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1. Introduction and summary

One of the most promising elements of the AdS/CFT correspondence is the possibility of

providing an alternative method of studying aspects of confining theories. Unfortunately,

there are but a few smooth supergravity backgrounds potentially dual to confining N = 1

SYM.

Recently, a new class of Sasaki-Einstein manifolds Y p,q has been constructed [1, 2].

Given a Sasaki-Einstein manifold X5 one can consider a stack of N D3 branes at the

tip of the cone over X5. Taking the Maldacena limit leads to a duality between string

theory on AdS5 × X5 and a superconformal gauge theory living in the world volume of

the D3 branes. In this context the infinite family of spaces Y p,q was shown to be dual to

superconformal quiver gauge theories [3, 4]. Remarkably, the correspondence has provided

a better treatment of some of the gauge theory questions. In particular, the irrational

nature of some R-charges has been elucidated in the field theory using gravity input [3, 5].

Since Y p,q spaces are generalizations of T 1,1 one naturally wonders about the possibility
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of further generalizing these spaces in a way that parallels the program carried by Klebanov

and collaborators for the conifold [6, 7]. In fact, the first step in this direction has already

been taken in a recent collaboration including Klebanov [8]. The pinnacle of Klebanov’s

program is the Klebanov-Strassler (KS) background [7], which is a smooth supergravity

solution constructed as a warped deformed conifold.

In this paper we take a step in the construction of generalizations of the KS background.

Namely, we construct a first order deformation of the complex structure of the cone over

Y p,q. This deformation should lead, upon warping, to a supergravity background describing

the IR of the recently constructed cascading solution [8] on the cone over Y p,q.

One important motivation for this work is that the existence of a supergravity back-

ground allows for explicit computation of some dynamical quantities, like the spectrum of

various states including mesons, quantum corrections to Regge trajectories and possibly

Goldstone bosons.

In section 2 we review some of the key aspects of the Y p,q spaces and their dual

quiver gauge theories. Our aim is to set up the notation and technical motivation for

later sections. In particular, we address various technical aspects as the supergravity

realization of chiral symmetry breaking and the algebra of vielbeins. In section 3, after

recalling the general theory of deformation of CY spaces from the differential geometric

point of view, we present the first order deformation for the cone over Y p,q. This is the

main technical result of the paper. Section 3 also contains the result of explicitly checking

that the deformation is supersymmetric. This guarantees that the deformation has SU(3)

holonomy and that indeed corresponds to a complex Kähler manifold. Section 4 reviews

the complex coordinates introduced for the cone over Y p,q in [3] with the aim of classifying

the deformation. We show that it corresponds to a deformation of the complex structure.

Moreover, in this section we find the Kähler potential for the cone over Y p,q, knowing the

Kähler potential opens a new venue for understanding deformations of these CY spaces.

Section 5 discusses placing a stack of N D3 and M fractional D3 branes at the tip of the

deformed space. Since we only know the deformation of the space to first order, our analysis

is approximate. The main technical result in this section is the explicit construction of the

imaginary self dual 3-form in the deformed space. This implies that to first order there is

a supergravity background that should correspond to the chiral symmetry broken phase of

the cascading Sasaki-Einstein quivers discussed in [8].

Let us end this section with some comments on open questions that we were not able

to answer in this work. The most glaring question is the existence of a solution beyond

first order. Our paper follows a strictly differential geometric approach to the deformation.

Another unexplored venue is the algebraic approach. Namely, the complex deformation

for the conifold is fairly simple from the algebraic standpoint. Given the defining equation∑4
a=1 w

2
a = 0, we simply need to replace it by

∑4
a=1 w

2
a = ε2. There are various questions

that the algebraic approach answers immediately. For example, chiral symmetry breaking

is nothing but the breaking of the U(1) symmetry that rotates the coordinates wa in the

undeformed space. In this paper we followed exclusively the differential geometric approach

but we hope to discuss the algebraic one in the future. Finally, chiral symmetry breaking

can also be explored along the lines of [9, 10].
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Note Added

After the first version of this work appeared in the archive, a series of papers addressing

the complex deformation from the field theory side have given arguments in favor of su-

persymmetry breaking [11]. We also became aware of work by Altmann [12] who shows

the existence of an obtruction for finding the complex deformations beyond first order. It

is worth mentioning that while these works make a case for obstruction to a solution built

around a complex deformation of the corresponding cone over Y p,q it is plausible that the

full solution is supersymmetric albeit with SU(3)-structure rather than SU(3) holonomy as

is the case for the baryonic branch of the KS solutions as discussed in [13].

2. Review of superconformal quiver theories and their dual AdS5 × Y p,q

backgrounds

The gauge theory dual to IIB on AdS5 × Y p,q has been the subject of much recent inves-

tigation. Here we begin with a summary of some of the key aspects of the quiver gauge

theories with Y p,q duals, as explained in ref. [4].

The quivers for Y p,q can be constructed starting with the quiver of Y p,p which is

naturally related to the quiver theory obtained from C3/Z2p. The gauge group is SU(N)2p

and the superpotential is constructed out of cubic and quartic terms in the four types of

fields present: U, V, Y and Z, where U and V are doublets of SU(2):

εαβU
α
a V

βY , εαβU
α
b V

βY , εαβZU
α
a Y U

β
b . (2.1)

Greek indices α, β = 1, 2 are in SU(2), and Latin subindices a, b refer to the gauge group

where the corresponding arrow originates. Equivalently, as explained in [8], the quiver

theory for Y p,q can be constructed from two basic cells denoted by σ and τ . Some concrete

examples can be found in [4, 8].

One key ingredient is that the geometric realization of the R-symmetry is given by a

Killing vector field in the Sasaki-Einstein geometry of the form

K =
1

3

∂

∂ψ
, (2.2)

where the geometrical meaning of the coordinates ψ and α will become apparent momen-

tarily. Breaking the R-symmetry is our main goal, and it translates into constructing a

supergravity background without (2.2) as a Killing vector.

2.1 The cone over Y p,q

Before turning on any deformations, we highlight the structure of the cone over Y p,q,

emphasizing its similarities with the conifold, which is the cone over T 1,1. This connection

motivates our later Ansatz for the deformation.
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Following [2, 3], the Sasaki-Einstein metric on Y p,q can be written in the form

ds2 =
1− cy

6
(dθ2 + sin2θdφ2) +

1

w(y)v(y)
dy2 +

w(y)v(y)

36
(dβ − c cos θdφ)2 +

+
1

9
[dψ + cos θdφ+ y(dβ − c cos θdφ)]2 (2.3)

=
1

6
[(eθ)2 + (eφ)2 + (ey)2 + (eβ)2] +

1

9
(eψ)2 , (2.4)

where

w(y) =
2(a− y2)

1− cy , v(y) =
a− 3y2 + 2cy3

a− y2
. (2.5)

The natural one forms are given by [8, 15]

eθ =
√

1− cy dθ ,
eφ = −

√
1− cy sin θdφ ,

ey = − 1

H(y)
dy,

eβ = H(y)(dβ − c cos θdφ) ,

eψ = dψ + cos θdφ+ y(dβ − c cos θdφ) , (2.6)

with H(y) =
√
w(y)v(y)/6.

