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1. Introduction

The decay of unstable D–brane systems is a simple example of a time dependent background

in which one would like to understand the behaviour of string theory. More generally, the

study of time dependent backgrounds is of interest for the simple reason that we appear

to live in one. Unfortunately this is a notoriously difficult issue to even formulate in a

clean way. It is therefore of no small interest that the rolling tachyon backgrounds of

Sen [1] are described in terms of exactly soluble boundary conformal field theories. These

backgrounds are therefore tractable, and one may hope that lessons learned here carry over

to more general time dependent situations.

The time dependent background studied in this paper is the rolling tachyon corre-

sponding to the decay of a D25 brane in bosonic string theory. We will be specifically

interested in the case where the tachyon on the worldvolume of the D25-brane sits at the

top of its potential at t = −∞ and rolls to the minimum as t → +∞ [2]–[5]. In terms
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of conformal field theory this is described by the usual c = 25 worldsheet theory for the

spatial fluctuations of the open string plus the action

− 1

2π

∫

Σ
∂X0∂̄X0 + g

∫

∂Σ
eX

0(eix
0
) , (1.1)

for the temporal fields. We will refer to this theory of a negative norm boson with an expo-

nential boundary interaction as Timelike Boundary Liouville theory and resist the termi-

nology 1/2 S-brane. Many other interesting avenues of investigation into rolling tachyons

have been pursued in the recent literature [6]–[13].

This paper will focus on general classes of correlation functions in Timelike Boundary

Liouville theory (TBL). The main result of the investigation is a demonstration that all

correlators in this theory, and hence the rolling tachyon background, can be expressed as

unitary matrix integrals. Moreover, these integrals permit an expansion in simple quantities

from the theory of groups, such as the characters of the symmetric groups. These relations

provide an efficient, purely algebraic, algorithm for computing all correlation functions of

the theory. As explicit examples we obtain infinitely many coefficients in the boundary

state of the rolling tachyon. We also compute m-point correlators of exponentials of the

field X0 in the background of the rolling tachyon, for bulk and boundary fields.

The appearance of matrix integrals strongly suggests that the full dynamics of this

time dependent background should be captured by a unitary matrix model. The obvious

question is, which matrix model? An indication of which class of matrix models we should

look at comes from the fact that correlation functions of timelike boundary Liouville theory,

when expressed in terms of U(n) matrices, are easily recognizable as correlation functions

of gauge invariant operators in two-dimensional Yang-Mills theory [15, 16]. In particular,

the one point functions which lead to the boundary state coefficients are precisely the same

as the correlation functions between pairs of Wilson loops in QCD2, in the limit of small

separations. We are thus led to conjecture that the timelike boundary Liouville theory is

the same theory as QCD2. As it is widely believed that two dimensional Yang-Mills can

itself be formulated as a matrix model, the same will be true for TBL. The matrix model

description would amount to a holographic projection of TBL to one dimension less. The

surprising twist to the story is that the holographic description itself is the gauge fixed

version of QCD2, i.e. a theory in one dimension more. It would clearly be interesting

to develop these relations further. Recently other relations between matrix models and

tachyons have been proposed in [14].

The remainder of the paper is organized as follows. In section two we review the basic

observation of [3] that led to our investigation, namely, that the partition function of the

rolling tachyon background is related to the Haar measure of the unitary group. We also

review how SN , the symmetric group of N objects, encodes the spectrum of the closed

bosonic string. In section three we show that bulk one point functions of massive closed

string states are in fact matrix integrals. We establish our technique for evaluating these

integrals and obtain general expressions for infinitely many boundary state coefficients. In

section four we consider bulk m-point functions, demonstrating how these may also be

written as matrix integrals and readily evaluated. These results are extended to boundary
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correlators in section five. In section six we discuss our conjecture relating timelike bound-

ary Liouville theory to two dimensional gauge theory and hence a matrix model. Finally,

in an attempt at making the paper somewhat self-contained, we have included several ap-

pendices reviewing some facts from the representation theory of the unitary groups, the

characters of the symmetric group, and the theory of symmetric functions.

2. Preliminaries

In this section we review a few of the key ingredients needed in this paper. First, the

representation of correlators in the rolling tachyon background as integrals over U(n) group

manifolds; and then the connection between string states and conjugacy classes of the

symmetric group.

2.1 Correlators as U(n) integrals

The basic observables in the rolling tachyon background are the correlation functions of

vertex operators, corresponding to open and closed string states. A general correlator is of

the form

A(ΠVi) =

〈
∏

i

Vi(z, z̄)

〉

TBL

=

〈
∏

i

Vi(z, z̄)e
−Ibndy

〉

, (2.1)

where z, z̄ are coordinates on the unit disk and the boundary interaction is that of the

rolling tachyon

Ibndy = g

∫

dt exp
(
X0(t)

)
. (2.2)

One approach to evaluating these expressions is to treat the boundary interaction pertur-

batively and write

A(ΠVi) =
∞∑

n=0

(−2πgex0
)n

n!

〈
∏

i

Vi(z, z̄)

∫ n∏

i=1

dti
2π

eX̂
0(eiti )

〉

, (2.3)

where the field X0 was divided into a zeromode x0 and a fluctuating part X̂0. We will

leave the zero-mode x0 unintegrated, a standard procedure when interpreting the CFT in

spacetime as a rolling tachyon. It is useful to introduce a separate notation for the nth

order contribution to the correlator eq. (2.3)

A(ΠVi)
n ≡ 1

n!

〈
∏

i

Vi(z, z̄)

∫ n∏

i=1

dti
2π

eX̂
0(eiti)

〉

, (2.4)

and so write

A(ΠVi) =
∞∑

n=0

(−g̃)nA(ΠVi)
n , (2.5)

where g̃ ≡ 2πgex
0
.
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The key observation for the techniques developed in this paper is that the contractions

that do not involve the vertex operators take the form
〈

n∏

i=1

eX̂
0(eiti)

〉

=
∏

i<j

|eiti − eitj |2 =
∏

i<j

4 sin2
(
ti − tj

2

)

≡ ∆2(t) , (2.6)

where ∆(t) is the Vandermonde determinant for the group U(n) [3]. It follows that the

disk amplitude with no vertex operator insertions becomes

Avac
n =

1

n!

∫
〈 ∞∏

i=1

dti
2π

eX̂
0(eiti)

〉

=
1

n!

