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ABSTRACT: We discuss higher derivative corrections to black hole entropy in theories that
allow a near horizon AdSs x X geometry. In arbitrary theories with diffeomorphism in-
variance we show how to obtain the spacetime central charge in a simple way. Black hole
entropy then follows from the euclidean partition function, and we show that this gives
agreement with Wald’s formula. In string theory there are certain diffeomorphism anoma-
lies that we exploit. We thereby reproduce some recent computations of corrected entropy
formulas, and extend them to the nonextremal, nonsupersymmetric context. Examples
include black holes in M-theory on K3 x T2, whose entropy reproduces that of the per-
turbative heterotic string with both right and left movers excited and angular momentum
included. Our anomaly based approach also sheds light on why exact results have been
obtained in four dimensions while ignoring R* type corrections.
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1. Introduction

The famous area law of Bekenstein and Hawking relates the entropy of a black hole to the

area of its event horizon as 1

4G,

In string theory this law has been verified in examples where the entropy is interpreted

S Ap_s. (1.1)

statistically in terms of microstates and the area is that of a black hole with the same
macroscopic charges as the statistical system. In such computations many details of the
string spectrum are known, implying numerous corrections to the microscopic theory. Ad-
ditionally, higher derivative terms in the action modify the classical geometry and also
change the area law ([.1]) into Wald’s entropy formula [[I]
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which takes into account arbitrary derivative terms in the action.! Remarkably, agreement
between microscopics and macroscopics is maintained also after all these corrections are
taken into account, at least in some examples [—[].

Recently it was pointed out that there are special cases of this agreement where the area
of the black hole vanishes at leading order: Ap_s = 0 [[]. For example, the microstates
of the heterotic string consist of the usual perturbative spectrum. The black hole with
the same classical charges has vanishing area in the two-derivative approximation to the
action, but after higher derivatives are taken into account the entropy found from ([.3)
agrees with the microscopic result. This example is important because the microscopics
is so simple, which should facilitate very detailed comparisons that can test the whole
framework and its interpretation. In particular, this seems like an ideal setting for testing
Mathur’s conjecture [fi] that all microstates can be realized as distinct geometries.

Ultimately one would like to understand which features of quantum gravity are respon-
sible for these striking agreements between radically different representations of black hole
physics. The purpose of this note is to emphasize the central role played by symmetries,
particularly diffeomorphism invariance and its anomalies. Viewed in this light, some of the
agreements between microscopic and macroscopic results seem less surprising.

The key assumption in our approach is the existence of a near horizon region that
includes an AdS3 factor, even after higher derivative terms have been included in the
lagrangian. This assumption is suggested by the central role played by such near horizon
geometries in the microscopics of black holes with finite area [[{]. Additionally, in an
appropriate duality frame, an AdS3 factor appears in the corrected geometry in all examples
where derivative corrections have successfully been taken into account, at least as far as we
are aware. The power of the assumption is that it relates the lagrangian to the radius of the
AdSs5 space and so, via generalized Brown-Henneaux [f§] reasoning, to the central charges
cr,r of the associated conformal field theory. As we will see, the saddlepoint approximation
to the black hole entropy, including all higher derivative corrections, is then given by the

S =or [\/CL(?L + \/CR(?R ] (1.3)

where hy g are the left and right moving momenta of the near horizon solution. Although

Cardy formula

the detailed form of the central charges ¢y, g depends critically on the spacetime lagrangian,
it will turn out that the Cardy formula ([l.J) agrees with Wald’s formula ([L.2) for general
theories with diffeomorphism invariance. Thus, computation of the corrected black hole
entropy reduces to finding the central charges. We will present a novel method for achieving
this — c-extremization — which just involves solving algebraic equations. Given a higher
derivative lagrangian it is then quite simple to compute the corrected entropy.

Recent work has shown that in favorable cases it is possible to reproduce microscopic
degeneracies of states to all orders in an expansion in inverse powers of charges [f}, [[0]. This
result emerges just as naturally in our approach. Knowledge of the central charge leads to

!Derivatives acting on the Riemann tensor are taken into account by the functional derivative: 3 1;55 D S =
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an expression for the black hole partition function which, when inverse Laplace transformed
as in [10] yields the microscopic degeneracies including all power law corrections.

We stress that our considerations are independent of spacetime supersymmetry. This
contrasts with the (much) more explicit approach of [B, f] which relies on the full power
of supergravity. In particular, the usual approach has so far been limited to four di-
mensions, where supergravity is best developed, while our results apply equally in five
dimensions.

In string theory there is additional structure due to anomalies which affect diffeomor-
phism invariance. Some relevant aspects are discussed in [[J, fl]. These anomalies ultimately
arise from M5-branes on the compactification manifold but they can also be understood
without reference to M5-branes, using standard AdS/CFT reasoning. In this way we

recover formulae from [B, f]] using elementary methods.

A natural context for these considerations is M-theory on AdS3 x S? x X where X is
some Calabi-Yau three-fold. A particularly striking example arises when X = K3 x T2,
so that M-theory is dual to heterotic string theory on 7°. In this case we find ¢; = 12
and cg = 24 which are indeed the correct central charges for the heterotic string. The
remarkable feature is that we are sensitive to both chiral sectors of the heterotic string, and
that we thereby derive the entropy for the heterotic string with both sectors excited. This
shows that agreement is possible even without supersymmetry.