Before proceeding, it would be convenient to develop the algebra of exterior derivatives.

For this purpose, let L(y, θ) = cot θ√
1−cy and K(y) = cH(y)

2(1−cy) . Then dH(y)
dy = K(y)− y

H(y) . The

exterior derivatives of the above forms then satisfy

deθ = K(y)ey ∧ eθ ,
deφ = K(y)ey ∧ eφ + L(y, θ)eθ ∧ eφ ,
dey = 0 ,

deβ =

(
y

H(y)
−K(y)

)
ey ∧ eβ − 2K(y)eθ ∧ eφ ,

deψ = eθ ∧ eφ − ey ∧ eβ . (2.7)

At various stages in the construction, we will refer to the model of the deformed

conifold. In particular, it is worth noting that the above definitions reduce to those in [7]

describing T 1,1 in the limit [2]

c→ 0 , y → cos θ2 , a→ 3 and β → φ2 . (2.8)

Following the discussion of [7] (see also [14]), one can further define the rotated and shifted

vielbeins e1, e2, . . . , e5 and g1, g2, . . . , g5 as

e1 = −eβ , e3 = − cosψeφ − sinψeθ , e5 = eψ ,

e2 = ey , e4 = − sinψeφ + cosψeθ , (2.9)
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and

g1 =
1√
2

(e1 − e3) , g3 =
1√
2

(e1 + e3), g5 = e5.

g2 =
1√
2

(e2 − e4) , g4 =
1√
2

(e2 + e4) , (2.10)

Note that, if desired, one could instead have defined ẽ1, ẽ2, . . . , ẽ5 as

ẽ1 = eφ , ẽ3 = cosψeβ − sinψey , ẽ5 = eψ .

ẽ2 = eθ , ẽ4 = sinψeβ + cosψey , (2.11)

The corresponding g̃1, g̃2, ..., g̃5 would then be defined in a similar fashion as in (2.10) with

ei replaced by ẽi for i = 1, 2, . . . , 5. One should note, however, that the ẽi are physically

indistinct from the ei in the T 1,1 limit (2.8). They are distinct when c 6= 0, and so we may

expect that they could play a rôle in deforming the cone over Y p,q. We will nevertheless

show that the first order deformation given in terms of the ẽi is no different than that given

in terms of the ei.

Although the angular coordinate ψ appears explicitly in the the above one forms, the

metric remains ψ independent. As we will see in the next section, the perturbed solution

will break this symmetry direction in an analogous way to the solution of [7].

3. The first order complex deformation

We now briefly review the deformation theory of CY spaces following the presentation

of [16]. Let the parameter space of Calabi-Yau manifolds be the parameter space of Ricci-

flat Kähler metrics, and let gmn and gmn + δgmn satisfy

Rmn(g) = 0, Rmn(g + δg) = 0 . (3.1)

Then, with the coordinate condition ∇nδgmn = 0, one obtains that δgmn satisfies the

Lichnerowicz equation

∇k∇kδgmn + 2Rm
p
n
qδgpq = 0 . (3.2)

The connection between the geometro-differential approach and the algebraic approach

to deforming a CY space arises due to an isomorphism between the solutions of (3.2) and

harmonic forms on CY. Namely, a solution with mixed indices is associated with a (1, 1)-

form

iδgµν̄dx
µ ∧ dxν̄ , (3.3)

which is harmonic if and only if the variation of the metric satisfies the Lichnerowicz

equation, (3.2). Similarly, for a variation of pure type, one can associate a (2, 1)-form

using the holomorphic 3-form Ω:

Ωκλ
ν̄δgµ̄ν̄dx

κ ∧ dxλ ∧ dxµ̄ . (3.4)

This form is harmonic if and only if δgµ̄ν̄ satisfies (3.2).
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With these isomorphisms in place we can classify a deformation as either Kähler or

complex. In particular, variations of pure type (there are b2,1 of them) correspond to

variations of the complex structure. Note that g + δg is a Kähler metric on a manifold

close to the original one. There must therefore exist a coordinate system in which the pure

parts of the metric vanish. Under a change of coordinates xm → xm + fm(x), the metric

variation transforms according to the familiar

δgmn → δgmn −
∂f r

∂xm
grn −

∂f r

∂xn
gmr . (3.5)

If fµ is holomorphic then δgµν is invariant. Thus, the pure part of the variation could be

removed by a transformation of coordinates but it cannot be removed by a holomorphic

coordinate transformation. Thus the pure part of the metric variation corresponds precisely

to changes of the complex structure.

3.1 First order perturbation

We are now in a position to construct the first order deformation of the cone over Y p,q.

Using the one-forms of section 2, the undeformed metric is given by

ds2 = dr2 + r2

(
1

6

[
(e1)2 + (e2)2 + (e3)2 + (e4)2

]
+

1

9
(e5)2

)
. (3.6)

This has the same form as the conifold; however important nontrivial dependences on the

coordinate y have been introduced through the definitions of the vielbeins ei.

As mentioned above, most of our intuition for constructing a deformation of (3.6)

comes from the analogous case of the deformed conifold. Here we recall that the deformed

conifold metric can be written as follows [17]:

ds2
DC = ε

4
3
K(τ)

3

(
1

3K3

[
4 dτ2 + (g5)2

]
+ cosh(τ)2

[
(g3)2 + (g4)2

]
+

+ sinh(τ)2
[
(g1)2 + (g2)2

])
, (3.7)

where

K(τ) =
22/3(sinh(4τ) − 4τ)1/3

2 sinh(2τ)
. (3.8)

While the above is given in terms of a radial coordinate τ , a more natural coordinate

for our analysis is given by r where r3 = ε2 cosh(2τ). Furthermore, to understand the first

order deformation, is it also convenient to expand the metric for large r; more precisely, we

expand in the dimensionless quantity ε2/r3. We find, up to second order in the deformation,

that

ds2
DC(2) = dr2 + r2

(
1

6

[
(g1)2 + (g2)2 + (g3)2 + (g4)2

]
+

1

9
(g5)2

)
+

+
1

6
r2
[
−(g1)2 − (g2)2 + (g3)2 + (g4)2

] ε2
r3

+

+
1

3

(
−1

6
r2[(g3)2 + (g4)2 + (g1)2 + (g2)2] + 2

[
dr2 +

1

9
(g5)2r2

])
×

×
(

ln

(
2r3

ε2

)
− 1

)
ε4

r6
+ dr2 ε

4

r6
+ · · · . (3.9)
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The zeroth order term is of course the undeformed conifold metric itself. The first order (in

ε2) term should be a solution to the linearized Einstein’s equations, and so should be a zero

mode of the Lichnerowicz operator (3.2). We make the simple observation that the first

order contribution is transverse and traceless. The second order perturbation is “sourced”

by the first order equations, and we have verified explicitly that the above system indeed

satisfies the Ricci-flatness condition to second order.

