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1. Introduction

Recent interest in both de Sitter and anti-de Sitter vacua has led to a renewed study of

gauged supergravities, where the gauging of some R-symmetry naturally leads to a non-

trivial potential. Well-known examples include the gauged supergravities in four, five and

seven dimensions that admit maximally supersymmetric anti-de Sitter vacua. In addition,

there are also gauged supergravities with run-away potentials. Although such theories do

not admit maximally supersymmetric vacua, they typically allow domain-wall solutions

where scalar gradient energy is balanced against the scalar potential. What has not been

achieved, however, is the construction of conventional gauged supergravities admitting de
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Sitter vacua. Of course this is not particularly surprising, since de Sitter spacetime is

incompatible with conventional supersymmetry.

Supergravities with positive-definite (albeit run-away) potentials do nevertheless exist.

A particularly interesting example is the Salam-Sezgin model, which is a gauged N = (1, 0)

supergravity in D = 6 coupled to a tensor and an abelian vector multiplet [1]. This model

has a (Minkowski)4×S2 vacuum, in which the vector has a non-trivial flux on the 2-sphere.

This monopole flux, combined with the single-exponential potential V ∼ exp(−ϕ/
√
2),

is responsible for a “self-tuning” of the vacuum, in which the positive energy density is

confined to the 2-sphere, thereby ensuring a vanishing 4-dimensional cosmological constant

and correspondingly a (Minkowski)4 vacuum. The self-tuning feature of this model has

attracted much attention, especially as a means of protecting the cosmological constant

from large corrections even after supersymmetry breaking [2, 3]. It was shown in [4] that

the Salam-Sezgin theory arises from a consistent reduction of ten-dimensional supergravity

on a circle times a hyperbolic 3-space. It was also shown, in [5], that the Salam-Sezgin

model can be consistently reduced on S2 to give rise to N = 1, D = 4 supergravity coupled

to an SU(2) vector multiplet and a scalar multiplet.

The interesting features of the Salam-Sezgin model have led us to search for other pos-

sible supergravity theories with positive-definite potentials. This search was guided by the

realization of [6] that a generalised Kaluza-Klein reduction which gauges a combination of a

homogeneous global scaling symmetry together with a Cremmer-Julia type global symme-

try yields a consistent reduction with just such a positive-definite potential. In particular,

this generalised reduction was used to construct a variant N = (1, 1) supergravity in D = 6

admitting both Minkowski4 × S2 and Minkowski3 × S3 vacua [7, 8]. This construction is

based on the generalised reduction of minimal D = 7 supergravity, where a would-be vector

multiplet may be truncated out by a judicious choice of the gauging parameters. In this

manner, the reduction takes one from a pure (d + 1)-dimensional supergravity without a

potential to a pure d-dimensional supergravity with a (positive-definite) single-exponential

potential. Generalised Kaluza-Klein reduction via the gauging of the Cremmer-Julia global

symmetries were considered in [9]–[12]

Although the work of [7, 8] focused on the reduction from seven to six dimensions,

the generalised Kaluza-Klein procedure may be carried out in arbitrary dimensions. In

general, the various supergravities in diverse dimensions are quite distinct (especially in

their fermionic sectors). However it is noteworthy that the bosonic sector of the half-

maximal (16 supercharge) supergravities in D ≤ 10 is universal, with field content

(gµν , Bµν , φ,A
a
µ) (1.1)

(a = 1, 2, . . . , 10 − D). This is of course the bosonic content of the heterotic string (or

the NS-NS sector of the type-II string) compactified on a (10 − D)-dimensional torus,

with vector multiplets truncated out. Owing to this universality of the field content, we

may perform a generalised Kaluza-Klein reduction on the half-maximal supergravities in

arbitrary dimensions, and in this manner obtain the full class of (16 supercharge) variant

supergravities generalising the results of [7, 8].

– 2 –



J
H
E
P
1
0
(
2
0
0
4
)
0
3
4

The resulting d-dimensional variant supergravities admit both (Minkowski)d−3×S3 and
also, in certain cases, (Minkowski)d−2 × S2, vacua. Furthermore, we are able to construct

a new time-dependent supersymmetric solution (or “cosmological solution”) in D = 9 with

no form-field fluxes. This solution lifts to a purely dilaton driven cosmology in D = 10,

and a pp-wave in D = 11.

2. Generalised reduction

We begin with the generalised Kaluza-Klein reduction of the bosonic sector of half-maximal

supergravities in arbitrary dimensions D ≤ 10. In this section, all fields and their equations

of motion pertain to the Einstein frame. The string-frame picture will be examined in

section 3.

As indicated above, the bosonic field content of pure supergravity with 16 supercharges

consists of the graviton ĝµν , antisymmetric tensor B̂µν and dilaton φ̂, along with (10−D)

1-form potentials Âa
µ. The lagrangian for the bosonic sector can be written as

L̂ = R̂∗̂1l− 1

2
∗̂dφ̂ ∧ dφ̂− 1

2
eâ φ̂∗̂Ĥ(3) ∧ Ĥ(3) −

1

2
e

1
2
â φ̂∗̂F̂ a

(2) ∧ F̂ a
(2) , (2.1)

where F̂ a
(2) = dÂa

(1), Ĥ(3) = dB̂(2) − 1
2 F̂

a
(2) ∧ Âa

(1), and a = 1, 2, . . . , (10 −D). The constant

â is given by

â2 =
8

D − 2
. (2.2)

The equations of motion following from (2.1) are

R̂MN =
1

2
∂M φ̂ ∂N φ̂+ eâφ̂

(
1

4
ĤMPQ Ĥ

PQ
N − 1

6(D − 2)
Ĥ2
(3) ĝMN

)
+

+e
1
2
âφ̂

(
1

2
F̂ a
MP F̂

a P
N − 1

4(D − 2)
(F̂ a
(2))

2 ĝMN

)
,

d(eâφ̂ ∗̂Ĥ(3)) = 0 ,

d(e
1
2
âφ̂ ∗̂F̂ a

(2)) = (−1)D+1eâφ̂ ∗̂Ĥ(3) ∧ F̂ a
(2) ,

¤̂φ̂ =
â

12
eâφ̂Ĥ2

(3) +
â

8
e

1
2
âφ̂ (F̂ a

(2))
2 . (2.3)

The key observation behind the generalised reduction of ref. [6] is that the equations

of motion are invariant under the two global symmetries

φ̂ → φ̂+
1

â
λ1 , dŝ2 → e2λ2 dŝ2 ,

B̂(2) → e−2λ1+2λ2 B̂(2) , Âa
(1) → e−λ1+λ2 Âa

(1) . (2.4)

The constant λ1 parameterises a global symmetry of the lagrangian, while the scaling

transformation parameterised by the constant λ2 is a symmetry only at the level of the

equations of motion, since the lagrangian scales homogeneously as
√−ĝ(R̂ + · · ·) −→

e(D−2) λ2
√−ĝ (R̂+ · · ·).
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Following [6], we now reduce from D dimensions to d = (D−1) on a circle, while simul-

taneously gauging the above two global symmetries. The D-dimensional pure supergravity

multiplet then reduces to d-dimensional supergravity coupled to a single vector multiplet.