The point we wish to emphasize is that the constraints of matching symmetries and
anomalies are enough to explain the successful entropy comparisons, at least in the cases
we have considered. One puzzle in existing work has been why exact results are obtained
by keeping only R? corrections, and neglecting higher powers. Here we see that it is the
R? terms which yield the relevant diffeomorphism anomalies, and they are uncorrected by
additional higher derivative terms.

The conventional approach of [B, fl] involves near horizon geometries with an AdS,
factor and uses results from topological string theory [[L1], [d]. These AdS; geometries
are related to AdSs by compactification. The AdSs perspective is simpler because space-
time symmetries such as the Virasoro algebra become manifest. On the other hand, in
our approach we have not yet exploited the effects that can be seen only after compact-
ification. It would be interesting to analyze how these further constrain the black hole
spectrum.

Another open question is to find a criterion that determines when a near horizon AdS3
appears from a singular geometry after derivative corrections are taken into account. This
would characterize any ultimate limitations of our approach.

The remainder of this paper is organized as follows. In section P| we consider the
higher derivative corrections in a rather general setting, assuming only that the lagrangian
is formed from the metric in a diffeomorphism invariant way. In section | we apply these
considerations to the case of M-theory on C'Ys. In section ], we discuss modifications due to
gravitational anomalies and the appearance of the perturbative heterotic string spectrum.
Finally, in section [, we conclude with a discussion of how power law corrections to the
entropy are taken into account using our approach.



2. Central charge and black hole entropy

In this section we first derive an expression for the central charge in terms of the lagrangian
including higher derivative corrections. We then review the computation of BTZ black hole
entropy from the central charge. Finally, we combine the results and write the entropy in
a form that agrees with Wald’s formula.

2.1 Computation of the central charge

We focus on brane configurations that have a near horizon geometry M = AdS3z x SP x X,
where X is an arbitrary compact space. One familiar case is p = 3, which arises from the
D1-D5 system in IIB string theory, where X is 7% or K3. This system gives rise to black
holes in D = 5. Another important example is p = 2 which corresponds to D = 4 black
holes made from wrapping M2-branes and M5-branes on X = CY3. We will come back to
particular examples later, for now remaining in a general setting.

We take the near horizon limit, so that we have a theory of (not necessarily super)
gravity on M. In this section we will take the metric to have euclidean signature. For
our purposes it is most convenient to perform a Kaluza-Klein reduction on X, to obtain a
theory on AdSs x SP. The action for this theory is
= m /dp+3x\/§ Ly13+ Sphndy + Scs - (2.1)

At this stage, £,43 is an arbitrary function of the gravitational and matter fields, which is

I

diffeomorphism invariant up to total derivatives that are cancelled by Spnqy. In particular,
it can include arbitrary higher derivative terms. The boundary terms indicated in (P.J)
are needed to have a well-defined variational principle and also to define the boundary
stress tensor [, [.J]; but we will not need their explicit form. Scg denotes Chern-Simons
terms built out of gauge fields; we isolate these for reasons that will become apparent as
we proceed.

We will be assuming that this theory admits solutions of the form AdSs x SP, over
which £,,3 takes a constant value. This is indeed the case for the examples mentioned
above. The radii of the two spaces are taken to be £ 445 and £g». For a general action there
is not necessarily a single preferred definition of the metric, and so the radii are defined
with respect to some particular choice.

As originally shown by Brown and Henneaux [f, a theory of gravity on a space whose
noncompact part is AdSs corresponds to a conformal field theory on the two dimensional
boundary. The conformal field theory has left and right moving central charges, ¢y, and cg,
which are not necessarily equal. In this section we will consider the case in which they are
equal. This is true for the D1-D5 system; for the M2-M5-brane case mentioned above it is
only true for the leading part in an expansion in charges. We will come back to the case of
unequal central charges later, for now just remarking that it leads to non-diffeomorphism
invariant theories (gravitational anomalies), and so requires special care.

Our first task is to compute £44s and fg». Suppose we consider a family of trial
solutions with €445 and fsp left as free parameters. In particular, we write the metric as

ds® = 044, (dn* + sinh® n dQ3) + (3, d2 . (2.2)



The first two terms give AdSs in a convenient, but perhaps slightly unfamiliar, form.
The actual values of the radii can then be obtained by demanding that the combination
Ei’ldsfgpﬁmg be stationary under variation of £44 and £gpr. Roughly speaking, this can be
thought of as extremizing the bulk action. A little care is required to establish that this is
the correct procedure. In particular, we should recall that when the equations of motion
are satisfied the full action is stationary under variations which vanish at the boundary; but
in our case variations of the radii lead to variations even at the boundary. Furthermore,
we have the boundary terms in (R.). A simple way to avoid these complications is to
consider an analytic continuation so that our solutions take the form S3 x SP. Then
both complications are absent, and the total action is clearly proportional to Ei’ldsfgpﬁmg.
Hence this combination must be stationary. Our result follows after continuation back
to AdSs x SP. We note that in general £,3 will be a complicated function of the radii,
incorporating for example the contributions of the field strengths, whose values are fixed
by their equations of motion.