We now turn our attention back to the cone over Y p,q. We note that the combination

−(g1)2− (g2)2 + (g3)2 + (g4)2 showing up at first order in the above expansion is the same

as 2(e1e3 + e2e4). This therefore suggests an Ansatz for a first order perturbation for the

cone over Y p,q of the form

ds2
(1) = hmndx

mdxn = f(y)r2

(
e1e3 + e2e4

)

3

ε2

r3
, (3.10)

where we have included a function of y because of the non trivial dependence of the Y p,q

metric on this coordinate. Inserting this Ansatz into the first order deformation equations,

we find that f(y) must satisfy a first order ODE for it to be a zero mode (even though the

Lichnerowicz operator is second order). The solution is simply

f(y) =
1

(1− cy)2
. (3.11)

We have dropped an arbitrary multiplicative factor (it only becomes important in the

case of a fully non-perturbative solution). Note that the first order perturbation is again

transverse and traceless.

Despite some effort, we have unfortunately not been able to satisfy the second order

deformation equations using the first order contributions as a source. It is likely that,

at second order, the deformation of the metric will non-trivially depend on both r and y

coordinates in an inherently non-separable manner. Although we have no direct proof, this

belief is supported by various unsuccessful attempts at separating the functional depen-

dence on r and y in the spirit of the deformed conifold metric (3.9).

When constructing the one-forms ei, we have introduced angular ψ dependence by

“rotating” eφ and eθ together using ψ. As mentioned above, one could instead have mixed

ey and eβ. This, however, does not alter the first order perturbation (up to irrelevant minus

signs). Hence the other mixing (2.11), while it is perhaps distinct non-perturbatively, is

indistinct to lowest order in ε2. This might signal another possible type of deformation,

but we will not explore it here.

As mentioned above, the rotation between eφ and eθ introduces dependence on the

coordinate ψ. This dependence on ψ disappears in the zeroth order metric because eφ and

eθ always appear in the SU(2) invariant combination. However this is no longer true for

the first order perturbation. This dependence on ψ is dual to chiral symmetry breaking in

the gauge theory, and will be discussed more explicitly in section 5.3.1 below.

3.2 Supersymmetry of the perturbed solution

Although the first order deformation was simply obtained by demanding Ricci-flatness to

order ε2, it turns out that it is in fact a complex deformation, at least to this order. To

– 7 –
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show this explicitly, we turn to the Killing spinor equation. In the absence of fluxes, the

supersymmetry condition takes the form ∇λ = 0, with the resulting λ a parallel spinor.

However, instead of working with the Killing spinor equation directly, we focus on the

integrability condition

eµae
ν
b [∇µ,∇ν ]λ =

1

4
RabcdΓ

cdλ = 0 . (3.12)

Before obtaining the Riemann tensor in the tangent basis, we first make a convenient choice

of vielbein. To do this, we note that we can absorb the first order term (3.10) into a shift

of e1 and e2 according to

ds2 = dr2 + r2

(
1

6

[
(e1 + δe3)2 + (e2 + δe4)2 + (e3)2 + (e4)2

]
+

1

9
(e5)2

)
, (3.13)

where we have defined the quantity

δ =
ε2

r3(1− cy)2
. (3.14)

This introduces a shift to second order in ε2, which however is unimportant as we will

always work only to first order in ε2. We now make a natural choice of shifted vielbeins

ê6
(s) = dr , ê1

(s) =
r√
6

(
e1 + δe3

)
, ê2

(s) =
r√
6

(
e2 + δe4

)
,

ê3
(s) =

r√
6
e3 , ê4

(s) =
r√
6
e4 , ê5

(s) =
r

3
e5 . (3.15)

Using this shifted vielbein basis, we find that the integrability condition (3.12) is

satisfied for spinors λ satisfying the simultaneous projections
(
1 + Γ1256

)
λ = 0 ,

(
1− Γ1234

)
λ = 0 . (3.16)

Writing out the SO(6) generators in the spinor representation as T 1 = i
2Γ12, T 2 = i

2Γ34

and T 3 = i
2Γ56, we see that parallel spinors have SO(6) weights ( 1

2 ,−1
2 ,

1
2) or (−1

2 ,
1
2 ,−1

2 ).

Changing to an SU(4) basis with Cartan generators

H1 =
1

2
(T 1+T 2), H2 =

1

4
√

3
(−T 1+T 2+2T 3) , H3 =

1

2
√

6
(T 1−T 2+T 3) , (3.17)

we see that the parallel spinors are singlets of the SU(3) corresponding to H 1 and H2. This

is just the standard Calabi-Yau decomposition 4→ 3 + 1 under SU(4) ⊃ SU(3).

More explicitly, we have verified that the integrability condition (3.12) is satisfied at

both zeroth and first order in ε2 for the above projections. For example 1

R53abΓ
ab =

6ε2

r5(1− cy)2
Γ51

(
1 + Γ1256

)
,

R24abΓ
ab =

2(ac2 − 1)

r2(1− cy)3
Γ31

(
1− Γ1234

)
+

3
√

6H(y)ε2c

r5(1− cy)3
Γ51

(
1 + Γ1256

)
, (3.18)

which are clearly zero when applied to λ.

1All components have been computed in Maple. Details of the calculations are available upon request

to the authors.
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4. Complex coordinates and Kähler potential

Having given the first order deformation and shown that it is supersymmetric, we now

proceed to its classification. As a first step, we review the complex coordinates introduced

in [3] with some minor adjustments to fit the present conventions 2. The main new result

of this section is an expression for the Kähler potential of the cone over Y p,q.