This is achieved by making the generalised reduction ansatz

dŝ2 = e2m2z
(
e2αϕ ds2 + e2βϕ (dz +A(1))2

)
,

B̂(2) = e2(m2−m1) z
(
B(2) +B(1) ∧ dz

)
,

Âa
(1) = e(m2−m1) z

(
Aa
(1) + χa dz

)
,

φ̂ = φ+
4

â
m1z , (2.5)

where

α2 =
1

2(d− 1)(d − 2)
, β = −(d− 2)α . (2.6)

The standard Kaluza-Klein ansatz for an ungauged S1 reduction would correspond to

setting m1 = m2 = 0.

In general, for unequal mass parameters m1 and m2, the lower-dimensional equations

of motion are rather complicated. However, a significant simplification occurs if m1 = m2.

In this case, various exponential factors drop out from (2.5), and one can consistently

truncate out the vector multiplet, owing to conspiracies between the fields. In this manner,

one can obtain variant gauged supergravities with positive-definite scalar potentials and

with half-maximal supersymmetry in d ≤ 9 dimensions.

Before writing out the complete reduction of the bosonic equations of motion, we

first collect some intermediate results. The reduction of the potentials in (2.5) yields a

corresponding reduction on the field strengths:

Ĥ(3) = e2(m2−m1)z(H(3) +H(2) ∧ (dz +A(1))) ,
F̂ a
(2) = e(m2−m1)z(F a

(2) + La(1) ∧ (dz +A(1))) , (2.7)

where the lower dimensional fields are defined by

H(3) = dB(2) −
1

2
F a
(2)∧Aa

(1) − dB(1) ∧A(1) − 2(m2 −m1)B(2) ∧A(1) +
1

2
χaF a

(2) ∧A(1) ,

G(2) = dB(1) −
1

2
χa F a

(2) +
1

2
La(1) ∧Aa

(1) −
1

2
χaLa(1) ∧A(1) + 2(m2 −m1)B(2) ,

F a
(2) = dAa

(1) − dχa ∧A(1) + (m2 −m1)A
a
(1) ∧A(1) ,

La(1) = dχa − (m2 −m1)A
a
(1) . (2.8)

The Kaluza-Klein potential A(1) has the standard field strength F(2) = dA(1). It is evident
at this stage that the vector fields Aa

(1) and the tensor field B(2) acquire masses proportional

to |m2 −m1|, in the process eating the axions χa and the vector B(1) respectively.

2.1 Untruncated d-dimensional equations

We are now able to write down the full bosonic equations of motion for the variant d-

dimensional gauged supergravity. The bosonic field content is

(gµν , Bµν , ϕ,A
a
µ,Aµ) and (Bµ, χ

a, φ) , (2.9)
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corresponding to half-maximal supergravity coupled to a single vector multiplet. This

representation is schematic in the sense that the scalars φ and ϕ as well as the 1-form

potentials B(1) and A(1) must necessarily be taken as appropriate linear combinations in

the actual multiplets.

We find that the equations of motion for the form fields are given by

∇σ(eâφ−4αϕHµνσ) = (2m1 + (d− 3)m2)
(
eâφ−4αϕHµνσAσ − eâφ+2(d−3)αϕGµν

)
,

∇ν(eâφ+2(d−3)αϕGµν) =
1

2
eâφ−4αϕHµνσFνσ +

+(2m1 + (d− 3)m2)e
âφ+2(d−3)αϕGµν Aν ,

∇ν(e
1
2
âφ−2αϕF a

µν) =
1

2
eâφ−4αϕHµνσF

aνσ + eâφ+2(d−3)αϕGµνL
aν +

+(m1 + (d− 2)m2)
(
e

1
2
âφ−2αϕF a

µνAν − e 1
2
âφ+2(d−2)αϕLaµ

)
,

∇µ(e
1
2
âφ+2(d−2)αϕLaµ) = − 1

2
eâφ+2(d−3)αϕGµν F

aµν +
1

2
e

1
2
âφ−2αϕF a

µνFµν +

+(m1 + (d− 2)m2)e
1
2
âφ+2(d−2)αϕLaµAµ ,

∇ν(e−2(d−1)αϕFµν) =
1

2
eâφ−4αϕHµνσG

νσ − e 1
2
âφ−2αϕF a

µνL
aν +

+
4

â
m1

(
∂µφ−

4

â
m1Aµ

)
− 2m2(d− 1) (β∂µϕ−m2Aµ) +

+m2(d− 1)e−2(d−1)αϕ FµνAν . (2.10)

The two scalar fields, φ and ϕ satisfy similarm1 andm2 dependent equations of motion.

The scalar coming from the metric satisfies the equation

−β¤ϕ = − e
âφ−4αϕ

6(d− 1)
H2
(3) −

e
1
2
âφ−2αϕ

4(d − 1)
(F a
(2))

2 +
d− 3

4(d − 1)
eâφ+2(d−3)αϕG2(2) +

+
d− 2

2(d− 1)
e

1
2
âφ+2(d−2)αϕ(La(1))

2 − 1

4
e−2(d−1)αϕF2(2) −

−m2β(d− 1)Aµ∂µϕ−m2∇µAµ +m2
2(d− 1)A2(1) +

8

â2
m2
1e
2(d−1)αϕ , (2.11)

while the D-dimensional dilaton equation reduces to

¤φ =
â

12
eâφ−4αϕH2

(3) +
â

4
eâφ+2(d−3)αϕG2(2) +

â

8
e

1
2
âφ−2αϕ(F a

(2))
2 +

+
â

4
e

1
2
âφ+2(d−2)αϕ(La(1))

2 + m2(d− 1)Aµ∂µφ+
4

â
m1∇µAµ −

−4(d− 1)

â
m1m2 (A2(1) + e2(d−1)αϕ) . (2.12)

The d-dimensional Einstein equation takes the form

Rµν−
1

2
Rgµν =

1

2

(
∂µϕ∂νϕ−

1

2
(∂ϕ)2 gµν

)
+
1

2

(
∂µφ∂νφ−

1

2
(∂φ)2 gµν

)
+

+
1

2
e−2(d−1)αϕ

(
FµσF σ

ν −
1

4
gµνF2(2)

)
+
1

4
eâφ−4αϕ

(
HµρσH

ρσ
ν −1

6
gµνH

2
(3)

)
+

– 5 –
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+
1

2
e

1
2
âφ−2αϕ

(
F a
µσ F

a σ
ν − 1

4
gµν(F

a
(2))

2

)
+

+
1

2
eâφ+2(d−3)αϕ

(
GµσG

σ
ν −

1

4
gµνG

2
(2)

)
+

+
1

2
e

1
2
âφ+2(d−2)αϕ (LaµL

a
ν −

1

2
gµν (L

a
(1))

2)−
−αm2(d− 1)(Aσ∂σϕgµν −Aµ∂νϕ−Aν∂µϕ) +

+
2

â
m1(Aσ∂σφ gµν −Aµ∂νφ−Aν∂µφ) +

(
8

â2
m2
1 − (d− 1)m2

2

)
AµAν −

−1

2
m2(d− 1)(∇µAν +∇νAµ − 2∇σAσ gµν)−

−
(
4m2

1

â2
+

1

2
m2
2(d− 1)(d− 2)

)
(A2(1) + e2(d−1)αϕ)gµν . (2.13)

Note that the last term is associated with a positive-definite scalar potential.

