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1. Introduction

Parton-shower Monte Carlo event generators have become an important tool in the ex-

perimental analyses of collider data. These computational programs are based on the

differential cross sections for simple scattering processes (usually 2 → 2 particle scatter-

ings) together with a parton-shower simulation of additional QCD radiation that naturally
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connects to a model of hadronization. As the parton-shower algorithms are based on re-

summation of the leading soft and collinear logarithms, these programs may not reliably

estimate the radiation of hard jets, which, in turn, may bias experimental analyses.

In order to improve the simulation of hard jet production in the parton shower, ap-

proaches were developed to correct the emission of the hardest parton in an event. In the

PYTHIA event generator [1, 2, 3], corrections were included for e+e− annihilation [4], deep

inelastic scattering [5], heavy particle decays [6] and vector boson production in hadron-

hadron collisions [7]. In the HERWIG event generator [8, 9], corrections were included

for e+e− annihilation [10], deep inelastic scattering [11], top quark decays [12] and vector

boson production in hadron-hadron collisions [13] following the general method described

in [14].

These corrections had to be calculated for each individual process and were only applied

to relatively simple cases. Also, they only correct the first or hardest1 emission, so that

they give a good description of the emission of one hard jet plus additional softer radiation

but cannot reliably describe the emission of more than one hard jet. Finally, they still have

the same leading-order cross section as the original Monte Carlo event generator. Some

work did address the issue of matching higher multiplicity matrix elements and partons

showers [15], but this was of limited applicability.

Recent efforts have tried to expand upon this work. So far, these attempts have either

provided a description of the hardest emission combined with a next-to-leading-order cross

section [16]–[28] or described the emission of more than one hard jet [29]–[32] at leading

order.

At the same time, a number of computer programs have become available [33, 34] which

are capable of efficiently generating multi-parton events in a format (the Les Houches for-

mat [35]) that can be readily interfaced with HERWIG and PYTHIA. In this paper, we will

make use of these programs combined with the HERWIG and PYTHIA Monte Carlo event

generators to implement the Catani-Krauss-Kuhn-Webber (CKKW) algorithm suggested

in [29, 30] to produce a simulation of an arbitrary hard process with additional hard radi-

ation. Several approaches are explored. One adheres closely to the CKKW algorithm, but

uses HERWIG for adding additional parton showering. The second is more closely tuned to

the specific parton-shower generators themselves and calculates branching probabilities nu-

merically (using exact conservation of energy and momentum) instead of analytically. This

is accomplished by generating pseudo-showers starting from the various stages of a parton-

shower history. In a later section, a comparison is made with a much simpler method.

As a test case, we first consider e+e− annihilation to jets at
√
s = MZ using matrix

element calculations with up to 6 partons in the final state. After benchmarking this

example, we turn to the more complicated case of hadron-hadron collisions, where we

concentrate on the production of heavy gauge bosons at the Tevatron. An understanding

of W+jet production is essential for top quark measurements at the Tevatron, and our

present tools are not adequate, with the systematic uncertainties from event simulation

1In PYTHIA the first emission was corrected whereas in HERWIG any emission which could be the

hardest was corrected.
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rapidly approaching the experimental statistical uncertainties. Improved tools will be even

more important for the LHC, where the jet multiplicities are higher. These issues are the

main motivation behind this work.

In the next section, we present an overview of the parton shower-matrix element match-

ing procedure of Catani et al. Section 3 provides a detailed description of the matching

procedure and pays special attention to the details of the implementation with HERWIG

and PYTHIA. Section 4 provides details of the pseudo-shower approach. We then present

some results for both e+e− and hadron-hadron collisions. A comparison with an alternative

method is presented in section 6. The final section contains discussion and conclusions.

Many of the later sections are devoted to the details of the numerical implementation

of the matching procedure, and may not be of general interest. Those readers interested

mainly in an overview and the main results may concentrate on sections 2 and 7.

As a final note, one of the authors of the CKKW matching algorithm is implementing

the procedure in the computer code SHERPA [36]. Preliminary results have been presented

for hadron collisions well after this research, and their code is still under development.

2. Overview of the correction procedure

Parton showers are used to relate the partons produced in a simple, hard interaction char-

acterized by a large energy scale (large means À ΛQCD) to the partons at an energy scale

near ΛQCD. At this lower scale, a transition is made to a non-perturbative description of

hadronic physics, with physical, long-lived particles as the final products. This is possible,

because the fragmentation functions for the highly-virtual partons obey an evolution equa-

tion that can be solved analytically or numerically. This solution can be cast in the form

of a Sudakov form factor, which can be suitably normalized as a probability distribution

for no parton emission between two scales. Using the Monte Carlo method, the evolution

of a parton can be determined probabilistically, consisting of steps when the parton’s scale

decreases with no emission, followed by a branching into sub-partons, which themselves

undergo the same evolution, but with a smaller starting point for the scale. The evolution

is ended when the energy scale of parton reaches the hadronization scale ∼ ΛQCD. Starting

from the initial (simple) hard process, a sampling of parton showers generates many topolo-

gies of many-parton final states, subject to certain phase space and kinematic restrictions.

However, the evolution equation (as commonly used) only includes the soft and collinear

fragmentation that is logarithmically enhanced, so that non-singular contributions (in the

limit of vanishing cut-offs) are ignored. This means that not enough gluons are emitted

that are energetic and at a large angle from the shower initiator, since there is no associated

soft or collinear singularity.

In contrast, matrix element calculations give a description of a specific parton topology,

which is valid when the partons are energetic and well separated. Furthermore, it includes

interference between amplitudes with the same external partons but different internal struc-

ture. However, for soft and collinear kinematics, the description in terms of a fixed order of

emissions is not valid, because it does not include the interference between multiple gluon

emissions which cannot be resolved. The latter effect is known as Sudakov suppression.
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Figure 1: Example of the clustering of an e+e− event. The values of the kT -parameter at the

nodes are such that dini < d5 < d4 < d3 < d2 < d1. The parton shower of the quark q1 starts

at the scale d1, as does that of the antiquark q̄1. The parton shower of the gluon g2 starts at the

scale d2. The situation is more complex for the remaining gluon and quark-antiquark pair. The

shower of the q2 and q̄2 should start at scale the virtual gluon which branched to produce them was

produced. If the virtual gluon is harder than the gluon g1, this means that parton shower of q2 and

q̄2 starts at the scale d3 while that of g1 starts at d4. However if the virtual gluon is softer than g1

the parton shower of the q2 and q̄2 start at the scale d4 while the parton shower of g1 starts at the

scale d3.

The parton-shower description of hard scattering would be improved if information

from the matrix element were included when calculating emission probabilities. A system-

atic method for this can be developed by comparing the parton shower and matrix element

predictions for a given fixed topology. Consider the topology of figure 1. The interaction

consists of a hard scattering (e+e− → γ/Z→ qq̄) followed by a parton shower off the out-

going qq̄ pair. The variables di represent some virtuality or energy scales that are evolved

down to a cut-off dini. The parton shower rate for this given topology is a product of many

factors: (1) the Born level cross section for e+e− → qq̄, (2) Sudakov form factors repre-

senting the probability of no emission on each quark and gluon line, and (3) the branching

factors at each vertex (or splitting). The matrix element prediction for this topology is

somewhat more complicated. First, one needs to calculate the cross section for the full

initial- and final-state (here e+e− → qq̄ggq′q̄′). Then, one needs to specify a particular

topology. There is no unique way to do this, but a sensible method is to choose a clustering

scheme and construct a parton-shower history. Ideally, the clustering variable would be the

same as the virtuality di used to generate the parton shower in the usual way. Having per-

formed the clustering, one can then make a quantitative comparison of the two predictions.

To facilitate the comparison, we first expand the parton-shower prediction to the same

fixed order in αs. This is equivalent to setting all the Sudakov form factors to unity. In this

limit, we see that the parton-shower product of the Born level cross section and the vertex
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factors is an approximation to the exact matrix element prediction. As long as the values di
are all large, the matrix element description is preferred theoretically, and the Sudakov form

factors are indeed near unity. Therefore, the parton-shower description can be improved by

using the exact clustered matrix element prediction. When the values di are not all large,

and there is a strong ordering of the value (d1 À d2 · · · À dini) then the parton-shower

description is preferred theoretically. In this limit, the matrix element prediction reduces to

the product of Born level and vertex factors, provided that the argument of αs is chosen to

match that used in the parton shower (this should be related to di). Therefore, the matrix

element prediction can be used to improve the parton-shower description in all kinematic

regions provided that: (1) the correct argument for αs is used, and (2) the Sudakov form

factors are inserted on all of the quark and gluon lines. This provides then an interpolation

scheme between the parton shower and the matrix element prediction. As usual, there is

a systematic uncertainty associated with how one chooses to perform the interpolation.

This provides an improvement of the specific topology considered in figure 1, but what

of the rest of the topologies? Matrix element calculations can be performed for those that

are simple enough, but technically there is a limitation. Presently, e+e− → 6 parton cal-

culations can be performed using computational farms with appropriate cuts. A practical

solution is to choose the cut-off dini large enough that the matrix element calculations in

hand saturate the dominant part of the cross section. Then, an ordinary parton shower

can be used to evolve the parton virtualities from dini down to the hadronization scale.

It has been shown that the correct method for doing this consists of starting the parton

shower(s) at the scale where a parton was created in the clustered topology, and then

vetoing branchings with virtualities larger than dini within the parton shower [29].

The next section explains in detail the algorithm for implementing a procedure like

this using matrix element calculations and the event generators HERWIG and PYTHIA.

The results are first tested on e+e− → Z → hadrons, and then extended to the hadronic

production of W bosons.

3. The correction procedure of CKKW

We review the procedure given in [29, 30] for correcting the parton shower of a simple

process with partons pa + pb → pc + pd:

0. Calculate (at the matrix element level) the tree level cross sections σ0
n for the topology

papb → pcpd + n additional partons for n = 0 → N at a resolution scale2 dini using

dini as the scale for αS (and the parton distribution functions for the case of hadronic

collisions).

1. Select the jet multiplicity3 n with probability

P (0)
n =

σ0n
∑k=N

k=0 σ0k
. (3.1)

2The definition of the resolution parameter d is discussed in section 3.1.
3In our notation n will be the number of additional jets with respect to the starting process, for example

n = 1 for e+e− → 3 jets if the starting process is e+e− → qq̄.
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Figure 2: Example of the clustering of a W + jets event. The values of the kT -parameter at the

nodes are such that dini < d5 < d4 < d3 < d2 < d1. The parton showers of the incoming quark q1
and antiquark q̄1 start at the scale d1 at which they annihilated. The parton showers of the quarks

q2 and q̄2 start at the scale d4 at which the virtual gluon they came from was produced, assuming

that this gluon is softer than the gluon, g1. The parton shower of the gluon g2 starts at the scale

d2, and the shower of gluon g1 starts at the scale d3 at which the gluon which branched to produce

it was produced.

