to consider models with more than three apparent families.

The χ6 flat directions are F flat to all orders, since SO(8) × U(1)A invariance
requires at least two factors of ψ for each term in the superpotential. The form of the

effective superpotential (after restabilization) for the massless states depends on the

specific flat direction. U(1)A invariance implies that nψ = 2nχ for an allowed term in

the original superpotential, where nψ and nχ are respectively the number of factors

of ψ and χ. Effective cubic terms must therefore result from surviving terms in the

original superpotential W3 in (2.1). Such terms survive for points in the moduli

space except for the maximal symmetry points like (l,m, n) = (0, 0, 6). There could

conceivably be four-dimensional effective couplings from original non-renormalizable

couplings of the type ψ4〈χ2〉. However, these would have to be of different form
than W 2

3 .

The generic χ6 flat directions that we have discussed so far are technically of

the overlapping type; i.e. they involve products of monomials in which more than

one component of the same field is allowed to have a VEV, as occurs, for example,

if α1 and α2, associated with χ
α1
[1,2] and χ

α2
[3,4] are not orthogonal. For this class of

flat direction this presents no difficulty: no SU(12) generator connects χ1[1,2] with

χ1[3,4], for example, and no off-diagonal D terms are induced. For this to work, it is

necessary for the SU(12) indices to be the same in each monomial, i.e. each has the

same SU(12) orientation.

There is another class of χ6 flat directions involving non-overlapping polynomials,

such as (χ1)6(χ2)6, or (χ1)6(χ2)6(χ3)6. Since they are non-overlapping, there is no

need for the SU(12) indices to be the same in each factor. These directions therefore

allow even more breaking of the SU(12), although to maintain the non-overlapping

character there is much less freedom for rotations in the family indices.8 There

are many possibilities for the relative SU(12) orientations of the (χα)6 factors, with

different implications for the physics of the associated restabilized vacua. We will

simply use two examples given in appendix B to illustrate the complexity of the

physics associated with this class of flat directions.

There are other classes of directions which are D flat with respect to SO(8) ×
SU(12), of the generic form ψ12 or (ψ12) · · · (ψ12). Such directions have negative
U(1)A charges, and would yield DA = 0 for blown-up constructions with ξFI > 0.

These would correspond to Re(R) < 0 in (2.14), and would not have a canonical

8There are also hybrid flat directions, involving family rotations for some of the χ factors and

SU(12) rotations for others.
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geometric interpretation. For such directions, each (ψ12) factor is totally antisym-

metric in the SU(12) indices, while the SO(8) indices are contracted in pairs. The

latter can be within the same (ψ12) factor, in which case they must have different

family indices, or can connect different (ψ12) factors. However, we have not found

any examples of this class which are also F flat.9

Similarly, we have not found any non-trivial solutions involving both the ψ and

χ fields in the flat direction. Clearly ψαai ψβbi χ
γ
[a,b] is not F flat, and we have not found

combinations involving different families, etc., which are both F and D flat.10 (Of

course, the orientifold point with Re(R) = 0 has ξFI = 0, and the trivial solution

with no nonzero VEV is D and F flat.)

5. Conclusions

The aim of this paper has been to address explicitly the blowing-up procedure of

the four-dimensional Type I orientifolds with N = 1 supersymmetry. The specific

analysis was done for the Type I Z3 orientifold constructed by Angelantonj, Bianchi,

Pradisi, Sagnotti and Stanev (ABPSS orientifold) [5]. We chose it in part due to its

simplicity (it involves only nine-branes), and in part due to its potential phenomeno-

logical implications since the model contains three families. The goals were two-fold:

1. we identified the fields participating in the blowing-up procedure, and determined

the structure of the induced Fayet-Iliopoulos (FI) term, and 2. we provided a de-

tailed analysis of the flat directions, surviving gauge symmetry, and light particle

spectra after the subsequent vacuum restabilization of the blown-up orientifold.

1. For the Z3 ABPSS orientifold, only one twisted sector blowing-up mode R

participates in the blowing-up procedure and triggers the subsequent vacuum

restabilization. It is associated with one out of the 27 fixed points, chosen

at the origin where the nine-branes are located. We showed that the real

part Re(R) = φ of this blowing-up mode (which arises in the NS-NS twisted

Type IIB sector) contributes to the FI term. The nonzero vacuum expectation

value (VEV) of this field which, based on the geometrical interpretation of the

blowing-up procedure should be taken to have positive sign, fixes the magnitude

and the sign of the FI term. On the other hand, the Chern-Simons (CS) term,

which plays an instrumental role in the anomaly cancellation procedure and

is related to the FI term by supersymmetry, is proportional to the imaginary

9We have also not found any F flat examples for generalizations involving overlapping polyno-

mials in which the monomials have different combinations of SU(12), SO(8), and family indices.

These generically induce D terms for the off-diagonal generators, but these can often be cancelled

by appropriate choices of relative signs for the fields in a monomial.
10In [5], a form of directions involving both ψ and χ which satisfied F flatness was given. However,

no examples which were D flat were presented, nor was their existence proved. The examples

presented in this paper are both D and F flat, and are outside of their class.
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part Im(R) = ψ of the blowing-up mode (which arises from the R-R twisted

sector). We also noted that the second order expansion of this CS term [10],

which contributes to the imaginary part of the gauge coupling corrections, does

not seem to be present (the part of the R-R sector two-form field that would

contribute to this coupling is projected out by the orientifold projection.).