2.2 Truncated d-dimensional equations

The scalars φ and ϕ may be disentangled between the supergravity and vector multiplets

of (2.9) by performing a rotation to φ1 (supergravity) and φ2 (vector) given by

âφ− 4αϕ = aφ1 , 4αφ+ âϕ = aφ2 , (2.14)

where a =
√

8/(D − 3). When m1 = m2, the vector multiplet may be further truncated

away. This is done by setting

B(1) = A(1) ≡
1√
2
A(1) , φ2 = 0 , La(1) = 0 . (2.15)

The equations of motion for the pure supergravity fields are then given by

∇ρ(eaφHµνρ) =
d− 1√

2
m
(
eaφHµνρA

ρ − e 1
2
aφFµν

)
,

∇ν(e
1
2
aφFµν) =

1

2
eaφHµνρF

νρ +
d− 1√

2
me

1
2
aφFµν A

ν ,

∇ν(e
1
2
aφF a

µν) =
1

2
eaφHµνρF

a νρ +
d− 1√

2
me

1
2
aφF a

µν A
ν ,

¤φ =
eaφ

3
√

2(d− 2)
H2
(3) +

e
1
2
aφ

2
√

2(d− 2)
(F 2(2) + (F a

(2))
2) +

d− 1√
2
mAµ ∂µφ+

+
d− 1√
d− 2

m∇µA
µ −

√
2 (d− 1)2√
d− 2

m2

(
1

2
A2(1) + e−

1
2
aφ

)
,

Rµν =
1

2
∂µφ∂νφ+

1

4
eaφ
(
HµρσH

ρσ
ν − 2

3(d− 2)
H2
(3)gµν

)
+

+
1

2
e

1
2
aφ

(
FµρF

ρ
ν − 1

2(d− 2)
F 2(2)gµν

)
+

+
1

2
e

1
2
aφ

(
F a
µρF

a ρ
ν − 1

2(d − 2)
(F a
(2))

2gµν

)
−

– 6 –
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−m(d− 1)

2
√
d− 2

(Aµ∂νφ+Aν∂µφ)−

−m(d− 1)

2
√
2

(
∇µAν +∇νAµ +

2

d− 2
∇ρA

ρgµν

)
+

+
m2(d− 1)2

2(d− 2)
(A2(1) + 2e−

1
2
aφ)gµν , (2.16)

where we have rewritten φ1 as φ. It may be seen that this set of equations cannot be

obtained from a lagrangian in terms of the physical fields. This is not altogether surprising,

since they were derived in a generalised reduction that gauged a symmetry of the equations

of motion which was not a symmetry of the lagrangian.

By examining the linearised equations of motion, it can be seen that A(1) is a massless

gauge potential. This gauge field can in fact be consistently set to zero. In this case, the

remaining equations of motion can then be obtained from the lagrangian

e−1L = R− 1

2
(∂φ)2 − 1

12
eaφH2

(3) −
1

4
e

1
2
aφ(F a

(2))
2 − (d− 1)2m2e−

1
2
aφ , (2.17)

where e =
√−g. Thus we see once again that the scalar potential is positive definite.

3. String frame and σ-model action

For many purposes it is advantageous to perform the Weyl rescaling of the metric that

transforms from the Einstein frame that we used in the previous section to the string

frame. One reason is because the half-maximal supergravities that we are considering have

a direct relation to the heterotic string, or the NS-NS sector of the type-II string. Another

reason is that many of the formulae become considerably simpler when expressed in the

string frame. We shall consider only the case m1 = m2 = m.

Consistent string propagation demands world-sheet conformal invariance, and hence

the vanishing of the beta functions for the background spacetime fields. In this manner one

obtains supergravity equations of motion which arise naturally in the string frame. The

corresponding equations may be derived from the string-frame lagrangian

ê−1L̂ = e−2Φ̂
(
R̂+ 4(∂Φ̂)2 − 1

12
Ĥ2
(3) −

1

4
(F̂ a
(2))

2

)
, (3.1)

taken here to have been compactified on a (10−D)-dimensional torus (with the additional

truncation of (10 − D) vector multiplets). It is to be understood that all fields in this

section are labelled with a suppressed tilde (g̃µν , H̃(3), ¡etc.) unless otherwise indicated, to

distinguish them from the Einstein frame fields. The complete transformation between the

two frames in dimensions D ≤ 10 is given in appendix C.

The equations of motion following from the lagrangian (3.1) are

R̂MN = −2∇̂M∇̂N Φ̂ +
1

4
ĤMPQĤ

PQ
N +

1

2
F̂ a
MP F̂

a P
N ,

d(e−2Φ̂∗̂Ĥ(3)) = 0 ,

– 7 –
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d(e−2Φ̂∗̂F̂ a
(2)) = (−1)D+1 e−2Φ̂∗̂Ĥ(3) ∧ F̂ a

(2) ,

¤̂Φ̂ = 2(∂Φ̂)2 − 1

12
Ĥ2
(3) −

1

8
(F̂ a
(2))

2 . (3.2)

By tracing the Einstein equation and substituting in the dilaton equation, we may obtain

an expression for the Ricci scalar:

R̂ = −4(∂ Φ̂)2 + 5

12
Ĥ2
(3) +

3

4
(F̂ a
(2))

2 . (3.3)

In D dimensions, the Einstein-frame and the string-frame metrics are related by

dŝ2Ein = e
1
2
âφ̂ dŝ2str = e−

1
2
â2Φ̂ dŝ2str , (3.4)

where we have defined Φ̂ = −φ̂/â and φ̂ is the Einstein-frame dilaton field. For the case

where m1 = m2, the reduction ansatz (2.5) converted to the string frame is rather simple,

namely

dŝ2str = ds2str + e−
√
2ϕ(dz +A(1))2 ,

B̂(2) = B(2) +B(1) ∧ dz ,

Φ̂ = Φ− 1√
8
ϕ− 1

2
(d− 1)mz . (3.5)

In other words, the reduction is exactly the same as a standard Kaluza-Klein reduction,

except for a linear z-dependence in the dilaton Φ̂.

It follows that the σ-model action for this generalised circle reduction is given by

I =
1

4π α′

∫
dσ dτ

[√
γ γij ∂iX

µ ∂jX
ν ĝµν + ε

ij ∂iX
µ ∂jX

ν B̂µν +α
′R̂

(
Φ− 1

2
(D−2)mz

)]
,

where Φ, ĝµν and B̂µν are independent of z, and X0 (the circle coordinate) is given by

X0 = z. However, the z dependence of the string action implies that T -duality is now

broken. This can also be seen from the low-energy effective action obtained in the previous

section, where the Kaluza-Klein vector A(1) and the winding vector B(1) are clearly not on

a parallel footing.

