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1. Introduction

QCD calculations are notoriously tedious if one is to follow the usual Feynman-Dyson

expansion in some commonly used, such as Feynman, gauge. Over the past few years,

great strides have been made to simplify such endeavors. The results for the complete

amplitudes at the tree or one- loop level can be quite compact.

Following Witten’s proposal for a description of perturbative Yang-Mills gauge theory

as a string theory on twistor space [1], and subsequent proposal for an alternative to the

usual Feynman diagrams in terms of the so-called maximally helicity violating (MHV) ver-

tices [2], a new set of methods was available for the computation of QCD amplitudes. The

latest advance in the form of recursion relations [3, 4], in conjunction with the attendant

rules for their construction, is particularly appealing. It is quite obvious from the flavor of

such an approach that it bears on the cutting rules in field theory. In fact, some work at the

one-loop level under the heading of cut-constructibility clearly points to the same origin

[5]. These brief remarks certainly call for the possibility to develop the subject further in

the context of quantum field theory and it is our intention to do so in this short article.

As is well-known, unitarity of the S-matrix and the feasibility of an ordering of a

sequence of space time points are intimately related. Indeed, the ordering need not be

with respect to time, as is conventionally done. All that is essential in a perturbation

series is that one must be able to separate the positive frequency and the negative frequency
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components in a propagator according to the signature of a certain linear combination of

components ∆x of the four vector between the two space-time points. For our purpose,

a component η · ∆x of the light-cone variables will be a convenient start, where η is a

light-like vector. We shall rely on the existence of tubes of analyticity to continue such

variables into the space cone, in order to incorporate a gauge condition for QCD. The

resulting ordering is the equivalent of the largest time equations. We shall show that it is

a consequence of these equations, when transcribed into momentum space, which give rise

to a set of recursion relations. The outcome, for QCD in particular, is that one factorizes a

physical amplitude into products of physical amplitudes, with some momenta shifted but

still on-shell. This is the content of the BCFW recursion relations [3, 4]:

A(P, {Pi}, Q, {Qj}) =
∑

i,j

AL(P̂ , {Pi})
1

(P +
∑

i Pi)2
AR(Q̂, {Qj}) ,

where AL,AR are lower n-point functions obtained by isolating two reference gluons with

shifted momenta, P̂ = P − zη, Q̂ = Q + zη with η2 = η ·P = η ·Q = 0, on the two sides of

the cut. The shifting is necessary in order to preserve energy-momentum conservation. We

would like to take this opportunity to point out that in so far as factorization is concerned,

the masses of the internal propagators have no bearing. However, the demand that the

shifted momenta, which will be called reference momenta, should be on-shell will force

these external momenta to be light-like.

We now turn to the important step of gauge fixing. In order to facilitate natural

cancellation of terms at every level of a QCD calculation, the gauge that is most convenient

for us is the space-cone gauge [6]. Here, the dependent degrees of freedom are completely

eliminated and only two helicity components are left in the Lagrangian. To accomplish

that, the now complexified null vector η is called upon. Loosely speaking, it is a direct

product of two spinors. They are used on the one hand as the reference spinors separately

for the two helicity components of the gauge field. On the other, they will be identified

with two of the external momenta in a process. A further advantage of this gauge is that

when we shift the momenta to obtain recursion relations, the dependence on momenta of

the vertices will not be affected. Thereupon the factorization of the amplitudes is the same

as that in a scalar theory. It is this special attribute which makes the program manageable.

The plan of this article is as follows. In the next section 2, we write down the QCD

Lagrangian in the space-cone gauge, where the auxiliary fields are eliminated. The number

of diagrams contributing to a process will be drastically reduced. It is seen that the relevant

propagator is basically scalar and that the vertices have good behavior under the kind of

momentum shifts we shall make. This propagator will be decomposed into positive and

negative frequencies in Section 3 according to light cone ordering. Sequencing space-time

points in this ordering will be followed in section 4 and the largest time equation will be

summarized.

To familiarize the reader with space-cone calculations and the underlying mechanism

due to momentum shifting for factorization, we give several simple examples in section 5.