∫ n∏

i=1

dti
2π

∆2(t) =
1

vol(U(n))

∫

dU = 1 , (2.7)

where dU is the Haar measure for U(n). Summing over all orders in the perturbation series,

we find

Avac =

∞∑

n=0

(−g̃)n =
1

1 + g̃
≡ f(x0) . (2.8)

The function f is the partition function of the theory, treated as a function of the uninte-

grated zero-mode.

The appearance of the Vandermonde determinant in the vacuum amplitude begs the

question of whether other correlation functions, with the Vi(z, z̄) retained, can be similarly

represented in terms of unitary matrices. We will see that this is indeed the case.

2.2 Closed strings and the symmetric group

The mass spectrum of closed bosonic string theory is given by

1

2
m2 + 2 =

∑

n

Nnn+
∑

ñ

Ñññ ≡ N + Ñ , (2.9)

in units with α′ = 1. The level matching condition states that N = Ñ , while the Nn and

Ññ need not be related. The spectrum at a given mass level is thus labelled by a pair of

partitions of the integer N . For example, if 1
2m

2 + 2 = 3 + 3 the possible string states are

identified by pairs of partitions of 3. The partitions are (3), (1, 2), (1, 1, 1) in this case. The

state

α−3α̃−2α̃−1|0〉 , (2.10)

corresponds to the partition (3) for the left movers and the partition (1, 2) for the right

movers. The states for other pairs of partitions are readily written down as well.

The utility in taking this point of view is that the partitions of N are in a one to one

correspondence with the conjugacy classes of the symmetric group SN . So we may just as

well view the oscillator structure of each ‘side’ of the string as being labelled by a conjugacy

class of SN . In the example above we are dealing with S3 and the state written in eq. (2.10)

corresponds to choosing the conjugacy class of long cycles (123) for the left movers and

the conjugacy class of (12)(3) for the right movers. Here we are employing the standard

notation for elements of S3. In general, the partition N = N1ν1 +N2ν2 + · · ·Nkνk, where

the Ni are the multiplicities of the νi, corresponds to the oscillators

αN1
−ν1α

N2
−ν2 · · ·α

Nk
−νk . (2.11)
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This set of oscillators is thus labelled by the conjugacy class of SN which contains N1

cycles of length ν1, N2 cycles of length ν2 and so on. We will denote this conjugacy class

σ = (νN1
1 , νN2

2 , . . . , νNk

k ). Here and in the folowing all oscillators ανi will be assumed to be

temporal unless indicated otherwise.

A general massive string state at level N = 1
4m

2 + 1 can be expressed in oscillator

notation as

N (σ;σ̃)αN1
−ν1α

N2
−ν2 · · ·α

Nk
−νk α̃

Ñ1

−ν̃1α̃
Ñ2

−ν̃2 · · · α̃
Ñ
k̃

−ν̃
k̃
|0, 0〉 ≡ |σ, σ̃〉 , (2.12)

where σ, σ̃ denote the conjugacy classes of SN which label the state we are considering and

N (σ;σ̃) =




∏

i

νNi

i Ni!
∏

ĩ

ν̃
Ñĩ

ĩ
Ñĩ!





− 1
2

, (2.13)

is the normalization factor. The corresponding vertex operators are given by

V (σ;σ̃)(z, z̄) = N (σ;σ̃)
k∏

i=1

( √
2

(νi − 1)!
∂νiX0(z, z̄)

)Ni k̃∏

ĩ=1

( √
2

(ν̃ĩ − 1)!
∂̄ν̃ĩX0(z, z̄)

)Ñĩ

, (2.14)

where the numerical constants were determined using the operator-state correspondence

(as in [17]).

3. Couplings to closed strings

In this section we introduce the matrix method by considering the simplest correlators, the

one point functions of closed strings in the rolling tachyon background. We also point out

a suggestive connection to QCD2. Finally, we relate our results to those obtained using

boundary state methods.

3.1 Correlators as matrix integrals

The nth order contribution to the disk amplitude with a single closed string inserted at

the origin, can be written as

A(σ,σ̃)
n =

∫ n∏

i=1

dti
2π

A(σ;σ̃)
n =

∫ n∏

i=1

dti
2π

〈

◦
◦V

(σ;σ̃)(0, 0)◦◦

n∏

l=1

exp(X0(wl))

〉

, (3.1)

where the wl = eitl represent the positions of the tachyon vertex operators associated with

the rolling tachyon background, and the notation ◦◦ ◦◦ denotes boundary normal ordering.

The Green’s function on the unit disk is

Gl ≡ G(z, wl) = log |z − wl|+ log |zw̄l − 1| , (3.2)

for a field with temporal signature. Carrying out contractions involving the closed string

vertex we find

A(σ;σ̃)
n = N (σ;σ̃)

k∏

i=1

[ √
2

(νi − 1)!

n∑

l=1

∂νiGl

]Ni k̃∏

ĩ=1





√
2

(ν̃ĩ − 1)!

n∑

l̃=1

∂̄ν̃ĩGl̃





Ñĩ〈 n∏

j=1

exp(X0(wj))

〉

.

(3.3)
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It is straightforward to show that

∂νiGl = −(νi − 1)! exp(−iνitl) , (3.4)

where we have taken z = 0 and wl = eitl . The factor (νi − 1)! cancels a similar factor in

the vertex operator normalization; and so, after using eq. (2.6), we find

A(σ;σ̃)
n = N ′(σ;σ̃)∆(t)2

k∏

i=1

[
n∑

l=1

e−itlνi

]Ni k̃∏

ĩ=1





n∑

l̃=1

eitl̃ν̃ĩ





Ñĩ

, (3.5)

where

N ′(σ;σ̃) =




∏

i

(νi
2

)Ni

Ni!
∏

ĩ

(
ν̃ĩ
2

)Ñĩ

Ñĩ!





− 1
2

. (3.6)

This generalizes the results of [3] to the case of the most general massive closed string.

Our goal is to represent the amplitude eq. (3.1) as a matrix integral. A U(n) matrix U

can always be written as U = exp(iT ) for some hermitean matrix T . Further the eigenvalues

of U can be written as eiti where the ti are the eigenvalues of T . In this diagonal basis we

see that

Tr(U) =

n∑

i=1

exp(iti) , (3.7)

or more generally,

[Tr(U νi)]Ni =

[
n∑

l=1

exp(itlνi)

]Ni

. (3.8)

The amplitude eq. (3.1) with integrand eq. (3.5) can therefore be written as

A(σ;σ̃)
n = N ′(σ;σ̃)I(σ;σ̃)n , (3.9)

where

I(σ;σ̃)n =
1

vol(U(n))

∫

dU

k∏

i=1

[Tr(U νi)]Ni

k̃∏

ĩ=1

[

Tr
(

U †ν̃ĩ
)]Ñĩ

. (3.10)

This is a general expression for all one point functions of massive string modes in the rolling

tachyon background. Integrals of this form can be evaluated elegantly and efficiently, by

exploiting group theory methods.