2. Choose the distribution of the particle momenta according to the matrix element

|Mn|2 again using dini as the scale for αS (and the parton distribution functions,

when appropriate).

3. Cluster the partons using the kT -algorithm to determine the resolution values d1 >

d2 . . . > dn > dini at which 1, 2, . . . , n additional jets are resolved. These give the

nodal values for a tree diagram which specifies the kT -clustering sequence for the

event. In order to give a tree graph which could be a possible parton-shower his-

tory, only allow those mergings which correspond to tree-level 1 → 2 vertices in the

Standard Model are allowed. Wherever a merging could be either a QCD merging

or an electroweak one we take the QCD merging, e.g. if we merged a quark and an

antiquark we would assume that they came from a gluon not a photon or Z boson.4

Examples of this are shown in figures 1 and 2.

4. Apply a coupling constant reweighting αS(d1)αS(d2) · · ·αS(dn)/αS(dini)n ≤ 1.

5. Apply a Sudakov weight factor ∆(dini, dj)/∆(dini, dk) for each internal line from a

node at a scale dj to the next node at dk < dj . For an external line the weight factor

4The obvious exception to this is the last merging in e+e− collisions. We forbid the merging of the last

qq̄ pair in e+e− collisions until all the gluons have been merged in order that we can interpret the merging

history as a parton-shower history. Similarly in hadron collisions with outgoing leptons or electroweak

gauge bosons the clustering of the last pair of quarks is forbidden until all the weakly interacting particles

have been merged.
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is ∆(dini, dj). The product of these factors gives the overall Sudakov weight.

6. Accept the configuration if the product of the αS and Sudakov reweighting factors is

greater than a random number R ∈ [0, 1], otherwise return to step 1.

7. Generate the parton shower for this configuration, vetoing all radiation with d > d ini.

The starting scale of the shower for each parton is the scale at which the particle

was created. In general, we consider the parton to have been created at the highest

scale vertex in which it appears. There are two exceptions to this: in g → gg

branchings the harder gluon is considered to have been created at the scale of the

parent gluon and the softer at the g → gg vertex; the quark and antiquark produced

in the branching g → qq̄ are considered to have been produced at the scale of the

parent gluon. Examples of how this works in practice are given in figures 1 and 2.

In principle, steps 4-6 could be replaced by a reweighting of events when calculating

the matrix element in step 0. This may be more efficient, and more practical once a specific

matching scheme is chosen.

In general, both strongly and weakly interacting particles may appear in the final

state. In applying the algorithm for these processes we take the following approach: in the

evaluation of the matrix element only the strongly interacting particles will be considered

in evaluating the resolution criterion; while in the clustering of the event to give a parton-

shower history all the outgoing particles will be considered. This enables us to work out

where in the tree diagram the weakly interacting particles were produced.

The CKKW procedure provides a matching between the matrix element and parton

shower at the next-to-leading-logarithm (NLL) level [29]. However there are a number of

choices to be made which do not effect the logarithmic behaviour but do effect the results.

In the rest of this section, we will discuss these choices.

3.1 Clustering algorithm(s): parton-shower history

Here, we review the kT -algorithm for jet clustering in hadron-hadron collisions [37]. The

algorithm for e+e− collisions is identical except that no beam mergings are considered.

The algorithm is defined in the centre-of-mass frame of the hadron-hadron collision, and

proceeds as follows:

1. For every final-state particle i and every pair of final-state particles i, j, calculate the

resolution variables d = diB and dij ;

2. Select the minimum value of d and perform a recombination of the appropriate par-

tons into a pseudoparticle;

3. Repeat the procedure from the first step for all the particles and pseudoparticles until

all the particles and pseudoparticles have dij and dkB larger than the stopping value

dini.
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While there is some freedom in the definition of the resolution variables, it is required

that they have the following form in the small angle limit:

diB ' E2
i θ

2
iB ' k2⊥iB , (3.2a)

dij ' min(E2
i , E

2
j )θ

2
ij ' k2⊥ij , (3.2b)

where Ei is the energy of the particle i, θiB is the angle of the particle i with respect to

the beam, k⊥iB is the transverse momentum of i with respect to the beam, θij is the angle

between the particles i and j, and k⊥ij is the relative transverse momentum of i and j.

A number of possible definitions of these variables were suggested in [37] which we will

discuss here. The first definition is:

diB = 2E2
i (1− cos θiB) , (3.3a)

dij = 2min(E2
i , E

2
j )(1− cos θij) . (3.3b)

This is the definition which is used in e+e− collisions and was suggested in order for the

e+e− and hadron-hadron algorithm to be as similar as possible. However, this choice is

not invariant under longitudinal boosts for large angle emissions. A longitudinal-boost

invariant definition is

diB = p2ti , (3.4a)

dij = min(p2ti, p
2
tj)R

2
ij , (3.4b)

where pti is the transverse momentum of particle i. The generalized radius is given by

R2
ij = f(ηi − ηj, φi − φj) , (3.5)

with f being any monotonic function with the small-angle behaviour

f(ηi − ηj , φi − φj) ' (ηi − ηj)
2 + (φi − φj)

2 , for |ηi − ηj | , |φi − φj | → 0 , (3.6)

where η is the pseudorapidity and φ the azimuthal angle. Suitable choices are

R2
ij = (ηi − ηj)2 + (φi − φj)

2 , (3.7)

or

R2
ij = 2 [cosh(ηi − ηj)− cos(φi − φj)] , (3.8)

which additionally has the same form as occurs in the eikonal factors in the QCD matrix

elements.

Once the minimum value of the resolution parameters is chosen, the partons undergo

recombination. If dkl is the minimum, the particles k and l are paired to form a pseu-

doparticle according to some particular scheme, while if dkB is the minimum value the

particle is included in the “beam jets.” The choice of recombination scheme is a second

choice for the clustering prescription. The simplest recombination scheme, which is used

in e+e− collisions, is the E-scheme, where the pseudoparticle is treated as a particle with

momentum ~pij = ~pi + ~pj , Eij = Ei +Ej .

– 8 –
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A variant is the pt-scheme, which uses the generalized radius together with a set of

definitions of how to calculate pt, η and φ for the pseudoparticle,

pt(ij) = pti + ptj , (3.9a)

ηij =
ptiηi + ptjηj

ptij
, (3.9b)

φij =
ptiφi + ptjφj

ptij
. (3.9c)

The final recombination scheme considered is the monotonic p2t -scheme, where the

values of pt(ij) and R2
(ij)k with the remaining particles are defined in terms of those for the

particles i and j via

pt(ij) = pti + ptj , (3.10a)

R2
(ij)k =

p2tiR
2
ik + p2tjR

2
jk

p2ti + p2tj
. (3.10b)

Further recombinations are then defined iteratively.

Note that the different choices of resolution variable and recombination schemes were

developed to make contact with experimental observables. Here, we are interested in

connecting partons to a parton-shower history in a quantitative way. Since the center-

of-mass energy is known in the theoretical calculation, there is no reason to apply the

requirement of invariance under longitudinal boosts, for example.

3.2 Sudakov form factors

An important part of the matching procedure described above is the reweighting by the

Sudakov form factors. Here, we review some of the relevant forms of the Sudakov form

factors found in the various Monte Carlo event generators.

3.2.1 HERWIG

The form factors for the coherent branching process used in HERWIG are given by

∆HW
a→bc(t̃) = exp







−
∫ t̃

4t0

dt′

t′

∫ 1−
√

t0
t′

√

t0
t′

dz

2π
αS(z

2(1− z)2t′)P̂ba(z)







, (3.11)

where t′ is the evolution scale (in GeV2), t0 is the infra-red cut-off (in the same units), t̃ is

the starting scale for the shower, and P̂ba are the unregularized DGLAP splitting functions

Pgg = CA

[

1− z

z
+

z

1− z
+ z(1− z)

]

, (3.12a)

Pqg = TR
[

z2 + (1− z)2
]

, (3.12b)

Pqq = CF
1 + z2

1− z
. (3.12c)

The variable z represents the fraction of energy shared by the partons in a 1→ 2 branching.

The quantity z2(1 − z)2t′ = 1
2p

2
T represents one-half the square of the relative transverse
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momentum of the daughters with respect to the mother’s direction of motion. For those

branchings which are divergent (in the z integral), this is exactly the form used by HERWIG.

However for the branching g → qq̄, which is finite, the z integral in eq. 3.11 is taken from

0 to 1 and the argument of αS is t′. The parameter t0 is taken in HERWIG to be the square

of the fictitious gluon mass (which has a default value of 0.75GeV). The variable t ′ is a

generalized virtuality related to the energy of a parton E and an ordering variable ξ, so

that t′ = E2ξ. In the branching a→ bc,

ξ =
pb · pc
EbEc

. (3.13)

The variable ξ is required to decrease with each emission.

3.2.2 PYTHIA

The PYTHIA Sudakov form factor (for final-state showers) has the expression:

∆PY
a→bc(t, t̃) = exp

{

−
∫ t̃

t

dt′

t′

∫ 1
2
(1+β)

1
2
(1−β)

dz

2π
αS(z(1− z)t′)P̂ba(z)θ(p

2
T − p2T0)

}

, (3.14)

where t′ is the virtuality of the showering parton, z is the energy fraction of a daughter

with respect to a mother, with energies defined in the c.m.s. system of the hard scattering,

and β the velocity of the mother. The quantity z(1 − z)t′ = p2T represents the square of

the relative transverse momentum of the daughters with respect to the mother’s direction

of motion in the PYTHIA variables, and the θ function requires that the minimum pT is

larger than an infrared cut-off (related to an invariant mass cut-off). To obtain coherence

effects, the PYTHIA parton shower is supplemented by the requirement that angles also

decrease in the shower. For a branching a→ bc the kinematic approximation

θa ≈
p⊥b
Eb

+
p⊥c
Ec
≈
√

za(1− za)ma

(

1

zaEa
+

1

(1− za)Ea

)

=
1

√

za(1− za)

ma

Ea
(3.15)

is used to derive the opening angle (which is accurate at the same level of approximation as

the one in which angular ordering is derived). This additional requirement depends on the

shower history, and it is not simple to write down an analytic expression for the Sudakov

form factor relating to a branching embedded deep within a shower.