This discussion makes it clear why we isolated the Chern-Simon terms. These are not
necessarily constant over our solution. On the other hand, being topological they play no
role in determining the radii, or the central charge, so we are free to neglect them at this
stage.

With foresight, we define the central charge function

30,0,

3
= m&dsf@pﬁms ; (2.3)

c(lads, Lsp)

and so the actual values of the radii are determined by solving

0
ol Ads

0
C(fAds, ES")|€Ads:ZAds = aE—SPC(EAdS, fsz))uspzzsp =0. (24)

We wish to establish that ¢ = ¢(€44s,fs») (equal on left and right!) is indeed the central
charge, as defined by the conformal anomaly

Ti c (2)
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of the dual D =2 CFT.
To this end, put the 2D CFT on a sphere with metric

ds* = e dQ3, (2.6)
and focus on the partition function, Z = e/, as a function of w. Under constant shifts of
w we have

o= - /d 29 T0gi5 = o /d 29 TVgij = —5, 0w /d z/g PR = —30w. (2.7)

This is to be compared with the action (R.I]) evaluated on (R.9):

Sy

= mﬁi’ldsﬁgp /dn sinh? ) Lp43 + Soudy - (2.8)
P



To make sense of this we need to impose an upper cutoff on 7. The integral gives

Tmax ) 1 1 .

/ dn sinh? NLpi3 = <—§nmax + 3 cosh Mpax sinh nmax> Lyi3. (2.9)
0

Now, Spndy is the integral of a expression defined locally on the AdS boundary. It is

constructed out of the intrinsic and extrinsic curvature of the boundary. Such terms will

never give a contribution linear in 7mac. Instead, they cancel the second term in (R.9),

leaving the action

I = —%ﬁ@@gpﬁpw Nmax - (2.10)
Comparing (P.2) with (B.6) we have
0w = Mmax » (2.11)
which then yields
= St iaslin Ly (2.12)

as we wanted to show.

To summarize, we have shown that the central charge of an AdSs x SP x X solution
can be obtained simply by extremizing the central charge function (R.3) with respect to
the AdS and sphere radii. For a given lagrangian this just means solving two algebraic
equations. We will refer to our procedure as c-extremization.

We would like to emphasize a couple of important points. First, our result applies to
an arbitrary higher derivative lagrangian including matter fields. The requirement is just
that this lagrangian admits a solution with the assumed properties. Second, although we
used some language familiar from the AdS/CFT correspondence, our result is completely
independent of the validity of the AdS/CFT conjecture. Essentially, we have derived a
result about how the gravitational action behaves under Weyl transformations of the AdS
boundary.

2.2 Black hole entropy

Once the central charge is known, results for black hole entropy follow with little additional
effort. We now review how this works in the general case, allowing independent values of
the left and right moving central charges.

We consider black holes of the form BT'Z x SP x X. One way to compute the black hole
entropy is by computing the action of the euclidean black hole. From there, one gets the
free energy, and then thermodynamic quantities follow in the standard way. The euclidean
BTZ black hole is a solid torus which can be continued to lorentzian signature in many
different ways. Consider the cycles on the boundary of the torus which are noncontractible
with respect to the boundary. There is clearly one such cycle which is contractible in
the solid torus. If one calls the coordinate along the contractible cycle ¢, and the other

cycle coordinate tg, then upon continuing tp — —it one obtains the geometry of thermal



AdSs; that is, global AdSs with compact imaginary time. On the other hand, the opposite
assignment of tp and ¢ leads, upon continuation to lorentzian signature, to the BTZ black
hole.?

From this point of view it becomes clear that the black hole partition function is just a
rewriting of the thermal partition function. But the result for the thermal partition function
follows directly from the central charges. Hence, so too does the black hole entropy.

Let us illustrate this in more detail; see [[4]. An asymptotically AdS3 solution carries
energy H and angular momentum J. In the CFT on the boundary J is the momentum.
We can also define the zero modes of the Virasoro generators as

c H-J
h :L——:
L 0 24 9 )
- C H+J
hp =Lyg— — = . 2.13
h=Lo- o= (2.13)

We can think of a bulk solution as a contribution to the partition function

N

— Tr e?ﬂi’the—Qﬂi?hR , (214)
where we defined
S e A (2.15)
2 2

When we go to euclidean signature p becomes pure imaginary and 7 becomes the complex
conjugate of 7. Also, it follows from (R.14) that 7 is precisely the modular parameter of
the euclidean boundary torus.

Now consider thermal AdSs. In lorentzian signature thermal AdSs takes the same form
as AdSs written in the usual global coordinates. On the other hand, we know that global
AdS; corresponds to the NS-NS vacuum, and as such carries Lo = Ly = 0. Therefore, we
conclude that the action of thermal AdS; is

s .
Tthermal (7, 7) = E(CT — 7). (2.16)

There are in fact additional contributions due to quantum fluctuations of massless
fields. (R.16) just takes into account all the local contributions. The extra nonlocal contri-
butions are, by definition, suppressed for large 3, and will give subleading contributions to
the entropy compared to the local piece.