Before showing how to do this it is worth noting the intriguing connection to two-

dimensional U(n) gauge theory. Namely, the matrix integral in eq. (3.10) is exactly the

expression one obtains in QCD2 as the correlation function between a pair of Wilson loops

in the limit where the area of the Riemann surface (target space) shrinks to zero [15,

16]. The precise connection between the rolling tachyon background and QCD2 is a bit

mysterious, since in the case of interest here each term in the perturbative expansion (2.3)

corresponds to a Wilson loop correlator in a different gauge theory i.e. U(2),U(3) and so

on. We will comment more on this fascinating connection in section six.
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3.2 Integrals of class functions

The tool needed to evaluate the amplitudes given in eq. (3.10) is a classic piece of mathe-

matics known as Schur-Weyl duality, which relates the irreducible representations of U(n)

to those of the symmetric group (See appendix A for more details).

Consider a function of the form f(U) =
∏k

i=1 [Tr(U
νi)]Ni , with U in the defining n×n

representation of U(n). f(U) is invariant under conjugation of U by elements of U(n); and

so depends only on the conjugacy classes of U . Functions with this property are known as

class functions. The integrand in eq. (3.10) is the product of class functions on U(n) and

this makes the evaluation of the integral extremely easy. This is because the characters

χλ(U) of the irreducible representations of U(n) provide an orthonormal basis for class

functions. In the present case f(U) can be expanded in this basis as

f(U) =
k∏

i=1

[Tr(U νi)]Ni =
∑

λ≤n
χλ(σ)χλ(U) , (3.11)

where the summation index λ refers to irreducible representations of the symmetric group

SN ; and χλ(σ) is the character of σ ∈ SN in the irreducible representation λ. Recall that

σ is a representative of the conjugacy class which labels the left-moving side of the string

state. The irreducible representations of SN are classified by the partitions of N which,

in turn, we can picture as Young frames with N boxes. Of course, a given Young frame

also corresponds to an irreducible representation of U(n), and it is in this sense that the

index λ is used in eq. (3.11) to label U(n) representations, as well as representations of SN .

However, in some cases Young frames with N boxes have more than n boxes in one column,

and then the corresponding U(n) representation vanishes, by complete anti-symmetry of

the corresponding tensors. This imposes an important restriction on the sum over λ in

eq. (3.11). We have introduced the notation λ ≤ n as a shorthand to remember that we

should sum only over SN representations that make sense also as U(n) representations.

We are now ready to use the expansion eq. (3.11) to evaluate the matrix integral

eq. (3.10). We find

I(σ;σ̃)n =
1

vol(U(n))

∫

dU
k∏

i=1

[Tr(U νi)]Ni

k̃∏

ĩ=1

[

Tr(U †ν̃ĩ)
]Ñĩ

=
1

vol(U(n))

∑

λλ′≤n
χλ(σ)χλ′(σ̃)

∫

dUχλ(U)χλ′
(

U †
)

=
∑

λλ′≤n
χλ(σ)χλ′(σ̃)δλλ′

=
∑

λ≤n
χλ(σ)χλ(σ̃) , (3.12)

where, in going from the second to third line, we have used the orthogonality of group

characters
1

vol(U(n))

∫

dUχλ(U)χ̄λ′(U) = δλλ′ , (3.13)

– 7 –
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and also χλ(U
†) = χ̄λ(U) for unitary representations. The general amplitude thus reduces

to evaluating a sum over the characters of the irreducible representations of SN . Before

considering explicit examples it is worthwhile to make a few general remarks.

When n ≥ N there are no Young frames with N boxes that have more than n columns;

so, in this case, the final sum in eq. (3.12) is over all irreducible representations of SN and

is given by the completeness relation1

I(σ;σ̃)n =
∑

λ

χλ(σ)χλ(σ̃) = δσσ̃
∏

k

νNk

k Nk! ; n ≥ N , (3.14)

where the integers νk, Nk are those defining the conjugacy class σ.

When n < N the sum in eq. (3.11) does not run over all irreducible representations of

SN and there is no simple expression analogous to eq. (3.14). In particular, characters of

different conjugacy classes are not in general orthogonal with the restricted sum. In these

cases the final summation must be performed by directly evaluating the characters of the

representations which do appear. For all the states at level N what we need is simply

the character table of SN , a standard quantity which can be computed using a variety

of techniques. In appendix B we outline one such technique, known as the Murnaghan-

Nakayama Rule.

To compute the amplitude for a given closed string state we want to sum over all orders

in perturbation theory, i.e. over all values of n. The cases n ≥ N and n < N therefore

both arise, for any amplitude. As we will show next, the matrix method is nevertheless a

practical, indeed efficient, method to compute couplings to closed strings.

3.3 Examples

We are now in a position to evaluate the amplitudes

A(σ;σ̃) = 〈◦◦V (σ;σ̃)◦
◦〉TBL , (3.15)

for arbitrary closed string states. We first compute the quantities,

I(σ;σ̃) =

∞∑

n=0

(−g̃)nI(σ;σ̃)n , (3.16)

and then multiply by the overall normalization factor to find A(σ;σ̃) = N ′(σ;σ̃)I(σ;σ̃).

As the simplest example of a state at level N consider

1

N
α−N α̃−N |0〉 . (3.17)

This corresponds to choosing the conjugacy class of long cycles (12 · · ·N) in SN to label

both the right and left movers. In terms of partitions of N , the states correspond to the

trivial partition, namely ν1 = N , N1 = 1, i.e. σ = σ̃ = (N). For n ≥ N , the orthogonality

relation eq. (3.14) immediately gives

I(N ;N)
n = N ; n ≥ N . (3.18)

1See for example ref. [18]
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λ\σ (12) (2)

(2) 1 1

(12) 1 -1

Table 1: Character table for S2. Each row gives χλ(σ) for a given λ.