We want to emphasize that we obtain the recursion relations not only because the products

of propagators satisfy certain algebraic identities, but just as importantly because the
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vertices also respect the kinematics in the shifted momenta. Furthermore, polarization

factors have to be provided for the cut lines, so that the cut graphs are indeed physical

amplitudes. The space-cone gauge fulfills all these demands.

In section 6, we show that the propagator identity we used for five gluon amplitudes

is a progeny of the largest time equation given earlier. It is this deep connection that we

should be able to push the factorization program much further into the loop level.

Section 7 is used to generalize the propagator identity to any number of space-time

vertices which connect the flow of the two reference vectors. We shall show in fact that

the propagators can have any masses, leading to a field theoretical proof of the recursion

relations for massive charged scalars. At the same time this observation of course opens a

new vista to include massive quarks, which we discuss in section 8.

2. The space-cone gauge fixed Yang-Mills action

Consider the four-dimensional Yang-Mills gauge theory, with the Lagrangian

L = −1

8
Tr(∂aAb − ∂bAa + i[Aa, Ab])2 . (2.1)

Following [6], we decompose the four-dimensional vector indices in a light-cone basis

Aa = (a, ā, a+, a−) , (2.2)

and we define the inner-product of two vectors by

A · B = ab̄ + āb − a+b− − a−b+ . (2.3)

Equivalently, we can choose to decompose a four-dimensional vector into bispinors:

Aαβ̇ =
1√
2
Aa(σa)

αβ̇ =

(
a+ ā

a a−

)
. (2.4)

The indices are raised and lowered using the northwest rûle with the matrix

Cαβ = Cα̇β̇ = −Cαβ = −C α̇β̇ =

(
0 −i

i 0

)
. (2.5)

Null (light-like) vectors can be decomposed into a product of two commuting spinors

(twistors):

Pαβ̇ = pαpβ̇ . (2.6)

Moreover, we can use the twistors to define a basis on the space of four-vectors

pα ≡ 〈p|, pα ≡ |p〉, pα̇ = [p|, pα̇ = |p] , (2.7)

such that

P = p+ |+〉[+| + p− |−〉[−| + p |−〉[+| + p̄ |+〉[−| . (2.8)
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With the normalization

〈+−〉 = [−+] = 1 (2.9)

it follows that the components of a null four-vector P = |p〉[p| onto the twistor basis are

given by

p+ = 〈p−〉[−p], p− = 〈+p〉[p+], p = 〈+p〉[−p], p̄ = 〈p−〉[p+] . (2.10)

As shown by [6], in a twistor formulation of the gauge theory a powerful simplification is

achieved in the Feynman diagramatics by choosing the space-cone gauge:

a = 0 , (2.11)

followed by the elimination of the “auxiliary” component ā from its equation of motion.

The gauge fixed Lagrangian has now only two scalar degrees of freedom

L = Tr

[
1

2
a+

¤a− − i

(
∂−

∂
a+

)
[a+, ∂a−] − i

(
∂+

∂
a−

)
[a−∂a+] + [a+, ∂a−]

1

∂2
[a−, ∂a+]

]
.

(2.12)

Choosing the space-cone gauge amounts to selecting two of the external momenta to be the

reference null vectors for defining a twistor basis: |+〉[+|, |−〉[−|, such that the space-cone

gauge fixing is equivalent to N ·A = 0, where the null vector N is equal to |+〉[−|. The other

ingredient which is needed in converting the essentially scalar Feynman diagrams arising

from the gauge fixed Lagrangian (2.12) into definite helicity gluon Feynman diagrams is

inserting external line factors. Given that the polarization vectors are given by

ε+ =
|+〉|p]

〈+p〉 , ε− =
|p〉|−]

[−p]
, (2.13)

then the external line factors are obtained by projecting them onto the +, respectively −
components

ε+
+ =

[−p]

〈+p〉 , ε−
− =

〈+p〉
[−p]

(2.14)

for the positive, respectively negative helicity external gluons. The helicities of the internal

lines/virtual gluons are accounted for by the the scalar Lagrangian: a “ + −′′ helicity

internal line corresponds to a a+a− propagator, and vice versa.