We recall that ref. [3] obtained the complex coordinates for the cone over Sasaki-

Einstein space. Let

η1 =
1

sin θ
dθ − idφ ,

η̃2 = − dy

H(y)2
− i(dβ − c cos θdφ) ,

η̃3 =
3dr

r
+ i[dψ + cos θdφ+ y(dβ − c cos θdφ)]. (4.1)

In terms of these coordinates, one can write the metric as

ds2 = r2 (1− cy)

6
sin2θη1η1 + r2H(y)2

6
η̃2η̃2 +

r2

9
η̃3η̃3 . (4.2)

Unfortunately, η̃2 and η̃3 are not integrable. However, integrable one-forms can be obtained

by taking linear combinations of them:

η2 = η̃2 + c cos θη1 , η3 = η̃3 + cos θη1 + yη̃2 . (4.3)

In this case, ηi = dzi/zi for i = 1, 2, 3, where

z1 = tan
θ

2
e−iφ , (4.4)

z2 =
(sin θ)2c

f1(y)
e−iβ , (4.5)

z3 = r3 sin θ

f2(y)
eiψ , (4.6)

with

f1(y) = exp

(∫
1

H(y)2
dy

)
, f2(y) = exp

(∫
y

H(y)2
dy

)
. (4.7)

As a check, we may take the limit to the conifold (2.8), in which case the zi’s reduce to

z1 → tan
θ1

2
e−iφ , z2 → tan

θ2

2
e−iβ , z3 → r3 sin θ1 sin θ2e

iψ , (4.8)

along with f1 = cot(θ2/2), f2 = csc θ2.

Returning to the Sasaki-Einstein case, note that (4.4) can be written as

sin θ =
2
√
z1z̄1

1 + z1z̄1
, (4.9)

2Note that we have taken φ→ −φ with respect to [3].
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where bars denote complex conjugation. Therefore

∂ sin θ

∂z1
=

1

2z1
sin θ cos θ ,

∂ sin θ

∂z2
= 0 ,

∂ sin θ

∂z3
= 0 . (4.10)

From equation (4.5), an explicit expression for f1(y) can be obtained:

f1(y)2 =
(sin θ)2c

z2z̄2
= σ . (4.11)

We are unable, however, to invert this equation to obtain an explicit expression of y in

terms of σ. Nevertheless, the above equation suggests that if an explicit expression for y

is possible, then the complex coordinates will enter into it only in the above combination

denoted by σ. Moreover, y is independent of z3 and its conjugate, i.e. ∂y/∂z3 = ∂y/∂z̄3 = 0.

For suitable values of y, the total derivative of y can be evaluated:

dy

dσ
= (

dσ

dy
)−1 =

wv

12f1(y)2
. (4.12)

This is possible because y can be viewed as a function of σ only. In turn, σ is a function

of z1, z2 and their conjugates. One obtains

∂σ

∂z1
=
cσ

z1
cos θ . (4.13)

Then
∂y

∂z1
=
dy

dσ

∂σ

∂z1
=

1

z1

wv

12
c cos θ . (4.14)

Similarly, other partial derivatives can be evaluated. One can write all of them more

succinctly using coordinates ui = ln zi as

∂θ

∂u1
=

1

2
sin θ ,

∂θ

∂u2
= 0 ,

∂θ

∂u3
= 0 ,

∂θ

∂ūi
=

∂θ

∂ui
,

∂y

∂u1
=
wv

12
c cos θ ,

∂y

∂u2
= −wv

12
,

∂y

∂u3
= 0 ,

∂y

∂ūi
=

∂y

∂ui
,

∂r

∂u1
= −r

6
(1− cy) cos θ ,

∂r

∂u2
= −ry

6
,

∂r

∂u3
=
r

6
,

∂r

∂ūi
=

∂r

∂ui
.

(4.15)

The metric can now be written in terms of the ui as

ds2 =

[
r2 (1− cy)

6
sin2θ + r2wv

36
c2cos2θ +

r2

9
(1− cy)2cos2θ

]
du1dū1 +

+

[
r2wv

36
+
r2

9
y2

]
du2dū2 +

r2

9
du3dū3 +

+

[
−r2wv

36
c cos θ +

r2

9
y(1− cy) cos θ

]
(du1dū2 + dū1du2)−

−r
2

9
y(du2dū3 + dū2du3)− r2

9
(1− cy) cos θ(du1dū3 + dū1du3) . (4.16)
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The coordinate r in the limit (2.8) reduces to the coordinate ρ as used by [17] for the

conifold. Recall that the Kähler potential in the conifold case is ρ2. Here, one can show

that the Kähler potential for the Sasaki-Einstein cone is r2. For example,

∂u1∂ū1r
2 = ∂u1

(
−2r

r

6
(1− cy) cos θ

)

= −
(

1

3

∂r2

∂u1
(1− cy) cos θ +

r2

3

∂(−cy)

∂u1
cos θ +

r2

3
(1− cy)

∂ cos θ

∂u1

)

=
r2

9
(1− cy)2cos2θ + r2wv

36
c2cos2θ +

r2

6
(1− cy)sin2θ , (4.17)

which matches with the (1, 1̄) component of the metric written in (4.16). The other com-

ponents of the metric can be similarly obtained. Thus the relation gµν̄ = ∂µ∂ν̄K holds for

the Kähler potential K = r2. This is an interesting result, and due to its simplicity it could

provide alternative ways of understanding deformations and resolutions of the cone over

Y p,q. Similarly, the Kähler potential for the four-dimensional Kähler-Einstein base turns

out to be 2
3 ln[(1 + 1

z1 z̄1
)f2(y)].

4.1 First order perturbation in complex form

We now arrive at our goal of showing that the deformation obtained in the previous section

is a complex deformation. Using the complex one-forms defined earlier, one obtains

− sin θη1η̃2 =
1

H(y)2
dydθ + sin θdφ(dβ − c cos θdφ) +

+i

[
dθ(dβ − c cos θdφ)− 1

H(y)2
dy sin θdφ

]
. (4.18)

In terms of these complex coordinates, the metric perturbation can be written as

2(e1e3 + e2e4) = 2
[
cosψ(eβeφ + eyeθ) + sinψ(eθeβ − eyeφ)

]

= −2H(y)
√

1− cy
[
cosψRe(− sin θη1η̃2) + sinψ Im(− sin θη1η̃2)

]

= H(y)
√

1− cy sin θ
[
eiψη1η̃2 + e−iψ η̄1 ¯̃η

2
]
. (4.19)

The first order perturbation is of pure type. We note here that the η1η̃2 part is by itself a

zero mode of the Lichnerowicz operator. Since the holomorphic (3,0)-form for the Sasaki-

Einstein cone is known [3], a complex closed h2,1 form can be constructed,

h(2,1) = − 1

18

ε2

(1− cy)2

[
H2du2 ∧ du3 ∧ dū2 + sin2θ(1− cy)du3 ∧ du1 ∧ dū1 +

+ cH2cosθdu3 ∧ du1 ∧ dū2 +

+ y(1− cy)sin2θdu1 ∧ du2 ∧ dū1 +

+H2 cos θdu1 ∧ du2 ∧ dū2
]
. (4.20)
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5. Warping the deformation

The general form of the solution we are seeking in this section has been explained in [8].