The case of n < N is only slightly more difficult. As discussed above one must sum the

characters of irreducible representations of SN which correspond to Young frames which

do not contain any columns with more than n boxes. Referring to appendix B for details,

we find that there are only n Young frames which contribute a non-vanishing character,

since non-vanishing contributions come from Young frames with the property that all of

the boxes lie on a single hook. Furthermore, all of these have the value χλ(σ) = ±1. We

therefore find

I(N ;N)
n = n ; n < N , (3.19)

giving the general expression

I(N ;N)
n = min(N,n) ∀n,N . (3.20)

From this simple result, and the normalization factor N ′(N ;N) = 2/N , we find the amplitude

A(N ;N) =
2

N

∞∑

n=0

(−g̃)nmin(N,n) = 2f − 2

N

N−1∑

n=0

(N − n)(−g̃)n . (3.21)

in the case of closed string states of the form (3.17).

As another example let us consider states labelled by different conjugacy classes on

the two sides of the string. Here we see an enormous simplification. For n ≥ N the

orthogonality properties of characters of the symmetric group completely kills the integral,

as indicated by the delta function in eq. (3.14). Thus

I(σ;σ̃)n = 0 ; n ≥ N , (3.22)

for σ 6= σ̃. Thus we have the remarkable result that these amplitudes only receive contri-

butions from a finite number of terms in the perturbation series!

Let us determine these finite terms for N = 2. The only amplitude with different

conjugacy class on each side is A(12;2). Since there are no contributions with n ≥ 2 we

simply need to evaluate

I(1
2 ;2)

n =
∑

λ≤n
χλ(σ)χλ(σ̃) , (3.23)

for n = 1. From the character table of S2, given explicitly in table 1, we find

I
(12;2)
1 = 1 , (3.24)

and therefore the amplitude is

A(12;2) = N ′(12;2)I(1
2;2) = −

√
2 g̃ , (3.25)

since N ′(12 ;2) =
√
2.
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λ\σ (3) (2, 1) (13)

(3) 1 1 1

(2, 1) -1 0 2

(13) 1 -1 1

Table 2: Character table for S3.

(σ; σ̃) A(σ;σ̃)

(1; 1) 2[f − 1]

(2; 2) [2f − 2 + g̃]

(12, 12) 2[2f − 2 + g̃]

(12; 2)
√
2[−g̃]

(3; 3) 2
3 [3f − 3 + 2g̃ − g̃2]

(2, 1; 2, 1) 2[2f − 2 + g̃ − g̃2]

(13, 13) 4
3 [6f − 6 + 5g̃ − g̃2]

(2, 1; 13)
√

8
3 [−g̃ + g̃2]

(2, 1; 3)
√

4
3 [−g̃ + g̃2]

(3; 13)
√
8
3 [−g̃ − g̃2]

Table 3: One point amplitudes of the closed strings up to level 3. The quantity in the square

bracket is I(σ;σ̃); the prefactor is N ′(σ;σ̃). The function f = 1/(1 + g̃).

Proceeding similarly we have processed the characters of S3 given in table 2 and found

all the closed string couplings up to level 3. The results are given in table 3 where, for easy

reference, we include also the results from level 1,2.

3.4 Comparison with boundary states

The boundary state for the rolling tachyon background takes the form

|B〉 = |BX0〉 ⊗ |B→
X
〉 ⊗ |Bghost〉 , (3.26)

where |B→
X
〉 is the usual boundary state for the spatial part of a D25 brane in bosonic string

theory, |Bghost〉 is the contribution from the ghosts and

|BX0〉 = B(0;0)|0〉+B(1;1)α0
−1α̃

0
−1|0〉 +

1√
2
B(1,1;2)(α0

−1)
2α̃0
−2|0〉 + · · · . (3.27)

The spatial and ghost components of the boundary state will play no role in this paper.

The temporal component of the boundary state can be computed following [19, 20, 1] and

gives [3, 4]

|BX0〉 =
∑

j

∑

m≥0

((
j +m

2m

))

(−g̃)2m|j,m,m〉〉 , (3.28)

where |j,m,m〉〉 are the Ishibashi states, i.e. infinite sets of states built as Virasoro de-

scendants of certain SU(2) primaries. The laborious part of finding explicit expressions for
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(σ; σ̃) B(σ;σ̃)

(1; 1) f − 2

(2; 2) f − 2 + g̃

(12, 12) f + 2g̃

(12; 2) −
√
2g̃

(3; 3) f − 2 + 4
3 g̃ − 2

3 g̃
2

(2, 1; 2, 1) f + g̃ − 2g̃2

(13, 13) f − 2 + 2
3 g̃ − 4

3 g̃
2

(2, 1; 13)
√

2
3 [g̃ + 2g̃2]

(2, 1; 3) 2√
3
[−g̃ + g̃2]

(3; 13) 2
√
2

3 [−g̃ − g̃2]

Table 4: Boundary state coefficients up to level 3.

the boundary states is to work out the Ishibashi states, since these become increasingly

complex at higher level. In contrast our methods get at that information quite easily.

The boundary state coefficients B(σ;σ̃) can be represented as the one point functions

B(σ;σ̃) = 〈: V (σ;σ̃) :〉TBL , (3.29)

of the corresponding closed string vertex operators. It is the standard bulk normal ordering

that appears in this expression, in contrast to the boundary normal ordering which, as

emphasized in [3], appears in our amplitudes eq. (3.15). The two normal orderings are

related by

: X0(z, z̄)X0(z′, z̄′) := ◦
◦X

0(z, z̄)X0(z′, z̄′)◦◦ + log |zz̄′ − 1| , (3.30)

with the difference due to the ”image” term in the disk Green’s function eq. (3.2). It

follows, for example, that

: ∂νX0(0, 0)∂̄ν
′

X0(0, 0) : = ◦
◦∂

νX0(0, 0)∂̄ν
′

X0(0, 0)◦◦ −
1

2
ν!(ν − 1)!δνν′ . (3.31)

Taking the normalization factors into account, and recalling that the function f is the

vacuum amplitude, this gives

B(N ;N) = A(N ;N) − f , (3.32)

or, from eq. (3.21),

B(N ;N) = f − 2

N

N−1∑

n=0

(N − n)(−g̃)n . (3.33)

Let us emphasize that this expression gives the boundary state for any N . The explicit

computations of boundary states using Ishibashi states have been carried to level two [10],

with a result that agrees with our general expression eq. (3.32). Extending the boundary

computations to higher N is however very tedious and in general not very practical.