3.1 Untruncated d-dimensional string-frame equations

We give here the complete set of bosonic equations of motion for the untruncated system,

expressed in the string frame. It will be seen that these are considerably simpler than the

previous expressions that were obtained in the Einsten frame.

For the form fields in the string frame we find

∇ρ(e−2ΦHµνρ) = m(d− 1)
(
e−2ΦHµνσAσ − e−2Φ+

√
2ϕGµν

)
,

∇ν(e−2Φ+
√
2ϕGµν) =

1

2
e−2ΦHµνσFνσ +m(d− 1)e−2Φ+

√
2ϕGµνAν ,

∇ν(e−2ΦF a
µν) =

1

2
e−2ΦHµνσF

a νσ + e−2Φ+
√
2ϕGµνL

a ν +
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+m(d− 1)
(
e−2ΦF a

µνAν − e−2Φ+
√
2ϕLaµ

)
,

∇µ(e−2Φ+
√
2ϕLaµ) =

1

2
e−2ΦF a

µνFµν − 1

2
e−2Φ+

√
2ϕGµνF

a µν +

+m(d− 1)e−2Φ+
√
2ϕLaµAµ ,

∇ν(e
− 3√

2
ϕFµν) = e

− 1√
2
ϕ
(
1

2
HµνσG

νσ − F a
µνL

aν

)
+ 2e

− 3√
2
ϕ
(
∂νΦ−

1√
8
∂νϕ

)
F ν
µ +

+m(d− 1)(
√
2 e
− 1√

2
ϕ
∂µϕ+ e

− 3√
2
ϕAνFµν) . (3.6)

For the scalar fields, we find

¤ϕ =
1

2
√
2
(e
√
2ϕG2(2) − e−

√
2ϕF2(2)) +

1√
2
e
√
2ϕ(La(1))

2 + 2∂µϕ∂
µΦ+m(d− 1)Aµ∂µϕ ,

¤Φ = − 1

12
H2
(3) −

1

8
(F a
(2))

2 − 1

8
(e
√
2ϕG2(2) + e−

√
2ϕF2(2)) + 2(∂Φ)2 +

+2m(d− 1)Aµ ∂µΦ−
1

2
m(d− 1)∇µAµ +

1

2
m2(d− 1)2(A2(1) + e

√
2ϕ) . (3.7)

The Einstein equations in the string frame are given by

Rµν =
1

2
∂µϕ∂νϕ− 2∇µ∂νΦ+

1

4
HµρσH

ρσ
ν +

1

2
e
√
2ϕGµρG

ρ
ν +

1

2
e−
√
2ϕFµρF ρ

ν +

+
1

2
F a
µρ F

a ρ
ν +

1

2
e
√
2ϕLaµL

a
ν −

1

2
m(d− 1)(∇µAν +∇νAµ) . (3.8)

3.2 Truncated d-dimensional string-frame equations

In the string frame, we may again truncate out the vector multiplet by setting ϕ = 0,

La(1) = 0 and A(1) = B(1) ≡ A(1)/
√
2. The equations of motion for the bosonic fields of the

pure supergravity multiplet now become

∇σHµνσ = 2HµνσM
σ − 1√

2
m(d− 1)Fµν ,

∇νFµν =
1

2
HµνσF

νσ + 2FµνM
ν ,

∇νF a
µν =

1

2
HµνσF

a νσ + 2F a
µνM

ν ,

∇µMµ = 2M2
(1) −

1

12
H2
(3) −

1

8
(F 2(2) + (F a

(2))
2) +

1

2
m2(d− 1)2 ,

Rµν = −∇µMν −∇νMµ +
1

4
HµρσH

ρσ
ν +

1

2
(Fµρ F

ρ
ν + F a

µρ F
a ρ
ν ) , (3.9)

where we have introduced the field

M(1) = dΦ+
m(d− 1)

2
√
2

A(1) . (3.10)

It is evident that the massive field M(1) arises because the dilaton Φ is eaten by the gauge

field A(1).
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As in the Einstein frame, these equations cannot be obtained from a lagrangian. How-

ever, if we set A(1) to zero, the equations of motion for the remaining fields can be obtained

from a lagrangian, given by

e−1L = e−2Φ
(
R+ 4(∂Φ)2 − 1

12
H2
(3) −

1

4
(F a
(2))

2 − (d− 1)2m2

)
. (3.11)

Although this truncation is consistent within the bosonic theory, it cannot be consistent

with the full supergravity, as it would be incompatible with the structure of the super-

multiplets. Nevertheless, we see from (3.11) that in the string frame the scalar potential

becomes a pure positive cosmological constant.

4. Supersymmetry

With the derivation of the bosonic equations of motion both in the Einstein frame and the

string frame completed, we now turn to a consideration of the supersymmetry transfor-

mation rules for these generalised reductions. We shall present the results for two cases in

this section. The first is the variant ten-dimensional massive gauged supergravity obtained

in [6] by performing a generalised reduction of eleven-dimensional supergravity.1 The re-

duction in this case involves just the global scaling symmetry of the D = 11 equations of

motion. Then, we shall consider the nine-dimensional massive gauged theory obtained from

massless N = 1, D = 10 supergravity, using the generalised reduction involving the two

global symmetries that we discussed in section 2. Analogous results for the six-dimensional

gauged theory were obtained in detail in [8].

4.1 Massive type-IIA supergravity from D = 11

The supersymmetry transformations in D = 11 are

δê A
M = ˆ̄εγ̂Aψ̂M , δÂMNP = 3ˆ̄εγ̂[MN ψ̂P ] ,

δψ̂M = ∇̂M ε̂−
1

288
F̂NPQR(γ̂

NPQR
M − 8γ̂PQRδNM ) ε̂ , (4.1)

where in our conventions

{γ̂A, γ̂B} = 2η̂AB (4.2)

and the metric signature is (−++ · · ·+). The equations of motion of the eleven-dimensional

theory are invariant under a scaling symmetry, which was used in [6] in a generalised re-

duction to obtain the bosonic sector of a massive ten-dimensional supergravity. Here, we

extend that discussion to include the fermionic sector. This variant maximal supersym-

metric D = 10 massive theory [13, 6] has also been considered in [12]. The corresponding

ansatz for the generalised circle reduction of the fermions is

ε̂ = e
1
2
m2ze

1
24
ϕ ε ,

1Note that this massive type-IIA supergravity [13, 6] is not the same as the massive IIA theory obtained

by Romans [14].
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ψ̂11 =
2
√
2

3
e−

1
2
m2ze−

1
24
ϕγ̂11λ ,

ψ̂a = e−
1
2
m2ze−

1
24
ϕ

(
ψa −

√
2

12
γaλ

)
. (4.3)