3. The propagator

For later purposes we explicitly construct a representation of the Feynman propagator,

wherein a light-like four-vector is introduced as a parameter. Thus for a scalar field1 one

writes

∆(x − y) =
1

i

∫
d4L

(2π)4
1

L2 − iε
eiL·(x−y) . (3.1)

1Recall that in the gauge-fixed Yang-Mills action the gauge field was reduced to two propagating scalar

degrees of freedom. So the scalar propagator constructed in this section is relevant also for gauge bosons.
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We will show that the propagator can be equally well represented as

∆(x − y) =
1

i

∫
d4p

(2π)4

∫
dz

z − iε
θ(p+)δ(p2)ei(p−zη)·(x−y)

− 1

i

∫
d4p

(2π)4

∫
dz

z + iε
θ(−p+)δ(p2)ei(p−zη)·(x−y) , (3.2)

with η an arbitrary null vector. Appropriating the following common notations to the

light-cone frame context:

δ+(p2) = δ(p2)θ(p+), δ−(p2) = δ(p2)θ(−p+) (3.3)

∆+(x − y) =

∫
d4p

(2π)3
δ+(p2)eip·(x−y), ∆−(x − y) =

∫
d4p

(2π)3
δ−(p2)eip·(x−y) , (3.4)

we can rewrite the position space propagator (3.2) using a light-like ordering as2

∆(x − y) = θ((x − y)+)∆+(x − y) + θ(−(x − y)+)∆−(x − y) . (3.5)

This can be seen, by first performing the contour integration over z 3 in (3.2)
∫

dz

z − iε
e−izη·(x−y) = 2πiθ((x − y)+)

∫
dz

z + iε
e−izη·(x−y) = −2πiθ(−(x − y)+) , (3.6)

under the assumption that the null vector η is equal to (η−, 0, . . . , 0) and η− > 0, followed

by an integration over p−. We end up with

∆(x − y) =

∫
dp+

2π

∫
dp̂i

(2π)2

(
θ(p+)θ((x − y)+)

|p+| +
θ(−p+)θ(−(x − y)+)

|p+|

)
eip·(x−y). (3.7)

The latter expression can be reproduced starting from the usual Feynman propagator (3.1),

going to a light-cone frame and contour integrating over L−.

Note that the previous discussion can be extended to include massive particles. The

minor extension involves replacing δ±(p2) by δ±(p2 + m2), while η remains a null vector.

Finally, one can easily show that the propagator as defined in (3.2) obeys the Klein-

Gordon equation

(−∂2 + m2)∆(x − y) =
1

i
δ4(x − y) . (3.8)

4. The causality (“largest time”) equations

As stated in the Introduction, we shall show that the recursion relations are rooted in the

largest time equation. To this end, we briefly revisit here the causality equations as derived

by Veltman[7], but appropriately rewriting them in a light-cone frame.

2A more familiar form of the equation (3.5), using a temporal ordering, is ∆(x−y) = θ((x−y)0)∆+(x−

y) + θ(−(x − y)0)∆−(x − y), where this time ∆±(x − y) =
R

d4p

(2π)4
δ(p2)θ(±p0)eip(x−y).

3Our conventions for the metric are mostly plus, and we define x± = x0±x1

√
2

.
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First, we introduce the following set of rules:

- duplicate the Feynman diagram 2N times, for N vertices, by adding circles around

vertices in all possible ways;

- each vertex can be circled or not; a circled vertex will bring a factor of i, and an

uncircled vertex will bring a factor of (−i);

- the propagator between two uncircled vertices is ∆(x − y), while the propagator

between two circled vertices is the complex conjugate ∆∗(x − y);

- the propagator between a circled xk and an uncircled xl is ∆+(xk − xl), while the

propagator between an uncircled xk and a circled xl is ∆−(xk − xl).

Clearly, the uncircled Feynman diagram is the usual one, while the fully circled diagram

corresponds to its complex conjugate.