The relation eq. (3.30) between normal orderings can be extended to more complex

operators. The general result has the same form as Wick’s rule, except that contraction

– 11 –
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terms here appear only for operators with an identical number of derivatives. The two nor-

mal orderings are thus equivalent when σ, σ̃ have no cycles that are of the same length. The

awkward numerical coefficient − 1
2ν!(ν−1)!δνν′ that comes with each contraction conspires

with the overall normalization N ′(σ;σ̃) to give simple combinatorial factors when relating

B(σ;σ̃) and A(σ;σ̃). For example, if only one type of cycle appears

B(νN ;νN ) = A(νN ;νN ) −NA(νN−1;νN−1) +
N(N − 1)

2
A(νN−2;νN−2) + · · · . (3.34)

We have used the contraction rules to compute boundary state coefficients from our

matrix amplitudes for all states up to level three. The results are given in table 4. As a

check we have carried the boundary state computations one level higher than [10], to level

three, and verified agreement of all terms. This gives us great confidence that the two

methods really are equivalent. It also shows that the matrix method is by far the most

convenient.

4. Bulk correlators

In this section we consider amplitudes of the form

AΠexp(−nkX0) =

〈

:

m∏

k=1

e−nkX
0(zk ,z̄k) :

〉

TBL

, (4.1)

where the zk are in the interior of the unit disk. These amplitudes are the building blocks

of general bulk correlators in the background of the rolling tachyon. They were previously

considered in [4] where explicit results were presented for m ≤ 2. We present these here

both to reiterate our general theme that all correlation functions in this theory are matrix

integrals and to demonstrate the ease with which the resulting integrals can be evaluated,

even in the general case.

Although it is not strictly necessary for our methods to work, we will enforce mo-

mentum conservation. Then the only contribution to the amplitude is at nth order in

perturbation theory where n =
∑
nk; and so, up to an overall factor of (−2πg)n, the entire

amplitude reduces to

AΠexp(−nkX0)
n =

1

n!

〈
m∏

k=1

e−nkX
0(zk ,z̄k)

n∏

i=1

∫
dti
2π

eX
0(wi,w̄i)

〉

, (4.2)

where the wi are situated on the boundary. Straightforward calculation of the contractions,

using the Green’s function eq. (3.2), gives

AΠexp(−nkX0)
n =

1

n!

m∏

k=1

|zk z̄k − 1|n2
k/2
∏

k<l

|zk − zl|nknl |zk z̄l − 1|nknl ×

×
n∏

i=1

∫
dti
2π

∏

i<j

|eiti − eitj |2
m∏

k=1

n∏

i=1

|zk − wi|−2nk , (4.3)
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where we have used w̄ = 1/w = e−it on the boundary of the unit disk. The last term in

the integrand can be rewritten

m∏

k=1

n∏

i=1

|zk − wi|−2nk =
∏

k,i

(1− zkyi)
−nk(1− z̄kȳi)

−nk , (4.4)

where we have defined yi = 1/wi and used the fact that wiw̄i = 1. But the product

h(zk) ≡
∏

i

(1− zkyi)
−1 = det(1− zkU

†)−1 , (4.5)

is expressed directly in terms of matrices; and so

AΠexp(−nkX0)
n =

m∏

k=1

|zk z̄k − 1|n2
k/2
∏

k<l

|zk − zl|nknl |zk z̄l − 1|nknl ×

×
∫

dU

vol(U(n))

∏

k

h(zk)
nkh(zk)

†nk , (4.6)

which is the advertized formula for this entire class of correlators, written in terms of

unitary matrix integrals.

In order to evaluate the integral eq. (4.6) first recast h(zk)
nk in a more convenient form

by defining a new set of variables

{ZK} = (

n1
︷ ︸︸ ︷
z1, z1 · · · , z1;

n2
︷ ︸︸ ︷
z2, z2, · · · , z2 · · · ;

nm
︷ ︸︸ ︷
zm, zm, · · · , zm) , (4.7)

where the index K ∈ (1, n) with n =
∑

i ni. This enables us to write

m∏

k=1

h(zk)
nk =

∏

k,i

(1− zkyi)
−nk =

∏

K,i

(1− ZKyi)
−1 =

∏

K

h(ZK) . (4.8)

Now, the expression eq. (4.5) is in fact the textbook definition of the generating function

for what are known as the complete symmetric polynomials — see appendix C. These are

fundamental objects in the theory of symmetric functions since, among other things, they

provide a basis for the ring of symmetric polynomials. Also of central importance is the

Cauchy identity
∏

K,i

(1− ZKyi)
−1 =

∑

λ

sλ(Z)sλ(y) , (4.9)

where sλ(x) are the Schur functions for the abstract variables x = {xi}, labelled by parti-

tions (Young frames) λ. In the case we are considering yi = e−iti are the eigenvalues of the

matrix U † and therefore the Schur function sλ(y) is known to be equivalent to the character

of U † in the irreducible representation labelled by the partition λ i.e., sλ(w) = χλ(U
†).

We will not need the explicit form of the Schur functions for the variable Z = {ZK}. We

may now write

1

vol(U(n))

∫

dU
∏

K

h(ZK)h(ZK)† =
∑

λλ′

sλ(Z)sλ′(Z̄)
1

vol(U(n))

∫

dUχλ(U)χ̄λ′(U)
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=
∑

λλ′

sλ(Z)sλ′(Z̄)δλλ′

=
∑

λ

sλ(Z)sλ(Z̄) , (4.10)

where we have once again evaluated the integral over U(n) using the orthogonality of group

characters. Instead of computing the remaining sum term by term we can use the Cauchy

identity in reverse to obtain

∑

λ

sλ(Z)sλ(Z̄) =

n∏

I,J=1

(1− ZIZ̄J)
−1 =

m∏

i,j=1

(1− ziz̄j)
−ninj . (4.11)

Assembling eqs. (4.6), (4.10) and (4.11) we obtain the general form of the correlator

AΠexp(−nkX0)
n =

m∏

k=1

|zk z̄k − 1|−n2
k/2

m∏

i<j

|zi − zj|ninj
m∏

i<j

|ziz̄j − 1|−ninj . (4.12)

This generalizes the result of [4] to include all m-point functions of bulk tachyons for

m > 2. Note that we have made no recourse here to the SU(2) current algebra, nor to

contour integration.

5. Boundary correlators

For completeness we point out that correlators involving insertions of vertex operators on

the boundary of the disk can also be written as matrix integrals. In fact this follows almost

trivially from the previous section. The general boundary correlator is

ÃΠexp(−nkX0)
n =

1

n!