Performing the reduction of the fermionic transformation rules, we obtain

δλ = − 1

2
√
2
γµε ∂µϕ−

1

192
√
2
e−

1
4
ϕFµνσργ

µνσρε+
1

24
√
2
e

1
2
ϕFµνσγ

µνσ γ̂11ε−

− 3

16
√
2
e−

3
4
ϕFµνγµν γ̂11ε−

3

4
√
2
m2(Aµγ

µ − e 3
4
ϕγ̂11)ε ,

δψµ = ∇µε−
1

256
e−

1
4
ϕFνασρ

(
γ νασρ
µ − 20

3
δνµγ

ασρ
)
ε− 1

96
e

1
2
ϕFνσρ

(
γ νσρ
µ − 9δνµγ

σρ
)
γ̂11ε−

− 1

64
e−

3
4
ϕFνσ

(
γ νσ
µ − 14δνµγ

σ
)
γ̂11ε−

9

16
m2(Aνγµγ

ν − e 3
4
ϕγµγ̂11)ε . (4.4)

The supersymmetry transformation rules for the bosons are

δe a
µ = ε̄γaψµ , δφ = −

√
2 ε̄ λ ,

δAµ = e
3
4
φε̄γ̂11

(
ψµ −

3
√
2

4
γµλ

)
,

δAµν = e−
1
2
φε̄γ̂11

(
2γ[µψν] +

1√
2
γµνλ

)
,

δAµνρ = 3e
1
4
φε̄

(
γ[µνψρ] −

√
2

12
γµνρλ

)
+ 3A[µδAνρ] . (4.5)

As was shown in [6] this theory admits a de Sitter vacuum solution, which necessarily

breaks all supersymmetry. Note that the ten dimensional field strengths are those defined

in [6].

4.2 Reduction of D = 10,N = 1 supersymmetry

Since we have obtained the transformation rules for the type-IIA massive gauged super-

gravity in section 4.1, it is convenient to make use of these here in order to establish our

conventions and notation for the transformation rules of the standard massless N = 1

supergravity in ten dimensions. These are obtained by setting the mass parameter m2 = 0

in (4.4), and in addition making the chiral projection that reduces the N = 2 supersym-

metry to N = 1:

γ̂11ε = ε , γ̂11ψa = ψa and γ̂11λ = −λ . (4.6)

The chirality condition is consistent with setting to zero both the 3-form potential and the

Kaluza-Klein vector. This yields the ten-dimensional N = 1 supersymmetry transforma-

tion rules

δλ̂ = − 1

2
√
2
γ̂M ε̂ ∂M φ̂+

1

24
√
2
e

1
2
φ̂ ĤMNP γ̂

MNP ε̂ ,

δψ̂M = ∇̂M ε̂−
1

96
e

1
2
φ̂ĤNPQ

(
γ̂ NPQ
M − 9 γ̂PQδNM

)
ε̂ ,
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δê A
M = ˆ̄εγ̂Aψ̂M , δφ̂ = −

√
2 ˆ̄ε λ̂ ,

δB̂MN = −e− 1
2
φ̂ˆ̄ε (2γ̂[M ψ̂N ] +

1√
2
γ̂MN λ̂) . (4.7)

We can now use these standard N = 1 results in a generalised circle reduction to d = 9. We

shall focus just on the pure supergravity multiplet in d = 9, by performing a (consistent)

truncation of the matter multiplet. The required reduction ansatz is obtained from the

arbitrary-dimension ansatz of appendix B by setting m1 = m2 = m and φ2 = 0 = χ. This

gives

ε̂ = e
1
2
mze

− 1
16
√

14
φ1 ε̃ ,

λ̂ =

√
7

8
e−

1
2
mze

1
16
√

14
φ1 λ̃ ,

ψ̂10 = −
√
7

8
e−

1
2
mze

1
16
√

14
φ1 γ̃10λ̃ ,

ψ̂a = e−
1
2
mze

1
16
√

14
φ1

(
ψ̃a +

1

8
√
7
γ̃aλ̃

)
,

φ̂ =

√
14

4
φ1 + 4mz . (4.8)

The tildes signify that the fermions and the Dirac matrices are still ten-dimensional. These

can be related to the nine-dimensional quantities as follows:

γ̃a = γa × σ1 , γ̃10 = 1l× σ2 and γ̂11 = 1l× σ3 ,
ε̃ = ε× η , λ̃ = λ× σ1η and ψ̃a = ψa × η , (4.9)

where η is a 2-component constant spinor. The chiral projections (4.6) imply that we

must have σ3η = η. In the following subsections, we present the resulting nine-dimensional

transformation rules in the Einstein frame and the string frame.

4.2.1 D = 9 supersymmetry in the Einstein frame

Reducing the N = 1, D = 10 transformation rules, and setting G(2) = F(2) = 1√
2
F(2), we

obtain the following nine-dimensional supersymmetry transformation rules:

δλ = − 1

2
√
2
γ µε ∂µφ+

1

12
√
7
e

√
2
7
φ
Hµνσγ

µνσε+
i

4
√
14
e

1√
14
φ
Fµνγ

µνε+

+
4√
7
m
( 1√

2
γ µAµ − ie

− 1√
14
φ
)
ε ,

δψµ = ∇µε−
1

84
e

√
2
7
φ
Hνσρ

(
γ νσρ
µ − 15

2
δνµγ

σρ

)
ε− i

28
√
2
e

1√
14
φ
Fνσ(γ

νσ
µ − 12δνµγ

σ)ε−

− 4

7
√
2
mAνγµγ

νε+
4i

7
me
− 1√

14
φ
γµε ,

δe a
µ = ε̄γaψµ , δφ = −

√
2 ε̄ λ ,

δAµ = i
√
2e
− 1√

14
φ
ε̄(ψµ +

1√
7
γµλ) ,

δBµν = −e−
√

2
7
φ
ε̄(2γ[µψν] +

2√
7
γµνλ)−A[µδAν] , (4.10)
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where we have dropped the “1” subscript on the scalar field. The field strengths are Hµνρ =

3∂[µBνρ] − 3
2A[µFνρ] and Fµν = 2∂[µAν]. This theory is an abelian gauged version of N =

1, D = 9 supergravity. We shall show that it admits a supersymmetric (Minkowski)6 × S3
vacuum solution. We shall also obtain a time-dependent supersymmetric cosmological

solution in this theory.

4.2.2 D = 9 supersymmetry in the string frame

The above transformation rules for the fermions are readily expressed in terms of the fields

of the string frame, using the formulae given in appendix C. Specialised to nine dimensions,

these are

gµν = e

√
2
7
φ1 g̃µν , F(2) = F̃(2) , H(3) = H̃(3) , dΦ +

√
8mA(1) = M̃(1) ,

φ1 = −
√

8

7
Φ , ε = e

1
2
√

14
φ1 ε̃ , λ = e

− 1
2
√

14
φ1 λ̃ , ψµ = e

1
2
√

14
φ1 ψ̃µ , (4.11)

The fermionic transformation rules in the string frame then take the form

δλ̃ =

(
1√
7
M̃µγ̃

µ +
1

12
√
7
H̃µνσγ̃

µνσ +
i

4
√
14
F̃µν γ̃

µν − 4i√
7
m

)
ε̃ ,

δψ̃µ =

(
∇̃µ −

1

7
M̃ν γ̃µγ̃

ν − 1

84
H̃νσρ(γ̃

νσρ
µ − 15

2
δνµγ̃

σρ)

− i

28
√
2
F̃νσ(γ̃

νσ
µ − 12δνµγ̃

σ) +
4i

7
mγ̃µ

)
ε̃ . (4.12)

5. Supersymmetric Md−3 × S3 and Md−2 × S2 vacua

The generalised Kaluza-Klein reduction gives rise to gauged supergravities that admit

supersymmetric vacuum solutions of the formMinkowski×Sphere [8]. The nine-dimensional

theory admits just a (Minkowski)6 × S3 vacuum of this kind, supported by the H(3) flux.