The largest time equation states that the sum of all 2N circled Feynman diagram

vanishes:

F (xi) + F ∗(xi) + F(xi) = 0 , (4.1)

where F (xi) stands for the usual Feynman diagram, F ∗(xi) is its complex conjugate, and

F(xi) is the sum of 2N − 2 diagrams in which at least one vertex is circled and at least one

is uncircled.

Other causality equations can be obtained by singling out 2 vertices, xk and xl. Let

us assume x+
k < x+

l . Then, one has

θ((xl − xk)
+)(F (xi) + F(k, xi)) = 0 , (4.2)

where F(k, xi) is the sum of all diagrams with k uncircled, but at least one other vertex

circled. Similarly, one has

θ((xk − xl)
+)(F (xi) + F(l, xi)) = 0 , (4.3)

By adding these two equations one finds

F (xi) = −F(k, l, xi) − θ((xl − xk)
+)F(k, l, xi) − θ((xk − xl)

+)F(k, l, xi)) , (4.4)

where F(k, l, xi) is the sum of all diagrams with neither k, l circled, but at least one other

vertex circled, F(k, l, xi) is the sum of all amplitudes with k uncircled , but l circled and

finally, F(k, l, xi)) has k circled and l uncircled.

By taking the Fourier transform of the real part of the position space Feynman di-

agrams 1
i

∫
dp(F (xi) + F ∗(xi)) one obtains the imaginary part of the momentum space

diagram. The cut graphs (Cutkosky rule) are derived by the use of (4.1). The momentum

space propagators between two vertices with both vertices uncircled is (3.1) −i/(p2−iε), the

complex conjugate expression if the two vertices are circled, and 2πδ+(p2) if the momentum

flows between an uncircled and a circled vertex.
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5. Reassembling Feynman diagrams into BCFW recursion relations

The Feynman diagrams, as advertised, are the ones following from the space-cone gauge-

fixed Lagrangian (2.12). To set the stage for the recursion relations involving arbitrary

tree level gluon n-point functions, we begin our investigation with the lowest ones.

The 3-point function is the same as the 3-point vertex up to multiplication by the

external lines polarization vectors. Otherwise, the 3-point function has only one peculiarity:

to define it, one cannot select the 2 reference gluons out of the three external gluons. Take

for instance (123) = (+ + −), with 1 selected as reference and an arbitrary null vector

P4 = |4〉 [4|. The 3-point function is given by

(+ + −) = ε+
2 ε−3 k3 =

(
[12]

〈42〉
〈43〉
[13]

〈42〉[12]
)

1

〈14〉 , (5.1)

where the factor 1/〈14〉 is inserted as a matter of normalization of the angular and square

brackets. Using that

〈43〉[23] = 〈41〉[12] , (5.2)

the 3-point function acquires the standard googly-MHV expression

(+ + −) =
[12]3

[23][31]
. (5.3)

We now proceed to evaluate the 4-point functions. This is our first demonstration of

factorization, which will be cast into a BCFW recursion. Let us consider (1234) = (+−−+),

with 1 and 2 selected the reference gluons

|1〉 = |−〉 , |1] = |−] (5.4)

|2〉 = |+〉 , |2] = |+] . (5.5)

In this basis, the polarization vectors are

ε+
p =

[−p]

〈+p〉 =
[1p]

〈2p〉 (5.6)

ε−p =
〈+p〉
[−p]

=
〈2p〉
[1p]

, (5.7)

and the four components of the momenta decomposed in the twistor basis read

p+ = [−p]〈p−〉 = [1p]〈p1〉 (5.8)

p− = [+p]〈p+〉 = [2p]〈p2〉 (5.9)

p = −[−p]〈p+〉 = −[1p]〈p2〉 (5.10)

p̄ = −[+p]〈p−〉 = −[2p]〈p1〉 . (5.11)

Notice that the only non-vanishing components of the reference gluon momenta are

p−1 = 1, p+
2 = 1 . (5.12)
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Figure 1: Factorization of the 4-point function.