〈
m∏

k=1

◦
◦e
−nkX0(zk ,z̄k)◦◦

n∏

i=1

∫
dti
2π

eX
0(wi,w̄i)

〉

, (5.1)

where now the zk are points on the boundary of the disk. The contractions then give

ÃΠexp(−nkX0)
n =

1

n!

m∏

k<l

|zk − zl|2nknl
n∏

i=1

∫
dti
2π

∏

i<j

|eiti − eitj |2
m∏

k=1

n∏

i=1

|zk − wi|−2nk . (5.2)

The simplifications relative to eq. (4.3) are due to |z| = 1. Another difference is that we

now use boundary normal ordering to regulate the vertex operators. We find

ÃΠexp(−nkX0)
n =

m∏

k<l

|zk − zl|2nlnk
∫

dU

vol(U(n))

∏

k

h(zk)
nkh(zk)

†nk , (5.3)

with the same definitions as in section five above. Proceeding as before the boundary

amplitude becomes

ÃΠexp(−nkX0)
n =

m∏

k=1

|zk z̄k − 1|−n2
k . (5.4)

This expression is clearly divergent since zk z̄k = 1 for points on the boundary. Dealing

with this divergence directly in timelike boundary Liouville theory is difficult and is perhaps

best dealt with by reverting to analytic continuation from the spacelike boundary Liouville

theory [21] as advocated in [4]. We are hopeful however that the matrix integral perspective

may circumvent this indirect approach.
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6. Rolling tachyons and QCD2

In section three we observed that the one point functions of massive string states in the

background of the rolling tachyon take the form,

〈◦◦V (σ;σ̃)◦
◦〉TBL = N ′(σ;σ̃)

∞∑

n=0

(−g̃)nI(σ;σ̃)n , (6.1)

where the summand is given by the U(n) integral,

I(σ;σ̃)n =
1

vol(U(n))

∫

dU
∏

i,̃i

[Tr(U νi)]Ni [Tr(U †ν̃ĩ)]Ñĩ . (6.2)

As we already noted, this is exactly the correlation function of a pair of Wilson loops in two

dimensional U(n) gauge theory in the limit where the area of the two dimensional manifold

vanishes [15, 16]. The precise correspondence is somewhat unusual since from eq. (6.1)

the full correlator in the rolling tachyon background is given by the sum over Wilson loop

correlators in different gauge theories! In other words,

〈◦◦V (σ;σ̃)◦
◦〉TBL =

∞∑

n=0

(−g̃)n〈Wn(σ)W̄n(σ̃)〉QCD2 . (6.3)

where Wn(σ) is a Wilson loop operator in two dimensional U(n) gauge theory.

Since correlators involving other vertex operators in the rolling tachyon background

similarly reduce to matrix integrals we make the following proposal: given a set of vertex

operators Vi(z, z̄) then general correlation functions in the timelike boundary Liouville

theory can be expressed as
〈
∏

i

Vi(z, z̄)

〉

TBL

=

∞∑

n=0

(−g̃)n
〈
∏

i

Qn
i (z;α)Q̄

n
i (z̄; α̃)

〉

QCD2

, (6.4)

where Qn
i (z;α) is a gauge invariant operator in U(n) Yang-Mills with α representing how

this operator depends on the details of the Liouville vertex operators Vi(z, z̄). As an

empirical formula (6.4) is certainly valid in the cases we have considered in this paper. The

examples we have uncovered thus far can be usefully organized as

∏

i

[
∂νiX0(0)

]Ni ↔
∏

i

[

Tr(U †νi)
]Ni ↔

∑

λ

χλ(σ)χλ(U
†) ,

exp(−X0(z)) ↔ det(1− zU †)−1 ↔
∑

λ

sλ(z)χλ(U
†) , (6.5)

where we have focused on the holomorphic parts of the vertex operators in question and

the implied correspondence holds at the level of correlation functions. Viewed this way it

is clear that the characters of the unitary group χλ(U) are playing the role of a complete

set of functions into which all the operators can be expanded. The expansion coefficients

on the other hand are dependent on the specific vertex operator. It would be interesting

to uncover the general rule for associating Liouville vertex operators with gauge invariant

operators of QCD2.
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It is perhaps useful to explain in more detail how our envisioned correspondence is

realized. First, we recall the interpretation of QCD2 as a string theory [15]. The funda-

mental idea is that the partition function can be understood as the sum over all maps of

a two dimensional world sheet onto a two dimensional target space of fixed topology. The

maps in question are usually referred to as covering maps and have an associated winding

number N indicating that the map covers the target space N times. The physical observ-

ables of any gauge theory are the gauge invariant operators, a particular example of which

is the Wilson loop,

W (σ) = Tr
(

e
∮

σ
A·dx

)

≡ Tr(Uσ) . (6.6)

where the matrix Uσ represents the holonomy of the gauge field as one traverses the path

defined by σ. In the stringy realization of QCD2 a Wilson loop is an S1 inside of the

target space onto which the boundary of a worldsheet is mapped. Since the target space

will in general have a finite number of punctures the map will have branch points. As one

traverses the S1 of the target space one will encounter branch points where the different

sheets of the map meet. The path is thus determined by specifying how the sheets are

permuted into each other. Therefore, in addition to the winding number N , we also label

each Wilson loop by an element σ ∈ SN . Here σ should be thought of as defining the

path by specifying how the sheets are permuted as one traverses the Wilson loop. In string

theory language the natural set of gauge invariant observables are [16],

Tr(Uσ) =
∏

i

[Tr(U νi)]Ni (6.7)

where on the right hand side U is taken to be in the defining representation of U(n) and

(νi;Ni) specify a partition of N . With this suggestive notation it is clear how we should

translate between the QCD2 language and that of the rolling tachyon: we identify, respec-

tively, N and σ with the level number and oscillator structure of the massive closed string

whose one point function we are calculating in the rolling tachyon background. The inter-

pretation is that these one point functions of timelike boundary Liouville theory are encod-

ing information about how Riemann surfaces with boundaries can be mapped into Riemann

surfaces with a fixed number of punctures. Note that the correspondence we are suggesting

is strictly valid only in the limit of vanishing area of the target space. Thus, intuitively,

the information contained in the Liouville theory should only be topological. Also, since

we must include all values of n it is not completely clear how the geometric interpretation

should manifest itself since the above stringy interpretation of QCD2 is usually associated

with a large-n limit. We leave investigation of these interesting issues to future work.
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A. Schur-Weyl duality

The purpose of this appendix is to provide an introduction to Schur-Weyl duality, used

repeatedly in the main text. For more extensive discussion and formal proofs we refer to

any one of a large number of standard texts on the subject. The discussion presented here

largely follows ref. [22].

The basic observation of Schur and Weyl is that there is a deep connection between

the representation theory of the symmetric group SN and that of the unitary group U(n).