The theories in lower dimensions admit (Minkowski)d−3×S3 vacua supported by H(3), and

(Minkowski)d−2 ×S2 vacua supported by a 2-form F(2). In this section, we shall show that

these vacua are all supersymmetric.

Consider first the (Minkowski)d−3 × S3 solution supported by the H(3) field. This is

given by

ds2d = dxµ dxν ηµν +
4

m2 (d− 1)2
dΩ23 ,

H(3) =
8

m2 (d− 1)2
Ω(3) , φ = 0 . (5.1)

If we lift the solution back to D dimensions using the generalised reduction ansatz, it

becomes the near-horizon geometry of a (D− 5)-brane supported by the field Ĥ(3). To see

this, we start with the (D − 5)-brane in D dimensions, given by

dŝ2D = H−
2

D−2 dxµ dxν ηµν +H
D−4
D−2 (dr2 + r2 dΩ23) ,

Ĥ(3) = 2QΩ(3) , φ̂ = −1

2
â logH , H = 1 +

Q

r2
. (5.2)
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In the near-horizon limit, the additive constant 1 in H is dropped. Making the coordinate

transformation r2/Q = e(D−2)mz, and letting Q = 4/((D − 2)2m2), we obtain

dŝ2D = e2mz
(
dxµ dxν ηµν + dz2 +

4

m2 (D − 2)2
dΩ23

)
,

Ĥ(3) =
8

m2 (D − 2)2
Ω(3) , φ̂ =

4

â
mz , (5.3)

which fits the reduction ansatz precisely, giving rise to the lower-dimensional solution (5.1).

The supersymmetry of the (Minkowski)d−3 × S3 solution is easily established. Firstly,

since its lift to D = d+ 1 dimensions gives the near-horizon limit of the (D − 5)-brane, as

discussed above, it is manifest that qua D-dimensional solution, it will preserve one half of

the D-dimensional supersymmetry. This halving of supersymmetry comes about from the

usual projection condition for supersymmetry of the (D − 5)-brane, ε̂ = Γ̂∗ ε̂, where Γ̂∗ is

built from the product of Dirac matrices in the world-volume of the (D − 5)-brane. As is

well known, for any of the BPS brane solutions with metric given by

dŝ2 = e2A dxµ dxµ + e2B dym dym , (5.4)

the Killing spinors are given by

ε̂ = e
1
2
A ε̂0 , Γ̂∗ ε̂0 = ε̂0 , (5.5)

where ε̂0 is a constant spinor. We see from (5.3) that A = mz, and hence the Killing

spinors in D dimensions take the form

ε̂ = e
1
2
mz ε̂0 . (5.6)

Since this z dependence matches precisely the z dependence for ε̂ in the generalised re-

duction ansatz (4.8), it immediately follows that the (Minkowski)d−3 × S3 solution will be

supersymmetric qua solution of the d-dimensional gauged supergravity.

Another class of supersymmetric vacuum is of the form (Minkowski)d−2×S2, supported
by one of the two-form field strengths F a

(2). It is given by

ds2d = dxµ dxν ηµν +
1

m2 (d− 1)2
dΩ22 ,

F(2) =

√
2

m (d− 1)
Ω(2) , φ = 0 . (5.7)

Lifting this solution back to D dimensions, it becomes the near-horizon limit of the (D−4)-

brane supported by one of the field strengths F̂ a
(2). The (D− 4)-brane solution is given by

dŝ2D = H−
2

D−2 dxµ dxν ηµν +H
2(D−3)

D−2 (dr2 + r2 dΩ22) ,

F̂(2) =
√
2QΩ(2), φ̂ = −1

2
â logH , H = 1 +

Q

r
. (5.8)
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In the near-horizon limit, the constant 1 in H is dropped. Making the coordinate trans-

formation r/Q = e(D−2)mz and setting Q = 1/(m (D − 2)) we have

dŝ2D = e2mz
(
dxµ dxν ηµν + dz2 +

1

m2 (D − 2)2
dΩ22

)
,

F̂(2) =

√
2

m (D − 2)
Ω(2) , φ̂ =

4

â
mz . (5.9)

This clearly fits the reduction ansatz exactly to give rise to (5.7).

Again, the supersymmetry of the solution as a lifted D-dimensional configuration is

manifest, since it is just the near-horizon limit of a BPS (D−4)-brane. Its supersymmetry

as a solution in the d = D − 1 dimensional gauged supergravity itself is again easily seen,

from the general form (5.5) of the Killing spinors in the lifted (D−4)-brane. Thus we again

find that the D-dimensional Killing spinors are of the form (5.6), and so comparison with

the generalised reduction ansatz (4.8) for ε̂ shows that the (Minkowski)d−2 × S2 solution

will be supersymmetric in the d-dimensional gauged supergravity.

6. Supersymmetric time-dependent solutions and pp-waves

In this section we construct a time-dependent solution of the new gauged nine-dimensional

supergravity, and we show that it is supersymmetric. It can be thought of as a cosmological

solution in the gauged supergravity.

The solution is of a form analogous to a standard domain wall, except that here the

“transverse space coordinate” is timelike rather than spatial. It is easily seen that the

configuration

ds29 = −dt2 + (
8

7
mt)2dxidxi ,

e
1√
14
φ
=

8

7
mt . (6.1)

solves the nine-dimensional equations of motion that follow from (2.17). Note that the

form-fields are all zero in this solution.

The fermionic transformation rules (4.10) in this background reduce to

δλ = − 1

2
√
2
γM (∂Mφ) ε−

4i√
7
me
− 1√

14
φ
ε ,

δψM = ∇M ε+
4i

7
me
− 1√

14
φ
γM ε , (6.2)

and it is easily verified that (6.1) is supersymmetric.

In the string frame, the metric in the solution (6.1) becomes simply the Minkowski

metric ds2str = ηMNdx
MdxN , where

t = exp

(
8

7
mx0

)
. (6.3)

The dilaton is a linear function of the redefined time; Φ = −4mx0+ constant.
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The solution (6.1) is straightforwardly lifted to ten dimensions, where it gives

ds210 = e2mz
[
−
(
8

7
mt

)−1/4
dt2 +

(
8

7
mt

)7/4
(dz2 + dxidxi)

]
,

eφ̂ = e4mz
(
8

7
mt

)7/2
. (6.4)

This can again be viewed as a time-dependent supersymmetric cosmological solution, driven

purely by the dilaton. In the string frame the metric is again purely minkowskian, but now

the dilaton is linearly proportional to the light-cone coordinate x+:

ds2str = 2dx+ dx− + dxi dxi , Φ = x+ . (6.5)

A metric-dilaton configuration of this kind was also discussed in [15]. It is straightforward

to see that the solution preserves half of the supersymmetry, with the Killing spinor given

by γ+ ε0 where ε0 is a constant spinor.