The primary difference in the PYTHIA approach is that both masses and angles de-

crease in the (time-like) shower, whereas only the angular variable ξ strictly decreases in

HERWIG. Keeping the mass variable for the shower evolution is convenient when adding

matrix-element corrections.

There is one other notable difference between the PYTHIA and HERWIG definitions of

the Sudakov form factors. The PYTHIA definition ∆PY(t, t̃) represents the probability of

no emission between the scales t̃ and t. The infrared cut-off appears as a constraint on

the minimum pT of an emission. The same probability is given by ∆HW(t̃)/∆HW(t) with

the HERWIG definition of the Sudakov form factor. While it appears that the argument

of αS is different in each case, what is actually different is the evolution variable itself.

The PYTHIA variable tPY is the invariant mass squared, whereas the HERWIG variable

tHW = E2ξ, where E is the energy of the mother parton and ξ is defined in eq. 3.13. In

the soft-collinear limit, the evolution variables are related by tPY = 2tHWz(1− z).
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3.2.3 NLL Sudakov

The NLL Sudakov form factors used in [29] for the branching are given by

∆NLL
a→bc(t) = exp







−
∫ t

4t0

dt′

t′

∫ 1−
√

t′

4t

√

t′

4t

dz

2π
αS(t

′)P̂ba(z)







, (3.16)

where we have made a different choice of the scale and regularization of the splitting

function relative to the HERWIG form factor. The splitting function can be integrated

to give

∆a→bc(Q) = exp

{

−
∫ Q

Q1=2
√
t0

dqΓa→bc(q,Q)

}

, (3.17)

with t′ → q =
√
t′, and the branching probabilities are given by

Γq→qg =
2CF

π

αS(q)

q

(

ln
Q

q
− 3

4

)

, (3.18a)

Γg→qq̄ =
Nf

3π

αS(q)

q
, (3.18b)

Γg→gg =
2CA

π

αS(q)

q

(

ln
Q

q
− 11

12

)

. (3.18c)

Here terms which vanish in the limit q/Q → 0 are neglected. This amounts to ignoring

kinematic constraints when calculating probabilities, which leads to the feature that ∆NLL

can be greater than 1.

There are two major sources of difference between the NLL and HERWIG or PYTHIA

Sudakov form factors:

1. The terms which are neglected in the NLL Sudakov form factors but retained in

HERWIG and PYTHIA ensure that the latter Sudakov form factor always satisfies

∆ ≤ 1, whereas the NLL Sudakov form factors can be larger than one. When using

the NLL Sudakov form factors we set them to one whenever ∆ > 1. Alternatively,

one can demand that the leading logarithm is always larger than the sub-leading one

in the integrand (with a theta-function), which removes the problem.

2. The choice of scale for αS in all three form factors is different. The choice of scale in

PYTHIA is pT , which is larger or equal to kT , but αS in PYTHIA is evaluated at LL,

not NLL. The scale in HERWIG is pT /
√
2, which is smaller than kT in the soft limit,

and αS is evaluated at NLL.

These differences both cause the HERWIG and PYTHIA Sudakov form factors to be smaller

than the NLL ones. This is demonstrated in figure 3, which shows a comparison of the

gluon and light quark Sudakov form factors from HERWIG and a NLL for different cut-off

scales. The overall effect is a larger suppression of the higher multiplicity matrix elements

for the HERWIG Sudakov form factor than the NLL one.
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Gluon Sudakov

∆(
gl

uo
n)

NLL dini=102 GeV2

HWG dini=102 GeV2

NLL dini=502 GeV2

HWG dini=502 GeV2

Quark Sudakov
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k)
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Figure 3: HERWIG and NLL gluon ∆g and quark ∆q Sudakov form factors for

dini = 102, 502 GeV2. In both cases the HERWIG NLO αS has been used. The form factor repre-

sents the probability that a given species of parton will evolve from the high-scale (x-axis) to the

cut-off scale with no radiation.

3.3 Choice of scales

The CKKW algorithm specifies certain scales for the Sudakov form factor and αS. However,

in principal, the functional form of the scale and the prefactor are not unique, and we have

investigated a number of choices. One scale choice is the nodal values of d (or equivalently

the values of kT from the clustering), which should work well when an angular variable is

used for the parton-shower evolution, as in HERWIG. However, we are not limited to this

particular variable. The construction of a parton-shower history using the kT -algorithm

and a particular recombination scheme provides a series of particles and pseudoparticles.

Kinematic quantities can be constructed from the particle momenta. Thus, a second pos-

sible choice is the dot product of the four-momenta of the particles clustered, which is the

same as the virtuality for massless particles and is the choice of initial conditions for the

shower normally used in HERWIG. A third choice is the virtuality of the clustered pairs,

which is the starting point for parton showers in PYTHIA.

The chosen scale is to be used as the starting point for the vetoed shower in the

event generator. When reweighting by the Sudakov form factors, however, we allow for

the possibility of a prefactor to the scale, which does not affect logarithmic behavior, but

may have a quantitative impact nonetheless. If we consider, for example, e+e− → qq̄ then

the choice of the starting scale for the HERWIG shower is pq · pq̄ which corresponds to a

scale of 1
2k

2
T in terms of the kT -measure. The same applies for the initial-state shower in

– 12 –



J
H
E
P
0
5
(
2
0
0
4
)
0
4
0

Drell-Yan production at hadron colliders. However, the phase space of the HERWIG shower

is such that no emission can occur with k2T above 1
2 d̃, where d̃ is the scale variable in the

parton shower. Therefore, in order to produce an emission up to the scale d̃, the shower

scale should be at least 2d̃. We therefore leave the prefactor of the scale in the Sudakov

form factors as a free parameter. Furthermore, we also allow for a minimum value of this

parameter in terms of the cut-off used in the shower SCLCUT, where SCLCUT is the value of

the matching scale dini. The choices are summarized below:

d = QFACT(1)











k2T ISCALE = 1 ,

2pi · pj ISCALE = 2 ,

Q2 = (pi + pj)
2 ISCALE = 3 ,

(3.19a)

dcut = QFACT(2) ∗ SCLCUT , (3.19b)

where k2T is the kT -measure for the merging, i and j are the particles which are merged

and Q is the virtuality of the pseudoparticle produced in the merging. We also allow for a

minimum starting scale for the final-state parton shower, and a minimum starting scale of

the initial-state parton shower

dFSRmin = QFACT(3) ∗ SCLCUT , (3.20a)

dISRmin = QFACT(4) ∗ SCLCUT . (3.20b)

Finally, we need to specify the scale to be used in αS. The obvious choice is to use the

same scale as in the form factors. However in HERWIG this is not done and the scale in

αS is always lower than that in the shower. Therefore we have left the scale for αS as an

additional free parameter and allow for a minimum value, such that

dαS
= AFACT(1)











k2T ISCALE = 1 ,

2pi · pj ISCALE = 2 ,

Q2 ISCALE = 3 ,

(3.21a)

dmin
αS

= AFACT(2) ∗ SCLCUT . (3.21b)

The various choices of ISCALE, QFACT(1-4) and AFACT(1-2) allow for flexibility in

matching HERWIG or PYTHIA to a kT -ordered shower. It should be noted, however, that

product of Sudakov form factors and factors of αs can significantly change the normalization

of the final event sample. In practice, all of the distributions shown in later sections are

renormalized for comparison with the standard event generators. The variation of scales

and prefactors may also affect the truncation of the matrix element calculation, so that

uncalculated contributions are relatively more important.

3.4 Treatment of the highest multiplicity matrix element

The CKKW algorithm applies the same procedure to all the matrix elements. However, in

the numerical results presented by CKKW there is some additional ad hoc reweighting ap-

plied to increase the contributions from higher multiplicities. The necessity for this arises

because of the practical limitation of calculating a matrix element of arbitrary multiplicity.
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The Sudakov reweighting of the matrix element and the vetoed parton showers are per-

formed so as not to double-count contributions from higher multiplicities. However for the

highest multiplicity matrix element, this is not the case. We consider three options, denoted

by IFINAL. For IFINAL=1, we apply the αS reweighting but not the Sudakov reweighting

and allow the parton shower to radiate freely from the scale at which the partons are pro-

duced. However, this allows the parton shower to produce higher kT -emissions than the

matrix element. A better choice (IFINAL=3) is to apply the Sudakov weights for only the

internal lines, start the parton shower at the scale at which the particle was produced and

— instead of vetoing emission above the matching scale — veto emission above the scale

of the particle’s last branching in the matrix element. Another choice (IFINAL=2), which

is slightly easier to implement, is to only apply the Sudakov weight for the internal lines

but start the shower at the normal scale for the parton shower and apply no veto at all.

4. Pseudo-shower procedure

The CKKW matching algorithm envisions a vetoed parton shower using a kT -ordered

parton-shower generator. Both HERWIG and PYTHIA are not of this type. However,

both of these generators have well-tested models of hadronization that are intimately con-

nected to the parton shower, and we do not wish to discard them out of hand. For this

reason, some aspects of the CKKW algorithm may not be suitable to a practical application

of parton shower-matrix element matching.

4.1 Clustering

The naive approach to achieving a kT -veto in the HERWIG or PYTHIA shower would be

to apply an internal veto on this quantity within the parton shower itself. To understand

how this would work in practice, we will first review the kinematics of the PYTHIA shower

for final-state radiation. A given branching is specified by the virtuality of the mother q 2

(selected probabilistically from the Sudakov form factor) and the energy fraction carried

away by a daughter z. In terms of these quantities, the combination p2T = z(1 − z)q2

represents the pT of the daughter parton to the mother in the small-angle approximation. A

cut-off pmin
T is determined by the minimal allowed invariant mass ∼ 1GeV. Using eq. (3.15),

the requirement of decreasing angle θb < θa in the branching sequence a→ bc, b→ de can

be reduced to
zb(1− zb)

m2
b

>
1− za
zam2

a

. (4.1)

On the other hand, the kT -cluster variable expressed in the shower variables is:

k2T = 2min(Ei, Ej)
2(1− cos θij) (4.2a)

= min

(

z

1− z
,
1− z

z

)

m2
b . (4.2b)

The quantity eq. (4.2b) would seem to be the natural variable to use for the veto within

the shower. However, this is not as straightforward as it may seem. While the showering

probability is determined assuming massless daughters, the final products conserve energy
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and momentum. In the soft-collinear limit, the minimum “kT ” values will equal those

obtained from kT -clustering of the final-state partons, but, in general, this will not be

true. Since we are correcting the matrix element predictions to the soft-collinear regime

of the parton shower, this approximation is valid. On the other hand, the restrictions

from angular ordering via eq. (4.1) favor z → 1
2 whereas large z values are more likely

to be vetoed. After including the fact the invariant masses are decreasing, one can show

that the first kinematically allowed branching has z = 1
2 and m2

b = maQres, where Qres is

the minimum allowed kT value. The result is a suppression in the radiation in kT -cluster

distributions in the vicinity of Qres. Therefore, kT -clustering may be not be the preferred

clustering algorithm, and other clustering schemes could be employed (see ref. [38] for an

extensive review of clustering schemes and their applicability) that is better suited to a

particular event generator. In fact, both programs uses relative pT as a variable in αS . An

alternative kinematic variable closely related to the relative pT is the LUCLUS measure [39].