The main difference is that instead of warping the cone over Y p,q we need to warp the

deformation of the cone. The solution contains a nontrivial F5 representing the flux left by

the D3 branes after the transition and G3 which is the implication of considering fractional

D3 branes, that is, D5 branes wrapping a 2-cycle inside the deformed cone. Thus the full

IIB solution is given in terms of the fields

ds2 = h−1/2ηµνdx
µdxν + h1/2ds2

6 ,

ds2
6 = dr2 + r2

[
(e1

(s))
2 + (e2

(s))
2 + (e3

(s))
2 + (e4

(s))
2 + (e5

(s))
2
]
,

F5 = (1 + ∗)F5 = (1 + ∗)dh−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

G3 = −F3 +
i

gs
H3 = iMΩ3 . (5.1)

The shifted vielbein basis is given above in section 3.2. Given this general form of the

solution, our goal is to find the explicit form of h(r, y) and Ω3. Furthermore, in the case

when the deformation is zero, we expect to recover the solution of [8].

5.1 Turning on a G3 flux in the deformed cone over Y p,q

In this section we search for an appropriate complex G3 which may be turned on in the

deformed Sasaki-Einstein cone. To have a supersymmetric solution we would need G3 to be

a (2, 1) form [18]. However, we will not address the Dolbeault decomposition of G3 directly.

Rather, we will simply concentrate on finding a solution to the equations of motion with

constant dilaton field. The constancy of the dilaton is readily satisfied by an imaginary

self dual complex 3-form G3. We thus consider G3 to be proportional to an imaginary self

dual 3-form Ω3, namely

∗6Ω3 = iΩ3 . (5.2)

To assist in taking the Hodge dual while at the same time keeping the radial coordinate

dependence explicit, we use a set of shifted vielbeins

e6
(s) = dr, e1

(s) =
(
e1 + δe3

)
, e2

(s) =
(
e2 + δe4

)
,

e3
(s) = e3, e4

(s) = e4 , e5
(s) = e5 , (5.3)

which resemble the choice of (3.15), but with r-dependence (and some factors) removed.

In this shifted vielbein basis, the most general Ansatz for an imaginary self dual Ω3

may be written as

Ω(3) =

(
dr

r
+ i

e5

3

)
∧
(
α1

(
e1

(s) ∧ e2
(s) + e3

(s) ∧ e4
(s)

)
+ α2

(
e1

(s) ∧ e4
(s) + e2

(s) ∧ e3
(s)

)
+

+iα3

(
e1

(s) ∧ e3
(s) − e2

(s) ∧ e4
(s)

))

+

(
e5

3
+ i

dr

r

)
∧
(
iβ1

(
e1

(s) ∧ e2
(s) − e3

(s) ∧ e4
(s)

)
+ iβ2

(
e1

(s) ∧ e4
(s) − e2

(s) ∧ e3
(s)

)
+
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+ β3

(
e1

(s) ∧ e3
(s) + e2

(s) ∧ e4
(s)

))
+

+iλ1

(
dr

r
∧
e5

(s)

3
∧ e1

(s) +
i

6
e2

(s) ∧ e3
(s) ∧ e4

(s)

)
+

+λ2

(
dr

r
∧
e5

(s)

3
∧ e2

(s) −
i

6
e1

(s) ∧ e3
(s) ∧ e4

(s)

)
+

+iλ3

(
dr

r
∧
e5

(s)

3
∧ e3

(s) +
i

6
e1

(s) ∧ e2
(s) ∧ e4

(s)

)
+

+λ4

(
dr

r
∧
e5

(s)

3
∧ e4

(s) −
i

6
e1

(s) ∧ e2
(s) ∧ e3

(s)

)
, (5.4)

where the ten functions αi, βi, λi are general (possibly complex) functions. The factors of

i in front of some of these functions are chosen for later convenience. We, however, restrict

to the case when these functions depend only on r and y.

Our goal now is to expand the above equations in δ, that is in powers of ε2/r3, and

then to require Ω(3) to be closed. For this purpose we note that the algebra of the exterior

derivative d acting on the basis ei is

de1 = −
( y
H
−K

)
e1 ∧ e2 + 2Ke3 ∧ e4 ,

de2 = 0 ,

de3 = −e5 ∧ e4 +Ke2 ∧ e3 − y

H
e1 ∧ e4 ,

de4 = e5 ∧ e3 +Ke2 ∧ e4 +
y

H
e1 ∧ e3 ,

de5 = −e1 ∧ e2 + e3 ∧ e4 , (5.5)

This follows directly from (2.7) and (2.9). We find that taking the exterior derivative

of Ω3 produces 14 out of 15 possible terms. To simplify matters we assume that we are

looking for a solution that becomes that of [8] in the ε→ 0 limit, and so we may take that

all functions except α1 are of order ε2 already. This allows us to drop certain ε4 terms.

The actual computation is straightforward but quite involved, and we present some of the

partial results in appendix B. The most important result is that such an imaginary self

dual 3-form can be constructed explicitly, resulting in

Ω3 =

(
dr

r
+ i

e5
(s)

3

)
∧
[

3

2

1

(1− cy)2
(e1

(s) ∧ e2
(s) + e3

(s) ∧ e4
(s)) +

+ α2(r, y)(e1
(s) ∧ e4

(s) + e2
(s) ∧ e3

(s)) +

+ iα3(r, y)(e1
(s) ∧ e3

(s) − e2
(s) ∧ e4

(s))

]
+

+b1(r, y)

(
e5

(s)

3
+ i

dr

r

)
∧
[
(e1

(s) ∧ e3
(s) + e2

(s) ∧ e4
(s)) + i(e1

(s) ∧ e4
(s) − e2

(s) ∧ e3
(s))
]

+

+il2(r, y)(e3
(s) + ie4

(s)) ∧
(
dr

r
∧
e5

(s)

3
+

1

6
e1

(s) ∧ e2
(s)

)
, (5.6)
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where

α2(r, y) =
3

4

ε2

r3

(
1− 1

(1− cy)4

)
+

+
3

4

ε2

r3

1

c2Q(y)

[
(1− ac2)

(
1

(1− cy)4
− 1

)
− 9

(1− cy)2
+

11

1− cy +

+ 4− 6(1− cy)− 3(1− cy)2 + 3(1 − cy)3

]
, (5.7)

α3(r, y) = −3

4

ε2

r3

(
1− 1

(1− cy)4

)
+

+
3

4

ε2

r3

1

c2Q(y)

[
(1− ac2)

(
1

(1− cy)4
− 1

)
− 3

(1− cy)2
+

5

1− cy −

− 8 + 6(1− cy) + 3(1− cy)2 − 3(1 − cy)3

]
, (5.8)

b1(r, y) =
3

2

ε2

r3

[
ln

2r3

ε2
− 4 +

3

(1− ac2)(1− cy)
+

+
c

2(1− ac2)

3∑

i=1

(a+ 2acyi + (1− ac2)y2
i )

yi(1− cyi)
ln(|y − yi|)

]
,

l2(r, y) =
9

2

ε2

r3

1

cH(1− cy)

[
(1− cy)− 1

(1− cy)

]2

. (5.9)

Here Q(y) = a− 3y2 + 2cy3 and yi are the three roots resulting from Q(y) = 0.