We now pose the question what happens with the Feynman diagrams if for later purposes

we decompose the η-shifted reference gluon momenta, with the choice

η = |2〉 [1| , (5.13)

in the same twisor basis? Concretely, we define the η-shifted reference gluon momenta

to be

P̂1 = P1 + zη, P̂2 = P2 − zη, , (5.14)

or, in components,

p̂−1 = 1, ¯̂p1 = −z[21]〈21〉 (5.15)

p̂+
2 = 1, ¯̂p2 = z[21]〈21〉 . (5.16)

Thus the only changes to the reference momenta enter through the component p̄. This is

particularly important, since the vertices in the space-cone gauge turn out to be indepen-

dent of p̄, as it can be seen by inspecting the Lagrangian (2.12).

We conclude that any shift of the external momenta as in (5.14) is of no consequence

for the vertex-dependence of any Feynman diagram, and leaves an imprint only over the

internal line propagators.

The 4-point function in the space-cone gauge is given by a single Feynman diagram

which is represented by the left hand side of figure 1. With the choices already made in

terms of reference momenta4

(1234) = (+ −−+) = ε−3 ε+
4 p2

K

1
1
2P 2

14

1

[12]〈12〉 (5.17)

=
〈23〉
[13]

[14]

〈24〉 [13]〈32〉[14]〈42〉
1

[14]〈41〉
1

[12]〈12〉 (5.18)

=
〈23〉2[14]

〈41〉〈12〉[12] . (5.19)

Using that [12]〈23〉 = −[14]〈43〉, which follows from momentum conservation one recovers

the simple MHV expression of the 4-point function

(1234) = (+ −−+) =
〈23〉3

〈12〉〈34〉〈41〉 . (5.20)

4The factor of 1/2 in the propagator is due to a peculiar normalization of [6].
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On the other hand, we may choose to split the 4-point function into lower on-shell

amplitudes, 3-point functions, as indicated on the right hand side of figure 1. The internal

leg K has been put on-shell by a shift of the two external reference gluons as in (5.14),

where

z = − P 2
14

2η · P14
= −〈14〉[14]

〈24〉[14] = −〈14〉
〈24〉 . (5.21)

Notice that because there is no difference between the 3-point function and 3-point

vertex, other than the multiplication by external line polarizations, and because we have

essentially a scalar field theory, one can insert freely factors ε+
k ε−k (=1). Recalling that as

argued before, the shift (5.14) in the external momenta does not modify the vertices, we

see that the factorization into 3-point functions according to figure 1. is trivially realized.

Furthermore, if we follow the same steps we made earlier in converting the 3-point functions

into MHV vertices, we arrive at the BCFW result.

The 5-point function is the first non-trivial example in which we invoke an identity

rooted in the largest time equation. To begin with, it is given by the sum of three Feynman

diagrams which are represented on the left hand side of figure 2. The right hand side

contains terms corresponding to having cut the 5-point function in all possible ways such

that the reference gluons 1,5 are on opposite sides of the cut. Moreover, we shift the

reference external gluons such that the cut line is on-shell. Thus the cut diagrams become

on-shell amplitudes. Moreover, the cut diagrams are multiplied by the propagator of the

line that was cut. We will establish an identity relating the 5-point function, as computed

from Feynman diagrams, to the tree amplitudes of 3 and 4-point functions as indicated by

figure 2. This, of course, is nothing but the statement of the BCFW recursion relation,

applied to this particular 5-point function.

In particular we will show that the top Feynman diagram is the sum of two such cut

diagrams (A+B), and that the middle and bottom Feynman diagrams are equal, respec-

tively, with C and D. The equality of the two sides of the last two diagrams is obvious from

the fact that, as argued before, the vertices on the left and right hand side of figure 2 are

the same, irrespective of having shifted the external reference momenta in order to put the

cut line on shell. Moreover, the propagators on the right and left hand side of the bottom

two diagrams coincide as well.

The attentive reader could observe that B+D add up to zero. After giving an obvious

common factor, B+D add up to the (+ + +−) 4-point function. The reason why we

have to consider two Feynman diagrams to recover the 4-point function, as opposed to

our previous calculation, is that we have selected only one of the four external gluon

momenta as reference vector. This means that we have to consider both the s and t

channel. Nonetheless, the sum of these two channels is zero, as it corresponds to having all

but one external gluons of the same helicity. Thus indeed, the BCFW recursion relation

amounts to including only the terms A and C, corresponding to a factorization of the

(+ + + −−) amplitude into (+ + −)(+ + −−) amplitudes.