According to the LUCLUS algorithm, clustering between two partons i and j is given by

dij = 2

(

EiEj

Ei +Ej

)2

(1− cos θij) (4.3)

instead of the relation of eq. 3.3. Expressed in terms of the parton-shower variables, where

z is the energy fraction carried by the daughter, and q2 is the squared invariant mass of the

mother, dij takes the form z(1− z)q2 for final-state showers and (1− z)q2 for initial-state

showers. In the pseudo-shower method, partons are clustered using the LUCLUS measure,

and the internal veto of the parton shower is performed on the parton-shower approximation

to dij.

4.2 Sudakov form factors

The original CKKW procedure uses the analytic form of the NLL Sudakov form factor.

This is problematic for several reasons. First, as mentioned before, the PYTHIA shower

is LL, which is related to the αS used in reweighting. Second, the “exact” NLL analytic

expression is derived ignoring terms of order q/Q. In particular, energy and momentum

are not conserved. This explains how the analytic Sudakov can have a value larger than

1 — without phase space restrictions, the subleading logarithms will become larger than

the leading logarithms. It would be more consistent to require that the subleading terms

are less than or equal to the leading one, but this will affect only rather large steps in

virtuality.

In applying the CKKW algorithm to HERWIG, some ad hoc tuning of scale variables and

prefactors is necessary to improve the matching. This is true also for an implementation

using PYTHIA. In fact, the situation is further complicated by the dual requirements of

decreasing mass and angle in PYTHIA, which is not commensurate with the analytical

Sudakov form factor. An alternative approach is to use the parton shower of the generator

itself to calculate the effect of the Sudakov form factors used to reweight the matrix

element prediction. A method similar to the one described below was used in [32], but it

is generalized here. It amounts to performing a parton shower on a given set of partons,

clustering the partons at the end of the shower, and weighting the event by 0 or 1 depending
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on whether a given emission is above or below a given cut-off. When many partons are

present at the matrix element level, several showers may be needed to calculate the full

Sudakov reweighting. The algorithm for constructing the Sudakov reweighting is as follows

(using e+e− → qq̄n partons as an example):

1. Cluster the n+ 2 partons using some scheme. This generates a series of n clustering

values d̃i (d̃1 > d̃2, · · · ) as well as a complete history of the shower. Set d̃0 = ∞,

d̃n+1 = dini and k = n.

2. Apply a parton shower to the set of k+2 partons, vetoing any emissions with d > d̃k.

Cluster the final-state partons, and reweight the event by 0 if dk+1 > d̃k, otherwise

continue. If the weight is 0 at any time, then stop the algorithm and proceed to the

next event.

3. Use the parton-shower history to replace the two partons resolved at the scale d̃k
with their mother. Rescale the event to conserve energy-momentum. This leaves a

k − 1 parton event. Set k = k − 1. If k ≥ 0, go to step 2.

Equivalently, one could perform this procedure many times for each event and reweight

by a factor equal to the number of events that complete the algorithm divided by the

number of tries.

To see how the algorithm works in practice, consider a 3 parton event(e+e− → qq̄g).

Application of the clustering algorithm will associate g with q or q̄ at the scale d̃1. For

concreteness, assume the (qg)-combination has the smallest cluster value. A parton shower

is applied to the partons starting at the scale where each parton is created (the Z scale

for the q and q̄, and a lower scale for g), vetoing internally any emission with a cluster

value d > d̃1. The final-state partons are then clustered, and the event is retained only

if d2 < d̃2 = dini. If the event passes this test, the set of final-state partons is saved, and

the (qg) pair is replaced by the mother q, leaving a qq̄ event. A parton shower is applied

to these partons vetoing internally any emission with a cluster value d > d̃0 =∞ (i.e., no

veto). The final-state partons are clustered, and the event is retained only if d1 < d̃1. If

the event also passes this test, then the original set of showered partons have been suitably

reweighted. The series of parton showers accounts for the Sudakov form factors on all

of the parton lines between the scales d̃k and d̃k+1, eventually forming the full Sudakov

reweighting.

4.3 Choice of scales

The starting scales for showering the individual partons should match those scales used

in the parton-shower generator. For PYTHIA, this choice is the invariant mass of the

parton pair (pi + pj)
2 ' 2pi · pj. For HERWIG, it is pi · pj. Similarly, the scale and order

for reweighting in αs should match the generators. PYTHIA uses the relative pT of the

branching as the argument, whereas HERWIG uses the argument pT /
√
2. Clustering in the

variable pT is convenient, because then the nodal values from the clustering algorithm can

be used directly.
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4.4 Treatment of highest multiplicity matrix element

To treat the showering of the partons associated with the highest multiplicity n at the

matrix element level, we modify one of the steps in applying the Sudakov form factors

numerically. Namely, in the first test for Sudakov suppression, we do not require dn+1 <

dini. We loosen our requirement to be that dn+1 < d̃n, so that any additional radiation

can be as hard as a radiation in the “hard” matrix-element calculation, but not harder.

Furthermore, we veto emissions with d > d̃n, instead of d > d̃n+1 = dini. All other steps in

the algorithm are unchanged.

5. Matching results

In this section, we present matching results using matrix element calculations from MAD-

GRAPH and parton showers from PYTHIA and HERWIG. Here, we will limit ourselves to

presenting some simple distributions to demonstrate that the results are sensible and justify

our recommended values of certain parameters and options.

The first subsection is devoted to e+e− collisions, where there is no complication from

initial-state radiation of QCD partons. Also, there is a fixed center-of-mass energy, which

allows a clear illustration of the matching. The second subsection is devoted to the hadronic

production of weak gauge bosons, with all the ensuing complications.

5.1 e+e− collisions

We will first present results for e+e− collisions at
√
s = MZ . This enables us to study

the effects of various parameters and choices while only having final-state radiation. In

particular it enables to see which are the best choices for a number of parameters related

to the scales in the Sudakov form factors and αS.

The matrix element events were generated using MADGRAPH [33] and KTCLUS to

implement the kT -algorithm with the definition given in eq. 3.3 for the k2T -measure and

the E-scheme. Matrix element calculations of up to 6 partons are employed, restricted to

only QCD branchings (save for the primary Z → qq̄ one) and only containing light flavors

of quarks and gluons.

Our results are cast in the form of differential distributions with respect to yn where

yn = dn/
√
s and dn is the value of the k2T -measure where the event changes from being an

n to an n− 1 jet event. Since HERWIG and PYTHIA with matrix element corrections give

good agreement with the LEP data for these observables, we compare the results of the

different matching prescriptions to output of these programs.

For clarity, we recall the meaning of jet clustering and jet resolution. Experimentally,

jet clustering is used to relate the high multiplicity of particles observed in collisions to the

theoretical objects that can be treated in perturbation theory. Namely, the hadrons are

related to the partons that fragment into them. Theoretically, we can apply clustering also

to the partons with low virtuality to relate them to a higher energy scale and to higher

virtuality partons. In the parton-shower picture, the daughters are related to mothers by

the clustering.
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Jet resolution is defined in terms of a resolution variable. It is sometimes more conve-

nient to make the variable dimensionless, and this can be easily achieved in e+e− collisions

by dividing the kT of a particular clustering by the center-of-mass energy
√
s of the col-

lisions. The resolution variable sets a degree of fuzziness — structure below that energy

scale is not to be discerned. In e+e− → Z→ partons, the choice of kresT > MZ corresponds

to only one cluster (the Z itself), which is trivial and is ignored. The first interesting result

occurs when there are three or more partons present, in which case there is a kresT which

separates a 2-cluster designation from a 3-cluster designation. This is the largest value of

kT than can be constructed by clustering all of the partons. This particular value of kresT

would be denoted by the variable y3 = (kresT )2/s. If there are only 3 partons present, there

is no choice of kresT that can yield a 4-cluster designation. However, if 4 or more partons

are present, then there is a choice of kresT that is the boundary between a 3-cluster and a

4-cluster designation. This is the second largest kT that is constructed in clustering, and

it would be denoted by a non-vanishing value of y4. Similarly, if 5 or more partons are

present, a value of y5 can be constructed, so on and so forth.

5.1.1 HERWIG-CKKW results

Here, we show results based on applying kT -clustering, using the NLL Sudakov for reweight-

ing, and HERWIG for performing the vetoed parton shower. We will demonstrate the de-

pendence of our results on the choices of scale variables and prefactors before settling on

an optimized choice.