In the absence of a deformation (δ = ε = 0) the above reduces to the simple result for

Ω(3) given by [8]

α1(y) =
3

2(1 − cy)2
. (5.10)

Moreover, in the limit of [8] Ω(3) is a (2, 1) form, a fact that can be established using the

complex coordinates of [3] as reviewed in section 4. Another interesting case, c = 0 (when

K = 0) is the KS [7] solution with

α1 →
3

2
, β2 = β3 →

3

2

ε2

r3

(
ln

(
2r3

ε2

)
− 1

)
, (5.11)

and all other functions set to zero. For the KS solution the corresponding Ω3 is also

(2,1). In both of the above limiting cases, the fact that they are (2, 1) guarantees that the

solution is supersymmetric. We have not addressed the question of the precise Dolbeault

decomposition of our Ω3; however we hope to return to this question in the future.

5.2 Other forms

By comparing the imaginary self dual 3-form obtained above with the Klebanov-Strassler

solution [7] and the Herzog, Ejaz and Klebanov solution [8], we may extract the NS-NS

3-form flux H3 and the R-R form F3 from the real and imaginary parts of Ω3. We find

– 14 –



J
H
E
P
0
7
(
2
0
0
5
)
0
1
9

F3

M
= α1(y)

[
e1

(s) ∧ e2
(s) ∧

e5
(s)

3
+ e3

(s) ∧ e4
(s) ∧

e5
(s)

3

]
+

+[α2(r, y) + b1(r, y)]e1
(s) ∧ e4

(s) ∧
e5

(s)

3
+ [α2(r, y)− b1(r, y)]e2

(s) ∧ e3
(s) ∧

e5
(s)

3
+

+[α3(r, y) + b1(r, y)]e1
(s) ∧ e3

(s) ∧
dr

r
+ [−α3(r, y) + b1(r, y)]e2

(s) ∧ e4
(s) ∧

dr

r
−

−l2(r, y)e3
(s) ∧

e5
(s)

3
∧ dr
r

+
1

6
l2(r, y)e1

(s) ∧ e2
(s) ∧ e3

(s) , (5.12)

H3

gsM
= α1(y)

[
e1

(s) ∧ e2
(s) ∧

dr

r
+ e3

(s) ∧ e4
(s) ∧

dr

r

]
+

+[α2(r, y) − b1(r, y)]e1
(s) ∧ e4

(s) ∧
dr

r
+ [α2(r, y) + b1(r, y)]e2

(s) ∧ e3
(s) ∧

dr

r
+

+[−α3(r, y) + b1(r, y)]e1
(s) ∧ e3

(s) ∧
e5

(s)

3
+ [α3(r, y) + b1(r, y)]e2

(s) ∧ e4
(s) ∧

e5
(s)

3
+

+l2(r, y)e4
(s) ∧

e5
(s)

3
∧ dr
r
− 1

6
l2(r, y)e1

(s) ∧ e2
(s) ∧ e4

(s) . (5.13)

The NS-NS 3-form flux can be derived from a potential H3 = dB2 where

B2

gsM
= f(r, y)[e1

(s) ∧ e2
(s) + e3

(s) ∧ e4
(s)] +

+

[
−1

3
α3(r, y) +

1

3
b1(r, y)− δf(r, y)

]
e1

(s) ∧ e4
(s) +

+

[
−1

3
α3(r, y) − 1

3
b1(r, y) + δf(r, y)

]
e2

(s) ∧ e3
(s) +

1

3
l2(r, y)e3

(s) ∧
dr

r
, (5.14)

with

f(r, y) =
1

2

1

(1− cy)2

[
ln

(
2r3

ε2

)
− 1

]
. (5.15)

If we take the limit (2.8), then only the term proportional to f(r, y) survives. This is

in agreement with the Klebanov-Strassler expression for B2 expanded to first order in ε2,

which is
B2

gsM
=

1

2

[
ln

(
2r3

ε2

)
− 1

] [
e1

(s) ∧ e2
(s) + e3

(s) ∧ e4
(s)

]
+O(ε4). (5.16)

Due to self duality of the complex 3-form, the dilaton field is constant, φ = 0. Since

F3 µνρH3
µνρ = 0, the axion vanishes as well. The five-form flux is

F5 = F5 + ∗F5 ,

F5 = B2 ∧ F3 ,
1

gsM2
F5 =

2

3
f(r, y)α1(y)e1

(s) ∧ e2
(s) ∧ e3

(s) ∧ e4
(s) ∧ e5

(s) −

− l2(r, y)

6(1− cy)2
ln

(
2r3

ε2

)
e1

(s) ∧ e2
(s) ∧ e3

(s) ∧ e5
(s) ∧

dr

r
+O(ε4) . (5.17)

The effect of the inhomogenous metric is reflected in the five-form at first order in ε2.
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5.3 The warp factor

The equation for the warp factor can be extracted from the F5 equation of motion

dF5 = H3 ∧ F3 . (5.18)

The form of F5 from (5.1) implies that

d ∗ dh−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 = H3 ∧ F3 , (5.19)

where

∗F5 = ∗dh−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

= −r5h′ e1
(s) ∧ e2

(s) ∧ e3
(s) ∧ e4

(s) ∧ e5
(s) + r3ḣH(y) er ∧ e1

(s) ∧ e3
(s) ∧ e4

(s) ∧ e5
(s) −

−r3ḣH(y) δ er ∧ e1
(s) ∧ e2

(s) ∧ e3
(s) ∧ e5

(s) , (5.20)

where in the last equation we used the fact that dy = −H(y)
(
e2

(s) − δ e4
(s)

)
.

5.3.1 D3 branes on the deformation

We consider first the simple case where there are no fractional D3 branes, that is, the case

of zero three-form flux. The above equations simplify schematically to the familiar

∇2h =
1√
g
∂m (
√
ggmn∂nh) = δ(~x) . (5.21)

The first order perturbation is traceless, implying that the first order correction to det g

is zero. Further, if we take that the D3 branes are at the tip of the cone, the zeroth order

harmonic function is simply A + B/r4. The metric perturbation has no r indices, and so

the resulting expansion in ε2 of the above equation trivially yields

∇2h1 = 0 , (5.22)

where h1 is the ε2 correction of h. The first order correction to the harmonic function can

therefore be set to 0 consistently.