The defining representation of U(n) is given by n × n unitary matrices which act on an

n-dimensional complex vector space V which is referred to as the carrier space of the

representation. One now considers the N -fold tensor product space VN = V ⊗ V ⊗ · · · ⊗ V
which is acted on by the group H = U(n) × SN . Here SN is the symmetric group of N

objects and acts by permuting the N factors appearing in VN . Given an arbitary element

h = σ × U ∈ H where σ ∈ SN and U ∈ U(n) then h in its defining representation D(h)

acts on the basis vectors vik in the product space as

vi1vi2 · · · viN
D(h)→ Ui1σ(j1)Ui2σ(j2) · · ·UiNσ(jN )vj1vj2 · · · vjN ≡ Uσ

(i)(j)vj1vj2 · · · vjN , (A.1)

where the notation (i) ≡ (i1, i2 · · · iN ) has been used and the superscript σ indicates that

the permutation is to be implemented on the set of integers (j). Clearly the actions of the

abstract group elements σ and U commute with each other. From the point of view of the

group U(n) one would like to understand what are the invariant subspaces. Put differently,

the action of the unitary group on the tensor product space is in general reducible and one

would like to know which irreducible representations of U(n) appear in the decomposition.

Schur-Weyl duality answers this question.

To see how this comes about note that the irredicble representations of SN correspond

to subspaces of VN that are invariant (under SN ) . Now, the irreducible representations of

SN are in a one to one correspondence with the partitions of N into integers which, in turn,

are nicely represented in terms of Young frames. Schur-Weyl duality is the statement that

the U(n) invariant subspaces of VN are in a one to one correspondence with the SN invariant

subspaces. Operationally this means the irreducible representations of U(n) appearing in

the decomposition are precisely those corresponding to the Young frames classifying the

irreducible representations of SN , with each U(n) representation appearing precisely once.

It is perhaps instructive to see this in a simple example [22]. Consider the case N = 2 so

that the elements of V2 are given by the second rank tensor Fij . If we represent the elements

of S2 by (e, s) then we have eFij = Fij and sFij = Fji. The irreducible representations of

S2 are summarized by the Young frames depicted in figure (1).

Now, the operators e + s and e − s (known as Young operators) act on the Fij as

projections on to the symmetric and antisymmetric pieces of Fij , respectively, which are

clearly the S2 invariant subspaces of V2. This is also clearly what one expects as the

invariant subspaces under U(n). Since both e + s and e − s commute with the action

of U(n) × U(n) they also project out invariant subspaces of the carrier space V2. The

irreducible representations of U(n) which occur are then also completely summarized in

figure (1).
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Figure 1: Young frames for S2.

For general SN we can similarly think of the defining representation D(h) of h = σ×U
as a tensor representation which in general is reducible and decomposes according to the

irreducible representations of SN as

D(h) =
∑

λ

Sλ(σ)⊗ Tλ(U) , (A.2)

where Sλ(σ), Tλ(U) are the irreducible representations of σ and U appearing in the decom-

position. Again the index λ should be thought of as indexing the Young frames defining

the irreducible representations of SN . It is clear from this tensorial point of view that

the entries on the right hand side of eq. (A.2) corresponding to diagrams with columns of

height more than n actually vanish as representations of U(n). Note that we keep columns

with height exactly n because we are considering U(n), rather than SU(n). The reasoning

appealed to here is more or less the standard one leading to the use of Young frames to

label U(n) representation. Of course a more rigourous treatment is possible, see [23].

Our main interest is the consequences of eq. (A.2) for the characters. Taking the trace,

we find

Tr(D(h)) =
∑

λ

χλ(σ)χλ(U) , (A.3)

since the character of a direct product is the product of the characters. Note that, since

the character is the same for all elements of a conjugacy class, we can now think of the σ in

the argument of χλ as a conjugace class, rather than a group element. The left hand side

can be more explicit by considering the expression eq. (A.1) for the defining representation

D(h) and directly taking the trace of the operator U σ
(i)(j), by setting (i) = (j) and summing

over (j). We find

TrUσ
(i)(j) =

∑

(j)

Uσ
(j)(j) =

∏

k

[Tr(U νk)]Nk , (A.4)

where the permutation σ contains N1 cycles of length ν1, N2 cycles of length ν2 etc. For

example if σ = (1N ) i.e., the identity permutation σ = e, then clearly

TrU
(1N )
(i)(j) =

∑

j1

∑

j2

· · ·
∑

jN

Uj1j1Uj2j2 · · ·UjN jN = [TrU ]N , (A.5)

and likewise, if σ = (N), then

TrU
(N)
(i)(j) =

∑

j1

∑

j2

· · ·
∑

jN

Uj1j2Uj2j3 · · ·UjN j1 = Tr(UN ) . (A.6)
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Generally, we find
∏

k

[Tr(U νk)]Nk =
∑

λ

χλ(σ)χλ(U) , (A.7)

which is the formula used extensively in the main body of the paper, to simplify integrals .

B. The Murnaghan-Nakayama rule

Our algebraic algorithm for determining the couplings to closed strings ultimately relies

on the computation of characters of the symmetric group. In this section we review a

simple graphical technique for doing this, known as the Murnaghan-Nakayama rule. (For

a derivation see [24].) With this rule in hand the industrious reader may verify the explicit

results quoted in the main text, or find more general ones.

The goal is to calculate the characters χλ(σ) = Trλ(σ). We first recall two fundamental

facts about the symmetric group. First, the conjugacy classes σ of SN , which are defined

by specifying a cycle structure, are in a one to one correspondence with the partitions of N .

Second, the irreducible representations λ of SN are also in a one to one correspondence with

the partitions of N . Thus the input required to calculate the character of a given conjugacy

class in a given representation is simply a pair of partitions of N . In the following we will

use two techniques to encode a partition of N . First, we will identify a given representation

λ with a Young frame as follows. We can always write a partition as N = λ1 + λ2 + · · · λk
where by convention we take λ1 ≥ λ2 ≥ · · · ≥ λk. We then construct the Young frame by

drawing a row of boxes of length λ1. Immediately under this (and aligned on the left) we

draw a row of boxes of length λ2. We continue this until we have a row of boxes for each of

the λi. Each frame will (by definition) contain N boxes. Each possible shape corresponds

to a different partition of N and thus a specific irreducible representation λ. Next, a given

conjugacy class σ is specified by its cycle structure and we can therefore label a conjugacy

class by specifying the lengths of it’s cycles i.e., σ = (µ1, µ2, · · · µk) where
∑

i µi = N .