2. Due to the absence of non-Abelian singlet fields in the spectrum, the subse-

quent vacuum restabilization necessarily involves non-Abelian fields, thus com-

plicating the analysis. We employed the powerful connection between holo-

morphic gauge invariant polynomials and flat directions [23], which enabled us

to classify the D and F flat directions of the blown-up orientifold in detail.

We found that the D and F flat directions of this model are associated with

the general set of ∼ χ6 monomials, in which χ transforms as (1, 66)+2 under

SO(8) × SU(12) × U(1). We were unable to find D and F flat directions for
the gauge invariant monomials of the type ∼ ψ12, in which ψ transforms as

(8, 12)−1 under SO(8)×SU(12)×U(1). We were also unable to find hybrid flat
directions with both the ψ and χ fields involved. Incidentally, only the ∼ χ6 D

flat directions of this model have the correct sign of the U(1) charges to cancel

the FI term with the positive value of the blowing-up mode.

The generic point in the moduli space of D and F flat directions associated with

the ∼ χ6 monomials is specified by 12 complex moduli (fields that can acquire free

VEV’s), breaks the gauge group down to SU(2)6×SO(8), and leaves only one family
of the ψ multiplets massless. At special points of moduli space, for example where

k of the family indices α in the monomials are aligned, the unbroken gauge group

SU(2)k is enhanced to Sp(2k).

We conclude with a number of remarks that in view of the analysis presented in

this paper may be more general and could apply to a larger class of Type I blown-up

orientifolds. In particular, a preliminary investigation of other orientifold models

with non-Abelian singlets, indicates that the vacuum restabilization procedure still

necessarily involves non-Abelian fields [21]. A large set of ZN × ZM orientifolds

(e.g. [4]) have only the fundamental and antisymmetric tensor representations of

the gauge group in the light particle spectrum (i.e. those of the ψ- and χ-type,

respectively). It is conceivable that in general the χ type fields play an instrumental

role in the vacuum restabilization of this class of blown-up orientifolds.

Our analysis demonstrates that the particular blown-up orientifold addressed in

this paper is unlikely to have interesting phenomenological implications, since neither

the surviving gauge group, generically SU(2)6×SO(8), nor the particle content, with
generically only one family remaining light, are phenomenologically viable. Never-

theless, the approach sets the stage for further systematic analysis of other blown-up

orientifolds, which may uncover potentially phenomenologically interesting Type I

string vacua.
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A. Enhanced symmetries

As an example, take two χ fields from the same family, and assume the components

χ3[1,2] and χ
3
[3,4] have nonzero and equal VEV’s. Label the SU(12) generators by T

a
b ,

where

T ab χ[c,d] = δ
a
cχ[b,d] + δ

a
dχ[c,b] . (A.1)

Then, the unbroken generators in the SU(4) subgroup are (T 21 , T
1
2 , T

1
1 − T 22 ) and

(T 43 , T
3
4 , T

3
3 − T 44 ), which correspond to SU(2)

2, as well as T 13 − T 42 , T
4
1 + T

2
3 , T

3
1 −

T 24 , T
1
4 + T

3
2 . It is straightforward to show that the remaining gauge group is Sp(4).

Generalizing to the case with k factors of χ fields aligned in their family indices, 3k

generators remain unbroken from the obvious SU(2)k subgroup. In addition, there

are 4 unbroken generators for each pair of χ fields. Therefore, the total number

of unbroken generators is 3k + 4k(k − 1)/2 = k(2k + 1), and the unbroken gauge

group can be shown to be Sp(2k). There are six broken diagonal generators, which

are the five SU(12) generators not in SU(2)6 and that of the anomalous U(1). The

off-diagonal generators which connect factors from different families are also broken,

as are the linear combinations of the off-diagonal generators that are orthogonal to

the generators in the extensions of SU(2)k to Sp(2k).

B. Directions involving non-overlapping polynomials

We will simply illustrate with two examples involving an SU(4) subgroup of SU(12)

and two χ fields.

As we have seen in appendix A, the single monomial χ1[1,2]χ
1
[3,4] breaks SU(4) to

Sp(4), while χ1[1,2]χ
2
[3,4] leaves SU(2)

2 unbroken. As an example of a non-overlapping

polynomial direction, consider (χ1[1,2]χ
1
[3,4]) (χ

2
[1,4]χ

2
[2,3]), where the first (second) pair

of fields have VEVs v1 (v2). Although this direction breaks each individual SU(4)

generator, there are six unbroken linear combinations. These are t1 ≡ T 12 − T 34 ,

t2 ≡ T 14 + T
3
2 , and their Hermitian conjugates, as well as the Hermitian generators

h1 ≡ T 11 −T 22 +T 33 −T 44 and h2 ≡ i(T 24 +T
1
3 −T 31 −T 42 ). h1 and h2 commute with each

other and the ti. The six surviving generators correspond to an unbroken SU(2)
2,

with the canonical SU(2) generators given by linear combinations of the ti and the
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hi. This class of directions involves 5 real moduli. There are 8 massless complex χ

fields associated with the SU(4) subgroup. Two families of ψ states become massive

and one remains massless.

An extension of this example utilizes all three families, i.e. (χ1[1,2]χ
1
[3,4]) (χ

2
[1,4]χ

2
[2,3])

(χ3[1,3]χ
3
[4,2]), with VEVs vi, i = 1, 2, 3 for the three pairs. In this case, there are three

Hermitian generators, h2, i(t1 − t†1), and i(t2 − t†2), of a surviving SU(2). There are
7 real moduli for these examples, and 5 massless complex χ fields. All three families

of ψ’s become massive.
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