The factors QFACT(1) and AFACT(1) modify the scale used in the Sudakov form factor

and argument of αS respectively. QFACT(2) sets the minimal scale in the Sudakov. For

simplicity, we set QFACT(1)=QFACT(2) and AFACT(1)=AFACT(2). We also set ISCALE=1,

so that k2T is the evolution variable. The effect of varying QFACT(1) and AFACT(1) on the

parton-level differential distribution 1
σ

dσ
d log y3

with NLL Sudakov form factors is shown in

figure 4. The standard HERWIG prediction with the built-in matrix element correction

is shown in magenta. In fact, the y3 distribution is not very sensitive to the choices

of parameters considered, particularly for smaller values of AFACT(1), except near the

matching point of y3 = 10−3. Nonetheless, the choice of 1
2k

2
T as the evolution variable and

1
8k

2
T as the argument of αS yields the best agreement of the choices shown. The agreement

with HERWIG for the differential distribution 1
σ

dσ
d log y4

at parton level, figure 5, depends

much more on the choice of scales, with QFACT(1)=1/2 and AFACT(1)=1/8 giving the best

results. These particular results are for a matching scale of y = 0.001 which corresponds to

a value of SCLCUT = 8.31 GeV2. This is a very low value for the matching scale and therefore

the difference between the different choices is enhanced. For either higher matching scales

or centre-of-mass energies the differences are smaller. Using the HERWIG form factors (not

shown here) gives worse agreement for these distributions.
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Figure 4: Effect of varying the prefactors for the scale in the Sudakov form factors and αS using

NLL Sudakov form factors on the parton-level differential cross section 1
σ

dσ
d log y3

in e+e− collisions

at
√
s = MZ . The parameters were set so that QFACT(1)=QFACT(2) and AFACT(1)=AFACT(2). The

default result of HERWIG is shown as a magenta line, the result of the CKKW algorithm is shown as

a black line. The contribution to the CKKW result of the different jet multiplicities are also shown,

red is the 2 jet component, green is the 3 jet component, blue is the 4 jet component, yellow is

the 5 jet component and cyan is the 6 jet component. These results are for a matching scale of

y = 0.001, shown as a vertical dashed line, which corresponds to a value of SCLCUT = 8.31 GeV2

and use the original CKKW treatment of the highest multiplicity matrix element.
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Figure 5: Effect of varying the prefactors for the scale in the Sudakov form factors and αS using

NLL Sudakov form factors on the parton-level differential cross section 1
σ

dσ
d log y4

in e+e− collisions

at
√
s = MZ . The parameters were set so that QFACT(1)=QFACT(2) and AFACT(1)=AFACT(2). The

default result of HERWIG is shown as a magenta line, the result of the CKKW algorithm is shown as

a black line. The contribution to the CKKW result of the different jet multiplicities are also shown,

red is the 2 jet component, green is the 3 jet component, blue is the 4 jet component, yellow is

the 5 jet component and cyan is the 6 jet component. These results are for a matching scale of

y = 0.001, shown as a vertical dashed line, which corresponds to a value of SCLCUT = 8.31 GeV2

and use the original CKKW treatment of the highest multiplicity matrix element.
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Figure 6: Effect of varying the choice of scale in the Sudakov form factors and αS using NLL

Sudakov form factors on the parton-level differential cross section 1
σ

dσ
d log y3

in e+e− collisions at√
s = MZ . The parameters were set so that QFACT(1)=QFACT(2)=1/2 and AFACT(1)=AFACT(2).

The default result of HERWIG is shown as a magenta line, the result of the CKKW algorithm is

shown as a black line. The contribution to the CKKW result of the different jet multiplicities are

also shown, red is the 2 jet component, green is the 3 jet component, blue is the 4 jet component,

yellow is the 5 jet component and cyan is the 6 jet component. These results are for a matching scale

of y = 0.001, shown as a vertical dashed line, which corresponds to a value of SCLCUT = 8.31 GeV2

and use the original CKKW treatment of the highest multiplicity matrix element.
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Figure 7: Effect of varying the minimum starting scale of the parton shower and the scale of αS us-

ing NLL Sudakov form factors on the parton-level differential cross section 1
σ

dσ
d log y4

in e+e− collisions

at
√
s =MZ . The parameters were set so that QFACT(1)=QFACT(2)=1/2 and AFACT(1)=AFACT(2).

The default result of HERWIG is shown as a magenta line, the result of the CKKW algorithm is

shown as a black line. The contribution to the CKKW result of the different jet multiplicities are

also shown, red is the 2 jet component, green is the 3 jet component, blue is the 4 jet component,

yellow is the 5 jet component and cyan is the 6 jet component. These results are for a matching scale

of y = 0.001, shown as a vertical dashed line, which corresponds to a value of SCLCUT = 8.31 GeV2

and use the original CKKW treatment of the highest multiplicity matrix element.

The previous plots used the scale choice ISCALE=1. The dependence on the specific

choice is demonstrated in figure 6 for the differential cross-section with respect to y3. The

definition in terms of the kT -measure gives the best results, as we expected for the HERWIG

(angular-ordered) algorithm. All the remaining results use this choice.

The effect of varying the minimum starting scale of the HERWIG parton shower,

QFACT(3), together with the variation of the scale of αS, on the parton-level differen-

tial cross-section with respect to y4 is shown in figure 7. In e+e− collisions the main effect

of this parameter is to allow partons from the matrix element to produce more radiation,

particularly those which are close to the cut-off in the matrix element. This tends to in-

crease the smearing of the Durham jet measure for these partons causing more events from
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Figure 8: Effect of varying the treatment of the highest multiplicity matrix element using NLL

Sudakov form factors on the parton-level differential cross section 1
σ

dσ
d log y3

in e+e− collisions at√
s = MZ . The parameters were set so that QFACT(1)=QFACT(2)=1/2 and AFACT(1)=AFACT(2).

The default result of HERWIG is shown as a magenta line, the result of the CKKW algorithm is

shown as a red line for IFINAL=1, as a green line for IFINAL=2 and as a blue line for IFINAL=3. These

results are for a matching scale of y = 0.001, shown as a vertical dashed line, which corresponds to

a value of SCLCUT = 8.31 GeV2.

the matrix element to migrate below the matching scale after the parton shower. Despite

the cut-off on emission above the matching scale in the parton shower, some emissions

occur above the matching scale in the parton shower, and this can help to ensure a smooth

matching. The choice of QFACT(3)=4.0 gives the best results.

So far, we have considered the y3 and y4 distributions, which depend on the properties

of the hardest one or two additional jets generated by either the matrix element or parton

shower, and thus are not very dependent on the treatment of the highest multiplicity matrix

element — four additional jets in our numerical work. Rather than study a higher order

distribution, we focus still on the y3 distribution but vary the matrix element multiplicity.

The rows of figure 8 show the results of truncating the matrix element results e+e− → qq̄n

for different n = 0, 1, 2, 3, while the columns show the dependence on the prefactor of the

the scale in the argument for αS . In general the option IFINAL=3 gives the best results when

only low multiplicity matrix elements are used. This corresponds to removing the Sudakov

reweighting of the external partons (between a cluster scale and dini) and performing the

shower with a veto above the scale of the last emission in the matrix element. Also, both of
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Figure 9: Effect of varying the matching scale using NLL Sudakov form factors on the parton-level

differential cross section 1
σ

dσ
d log y3

in e+e− collisions at
√
s = MZ . The parameters were set so that

QFACT(1)=QFACT(2)=1/2 and AFACT(1)=AFACT(2). The default result of HERWIG is shown as a

magenta line, the result of the CKKW algorithm is shown as a black line. The contribution to the

CKKW result of the different jet multiplicities are also shown, red is the 2 jet component, green is

the 3 jet component, blue is the 4 jet component, yellow is the 5 jet component and cyan is the 6

jet component. The matching scale is shown as a vertical dashed line. The IFINAL=3 option was

used for the highest multiplicity matrix element.

the new prescriptions (IFINAL=2,3) perform better than the original CKKW prescription

if only low jet multiplicity matrix elements are used. As the number of jets in the highest

multiplicity matrix element increases the differences between the prescriptions decreases,

because the relative importance of this contribution is decreased.

Up to this point, we have discussed all the parameters relevant for the simulation of

e+e− → jets in the HERWIG-CKKW procedure apart from the matching scale, dini. In

principle the results should be relatively insensitive to the choice of this scale. In practice,

there is a dependence, because (1) we must truncate the matrix element calculation at some

order, and (2) the parton shower may or may not give an adequate description of physics

below the cut-off. The effect of varying the matching scale on the differential cross-section

with respect to y3 is shown in figure 9 for
√
s = MZ and in figure 10 for

√
s = 500GeV

at parton level. In general the agreement between HERWIG and the results of the CKKW

algorithm is good, and improves as the matching scale is increased. Similarly the agreement

is better at
√
s = 500GeV than

√
s =MZ .
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Figure 10: Effect of varying the matching scale using NLL Sudakov form factors on the parton-

level differential cross section 1
σ

dσ
d log y3

in e+e− collisions at
√
s = 500GeV. The parameters were set

so that QFACT(1)=QFACT(2)=1/2 and AFACT(1)=AFACT(2). The default result of HERWIG is shown

as a magenta line, the result of the CKKW algorithm is shown as a black line. The contribution to

the CKKW result of the different jet multiplicities are also shown, red is the 2 jet component, green

is the 3 jet component, blue is the 4 jet component, yellow is the 5 jet component and cyan is the

6 jet component. The matching scale is shown as a vertical dashed line. The IFINAL=3 option was

used for the highest multiplicity matrix element.

Normally, we would hope than the remaining differences at the matching scale would be

smoothed out by the hadronization model. However as can be seen in figure 11 the HERWIG

hadronization model distorts the parton-level results and produces a double peaked struc-

ture for the differential cross section with respect to y3 at hadron level. This problem is

due to the treatment of events where there is no radiation in the parton shower. In these

events the HERWIG hadronization model produces large mass clusters and their treatment

is sensitive to the parameters of the hadronization model which control the splitting of

these clusters. This effect indicates a potential inconsistency in matching the NLL, ana-

lytic Sudakov form factors of the CKKW prescription to the HERWIG shower. Indeed, the

cutoff of the parton shower is intimately related to the hadronization model, since it sets the

scale where non-perturbative effects become relevant. Using the NLL, analytic Sudakovs,

changes the probability for no radiation, and it is not unreasonable that this would require

a retuning of the cluster hadronization model. The problem with large mass clusters is not

new to the cluster model, and has been addressed in the past (for the ordinary shower)
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Figure 11: Effect of varying the matching scale using NLL Sudakov form factors on the hadron-

level differential cross section 1
σ

dσ
d log y3

in e+e− collisions at
√
s = MZ . The parameters were set so

that QFACT(1)=QFACT(2)=1/2 and AFACT(1)=AFACT(2). The default result of HERWIG is shown

as a magenta line, the result of the CKKW algorithm is shown as a black line. The contribution to

the CKKW result of the different jet multiplicities are also shown, red is the 2 jet component, green

is the 3 jet component, blue is the 4 jet component, yellow is the 5 jet component and cyan is the

6 jet component. The matching scale is shown as a vertical dashed line. The IFINAL=3 option was

used for the highest multiplicity matrix element.

by adding string-like corrections. Hopefully retuning these parameters would improve the

agreement for this distribution. The results at
√
s = 500GeV, shown in figure 12, where

the fraction of events with these massive clusters is smaller, are much closer to the original

HERWIG result.

To summarize, the best results for the HERWIG-CKKW matching in e+e− collisions

are obtained using NLL Sudakov form factors with a next-to-leading order αS.
5 The

best definition of the scale parameter is ISCALE=1, corresponding to k2T as the evolution

variable. The effect of varying the prefactors of the scales is less dramatic and while

QFACT(1,2,3)=1/2 and AFACT(1,2)=1/4 are the best values these parameters can still

varied in order to assess the effect of this variation on the results. The best choice for

the treatment of the highest multiplicity matrix element is IFINAL=3 although provided

sufficiently high multiplicity matrix elements are included the effect of this choice is small.