In the derivation of the recursion relation directly from Feynman diagrams, it is useful

to keep all possible terms that arise from cutting an internal line of all Feynman diagrams,
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Figure 2: Factorization of the 5-point function.

such that the reference external gluons are on opposite sides of the cut. To show that the

top Feynman diagram equals A+B, once we factored out the vertices (which are the same

on the left and right side of figure 2), amounts to proving the following identity between

propagators:

1

P 2
12

1

P 2
45

=
1

P 2
12

1

P 2
45̂

+
1

P 2
ˆ̂12

1

P 2
45

, (5.22)

where we defined the shifted reference gluon external momenta

P1̂ = P1 + ẑη, P5̂ = P5 − ẑη

Pˆ̂1
= P1 + ˆ̂zη, Pˆ̂5

= P5 − ˆ̂zη . (5.23)

ẑ, ˆ̂z are such that we put the internal lines K,L, respectively, on-shell

ẑ = − P 2
12

2η · P12
= −〈12〉

〈52〉 (5.24)

ˆ̂z =
P 2

45

2η · P45
=

〈45〉
〈15〉 , (5.25)

and where the null vector η is defined, as before, with respect to the reference gluons

η = |+〉 [−| ≡ |5〉 [1| . (5.26)
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Despite the fact that we can prove (5.22) by going into the bispinor basis, we find it much

simpler and easily allowing for generalizations to stay in momentum space. Using that

P 2
12 = −2ẑη · P12, P 2

45 = 2ˆ̂zη · P45 (5.27)

P 2
ˆ̂12

= 2(ˆ̂z − ẑ)η · P12, P 2
45̂

= 2(ˆ̂z − ẑ)η · P45 , (5.28)

(5.22) becomes a trivial algebraic identity

1

ẑ ˆ̂z
=

1

(ˆ̂z − ẑ)ẑ
− 1

(ˆ̂z − ẑ)ˆ̂z
. (5.29)

This completes the proof of the BCFW recursion relation from Feynman diagrams for the

5-point function and highlights the pattern that we will encounter for an arbitrary n-point

function.

6. The recursion relations and the largest time equation

There is yet another way to address the identity (5.22) by rewriting the propagators in

position space and next recognizing the Fourier transform of the (i.e. momentum space)

largest time equation (4.4). Reinstating the usual iε prescription in the momentum space

propagators, and multiplying (5.22) with the total momentum conservation δ-function, the

left-hand-side of (5.22) becomes:

δ(P1 + · · · + P5)

P 2
12

1

P 2
45

=

∫
dx1dx2dx3

∫
dK

(2π)4

∫
dL

(2π)4
ei(P1+P2+K)x1ei(P3−K+L)x2ei(P4+P5−L)x3

1

K2 − iε

1

L2 − iε
(6.1)

= i2
∫

dx1dx2dx3∆(x1 − x2)∆(x2 − x3)e
i(P1+P2)x1+iP3x2+i(P4+P5)x3 . (6.2)

The shifted propagators which appear on the right-hand-side of (5.22) can be cast into

δ(P1 + · · · + P5)

P 2
12

1

P 2
45̂

=

∫
dx1dx2dx3

∫
dk

(2π)4

∫
dz

∫
dL

(2π)4
ei(P1+P2+k)x1ei(P3−k+L+zη)x2ei(P4+P5−L−zη)x3

1

L2 − iε

(
δ−((k − zη)2)

z − iε
− δ+((k − zη)2)

z + iε

)

= i2
∫

dx1dx2dx3e
i(P1+P2)x1+iP3x2+i(P4+P5)x3

(
θ((x1 − x3)

+)∆+(x1 − x2) + θ((x3 − x1)
+)∆−(x1 − x2)

)
∆(x2 − x3), (6.3)

using the same z-parametrization which we have introduced in section 3. For concreteness

we have chosen, as before, η = (η−, 0,~0) with η− > 0. Clearly, by integrating out first

x1, x2, x3 and using the delta-function to integrate over k, L, followed by a z-integration
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using the remaining delta-function δ((P1 +P2−zη)2), we recover the left-hand-side of (6.3).