A further uplift to D = 11 using the standard Kaluza-Klein formula

ds211 = e
1
6
φ̂ds210 + e−

4
3
φ̂dy2 (6.6)

yields the Ricci-flat solution

ds211 = −r2dt2 + t2dr2 + r2t2dxidxi + r−4t−4dy2 , (6.7)

where we have changed from the ten-dimensional coordinate z to a new coordinate r defined

by r = e
4
3
mz(87mt)1/6. The metric (6.7) is a pp-wave. To see this, we introduce new

coordinates X+ and X− defined by

r2 t2 = X+ ,
r

t
= e2X− , (6.8)

in terms of which (6.7) becomes

ds211 = dX+dX− +X+dx
idxi +X−2+ dy2 . (6.9)

Thus, we conclude that in eleven dimensions the solution describes a pp-wave.

The metric (6.9) is a particular example of a more general class of pp-waves, contained

within the ansatz

dsD = dX+dX− +Xh1
+ dxm1dxm1 +Xh2

+ dym2dym2 +Xh3
+ dz

m3dzm3 + · · · . (6.10)

Here, we take the index ranges to be

1 ≤ m1 ≤ p1 , p1 + 1 ≤ m2 ≤ p1 + p2 , etc. , (6.11)

and so the total dimension is D = 2 + p1 + p2 + · · ·. The only non-vanishing vielbein

components of the Riemann tensor for (6.10) are given by

Rmi+mj + = −1

2
hi(hi − 2)X−2+ δmi mj

. (6.12)
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Thus (6.10) is Ricci-flat if

0 =
∑

i=1

pihi(hi − 2) . (6.13)

The pp-wave (6.9) that resulted from lifting our time-dependent cosmological solution to

D = 11 is the special case with

p1 = 8 , h1 = 1 , p2 = 1 , h2 = −2 , (6.14)

which clearly satisfies (6.13).

7. Conclusions

In this paper, we have obtained generalised Kaluza-Klein reductions of the low-energy

effective actions of string theories involving the metric, the dilaton, a 3-form field strength

and a 2-form field strength. The generalised reduction gauges two global symmetries,

namely the homogeneous scaling symmetry of the equations of motion, and also the dilaton

shift symmetry of the lagrangian. The resulting dimensionally-reduced theory has a positive

scalar potential, in the form of a single-exponential of the lower-dimensional dilaton. We

showed that the reduction is supersymmetric, by explicitly deriving the lower-dimensional

supersymmetry transformation rules.

Although it might seem somewhat perverse to perform generalised reductions of the

kind we have considered in this paper, they are actually related by U-duality to more

conventional reductions that have been considered extensively in the past. Specifically,

a generalised reduction involving the global shift symmetry of the axion in the type-IIB

theory has been used in order to establish a T-duality between the type-IIB theory and the

massive type-IIA theory [9]. The S-duality of the type-IIB theory implies that one should

also consider SL(2,R)-related generalised reductions [11], which will involve the global shift

symmetry of the dilaton. When one extends the discussion of non-perturbative dualities

to lower dimensions, the underlying global Cremmer-Julia type symmetries can only be

interpreted as strictly internal symmetries if one also makes use of the scaling symmetry of

the equations of motion that homogeneously scales the lagrangian. Thus it is very natural

to consider generalised reductions of the kind we have studied in this paper.

The new supergravities have the interesting feature that they all admit supersymmetric

vacuum solutions of the form (Minkowski)×S3, and in some cases also (Minkowski)×S2.
These solutions provide novel compatifications of higher dimensional string theories. Fur-

thermore, owing to the positivity of the scalar potential, the supergravities we have ob-

tained admit time-dependent cosmological solutions that preserve half of the supersymme-

try. Lifting these solutions back to D = 10, they yield supersymmetric time-dependent

solutions driven purely by the dilaton, with no form-field fluxes. Under a further lifting to

eleven dimensions, these time-dependent solutions become supersymmetric pp-waves. It

would be interesting to study string theory and M-theory in these simple but non-trivial

backgrounds.
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A. Bosonic reduction ansatz; Einstein frame

We begin by reducing the D = d+1 dimensional Ricci tensor to d dimensions by using the

metric ansatz in (2.5). We choose the natural vielbein basis

êa = em2z+αϕea , êz = em2z+βϕ(dz +A(1)) . (A.1)

Thus we have

ê A
M = em2z

(
eαϕe a

µ eβϕAµ

0 eβϕ

)
, ê M

A = e−m2z

(
e−αϕe µ

a −e−αϕAa

0 e−βϕ

)
. (A.2)

The determinant of the metric is
√
−ĝ = em2(d+1)z+(β+dα)ϕ

√−g = e(d+1)m2z+2αϕ
√−g . (A.3)

Using the first Cartan structure equation with zero torsion, dêA = −ω̂AB ∧ êB , we

obtain the spin connections

ω̂ab = ωab + e−(m2z+αϕ)((α∂bϕ−m2Ab) ê
a − (α∂ aϕ−m2Aa) êb)−

1

2
e−m2z+(β−2α)ϕFa

b ê
z ,

ω̂az = e−(m2z+αϕ)(m2Aa − β∂ aϕ) êz − 1

2
e−m2z+(β−2α)ϕFa

b ê
b +m2e

−(m2z+βϕ)êa . (A.4)

From the curvature 2-forms Θ̂A
B = dω̂AB + ω̂AC ∧ ω̂CB = 1

2R̂
A
BCDê

C ∧ êD, we obtain the

Ricci tensor with vielbein components

R̂ab = e−2(m2z+αϕ)
(
Rab −

1

2
∂aϕ∂bϕ− αηab¤ϕ+ αm2(d− 1)×

× (Ac∂ cϕηab −Aa∂bϕ−Ab∂aϕ) +
1

2
m2(d− 1)(∇aAb +∇bAa) +

+m2∇cAcηab +m2
2(d− 1)(AaAb −A2(1)ηab)

)
−

−m2
2(d− 1)e−2(m2z+βϕ)ηab −

1

2
e−2(m2z+dαϕ)FacFbc ,

R̂az = e−2m2z+(d−3)αϕ
(1
2
∇b(e−2(d−1)αϕFab) +m2(d− 1)(β∂aϕ−m2Aa)

)
−

−1

2
m2(d− 1)e−2m2z−(d+1)αϕAbFab ,

R̂zz = e−2(m2z+αϕ)
(
− β¤ϕ+m2∇cAc +m2β(d− 1)Ab∂bϕ−m2

2(d− 1)A2(1)
)
+

+
1

4
e−2(m2z+dαϕ)F2(2) . (A.5)

The Ricci scalar is

R̂ = e−2(m2z+αϕ)

(
R− 2α¤ϕ− 1

2
(∂ϕ)2 + 2m2d∇aAa −m2

2d (d − 1)A2(1)
)
−

−e−2m2z

(
m2
2 d (d− 1)e−2βϕ +

1

4
e−2dαϕF2(2)

)
. (A.6)

The reduced Ricci components in (A.5) have been simplified through use of the rela-

tions (2.6).
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The laplacian operator acting on the D-dimensional dilaton is given by

e2m2z+2αϕ ¤̂φ̂ = ¤φ−m2(d− 1)

(
Aµ∂µφ−

4

â
m1 (A2(1)+ e2(d−1)αϕ)

)
− 4

â
m1∇µAµ , (A.7)

where φ̂ = φ+ 4
â m1z, as given by (2.5).