5We have not discussed the choice of the order of αS but NLO αS is required as this is always used in

HERWIG.

– 26 –



J
H
E
P
0
5
(
2
0
0
4
)
0
4
0

AFACT(1)=1/8
QFACT(3)=1/2

ME
HW

AFACT(1)=1/4
QFACT(3)=1/2

2 jets
3 jets
4 jets

AFACT(1)=1/2
QFACT(3)=2

5 jets
6 jets

AFACT(1)=1/8
QFACT(3)=1/2

AFACT(1)=1/4
QFACT(3)=1/2

AFACT(1)=1/2
QFACT(3)=2

AFACT(1)=1/8
QFACT(3)=1/2

AFACT(1)=1/4
QFACT(3)=1/2

AFACT(1)=1/2
QFACT(3)=2

AFACT(1)=1/8
QFACT(3)=1/2

AFACT(1)=1/4
QFACT(3)=1/2

AFACT(1)=1/2
QFACT(3)=2

Log(y3)

1/
σd

σ/
dL

og
(y

3)

0

0.01

0.02

0.03

-4 -2

0

0.01

0.02

0.03

-4 -2

0

0.01

0.02

0.03

-4 -2

0

0.01

0.02

0.03

-4 -2

0

0.01

0.02

0.03

-4 -2

0

0.01

0.02

0.03

-4 -2

0

0.01

0.02

0.03

-4 -2

0

0.01

0.02

0.03

-4 -2

0

0.01

0.02

0.03

-4 -2

0

0.01

0.02

0.03

-4 -2
0

0.01

0.02

0.03

-4 -2
0

0.01

0.02

0.03

-4 -2

Figure 12: Effect of varying the matching scale using NLL Sudakov form factors on the hadron-

level differential cross section 1
σ

dσ
d log y3

in e+e− collisions at
√
s = 500GeV. The parameters were set

so that QFACT(1)=QFACT(2)=1/2 and AFACT(1)=AFACT(2). The default result of HERWIG is shown

as a magenta line, the result of the CKKW algorithm is shown as a black line. The contribution to

the CKKW result of the different jet multiplicities are also shown, red is the 2 jet component, green

is the 3 jet component, blue is the 4 jet component, yellow is the 5 jet component and cyan is the

6 jet component. The matching scale is shown as a vertical dashed line. The IFINAL=3 option was

used for the highest multiplicity matrix element.

Unfortunately, the hadron-level results are not as well-behaved as the parton-level ones,

but this may be resolved by retuning the hadronization model. Though it has not been

thoroughly investigated, this problem may be ameliorated when using PYTHIA with this

prescription.

5.1.2 Pseudo-shower results

In this section, we show the results from the alternative scheme outlined in section 4 based

on using the Sudakov form factors and scale choices of the generators themselves. We

show results in particular for the PYTHIA event generator, using the LUCLUS measure for

clustering the partons to construct a parton-shower history. Clustering and matching is

done on the LUCLUS variable. However, once a correction procedure has been applied, the
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Figure 13: Effect of varying the matching scale using the pseudo-shower procedure on the hadron-

level differential cross section 1
σ

dσ
d log yi

in e+e− collisions at
√
s = MZ , for i = 3, 4 and 5. The

default result of PYTHIA is shown as a dashed line, while the result of the pseudo-shower algorithm

is shown as a solid black line. The contribution to the pseudo-shower result from the two (red),

three (green), four (blue), five (yellow) and six (magenta) parton components is also shown. The

matching scales 10−3 ∼ (2.88)2 GeV2 and 10−2 ∼ (9.12)2 GeV2 are shown as vertical arrows.

results can be used for any collider predictions — one is not limited to studying LUCLUS-

type variables for example. To facilitate comparison, we show final-state results based on

the kT -clustering measure as in the previous discussion. The matrix element predictions

are the same as those in the previous analysis (which more strictly adheres to the CKKW

methodology), but have been clustered using the LUCLUS measure, so that they constitute

a subset of those events.

In the pseudo-shower approach, there are less free choices, so we will limit ourselves to

the final results. Figure 13 shows the differential yi distributions for cut-offs of ycut = 10−3

and 10−2, respectively, at the hadron level for i = 3, 4 and 5. Similar results (not shown)

hold for ycut = 5× 10−3. The cut-off dini used for generating the matrix element sample is

shown as a vertical line in each of the distributions; however, an additional offset d0 was

added to each cut-off to account for any remaining mismatch between the parton-shower

kinematics and the final-state parton/hadron kinematics. Removing this offset induces a

radiation dip at the cut-off scale. A fixed value of d0 = 2GeV was used for this study.

The default PYTHIA prediction including the matrix element correction is shown as the

dashed-line. The corrected distribution is the solid line, and is a sum of matrix element

predictions for e+e− → 2 partons (red), 3 partons (green), 4 partons (blue), 5 partons
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(yellow) and 6 partons (magenta). It is interesting to compare the relative contributions

of a given matrix element multiplicity for the different cut-offs. Note that, unlike in the

CKKW-HERWIG procedure, there is a significant overlap of the different contributions.

This is because the different matrix element samples are clustered in a different variable

(the LUCLUS measure) and then projected into the kT -measure. The results generally agree

with PYTHIA where they should, and constitute a more reliable prediction for the high-y

end of the yi distributions. For the lower cut-off, 10−3, the results are more sensitive to

the treatment of the highest multiplicity matrix element, as indicated by the right tail of

the matching predictions on the y4 and y5 distributions. For the higher cut-off, 10−2, the

actual contribution of the 6 parton-matrix element is numerically insignificant, and there

is little improvement over the PYTHIA result. Results at the parton level (not shown) are

similar. Applying the same procedure to HERWIG (with the HERWIG choice of starting

scales and argument for αs) yields similar results.

5.2 Hadron-hadron collisions

Up to this point, we have benchmarked two procedures for matching matrix element cal-

culations with parton showers — the HERWIG-CKKW procedure and the pseudo-shower

procedure using HERWIG and PYTHIA. In this section, we apply these methods to particle

production at hadron colliders. For the HERWIG-CKKW procedure, many of the choices

of parameters and options were explored in the previous section. Here we focus on the

additional parameters which are relevant to hadron collisions, although the effects of some

of the parameters are different. In particular we have to make a choice of which variant of

the kT -algorithm to use. For the pseudo-shower procedure, we apply the same method as

for e+e− in a straight-forward fashion.

In hadron collisions, since the center-of-mass energy of the hard collision is not trans-

parent to an observer, we study the differential distributions with respect to the square

root of the k2T -measure defined in eq. 3.4, as this is related to the differential cross section

with respect to the pT of the jet.

As pointed out in ref. [30], the reweighting of the matrix-element can be generalized to

hadronic collisions by using the appropriate Sudakov form factors for initial-state radiation

in the backwards-evolution algorithm. Namely, the Sudakov factor for an initial-state-

shower is equal to the final-state-shower factor for no emission between two scales weighted

by the inverse ratio of parton distribution function (PDF) flux at each scale:

∆a→bc(t̃)

fa/h(xi, t̃)

fa′/h(xi, t̃
′)

∆a′→bc′(t̃′)
. (5.1)

The other modification from the final-state-shower case is that, when an emission occurs,

there is an additional weight to account for the change in partonic x:

1

z

fa/h(xi/z, t̃
′)

fa′/h(xi, t̃′)
. (5.2)

Working backwards from the hardest scattering, there is a cancellation between numerator

and denominator of PDF weights, so that the final weight has a contribution only from two
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PDF’s evaluated at the parton x and cutoff scale of the two incoming partons. The factors

of z−1i from parton splittings account for the change in integration measure from the x1, x2
values of the hard scatter (e.g, qq̄′ → W ) to the x′1, x

′
2 values of the incoming partons for

the whole process under consideration (e.g., qq̄ ′ → Wggg). A simpler way to arrive at

this result is to view the entire reweighting as a forward evolution, where no reweighting

by PDF flux is necessary and only the standard Sudakov form factors are applied. The

clustering has already chosen a parton shower history, so there is no ambiguity as to which

branchings should occur to obtain the desired hard scattering, which is the usual difficulty

in performing forward evolution. In this case, one would only apply PDF weights for the

incoming partons at the cutoff scale, which is the same result arrived at for the case of

backward evolution.

In the pseudoshower approach, the Sudakov form factors are evaluated numerically by

requiring no emissions above a given cutoff. This accounts for the change in scale with

no radiation as given by eq. (5.1), but does not include the factors arising from parton

splitting eq. (5.2). Therefore, the PDF factors arising at each step of the pseudoshower

procedure must be cancelled out so that the overall weight is given by the PDF’s evaluated

at the parton x values of the incoming partons.

5.2.1 HERWIG-CKKW results

In order to assess the effects of the varying of the scales for αS and the minimum starting

scale for the shower in hadron-hadron collisions we started by studying electroweak gauge

boson production using the monotonic p2T -scheme and a matching scale dini = (20 GeV)2

at the Tevatron for a centre-of-mass energy of 1.96 TeV. The W+ + jets events we are

considering were generated including the leptonic decay of the W with no cuts on the

decay leptons. The γ∗/Z + jets events were also generated including the leptonic decay

of the gauge boson and included the contribution of the photon exchange diagrams. To

control the rise in the cross section at small invariant masses of the lepton pair, m``, a cut

was imposed requiring m`` ≥ 20GeV.

The differential cross section with respect to
√
d1 is shown in figure 14 for W production

and for γ∗/Z production in figure 15. The differential cross section with respect to
√
d2

for W production is shown in figure 16. The results for d1 for W production show good

agreement between HERWIG and the CKKW result for all the parameters, however the

mismatch at the matching scale increases as QFACT(3,4) increases. The is due to the

same effect we observed in e+e− collision, i.e. more smearing of the one jet matrix element

result causing more of these events to migrate below the matching scale. However the

results for both γ∗/Z production and d2 in W production show a much larger discrepancy

at the matching scale. In both cases there is a depletion of radiation below the matching

scale with respect to the original HERWIG result. This is not seen in the d1 distribution

for W production as here the initial-state parton shower always starts at the W mass.6

However the parton shower for γ∗/Z production often starts at the cut-off on the lepton

pair mass and the parton shower of the W + 1 jet matrix element often starts at a much

6In practice this is smeared with the Breit-Wigner distribution due to the width of the W.