We already noted that BTZ is obtained by interchanging ¢tg and ¢. This is just a
modular transformation of the boundary torus: 7 — —%. Recall that a modular transfor-
mation is a diffeomorphism combined with a Weyl transformation. The action is invariant
since if we take a flat metric on the torus then all potential anomalies vanish. We therefore
conclude that

Igrz(T,7) = i (E - g) : (2.17)

12\r 7

2Other choices lead to the so-called “SL(2,7Z)” family of black holes.



From (R.14) it follows that

hr — e
L= 9rior 2472
1 OI c
hp = ___¢ (2.18)

2mi 07 2472

From the thermodynamic relation I = 6H + uJ — S we compute the entropy S to be

Sprz =27 <thL+H%hR> . (2.19)

Three facts about this computation are worth stressing. First, the result (R.19) holds
for an arbitrary theory of gravity admitting a BTZ black hole (times an arbitrary com-
pactification space). Second, the result is valid entirely independent of the AdS/CFT
correspondence. One can just think of it as a result for computing the action of the eu-
clidean black hole. Finally, (2.19) gives the entropy in terms of the black hole mass and
angular momentum, and with the central charges appearing as “undetermined parame-
ters”. This shows that once we can compute the central charges, the black hole entropy
follows directly from (R.19). But we have seen in the last section how the central charge —
in the case of ¢ = ¢ — follows from a simple extremization principle. Altogether, we have
arrived at an efficient method of computing black hole entropy.

2.3 Equivalence with Wald’s approach

The Wald formula ([[.9) gives the black hole entropy in an arbitrary diffeomorphism in-
variant theory [I. In his approach, one integrates a certain expression over the black hole
horizon. The power of this result is its complete generality. However, for black holes with
a near horizon AdS3 x SP x X structure, the method we have described above is actually
much simpler to implement. In particular, one is not required to locate the horizon at all:
c-extremization gives the entropy directly. In any case, it is worthwhile to check that our
result agrees with Wald’s formula, as we do now.

The essential ideas for demonstrating this equivalence appear in the paper [[§] where
it is shown that Wald’s approach leads to a black hole entropy in the form (R.19). We will
follow a slightly different procedure from [[[5].

We first want to write the central charge in a form suitable for comparison with the
Wald formula. It is convenient to work directly in the theory compactified all the way to
D = 3. By assumption, all matter fields take constant values, so that we can write the
action purely in terms of the metric. In D = 3 the Riemann tensor can be expressed in
terms of the Ricci tensor; so the general action will be a function of the Ricci tensor and

its covariant derivatives®

1
167TG3

/d‘?’x\/—g L3(9"", Ruv) + Sondy - (2.20)

3 Actually, one can also include a Chern-Simons term, S ~ JTr w A R, but for now we exclude such a
term. It would lead to é # ¢ and associated subtleties, which we postpone till a later section.



Schematically we have
L3(g"", Ruw) ~ Zan M (Ruw)™ (2.21)

where the a,, include covariant derivatives and contractions are not written out explicitly.
The central charge function (R.3) is

3Q9

C(EAds) = 397 G @Adsf,g (222)

If we write introduce rescaled variables through [f]

~ v 1 "% ~ >
Juv = ga&dsguu7 gM = 62—'9“ ) Ruu = 2guu = Ruu7 (223)
Ads
then £ 44, satisfies

0L3
3L3 4 20% 4, = >— =0. (2.24)

8£Ads

Furthermore, in the rescaled variables (R.23) the action reads

;w
3 A~
167TG /d Zz \% gAdS 7RH/V) ? (225)

2
gAds
so the derivative in (R.24) can be evaluated as*

aLs . AL, 2 AL,

2 e =—-R,——=— Juv . (2.26)
Ad a6124d5 g aR/J,l/ Ez%lds g aRlW
Simplifying (2.29) using (B.24) and (R.26) we find
_ laas L3
y—— . 2.27
~ 2G5 "R, (2.27)
This formula generalizes the usual Brown-Henneaux central charge
3£Ads
= 2.2
(&) 2G3 3 ( 8)

by taking higher derivative corrections into account. The net result amounts to a rescaling
of the AdS3 radius £4s — Lot = 20 4qs Where
1 0L3  2Gs .
39 OR,, ~ Blags

(2.29)

We are now ready to make the connection with Wald’s approach, since the latter in-
volves an integration over the horizon of the derivative of the lagrangian with respect to
the curvature. Presently, the black hole entropy takes the form (B.19) with the central
charge (2.27). The BTZ black hole, as usually written, is expressed in terms of the param-
eters M3 and J3 which, for a 2-derivative action are identified with the mass and angular
momentum of the black hole. However, in the presence of higher derivatives the relation

4We use the fact that all covariant derivatives vanish on the background.



is rescaled by the conformal factor (R.29) and we have instead

M:

hig =0 %‘]‘”’ . (2.30)

We now find the entropy (2.19)

S = T g'“”—aﬁ3 [\/SGngdS(Mg + Jg) + \/8G3fAdS(M3 — Jg)}
12G57 9R,,
Atz

= Q 2.31
4G5 (2.31)

where Aty is the standard expression for the area of the BTZ black hole, i.e. a specific
function of Ms, J3, 445 and Gs; and Q is the rescaling factor (R.29) that encodes the
correction due to higher derivative terms. It is now straightforward to show that Wald’s
formula

1 OLs 5
- 5 P e s 2.32
%= 56 /hord‘Zj T (2.82)

agrees precisely with (R.31), and so with Cardy’s formula (2.19).