Given this fact, taking the usual limit N → ∞, with gsN fixed gives the following

geometry

ds2 = R2

[
ds2
AdS5

+ ds2
Y p,q +

ε2

r3

((
e1e3 + e2e4

)

3(1 − cy)2

)]
. (5.23)

As we mentioned before, this deformation of the solution corresponds to chiral sym-

metry breaking. To see this, note that the vector ∂/∂ψ is no longer a Killing vector for

the perturbed metric. The new metric therefore also breaks the U(1)R symmetry (of the

gauge theory) associated with (2.2) [4]

3
∂

∂ψ
− 1

2

∂

∂α
, (5.24)
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and so chiral symmetry has been broken. Let us see this argument using standard

AdS/CFT arguments. To a supergravity deformation of the form

ar∆−4 + br−∆ , (5.25)

corresponds a field theory deformation by an operator O such that

H → H+ aO , 〈O〉 = b . (5.26)

Applying this to our situation, we have a deformation that goes as

ε2 r−3 , (5.27)

which implies an expectation value for a dimension-3 operator which should be of the form

〈Ψ̄Ψ〉 = ε2 . (5.28)

Thus the gauge theory living in the worldvolume of a stack of D3 branes at the tip of

the complex deformation of the cone over Y p,q corresponds to placing the superconformal

quiver gauge theory in a different vacuum where the operator Ψ̄Ψ has a nonzero vacuum

expectation value.

5.3.2 D3 branes and fractional D3 branes

The problem of solving for the warp factor in the presence of fractional D3 branes on

Bp,q was addressed in [8]. We will take their solution as the zeroth order in epsilon term

(as our solution collapses to theirs in the ε → 0 limit). Curiously, their solution remains

unperturbed, as will be shown here. First, consider the resulting equation for h,

−∇2
(6)h =

1

6
|H3|2 . (5.29)

Next, note that in the first order deformed solution none of the indices (in vielbein basis)

on the O(ε2) terms agree with those of the O(ε0) term. The basis is diagonal, and so the

zeroth order term with indices contracted with the first order term vanishes. Therefore,

there are no O(ε2) source terms on the right hand side of the above equation. As before,

the zeroth order solution takes care of the right hand side, leaving us with only the first

order equation

1√
g
∂m [
√
ggmn∂nh1(r, y)] =

1√
g
∂m [
√
ghmn∂nh0(r, y)] , (5.30)

where we read the right hand side of the equation as being a source term. Without the

fractional D3 branes, the source had vanished because h0 only depended on r, and hmn

has no r indices. However, now h0 depends both on r and y. Interestingly, however, the

right hand side still vanishes because

√
ghmy∂yh0(r, y) =

ε2
√

3

54Q(y)1/2




0

− cos(ψ)ḣ0(r, y) sin(θ)

− sin(ψ)ḣ0(r, y)

0

−c cos(θ) sin(ψ)ḣ0(r, y)

cos(θ) sin(ψ)ḣ0(r, y)



, (5.31)
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where this has been written in [r, θ, φ, y, β, ψ] order. The divergence of this quantity obvi-

ously vanishes, with the first non-zero and last non-zero terms canceling after the appropri-

ate derivatives are taken. Thus, again, we may consistently set the first order perturbation

to the warp factor to be zero because the source term is absent.
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A. Gravitational perturbation theory

In section 3, we have relied heavily on linearized gravity. We simply note here the equations

to second order. First, we write the metric perturbed to second order

g̃mn = 0gmn + 1hmn + 2hmn , (A.1)

where the pre-superscripts denote the order of the perturbation. Given the above decom-

position, the following expressions are valid to second order

g̃ab = 0gab − 1hab − 2hab + 1hac
1hcb ,

Γ̃abc = 0Γabc + 1Γabc + 2Γabc + (1,1)Γabc ,

R̃abcd = 0Rabcd + 1Γabd;c − 1Γabc;d + 2Γabd;c − 2Γabc;d + (1,1)Γabd;c − (1,1)Γabc;d +

+ 1Γaec
1Γebd − 1Γaed

1Γebc . (A.2)

We have defined the convenient quantities

1Γabc =
1

2

(
1hab;c + 1hac;b − 1h ;a

bc

)
,

2Γabc =
1

2

(
2hab;c + 2hac;b − 2h ;a

bc

)
,

(1,1)Γabc = −1

2
1had

(
1hdb;c + 1hdc;b − 1hbc;d

)
. (A.3)

In all of the above equations 0gab is used to raise and lower indices, and to construct the

Christoffel symbols used in the covariant derivatives. Constructing Einstein’s equations to

second order is now trivial. For the purposes of this paper, all first order perturbations

are transverse, traceless and are zero modes of the Lichnerowicz operator. In addition, the

background is Ricci flat. This greatly simplifies the linearized Einstein’s equations, and

they become

1

2

[
2hab;d;a + 2had;b;a − 2h ;a

bd;a − 2(haa);b;d

]
=

1

2

[
1hac

(
1hcb;d;a + 1hcd;b;a − 1hbd;c;a − 1hac;b;d

)]
−

−1

4
1hac;d

1hac;b −

−1

2

[
1hda;c

1h ba;c
b − 1hda;c

1h bc;a
b

]
. (A.4)
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We may read this as the second order term being sourced by the first order term. In

addition, we may perform a simple check of the above equation. In the case when 1h is

zero, the leading contribution to the metric is 2h. Therefore, what we have done should

collapse to “leading order” perturbation theory. This is indeed the case, as we can see the

Lichnerowicz operator acting on 2h on the left hand side of the equation.

B. Explicit derivation of Ω3

Since one of the main results supporting the existence of a chiral symmetry broken phase

for the cascading quiver theory relies on the existence of the imaginary self dual 3-form

G3, we present the details of its derivation below. In particular, we strive to make clear

the assumptions that go into solving the system.