– 30 –



J
H
E
P
0
5
(
2
0
0
4
)
0
4
0

QFACT(3)=1/2
AFACT(1)=1/8

ME
HW

QFACT(3)=1/2
AFACT(1)=1/4

0 jets
1 jets
2 jets

QFACT(3)=1/2
AFACT(1)=1/2

3 jets
4 jets

QFACT(3)=2
AFACT(1)=1/8

QFACT(3)=2
AFACT(1)=1/4

QFACT(3)=2
AFACT(1)=1/2

QFACT(3)=4
AFACT(1)=1/8

QFACT(3)=4
AFACT(1)=1/4

QFACT(3)=4
AFACT(1)=1/2

√d1 (GeV)

1/
σ 

dσ
/d

√d
1

10
-5

10
-4

10
-3

10
-2

10
-1

0 20 40

10
-5

10
-4

10
-3

10
-2

10
-1

0 20 40

10
-5

10
-4

10
-3

10
-2

10
-1

0 20 40

10
-5

10
-4

10
-3

10
-2

10
-1

0 20 40

10
-5

10
-4

10
-3

10
-2

10
-1

0 20 40

10
-5

10
-4

10
-3

10
-2

10
-1

0 20 40

10
-5

10
-4

10
-3

10
-2

10
-1

0 20 40

10
-5

10
-4

10
-3

10
-2

10
-1

0 20 40

10
-5

10
-4

10
-3

10
-2

10
-1

0 20 40

Figure 14: Effect of varying the scales for αS and the minimum starting scale for the shower on the

parton-level differential cross section 1
σ

dσ

d
√
d1

for W production at the Tevatron for a centre-of-mass

energy of 1.96TeV. The parameters were set so that QFACT(1)=QFACT(2)=1/2, QFACT(3)=QFACT(4)

and AFACT(1)=AFACT(2). The default result of HERWIG is shown as a magenta line, the result of

the CKKW algorithm is shown as a black line. The contribution to the CKKW result of the different

jet multiplicities are also shown, red is the 0 jet component, green is the 1 jet component, blue is

the 2 jet component, yellow is the 3 jet component and cyan is the 4 jet component. The matching

scale is shown as a vertical dashed line. The IFINAL=3 option was used for the highest multiplicity

matrix element.
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Figure 15: Effect of varying the scales for αS and the minimum starting scale for the shower on the

parton-level differential cross section 1
σ

dσ

d
√
d1

for Z production at the Tevatron for a centre-of-mass

energy of 1.96TeV. The parameters were set so that QFACT(1)=QFACT(2)=1/2, QFACT(3)=QFACT(4)

and AFACT(1)=AFACT(2). The default result of HERWIG is shown as a magenta line, the result of

the CKKW algorithm is shown as a black line. The contribution to the CKKW result of the different

jet multiplicities are also shown, red is the 0 jet component, green is the 1 jet component, blue is

the 2 jet component, yellow is the 3 jet component and cyan is the 4 jet component. The matching

scale is shown as a vertical dashed line. The IFINAL=3 option was used for the highest multiplicity

matrix element.
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Figure 16: Effect of varying the scales for αS and the minimum starting scale for the shower

on the parton-level differential cross section 1
σ

dσ

d
√
d2

for W production at the Tevatron for a

centre-of-mass energy of 1.96TeV. The parameters were set so that QFACT(1)=QFACT(2)=1/2,

QFACT(3)=QFACT(4)and AFACT(1)=AFACT(2). The default result of HERWIG is shown as a ma-

genta line, the result of the CKKW algorithm is shown as a black line. The contribution to the

CKKW result of the different jet multiplicities are also shown, red is the 0 jet component, green is

the 1 jet component, blue is the 2 jet component, yellow is the 3 jet component and cyan is the 4

jet component. The matching scale is shown as a vertical dashed line. The IFINAL=3 option was

used for the highest multiplicity matrix element.
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lower scale. One possible solution to this problem, at least for W production, is to always

start the initial-state parton shower at the highest scale in the process. In γ ∗/Z production

however this cannot solve the problem of lack of radiation from events which have a low

mass lepton pair.

The best solution to this problem is to decouple the minimum starting scale for the

initial- and final-state parton showers. In practice we want to use a low value for the final-

state shower in order to reduce the smearing of the higher multiplicity matrix elements

and a high value for the initial-state shower to avoid the problem of the radiation dip

below the matching scale. However, this needs to be tested in more detail. The problem

of scales is arising because relatively large logarithms of (small) x ∝ m``/
√
s are generally

not included in the Sudakov form factors used for parton showers. At the LHC, the typical

x-values in W production are smaller than the ones encountered using m`` > 20GeV at

the Tevatron, and the problem may be more serious.

5.2.2 Pseudo-shower results

In this section, we show the results of using the alternative scheme outlined in section 4.

We show results for the PYTHIA and HERWIG event generators applied to W + produc-

tion at the Tevatron, using the LUCLUS measure for clustering the partons to construct

a parton-shower history. Again, since final results should not depend on the correction

methodology, we show results based on the kT -clustering measure as in the previous dis-

cussion. In all cases, we use a factorization scale (which sets the upper scale for par-

ton showers) equal to the transverse mass of the W + boson: QF =
√

M2
W + p2TW =

√

E2
W − p23W .

Figure 17 shows the differential kT -distributions for a cut-off of 10GeV, using the

pseudo-shower procedure with PYTHIA to generate the parton shower. Similar results hold

for cut-offs of 15 and 20GeV used in this study. As for the e+e− case, these distributions

are constructed from fully hadronized events. For the case of hadronic collisions, this

requires that partons from the underlying event and the hadronic remnants of the beam

particles are not included in the correction. In PYTHIA and HERWIG, such partons can

be identified in a straight-forward manner. The default PYTHIA prediction including the

matrix element correction is shown as the dashed line. The corrected distribution is in

black, and is a sum of matrix element predictions for pp̄→W+ 0 partons (red), 1 parton

(green), 2 partons (blue), 3 partons (yellow) and 4 partons (magenta). The largest kT -

cluster value, which roughly corresponds to the highest pT jet, agrees with the PYTHIA

result, but is about 33% higher by kT = 40GeV. Such an increase is reasonable, since

matrix element corrections from two or more hard partons is not included in PYTHIA. The

deviations from default PYTHIA become greater when considering higher kT -cluster values:

k3T is roughly an order of magnitude larger in the pseudo-shower method at kT = 40GeV.

The transverse momentum of the W+ boson, however, is not significantly altered from the

PYTHIA result, increasing by about 25% at kT = 40GeV. Of course, larger deviations will

be apparent at higher values of transverse momentum.

– 34 –



J
H
E
P
0
5
(
2
0
0
4
)
0
4
0

Figure 17: Differential kTi-cluster distributions dσ/dkTi at the hadron level generated with the

pseudo-shower procedure for pp̄ → W+ + X collisions at
√
s = 1.96TeV, for i = 1 − 5 and also

showing the W+ boson transverse momentum. The default result of PYTHIA is shown as a dashed

line, while the result of the pseudo-shower algorithm is shown as a solid black line. The contribution

to the pseudo-shower result from theW+ plus 0 (red), 1 (green), 2 (blue), 3 (yellow) and 4 (magenta)

parton components is also shown. The matching scale 10GeV is shown as a vertical arrow.

The dependence on the cut-off is illustrated in figure 18, which shows the distributions

for the 3rd, 4th, and 5th largest value of kT -cluster for the different choices of matching

scale: 10GeV (solid), 15GeV (dashes), and 20GeV (dots). The default PYTHIA prediction

with the matrix element correction (dot-dash) is shown for comparison. For k iT > 30GeV,

the predictions are robust, though there is a noticeable dependence with the matching scale

for kiT ≤ 30GeV. The k5T distribution is generated purely from parton showering of the

other W + n parton configurations. The largest variation among the predictions occurs

around kT = 20GeV, corresponding to the largest cut-off, where the differential cross

section ranges over a factor of 3. Thus, for absolute predictions, the choice of matching

scale introduces a significant systematic bias. On the other hand, most likely the data will

be used to normalize distributions with relatively loose cuts. Figure 19 shows the ratio

of the distributions shown in figure 18 with respect to the distribution with a cut-off of

10GeV, which exhibits far less variation with the choice of matching scale. The ratio of the

distribution for a cut-off of 15GeV to 10GeV is shown (solid) and for 20GeV to 10GeV

(dashed). The most significant variation, about 60% for kT ∼ 10 − 15GeV, occurs in the

ratio k3T /k
5
T , which is sensitive to the treatment of the highest multiplicity matrix element
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Figure 18: Differential kTi-cluster distributions dσ/dkTi for i = 3, 4 and 5 at the hadron level

generated with the pseudo-shower procedure for pp̄ → W+ + X collisions at
√
s = 1.96TeV. The

default result of PYTHIA is shown as the (red) dash-dot line. The dependence on different matching

scales is shown: 10GeV (black, solid); 15GeV (green, dash); and 20GeV (blue, short dash). The

highest multiplicity matrix element used in each case is W+ + 4 partons.

(W +4 partons here), and would be expected to show the greatest variation. The variation

is smaller for kT above the largest matching scale (20GeV).

One distribution that is particularly insensitive to the matching procedure is the (in-

clusive) transverse momentum of theW boson. The variation with matching scale is shown

in figure 20, along with a comparison with Run I data [40].

To test the whole pseudo-shower methodology, we now show results based on applying

the same algorithm with the HERWIG event generator. A different starting scale and

argument for αS is used, as noted previously. The comparative kT -distributions are shown

in figure 21. Similar results hold for the cut-off values of 15 and 20GeV used in this

study, and are not shown here for brevity. The results are similar in nature to those from

PYTHIA, though the spectra are are typically softer at the tail of the distributions. Note

that the pseudo-shower HERWIG results are compared to PYTHIA (not HERWIG) with the

tuned underlying event model. Focusing attention on figures 22 and 23, which show the

distributions k3T , k
4
T and k5T and their ratios, we observe a smaller variation than for the

PYTHIA case. The variation for k3T /k
5
T in the range of 10GeV is approximately 30%. In

general, the dependence on matching scale is smaller than for the PYTHIA results, both

for the absolute shapes and ratios.
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Figure 19: Comparison of the ratio of kT cluster distributions in figure 18 for the same matching

scales.
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Figure 20: The distribution of PW
T generated with the pseudo-shower procedure for pp̄→W+X

collisions at
√
s = 1.96TeV, compared to the Run I data (at

√
s = 1.8TeV). The total prediction

for three different matching scales are shown in black, distinguished by various line types. The

different contributions to the pseudo-shower result (at a matching scale of 10GeV) from the W+

plus 0 (green), 1 (blue), 2 (yellow), 3 (magenta) and 4 (cyan) parton components is also shown.
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Figure 21: Same as figure 17, but using HERWIG in the pseudo-shower procedure.