3. Example: M-theory on C'Y;

To illustrate our approach, we now consider the example of M-theory compactified on a
Calabi-Yau 3-fold X = CY3, yielding a supergravity theory in D = 5. This is a rich
example that includes includes black holes in both four and five noncompact dimensions
and also BPS black ring solutions.

3.1 Two-derivative action

We will follow the conventions in [[[d], to which we refer for more details. In particular,

in this section we set G5 = which is convenient since it leads to integrally quantized

s
)
charges ¢/. The hypermultiplets are assumed to be consistently set to constant values.

Then the D = 5 action for the metric and vectormultiplets is given by (as in (@) with
p=2)

1 1
Ls =—-R+ §G[J6“X18HXJ + ZGUF!{VFJW + (fermions) + (higher derivs)

Scs = /d% CryKep s P12 FII81 ARES (3.1)

9672
At first we neglect the higher derivative terms.

We consider AdS3 x S? vacua of this theory supported by magnetic flux. The magnetic
charges are given by

1
I I
= —— F 3.2
q 27T S2 ’ ( )
where

I qI (3 3)

F' = ——¢€c .
202, "

,10,



is interpreted microscopically as ¢/ Mb5-branes wrapped on the Ith 4-cycle of X. The
scalars X! are taken to have constant values, fixed by the attractor mechanism to be
I

x! = d . 3.4
(%CUququK)l/?, (3.4)

The central charge function (R.3) becomes

- —idt 1 3.5
2., 39)

6 2 Grs'q’
c(gAdS7€SQ) = _66?4ds£§2 ( 194 >

Extremizing, we find

1 2
lags = 20g2 = 3V 6Grsa'q’, c= 4\/;(GIJQIQJ)3/2 . (3.6)

Special geometry relations (reviewed in [If]) give

rg_3(1 o\
Griqgq = 2 ECIJKQ q’q , (3.7)
which then yields
1 1/3
lags = 20g2 = <6CIJKC]IC]JC]K> . c=Crixd'q’ " . (3.8)

In the we review how these relations appear in the explicit solutions.

3.2 Higher derivative corrections

Our approach makes it simple to include the effects of higher derivatives. As an example
we consider adding to the action the term

ALs = A (R Ry — AR™ Ry, + R?), (3.9)

for some constant A. If we were in D = 4 this term would be the Euler invariant. It is
one particular higher derivative term present in M-theory on C'Y3. Since other terms are
present as well, we don’t expect (B.9) to capture the complete microscopic correction to
the central charge or the black hole entropy. Later, we will do better, but this example is
a good illustration.

Evaluated on AdSs x S? we have

24A

ALy = ————, (3.10)
6124ds€%2
and so the central charge function is now
(Cager ls2) = —665 2 ( 6,2 Gudg’ 244 ) (3.11)
Adss bs2) = — -5t 5 - - :
o AT 2y, B A, 20,

— 11 —



Extremizing and using (B.7), we find that both the radii and the central charge are cor-

rected:
1 1/3 4A
Cads = <ECIJKQIQJQK> + T 1/3 +0(4%)
(§Crird'q’q*)
/ 1<1C IJK>1/3_|_ A +O(A2)
s2 = 5| ZVUIJKG q ¢
2\6 (%CIJKQIQJQK)I/B
1 1/3
¢ =T0rkq ¢ ¢™ + 1444 (ECUKquJqK> +0(A?%). (3.12)

3.3 Black hole entropy
The corrected central charge (B.19) gives the black hole entropy according to (2.19)

S:2m/%hL+2m/%hR. (3.13)

This formula could refer to either asymptotically AdS or asymptotically flat black holes,
with slightly different interpretations. In the AdS case, the Virasoro generators are re-
lated to the mass and angular momentum of the black hole as in (B.IJ). The entropy
formula (B-IJ) then holds for an arbitrary (i.e. nonextremal, nonsupersymmetric) BTZ
black hole in this theory.

In the asymptotically flat case (B.13) still holds, but additional work is required to
relate hy, and hgr to the asymptotic charges of the black hole. A good example is the case
of M5-branes and M2-branes in M-theory on C'Y3 x S'. This was the case considered in [J].
As before, we consider the M5-branes (with charges ¢’) to wrap 4-cycles in C'Y3, and in
addition we take the M2-branes (with charges Q) to wrap 2-cycles. The asymptotically
flat solution, in the case of CY3 = T® compactification, was given in [[[7]. After taking the
near horizon limit (which was all that was needed for the analysis in [[J]) we find that AdS3
becomes a extremal rotating BTZ black hole, with

i = Qo+ 507 QIQs (3.14)

Here Qg is momentum running around the asymptotic S', i.e. the Kaluza-Klein electric
charge, and C!” is related to the intersection matrix of the compactification manifold. The
extra term in hg is due to the nonzero M2-brane charges. More discussion of this effect
can be found in [B, [(§, [J]. With this identification (B.13) gives the entropy in terms of
the charges measured at asymptotic infinity. As we have already stressed, once higher
derivatives are included (B.1J) will still hold but the central charges will be corrected.