The vielbein components of the various D-dimensional antisymmetric tensors reduce

according to

Ĥa1···an = e−(m2+(n−1)m1)z−nαϕHa1···an ,

Ĥa1···an−1z = e−(m2+(n−1)m1)z+(d−n−1)αϕHa1···an−1 . (A.8)

B. Fermionic reduction ansatz in D ≤ 10; Einstein frame

In this appendix we provide an arbitrary dimensional generalised ansatz that reduces the

fermions in D = d+1 to d dimensions. The generalised ansatz we are constructing is such

that the standard S1 reduction (m1 = 0 = m2) reduces canonical fermionic kinetic terms

with a normalization as

ê−1L̂ = κ( ˆ̄ΨM γ̂
MNP ∇̂N Ψ̂P + ˆ̄λγ̂M∇̂M λ̂) (B.1)

to canonical kinetic terms

e−1L = κ(Ψ̄µγ
µνρ∇νΨρ + λ̄γµ∇µλ+ χ̄γµ∇µχ) + rest . (B.2)

Here κ is an arbitrary coefficient. Performing the split of the gravitino as ψ̂A = (ψ̂a, ψ̂D)

an ansatz that accomplishes this is

ε̂ = e
1
2
m2ze

1
2
αϕ ε ,

λ̂ =
1√
D − 2

e−
1
2
m2ze−

1
2
αϕ(χ+

√
D − 3λ) ,

ψ̂D =

√
D − 3

D − 2
e−

1
2
m2ze−

1
2
αϕγD(

√
D − 3χ− λ) ,

ψ̂a = e−
1
2
m2ze−

1
2
αϕ(ψa −

1

(D − 2)
√
D − 3

γa(
√
D − 3χ− λ)) ,

φ̂ =

√
D − 3

D − 2
φ1 +

1√
D − 2

φ2 +
√

2(D − 2)m1z ,

ϕ = − 1√
D − 2

φ1 +

√
D − 3

D − 2
φ2 . (B.3)

Note that, here and elsewhere in this paper our convention is always α > 0. A consistent

truncation of the matter multiplet can be obtained by setting m1 = m2 and φ2 = 0 = χ.
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C. Einstein-frame to string-frame conversion

The D-dimensional lagrangian in the Einstein frame is given by

e−1L = R− 1

2
(∂φ)2 − 1

12
eâφH2

(3) −
1

4
e

1
2
âφ(F a

(2))
2 − 1

2
Ψ̄Mγ

MNP∇NΨP −
1

2
λ̄ γM∇Mλ−

− 1

2
√
2
λ̄γNγMΨN∂Mφ+ · · · , (C.1)

where â =
√

8
D−2 , and where we have omitted additional interaction and four-fermi terms.

This may be mapped to the string frame lagrangian

ẽ−1L̃ = e−2Φ
(
R̃+ 4(∂Φ)2 − 1

12
H̃2
(3) −

1

4
(F̃ a
(2))

2 − 1

2
¯̃ΨM γ̃

MNP ∇̃N Ψ̃P −
1

2
¯̃
λ γ̃M∇̃M λ̃−

− ( ¯̃ΨN γ̃
N Ψ̃M − â

2
√
2

¯̃λγ̃N γ̃M Ψ̃N )∂MΦ+ · · ·
)
, (C.2)

by the transformations

gMN = e
1
2
âφ g̃MN , HMNP = H̃MNP , F a

MN = F̃ a
MN , φ = −âΦ ,

ε = e
1
8
âφ ε̃ , λ = e−

1
8
âφλ̃ , ΨM = e

1
8
âφΨ̃M . (C.3)

Note that γM = e
1
4
âφ γ̃M i.e. γA = γ̃A. Furthermore, we have made use of the D-

dimensional Majorana flip properties ψ̄γMχ = −χ̄γMψ and ψ̄γMNPχ = χ̄γMNPψ for

any two anti-commuting spinors ψ and χ.

The bosonic reduction ansätze in the string frame are considerably simpler than their

Einstein-frame counterparts. The reduction of the D = d + 1 dimensional Ricci tensor is

given by

R̂ab = Rab +
1√
2
∇a∂bϕ−

1

2
∂aϕ∂bϕ−

1

2
e−
√
2ϕFac F c

b ,

R̂az =
1

2
e
√
2ϕ∇b(e

− 3√
2
ϕFab) ,

R̂zz =
1√
2
¤ϕ− 1

2
(∂ϕ)2 +

1

4
e−
√
2ϕF 2

(2) ,

R̂ = R+
√
2¤ϕ− (∂ϕ)2 − 1

4
e−
√
2ϕF 2

(2) . (C.4)

Some useful formulae for the reduction of the scalar fields are:

¤̂Φ̂ = ¤̂
(
Φ− ϕ√

8
− 1

2
(D − 2)mz

)
= ¤Φ− 1√

8
¤ϕ− 1√

2

(
∂µϕ∂

µΦ− 1√
8
(∂ϕ)2

)
−

− 1

2
m(d− 1)

(
1√
2
Aµ∂µϕ−∇µAµ

)
, (C.5)

(∂Φ̂)2 = (∂Φ)2 +
1

8
(∂ϕ)2 − 1√

2
∂µϕ∂

µΦ+m(d− 1)×

×Aµ(∂µΦ−
1√
8
∂µϕ) +
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+
1

4
m2(d− 1)2

(
A2(1) + e

√
2ϕ

)
, (C.6)

ê M
a ê N

b ∇̂M∂N Φ̂ = ∇a∂bΦ−
1√
8
∇a∂bϕ+

1

4
m(d− 1)(∇aAb +∇bAa) ,

ê M
a ê N

z ∇̂M∂N Φ̂ = − 1

2
e
− 1√

2
ϕF b

a (∂bΦ−
1√
8
∂bϕ)−

− 1

2
√
2
m(d− 1)e

1√
2
ϕ
∂aϕ−

−1

4
m(d− 1)e

− 1√
2
ϕAbFab ,

ê M
z ê N

z ∇̂M∂N Φ̂ = − 1√
2
∂ µϕ (∂µΦ−

1√
8
∂µϕ)−

− 1

2
√
2
m(d− 1)Aµ∂µϕ . (C.7)
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