Figure 22: Same as figure 18, but using HERWIG in the pseudo-shower procedure.
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Figure 23: Same as figure 19, but using HERWIG in the pseudo-shower procedure.

6. Comparison to the MLM approach

Recently, a less complicated method was suggested for adding parton showers to W + n

parton matrix element calculations [41]. We denote this as the MLM method. The resulting

events samples were meant for more limited applications, but it is worth commenting on

the overlap between the approaches.

The MLM method consists of several steps:

1. Generate Ntot events of uniform weight for W +n partons at the tree level with cuts

on |ηi| < ηmax, Ei
T > Emin

T , and ∆Rij > Rmin, where i and j denote partons. The

PDF’s and αs are evaluated at the factorization scale QF ∼ MW or
√

P 2
T +M2

W .

The uniform weight of the events is the given by the total cross section divided by

the number of events: σ/Ntot.

2. Apply a parton shower using HERWIG with a veto on pT > QF , where pT is the

HERWIG approximation to the relative pT as described earlier. By default, the start-

ing scale for all parton showers is given by
√
pi · pj, where i and j are color-connected

partons.

3. The showered partons are clustered into N jets using a cone algorithm with param-

eters Emin
T and Rmin. If N < n, the event is reweighted by 0. If N ≥ n (this is the

inclusive approach), the event is reweighted by 1 if each of the original n partons
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is uniquely contained within a reconstructed jet. Otherwise, the event is reweighted

by 0.

4. At the end of the procedure, one is left with a sub-sample of the original events with

total cross section σNacc/Ntot < σ, where Nacc are the number of events accepted

(reweighted by 1).

The method is well motivated. It aims to prevent the parton shower from generating

a gluon emission that is harder than any emission already contained in the “hard” matrix-

element calculation. The cuts on ET and ∆R play the role of the clustering cuts on kT
or pT (see eq. (3.4)). Clearly, the same cuts applied to the matrix element calculation are

used to control the amount of radiation from the parton shower. However, a full clustering

of the event is not necessary, since no Sudakov form factors are applied on internal lines,

and HERWIG already has a default choice of starting scales. Based on the understanding

of the numerical method for applying the Sudakov reweighting, it is clear that the final

step of rejecting emissions that are too hard with respect to the matrix element calculation

is the same as applying a Sudakov form factor to the external lines only. With respect

to the internal lines, the reweighting coming from an internal line in the parton-shower

approach, given by the product of the Sudakov form factor ∆(Qh, Ql) and the branching

factor αs(qT ), is to be compared to the weight αs(QF ) in the MLM approach. The size of

any numerical difference between these factors is not obvious.

To facilitate a direct comparison between the methods, we substitute the cuts on ET

and ∆R with a cut on the minimum kT -cluster value as in the original CKKW proposal.

The jet-parton matching (step 3) is further replaced by the requirement that the (n+1)st

value of kT after clustering the showered partons is less than the nth value of kT from

clustering the original partons, i.e kn+1
T < k̃nT . We will experiment with the choice of a veto

on the parton shower, using either QF or k̃nT for the internal HERWIG veto.

The resulting kT -distributions are shown in figure 24. Similar results hold for the cut-

off values of 15 and 20GeV also used in this study, but not shown here. A comparison of the

kT -distributions for different choices of matching scales is shown in figure 25. While there

are notable differences with the previous approaches, the matching is nonetheless robust.

The k1T distribution indicates some enhancement-depletion of radiation above-below the

matching scale, becoming more noticeable as the matching scale is increased. However, the

k2T distribution does not suffer from this effect. The variation with the matching scale is

smaller than in the previous approaches, and is most noticeable for 20 < kT < 30GeV.

Finally, figure 27 shows a comparison of the kT ratios using the pseudo-shower method

with HERWIG the MLM method with HERWIG, and the HERWIG-CKKW method, all

relative to the PYTHIA pseudo-shower result. The cut-off used for this comparison is

15GeV. Below this scale, the two HERWIG distributions are almost identical, and there is

a significant difference with PYTHIA for distributions involving k5T — which is generated

by the parton shower. Above the cut-off, the pseudo-shower procedure and the MLM

procedure are in close agreement, and are on the order of 20% higher than the HERWIG

pseudo-shower results. This, then, is a good estimate in the range of uncertainty in these

predictions.
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Figure 24: Same as figure 17, but using HERWIG in the MLM procedure.

Figure 25: Same as figure 18, but using HERWIG in the MLM procedure.
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Figure 26: Same as figure 18, but using HERWIG in the MLM procedure.

Figure 27: Similar to figure 19 but comparing the distributions from HERWIG and PY using

the pseudo-shower procedure, HERWIG using the MLM procedure, and HERWIG using the CKKW

procedure for a matching scale of 15GeV.
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7. Discussion and conclusions

In this work, we report on our exploration of matching matrix element predictions with

parton showers using a methodology close to the CKKW algorithm suggested in [29, 30].

In sum, we have compared three different procedures: (1) a slightly expanded version of

the CKKW procedure using HERWIG as the parton-shower generator (but not limited in

principal to HERWIG) and exploiting the freedom to choose scales and cut-offs; (2) a version

of the CKKW procedure relying on pseudo-showers and matched closely to the scales and

cut-offs of PYTHIA and HERWIG; and (3) a much simpler procedure based on the approach

of M. Mangano. All three of the procedures yield reasonable results.

The HERWIG-CKKW procedure uses all of the elements of the original CKKW pro-

cedure, but expands upon them. Several choices of scale were investigated as starting

points for the vetoed parton shower, and a wide range of prefactors were explored as ar-

guments to the analytic NLL Sudakov form factor and αS. The variation of the results

with these choices is shown in the figures. Optimized choices were settled upon based

on the smoothness of distributions, the agreement with HERWIG where expected, and the

apparent improvement over the default HERWIG predictions. Since HERWIG is an angular-

ordered shower, a variable such as kT -cluster values is well suited as a starting point for

the HERWIG shower. Because of the details of the HERWIG shower, a prefactor of 1
2 for

the scale used in the Sudakov form factor is understandable, as well as a prefactor of 1
8

for the scale used in evaluating αS . These choices are reasonable, but, of course, are not

derived from first principles. The results presented are better at the parton level than

at the hadron level, which may require a retuning of the HERWIG hadronization model

parameters. These effects become less important when considering scattering processes at

higher energies or when the cut-offs are larger.

The pseudo-shower procedure uses the Sudakov form factors of HERWIG and PYTHIA

to numerically calculate the Sudakov suppression. Since the Sudakov form factor is a

probability distribution for no parton emissions, the suppression factor can be determined

by starting showers from different stages of the parton-shower history and discarding those

events with emissions above a given cut-off. Because of the nature of this approach, there

is less tuning of parameters. To match the argument used in αS by default in HERWIG

and PYTHIA, a different clustering scheme was used: pT clustering or LUCLUS-clustering.

Final results at the hadron level are shown in the figures. In general, the hadron-level

results are better than the parton-level ones. The use of LUCLUS over KTCLUS was driven

by the kinematics of the PYTHIA shower. We have not checked whether KTCLUS works

as well or better for the HERWIG results, and we leave this for future investigation. We

should also investigate the advantages of using the exact clustering scheme of the individual

generators: invariant mass and angular ordering for PYTHIA or just angular ordering for

HERWIG. Also, since this work began, a new model of final-state showering was developed

for PYTHIA which is exactly of the LUCLUS type. This should also be tested, and ideally

the pT -ordered shower could be expanded to include initial-state radiation. This is beyond

the stated aims of this work, which was to investigate the use of HERWIG and PYTHIA

with minor modifications.
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The MLM procedure is a logical extension of the procedure develop by M. Mangano

for adding partons showers to W+multijet events. It entails kT -clustering the parton-level

events, adding a parton shower (with HERWIG in practice, but not limited to it), and

rejecting those events where the parton shower generates a harder emission (in the kT -

measure) than the original events. This approach yields a matching which is almost as

good as the more complicated procedures based on the CKKW procedures explored in this

work. The reason is not a pure numerical accident. The MLM procedure rejects events

(equivalently, reweights them to zero weight) when the parton shower generates an emission

harder than the lowest kT value of the given kinematic configuration. This is equivalent to

the first step of the pseudo-shower procedure in the calculation of the Sudakov suppression

when applied to the highest multiplicity matrix element. The remaining difference is in the

treatment of the internal Sudakov form factors and the argument of αS . The agreement

between the pseudo-shower and MLM procedures implies that the product of Sudakov

form factors on internal lines with the factors of αS evaluated at the clustering scale is

numerically equivalent to the product of αS factors evaluated at the hard scale. It is worth

noting that, for the process at hand, qq̄′ → W + X, only two of the cluster values can

be very close to the cut-off, and thus only two of the αS(kT ) values can be very large.

Also, at the matching scales considered in this study, 10 − 20GeV, with a factorization

scale on the order of MW , QF =
√

M2
W + P 2

TW , a fixed order expansion is of similar

numerical reliability as the “all-orders” expansion of a resummation calculation. In fact,

the resummation (parton shower) expansion is ideally suited for Q ¿ MW , whereas the

fixed order expansion is best applied for Q ∼MW . The matching scales used in this study

straddle these extremes.

Based on the study of these three procedures, we can make several statements on the

reliability of predicting the shapes and rates of multijet processes at collider energies.

1. The three matching procedures studied here are valid approaches, that aim to reduce

the potential logarithmic dependence on the matching scale. None of them yields

distributions that are independent of the matching scale, and some distributions are

less sensitive than others.

2. The relative distributions in kT , for example, are reliably predicted.

3. The variation in the relative distributions from the three procedures depends on

the variable. For variables within the range of the matrix elements calculated, the

variation is 20%. For variables outside this range, which depend on the truncation of

the matrix element calculation, the variation is larger 50%. Of course, it is important

to study the experimental observables to correctly judge the sensitivity to the cut-off

and methodology of matching.

4. More study is needed to determine the best method for treating the highest multi-

plicity matrix-element contributions.
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5. The subject of matching is far from exhausted. The procedures presented here yield

an improvement over previous matching prescriptions. However, these methodologies

are an interpolation procedure.
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