Imposing

dΩ3 = 0 , (B.1)

where Ω3 is given in (5.4) results in the following system of equations for the ten quantities

αi, βi, λi:

1. rα′1 + rβ′1 +Hλ̇1 − λ1

( y
H
−K

)
= 0 ,

2. −rα′3 − 3δα1 − 3α2 + rβ′3 + 3β2 +
y

H
λ4 = 0 ,

3. δ (rα′1 − 3α1) + rα′2 + 3α3 + rβ′2 + 3β3 −
y

H
λ3 = 0 ,

4. −δ (rα′1 − 3α1) + rα′2 + 3α3 − rβ′2 − 3β3 −Hλ̇3 +Kλ3 = 0 ,

5. rα′3 − 3δα1 + 3α2 + rβ′3 + 3β2 −Hλ̇4 +Kλ4 = 0 ,

6. rα′1 − rβ′1 + 2Kλ1 = 0 ,

7. −Hα̇3 + 2
y

H
α3 −Hβ̇3 +

1

3
λ3 −

1

6
rλ′4 = 0 ,

8. −Hα̇1δ − 4Kδα1 −Hα̇2 + 2
y

H
α2 +Hβ̇2 −

1

6
rλ′3 +

1

3
λ4 = 0 ,

9. −Hα̇1 + 4Kα1 −Hβ̇1 +
1

6
rλ′1 +

1

3
λ2 = 0 ,

10. Hα̇3 − 2
y

H
α3 −Hβ̇3 −

1

2
λ3 = 0 ,

11. −Hα̇1δ − 4Kδα1 −Hα̇2 + 2 y
Hα2 −Hβ̇2 + 1

2λ4 = 0 ,

12. −Hα̇1 + 4Kα1 +Hβ̇1 = 0 ,

13.
2

3
β1 −

1

6

[
Hλ̇2 − λ2

( y
H

+K
)]

= 0 ,

14.
1

3
λ1 +

1

6
rλ′2 = 0 ,
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where dot means derivative with respect to y and prime with respect to r. Note that we

have already taken into account the expansion to leading order in ε2. In particular, all

quantities except α1 are viewed as O(ε2) terms. This is why δ (which is of order ε2) only

survives in combination with α1.

These equations may be simplified by defining the new variables

B1 =
1

2
(β2 + β3) , B2 =

1

2
(β2 − β3) ,

l1 =
1

2
(λ3 + λ4) , l2 =

1

2
(λ3 − λ4) ,

A1 =
1

2
(α2 + α3) , A2 =

1

2
(α2 − α3) , (B.2)

and by taking appropriate linear combinations.

The result is a set of equations involving only β1, λ1, λ2 and α1:

1. 2rβ′1 +Hλ̇1 −
(
K +

y

H

)
λ1 = 0 ,

2. 2rα′1 +Hλ̇1 +
(

3K − y

H

)
λ1 = 0 ,

3. −12Hβ̇1 + rλ′1 + 2λ2 = 0 ,

4. −Hα̇1 + 4Kα1 +Hβ̇1 = 0 ,

5. 4β1 −Hλ̇2 +
(
K +

y

H

)
λ2 = 0 ,

6. 2λ1 + rλ′2 = 0 ,

a second set involving B1, l2, A2 and α1:

7. 2rB′1 + 6B1 +Hl̇2 −
(
K +

y

H

)
l2 = −δ(rα′1 − 6α1) ,

8. 2rA′2 − 6A2 −Hl̇2 + Ḣl2 = 0 ,

9. 12HḂ1 + l2 − rl′2 = 0 ,

10. 4HȦ2 −
8y

H
A2 +

5

3
l2 +

1

3
rl′2 = −16Kδα1 ,

and finally a third set involving only B2, l1, A1 and α1:

11. 2rA′1 + 6A1 −Hl̇1 + Ḣl1 = 0 ,

12. −2rB′2 + 6B2 −Hl̇1 +
(
K +

y

H

)
l1 = δrα′1 ,

13. −12HḂ2 + l1 + rl′1 = 0 ,

14. −4HȦ1 +
8y

H
A1 +

5

3
l1 −

1

3
rl′1 = 16Kδα1 .
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Furthermore, since α1 only enters the second and third sets of equations in conjunction

with δ, the O(ε2) part of α1 decouples from those sets of equations (the zeroth order part

acts as a source). Hence if one is given the zeroth order form for α1, then these sets of

equations decouple. A good guess can be made by looking at the limiting cases of the

Klebanov-Strassler [7] and Herzog, Ejaz and Klebanov [8] solutions. Based on this, we

take α1 to be given by

α1 =
3

2

1

(1− cy)2
. (B.3)

This choice of α1, together with λ1 = λ2 = β1 = 0 then satisfies the first set of equations

without any correction at O(ε2). Next, taking the r-dependence of A1 to be r−3 and setting

B2 = l1 = 0 is consistent with third set of equations. Equation 14 is then solved to give

A1 =
3

4

ε2

r3

1

c2Q(y)

[
1− ac2

(1− cy)4
− 6

(1− cy)2
+

8

1− cy − 3 + ac2

]
, (B.4)

where Q(y) = a − 3y2 + 2cy3. The integration constant is fixed such that one gets the

Klebanov-Strassler solution in the limit (2.8).

The remaining second set of equations present more of a challenge. To check their

consistency, we make an Ansatz for r dependence as follows:

B1 =
3ε2

2r3

[
µ(y) ln

r3

ε2
− ν(y)

]
,

l2 =
H

r3

[
θ(y) ln

r3

ε2
− ψ(y)

]
,

A2 =
1

H2r3

[
ρ(y) ln

r3

ε2
− τ(y)

]
. (B.5)

The system now reduces to eight equations for six functions of y:

1. 9ε2µ̇+ 2θ = 0 ,

2. 18ε2ν̇ + 4ψ + 3θ = 0 ,

3. H2θ̇ − 2yθ = 0 ,

4. 9ε2µ+ 2yψ −H2ψ̇ = 9
ε2

(1 − cy)4
,

5. 12ρ+H4θ̇ = 0 ,

6. H4ψ̇ + 12τ + 6ρ = 0 ,

7. 2ρ̇− 4
K

H
ρ+

1

3
H2θ = 0 ,

8. −τ̇ +
2K

H
τ − 1

6
H2ψ +

1

4
H2θ + 6KH

ε2

(1− cy)4
= 0 .
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However, we now see that equation 7 can be obtained from equations 3 and 5. and equa-

tion 8 can be obtained from equation 4 with the help of equations 6, 1 and 7. This leaves

us with six equations for six functions. They can be solved to give

θ = ρ = 0 ,

µ = 1 ,

ψ = −27

2

ε2

cQ(y)

[
(1− cy)− 1

(1− cy)

]2

,

τ =
3

4
H2ε2

[
1

(1− cy)4
− 1

]
+

3ε2

4

y

c(1− cy)

[
(1− cy)− 1

(1− cy)

]2

,

ν = − 2

9ε2

∫
ψdy

= 4− ln 2− 3

(1− ac2)(1 − cy)
−

− c

2(1− ac2)

3∑

i=1

(a+ 2acyi + (1 − ac2)y2
i )

yi(1− cyi)
ln(y − yi) , (B.6)

where yi are the three roots of the cubic equation Q(y) = 0. The integration constants are

chosen such that Klebanov-Strassler solution is obtained in the limit (2.8). The resulting

imaginary self dual 3-form is given in section 5 in eqns. (5.6)–(5.9).
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