On the other hand, if we choose to shift the integration variable from k to k − zη, and we

next integrate over z, then we find the result given in the last line of (6.3).

Similarly, the other term on the right-hand-side of (5.22) can be written as

δ(P1 + · · · + P5)

P 2

1ˆ̂2

1

P 2
45

=

∫
dx1dx2dx3

∫
dK

(2π)4

∫
dl

(2π)4

∫
dz ei(P1+P2+K+zη)x1ei(P3−K−zη+l)x2ei(P4+P5−l)x3

1

K2 − iε

(
δ−((l − zη)2)

z − iε
− δ+((l − zη)2)

z + iε

)

= i2
∫

dx1dx2dx3e
i(P1+P2)x1+iP3x2+i(P4+P5)x3

(
θ((x1 − x3)

+)∆+(x2 − x3) + θ((x3 − x1)
+)∆−(x2 − x3)

)
∆(x1 − x2). (6.4)

Thus the identity (5.22) becomes
∫
dx1dx2dx3e

i(P1+P2)x1+iP3x2+i(P4+P5)x3

[
∆(x1 − x2)∆(x2 − x3)

−
(

θ((x1 − x3)
+)∆+(x1 − x2) + θ((x3 − x1)

+)∆−(x1 − x2)

)
∆(x2 − x3)

−
(

θ((x1 − x3)
+)∆+(x2 − x3) + θ((x3 − x1)

+)∆−(x2 − x3)

)
∆(x1 − x2)

]
= 0 .(6.5)

There is one more step that is needed in order to show the relationship between (5.22)

and the largest time equation. From (4.4), with x1, x3 the two vertices that are singled

out, we have

∆(x1 − x2)∆(x2 − x3)

= ∆−(x1 − x2)∆
+(x2 − x3)

+ θ((x1 − x3)
+)

(
∆+(x1 − x2)∆(x2 − x3) − ∆∗(x1 − x2)∆

+(x2 − x3)

)

+ θ((x3 − x1)
+)

(
∆(x1 − x2)∆

−(x2 − x3) − ∆−(x1 − x2)∆
∗(x2 − x3)

)
. (6.6)

To show how (6.5) is related to (6.6) we first rearrange the right-hand-side of (6.6) using

∆∗(x − y) = θ((x − y)+)∆−(x − y) + θ((y − x)+)∆+(x − y) , (6.7)

such that it becomes equal to the Fourier transform of the right-hand-side of equation

(6.5), up to the following two extra terms: θ((x1 − x3)
+)∆+(x1 − x2)∆

+(x2 − x3) and

θ((x3 − x1)
+)∆−(x1 − x2)∆

−(x2 − x3). These terms in fact are zero as the product of

the three distributions has zero support. The easiest to see this is to evaluate the Fourier

transform
∫

dx1dx2dx3e
i(P1+P2)x1+iP3x2+i(P4+P5)x3θ((x1 − x3)

+)∆+(x1 − x2)∆
+(x2 − x3) (6.8)
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by rewriting the step function as a z-integral, followed by the integration over x1, x2, x3,

to arrive at

δ(P1 + . . . P5)

∫
dz

1

z − iε
δ+((P1 + P2 + zη)2)δ+((P4 + P5 − zη)2) . (6.9)

It is clear that no z can satisfy the simultaneously the two delta-function constraints.

This completes the proof that the algebraic identity which was found by reassembling the

Feynman diagrams into the BCFW recursion relations arises from the more fundamental

largest time equation.

Before closing this section, we need to add some remarks to explain some more what

we have accomplished. The discussion above of the largest time equation is taken for real

η, since it is only for such values that we know how to order a sequence of space-time points

in η · xi.

Now that we have the largest time equation, let us Fourier- transform it into momentum

space, appropriate for a physical process under consideration and keeping η as a variable.