4. Anomalies, central charges, and entropy

Up until this point we have restricted attention to cases with ¢ = ¢, and focussed on
computing the central charge and black hole entropy from the conformal anomaly. The
approach is quite powerful, but for certain cases one can do even better. Indeed, one
potential disadvantage is that to compute the conformal anomaly one needs to know all
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the terms in the action which are nonzero in the given background. But all such terms
are not necessarily known when one is considering higher derivative theories. Furthermore,
when ¢ # ¢, this approach is clearly insufficient to determine both central charges.

It is wise to take advantage of any other anomalies in the problem, as well as the
relations among them following from symmetries. For the M5-brane example considered
in the previous section gravitational anomalies are especially powerful. As we will review,
there are two anomalies — the tangent and normal bundle anomalies — which follow from
knowledge of a single term in the action, and which suffice to determine the corrections to
both central charges [l. So from this point of view the corrected entropy formula for the
Mb5-brane emerges rather easily.

In the absence of gravitational anomalies the on-shell bulk supergravity action is a
diffeomorphism invariant function of the boundary geometry. By the AdS/CFT correspon-
dence it is supposed to yield the partition function of the CFT on the boundary. In the
presence of gravitational anomalies, one is still led to conjecture the correspondence, but
with each side suffering a loss of diffeomorphism invariance. This manifests itself in the
non-conservation of the boundary stress tensor.

4.1 Some higher derivative terms

Several higher derivative terms in the effective action of M-theory are known (some relevant
references are [Rq—RZ)). Those involving R* terms take the schematic forms

tstsRRRR,
€11 - €11RRRR,

1
e1C3 |Tr R* — Z(Tr}z?)? . (4.1)

For the precise definitions of these, and their coefficients in the action, see, e.g. [BT]. Of most
interest to us is the term given in the third line since this term yields corrections to central
charges and black hole entropy. The coefficient of this term is determined by requiring that
its anomalous variation under diffeomorphisms cancel anomalous terms on the M5-brane
worldvolume. We will review this in the dimensionally reduced context below.

Dimensional reduction of these terms on CYj3 leads to various higher derivative terms
in D =5 [PJ], as well as shifts in the coefficients of some two-derivative terms. One of the
terms that appear this way is the dimensionally continued Euler invariant (B.9). Here we
focus on

co PO
S, nom — AN ; 4.2
ano 48 /M5 p1 ( )

which arises from reduction of the third term in ([1)). In (£2) p1 is the first Pontryagin
class

1\2
p1=—3 (2—> TrRAR. (4.3)
™

We take the M5-brane to wrap the cycle Py = P{o;, where {0/} form a basis for Hy(X, Z).
The choice of 4-cycle then determines a particular linear combination of gauge fields in five
dimensions, which was denoted by A in ([.J). Finally, c; is the second Chern class of X,

which has coefficients co; in its expansion with respect to chosen basis for H*(X, 7).
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After reduction on X, the wrapped M5-branes correspond to a string in five dimensions,
on which lives a chiral CFT. As explained in [{], the term (.9) cancels the gravitational
anomalies of the CFT.5

4.2 Anomalies

Anomaly cancellation occurs via the inflow mechanism, as we now recall. First of all, since
A is ill-defined in the presence of a magnetic charge, ({.9) should really be written after
performing an integration by parts and discarding the boundary term. So the actual term

1 202-P0
S=1(= FA 4.4
2 (%) 8 /Ms W (4:4)

where ws is the Lorentz Chern-Simons 3-form:

of interest is

2
w3 = Tr(wdw + gw?’) , (4.5)

with w being the spin connection. Now under a local Lorentz transformation parameterized
by ©,

dw =dO + [w, O], (4.6)
the action changes as
son o —1 (L e By F ATr(dO A dw) (4.7)
bulk = 3 | 5 18 s r w) . :

At this point we encounter two distinct interpretations. The approach of [ff] was to
consider the magnetic string essentially as a pointlike defect placed in an ambient space.
The presence of the magnetic string corresponds to dF having delta function support at
the location of the string. In this approach, one integrates (.7) by parts, and then uses the
delta function to perform the integral over the directions transverse to the string. What
remains is an integral over the string worldvolume, which cancels a term coming from the
variation of the path integral over the string degrees of freedom.