Note that the notation used in this rule differ from σ = (νN1
1 , · · · , νNk

k ) used previously

by introducing a distinct label for each of several cycles having the same length. With

this input the character of σ in the representation λ can be calculated with the following

rule:

• Draw the Young frame correponding to λ.

• Fill in the boxes with µ1 1’s, µ2 2’s, µ3 3′s, µ4 4’s etc. so that

1. Each set of numbers forms a continous hook pattern. By this we mean an unin-

terrupted vertical line, followed by a horizontal line to the right; or a horizontal

line to the right, follwed by a vertical line up.

2. The numbers are weakly increasing from left to right and top to bottom.

• Each table is assigned the number H = (−1)
∑

(hi−1) where hi is the height of each

hook, i.e. the number of boxes in the vertical part of the hook.
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Figure 2: A demonstration of the Murnaghan-Nakayama Rule.
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1 1

(a) (b)

Figure 3: (a) A frame which allows a continuous hook, and thus gives a non-vanishing character.

(b) A frame which does not allow any continuous hooks, and thus gives a vanishing character.

• Repeat the above procedure for all possible ways of covering the Young frame with

hooks according to the above rules.

• The character χλ(σ) is given by the sum of all the H values for each covering.

The computations using the Murnaghan-Nakayama rule are in fact simpler than it may

appear at first. Let us consider an explicit example. Take the representation λ = (4, 3, 2)

of S9 and let us evaluate its character on the group element σ = (12)(345)(678)(9) which

belongs to the conjugacy class which we can write as σ = (2, 3, 3, 1), where the entries

indicate the cycle lengths. Notice 2 + 3 + 3 + 1 = 9 and also 4 + 3 + 2 = 9; so these are

partitions of 9. The procedure for computing the character χ(4,3,2)(2, 3, 3, 1) is then spelled

out in figure (2). Each table has the shape corresponding to the representation (4, 3, 2) and

there are only two possible coverings with numbers consistent with the rules given above.

Each of these tables has H = 1; so χ(4,3,2)(2, 3, 3, 1) = 2.

As another class of examples, consider the conjugacy class of long cycles in SN i.e.,

σ = (N) in our present notation. There are lot’s of Young frames withN boxes; but we need

to cover a given frame with a hook of N 1’s and this leaves only single hook diagrams. For

example figure (3a) can accomodate a hook, but figure (3b) cannot. For each frame allowing

a hook there is obviously only one way to cover the frame so, whatever the height, H =

(−)h1−1 = ±1. Thus, as claimed in the main text, χλ(N) = ±1 for all the representations

with non-zero character on the long cycle. If we restrict to representations with no more

than n boxes in a column there are precisely n such frames and so
∑

λ≤n χ
2
λ(N) = n.

Explicit computations using the Murnaghan-Nakayama rule can obviously become

quite laborious for complex representations. The point we want to make here is simply that

the computation of amplitudes is completely algebraic. Indeed, for practical computations
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at high level there even exists a MAPLE code [25] which automates the determination of

the characters, and thus the amplitudes.

C. Schur functions and the Cauchy identity

This appendix will attempt to summarize some basic facts and definitions from the theory

of symmetric functions that are useful for evaluating various integrals in the main sections

of the paper. For proofs and derivations there is a clear discussion of this enormous subject

in ref. [24].

Consider a partition λ of the form λ1 + · · · + λn = N where, in the present context,

some of the λi may vanish. We can then define a symmetric polynomial in n variables and

degree N as

mλ =
∑

σ∈Sn

x
σ(λ1)
1 x

σ(λ2)
2 · · · xσ(λn)n . (C.1)

For N ≤ n the special case λi = 1 (i ≤ N) and λi = 0 (N < i ≤ n) gives rise to what are

known as the elementary symmetric functions in n variables

eN =
∑

1≤i1<i2···<iN≤n
xi1xi2 · · · xiN , (C.2)

and can be represented by the generating series

e(t) =
∑

N≥0
eN t

N =

n∏

i=1

(1 + txi) . (C.3)

Another class of symmetric functions are the complete symmetric functions hk. They are

defined as

hN =
∑

1≤i1≤i2···≤iN≤n
xi1xi2 · · · xiN , (C.4)

and they have the generating function

h(t) =
∑

N≥0
hN t

N =

n∏

i=1

(1− txi)
−1 . (C.5)

Note that e(t)h(−t) = 1.

It is also useful to consider the anti-symmetric functions defined by

aλ =
∑

σ∈Sn
ε(σ)x

σ(λ1)
1 x

σ(λ2)
2 · · · xσ(λn)n , (C.6)

where ε(σ) is the sign of the permutation σ. These functions are completely antisym-

metric under the interchange of any two of the variables xi. The sets of symmetric and

anti-symmetric functions are isomorphic to each other. The isomorphism can be realized

concretely as multiplication by the Vandermonde determinant

∆(x) = det(xn−ji ) =
n∏

1=i<j

(xi − xj) , (C.7)

where the notation xn−ji is understood to indicate the (i, j) entry of an n× n matrix.
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With the above definitions we now come to the Schur functions. These are a very

general class of symmetric functions which contain as special cases both the elementary and

complete symmetric functions above. A Schur function sλ(x) for some abstract variables

xi is specified by a partition λ (of the same form as above) as

sλ(x) =
det(x

λj+n−j
i )

det(xn−ji )
. (C.8)

The Schur functions are symmetric polynomials of degree N . For example, if λ1 = N

and λi = 0, i ∈ (2, n) then sλ(x) reduces to the complete symmetric function hN . When

λi = 1, i ∈ (1, n) (C.8) gives the elementary symmetric fucntion eN . For the purposes of

this paper the Schur functions are useful because of their connection to the characters of

the unitary group. When the variables xi = eiti it turns out that sλ(x) = χλ(U), where U

is the unitary matrix for which the eiti are the eigenvalues.

We now state, without proof, the Cauchy identity. This is a remarkable identity which

relates products of complete symmetric functions to Schur polynomials. Consider a set of

generating functions for complete symmetric functions h(zl), l ∈ (1,m). Then the product

over this set can be written in terms of Schur functions as

m∏

l=1

h(zl) =
m∏

l=1

n∏

i=1

(1− zlxi)
−1 =

∑

λ

sλ(z)sλ(x) . (C.9)

For a proof of this statement see ref. [24]. This relation is very general and holds for any

two abstract sets of variables z = {zl} and x = {xi}. We will only need the case n = m

where the representations λ are general frames with n boxes.
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