The interpretation in our case is somewhat different. We are dealing with a smooth
supergravity solution with geometry AdSs; x S? x X and dF = 0. The branes have been
replaced by flux. Instead of cancelling the anomaly at the brane location, we get a con-
tribution at the AdS boundary. It is clear that this contribution yields the anomalous
variation of the CFT on the boundary. This mechanism is well known in AdS/CFT, going
back to the treatment of the R-symmetry anomaly of ' = 4 super-Yang-Mills in [24]. In
particular, (.7) gives the boundary term

1 1 2 co - PO
1) =— | — FATr(Odw) . 4.
Sbulk 5 <2ﬂ> B o A Tr(©dw) (4.8)

®More precisely, it cancels the part of the anomaly linear in M5-brane charge. There are also cubic terms
which we’ll discuss momentarily.
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We consider pure AdS3 x S? with the components of F' given by (B.J). Integrating ([£§)
over the S% we obtain

C2+q 1
Sbulk = —3% —

BB 27 Jonas, Tr(Odw) . (4.9)
Importantly the matrices © and dw are still by 5 x 5; they include indices along the AdS3
boundary and also in the radial and S? directions. Accordingly, we can study two kinds
of anomalies, associated with diffeomorphisms that map the boundary to itself (tangent
bundle anomaly) and with diffeomorphisms acting on the vectors normal to the boundary
(normal bundle anomaly). From the point of view of the D=2 CFT, these are gravitational
and SU(2)r symmetry anomalies.

In the CFT the gravitational anomaly is obtained via descent from Iy = 27 ﬁ(c— ¢)p1,
yielding

c—c 1

dScrT = —

— Tr(Odw) . 4.10
48 271' OAdS; ( ) ( )

Equating this with ([£9) we find®
E—c=3cq. (4.11)

The computation of the normal bundle anomaly is similar. In this case the corresponding
CFT anomaly is in the SU(2)r symmetry which, in our conventions, acts on the leftmovers
so that the normal bundle anomaly contributes

Clin = 3C2° ¢, (4.12)

to c. The form of (f.11]) and ([£.19) are the same because these contributions arise from the
same anomaly ([£J), decomposed into tangent and normal bundle part, and interpreted
appropriately. These expressions capture the linear contributions to the central charges
exactly. However, there are also O(g?) contributions (see (B.§)) coming from the two-
derivative part of the action, and so altogether we have

c=Crrqd'q’¢" + %62 q,  é=Curd'd'd" +er-q. (4.13)
These are the results found in [, f].

The Crirq'q’ ¢’ contributions are actually quite subtle in the context of anomaly
cancellation for M5-branes viewed as pointlike defects [BF, Pd]. The O(¢®) contribution to
the normal bundle anomaly requires a subtle modification of the M-theory Chern-Simons
term. By contrast, in the context of the smooth supergravity backgrounds considered here,
this contribution is simple to understand because it comes from the leading two-derivative
part of the action. We have phrased this in terms of computing the conformal anomaly, but
we could have equally well computed the normal bundle anomaly directly. In our problem
supersymmetry related these anomalies to one another, so a computation of either suffices.

SThere are two (cancelling) sign changes relative to the anomaly inflow in [E] the boundary at infinity
has normal opposite to that of a defect in bulk; and also we are equating the two anomalies, as in AdS/CFT,
rather than cancelling them, as in the anomaly inflow.
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4.3 Application: heterotic strings

An important special case of our computations is M-theory on K3 x T2. Consider an
M5-brane wrapped around the K3 and transverse to the 72. In this case we have Cyjrq’ x
¢’¢™ = 0, and ¢y - ¢ = 24 because the Euler number of K3 is 24. Therefore, ({.139)
gives ¢ = 12 and ¢ = 24. These are the correct assignments for the heterotic string
which, indeed, is a dual representation of an M5-brane on K3 x T2. Thus we find the
central charges of both sides of the heterotic strings; so we are sensitive to all excitations,
rather than just the BPS states. In particular, from the Cardy formula ([.3) we get the
entropy of nonsupersymmetric small black holes in agreement with the non-BPS entropy
of the heterotic string. Although the formulae (§.13) have been known for some time, this
agreement apparently has not been noticed before.

The recovery of both the central charges of the heterotic string sounds like an extremely
powerful and surprising result when put, as above, in terms of the near horizon geometry,
corrected by higher derivative terms in the action. However, from another point of view
the agreement is almost trivial: a heterotic string propagating in a curved background
suffers gravitational anomalies, because ¢ # ¢, and these must be cancelled by bulk terms,
via the inflow mechanism. This works, of course; indeed, it would be one way to derive
the anomalous coupling Sanom, including the coefficient. Related to this, heterotic string
theory in AdS3 x N has linear corrections that precisely reproduce the ones seen here [27].
From either point of view, we should hardly be surprised when these couplings give back the
heterotic string, when interpreted in terms of the near horizon geometry and its boundary
at infinity. On the other hand, the fact that the agreement is essentially automatic does

not make it any less valid, nor any less interesting.

4.4 Application: inclusion of angular momentum

Consider the BPS states of a heterotic string wrapped on an S' in 7°, with fixed wind-
ing number, rightmoving momentum, and angular momentum in a given 2-plane. The
microscopic entropy is known to be [R]

S = 4m\/NyN, — J . (4.14)

Geometrically, the states correspond to rotating helical strings. The maximal angular
momentum, J = N, N, is attained when all the momentum is placed in oscillators of the
lowest mode number, with polarizations in the angular momentum 2-plane. The profile of
the helix is then a circle. If we decrease J from its maximal value while holding N, , fixed,
then there are additional microstates in which the string wiggles away from its circular
shape, either in the noncompact or internal dimensions. These additional states give rise
to the entropy ([.I4). As we will now argue, there is also a black object with the same
charges and whose entropy agrees with ()

Using heterotic/ITA duality, and lifting to M-theory, the configuration above describes
a rotating helical M5-brane wrapped on K3 x T2, The supergravity solution will have near
horizon limit AdSs x S? x K? x T2. The rightmoving central charge is é = 24N,,, since
the Mb5-brane wraps K3 N, times. The level number hpr appearing in the near horizon
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region differs from the total rightmoving momentum /N, measured at infinity. Although
we have not checked this explicitly in the present context, in other very similar cases (see,
e.g. [29)) one finds that hg is obtained by subtracting from N, the momentum used up by
the gyration:

hr = Np — Ngyro - (4.15)
The mechanical gyration of the string carries momentum and angular momentum related
by Jeyro = %ngro, where A is the wavelength of the gyration. Since our brane is wrapped
N,, times around a circle of radius R, the largest possible wavelength (which yields the
highest entropy) is A = 2rRN,,, and so

J

N
The near horizon geometry will thus be a BTZ black hole with entropy given by the Cardy

S:m/ghR = dn\/NuN, — J , (4.17)

in agreement with ([.14). The black object could be thought of as a “small” black ring.
With the replacements N,, — N5 and N, — Nj, ({1.14) also gives the ground state

entropy of the D1-D5 system on K3. Indeed there is a duality chain that relates the two

systems. The M-theory configuration can be interpreted as IIA on K3 x S! with NS5-

hp =N, — (4.16)

formula as

branes wrapped on the compact space and carrying momentum on the S'. A T-duality
on the S! followed by S-duality then yields the D1-D5 system. The ground state entropy
of the D1-D5 system has recently been obtained in a different approach by lizuka and

Shigemori [B(].
5. Discussion: corrections to all orders in 1/Q and beyond

The black hole entropy discussed in this paper has been presented in all cases in terms of
the Cardy formula which is essentially semi-classical. It is interesting to think about how
further corrections might be included. In particular, recent work has shown that is possible
to reproduce the BPS entropy of the heterotic string to all orders in an expansion in inverse
powers of the charges [[0]. Let us now show how our approach is naturally extended to
include this agreement.

In evaluating the black hole partition function in section P.J we specified the black
hole temperature 8 and chemical potential u, which are conjugate to the mass and angu-
lar momentum of the black hole. We now note that we could also specify the values of
any conserved charges or, alternatively, the boundary values of the corresponding gauge
potentials.

In the case of M-theory on K3 x T? we have gauge fields A that couple to charges Q;
that correspond to wrapped M2-branes. We thus need the euclidean action of black holes
carrying these charges (as well as the M5-brane charge ¢). According to (B.14) this just
gives a shift in hg which, from (R.14)), changes the action to

i é

1
IBH(i QI) = = + 2miT §CIJQIQJ- (5.1)
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To focus on BPS states we set the left moving temperature to zero: % = 0. Semi-classically,
the potentials are related to the charges as

101
I BH
== 5.2
SO
c Crs0'¢’
Ipn(¢°,¢!) = — - 222 @ 5.3
BH((b 7¢ ) 6¢0 2 ¢0 ) ( )
where we renamed the right moving temperature
2
¢ = 7. (5.4)
i

The potentials ¢°, ¢! defined in (5.3) and (F-4) were designed to agree with the conventions
in the topological string literature [L], [[0] which amounts to the equality

o ™(Qod0+ard’) _ 2miT(Qu+QrAf) (5.5)

Now, the expression (p.3) for the action is precisely the same as (the negative of) the free
energy Fpert appearing in [, (2.6)], and at this point we can simply follow their analysis.
In particular, the degeneracy of states Q2(Qo, Q) with the specified charge is given by the
relation between the canonical and microcanonical ensembles

QQo, Q1) = / de e 1pn ("0 Tr(Qod+Qrd). (5.6)

Carrying out the integral yields a Bessel function which correctly accounts for the number
of heterotic string states to all orders in inverse powers of charges. We refer the reader
to 0] for the details (and also to [J for an alternative approach). The point we wish to
emphasize here is that the power law corrections to the black hole entropy are semi-classical
in nature, and so they can be captured by our approach.

Ultimately, several other corrections must be included in order to account completely
for the microscopic degeneracies including exponentially suppressed terms. For example,
there are contributions from world-sheet and brane instantons and also, more dramatically,
from semi-classical geometries distinct from the one contributing to the leading term. These
corrections remain to be understood, both in the 4D topological string approach, and in
the approach considered here.
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A. Asymptotically flat M5-brane solution

For convenience, we give here the asymptotically flat solution representing Mb5-branes
wrapped on 4-cycles of CY3. We follow the conventions of [l6]. The CY3 has harmonic
(1,1) forms J; and Kahler 