Then we obtain a set of shifted momenta, as in (5.23). We then analytically complexify

η. For tree level, this is certainly possible and justifiable, because the dependence on it is

only in some algebraic functions of propagators. At the loop level, we need to invoke the

analysis of axiomatic field theorists [8], which states that there are tubes of analyticity to

allow this extension and to lead to complexified unitarity relations. We now identify these

propagators with the ones which we need in the space-cone gauge to carry on with the

analysis.

7. The general case

To exploit the full generality of the problem, we derive an identity satisfied by the mo-

mentum space scalar propagators working under the assumption that we deal with massive

propagators, with arbitrary masses.

Consider a graph at the tree level with n′ vertices and m′ external lines which are

on-shell. As our convention, we take them to be all outgoing. We single out two of these

lines which do not land on the same vertex as reference vectors and call them pa and pb.

For a tree graph, there is a unique path through some of the internal lines which connects

pa to pb. We shall denote the vertex at which pa emanates x1, and that for pb xn in

their space-time labels. The vertices in between are xi, i = 2, . . . n − 1. There are then n

vertices in this segment of the graph and therefore n-1 internal lines. Our consideration

for the time being will be on this segment. The internal lines carry momenta qi, joining

xi to xi+1, n − 1 ≥ i ≥ 1. How and what other lines enter or leave these vertices need not

concern us at this point. For each qi, we associate a propagator

∆(xi − xi+1,mi)

=

∫
d4qi

(2π)4i

eiqi·(xi−xi+1)

q2
i + m2

i − iε

= θ(η · (xi − xi+1))∆
+(xi − xi+1,mi) + θ(−η · (xi − xi+1))∆

−(xi − xi+1,mi) , (7.1)
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where

∆+(xi − xi+1,mi) =

∫
d4q̄i

(2π)4i
eiq̄i·(xi−xi+1)δ+(q̄2

i + m2
i ),

∆−(xi − xi+1,mi) =

∫
d4q̄i

(2π)4i
eiq̄i·(xi−xi+1)δ−(q̄2

i + m2
i ) , (7.2)

and where η is a light-like vector. Due to momentum conservation, each qi is expressible

in terms of external momenta, and in particular it has a component +pa, or equivalently

−pb.

The factorization procedure is to cut these qi successively by shifting them by zη. The

on-shell conditions

q̄2
i + m2

i = 0, q̄i ≡ qi − z (7.3)

will give us a set of solutions, points in the complex plane, namely

zi =
q2
i + m2

i

2η · qi
, (7.4)

for each n−1 ≥ i ≥ 1. More precisely stated, the factorization amounts to splicing the graph

into a sum of products of two on-shell graphs with shifted momenta {pa − ziη, . . . , q̄i} and

{−q̄i, · · · , pb + ziη}, where · · · stand for the other momenta in the left graph segment and

similarly for those in the right graph segment, with the propagator 1
q2
i +m2

i

as the partition.

The reason that pa and pb are shifted is because we need to conserve the overall momenta

on the left and the right segment separately to make them into physical amplitudes. We

must demand on-shell conditions for the shifted pa,b with the same masses, which give

(pa − ziη)2 + m2
a = 0, (pb + ziη)2 + m2

b = 0,

or

pa · η = 0, pb · η = 0.

As η is light-like, these conditions clearly do not allow pa,b to be time-like. Therefore, the

two reference vectors must also be light-like, ma = mb = 0.

The identity which we want to establish is

1

q2
1 + m2

1

1

q2
2 + m2

2

· · · 1

q2
n−1 + m2

n−1

=
1

q2
1 + m2

1

1

(q2 − z1η)2 + m2
2

· · · 1

(qn−1 − z1η)2 + m2
n−1

+
1

(q1 − z2η)2 + m2
1

1

q2
2 + m2

2

· · · 1

(qn−1 − z2η)2 + m2
n−1

+ · · · · · · · · ·
+

1

(q1 − zn−1η)2 + m2
1

· · · 1

(qn−2 − zn−1η)2 + m2
n−2

1

q2
n−1 + m2

n−1

. (7.5)

The proof of this identity is quite simple. For n − 1 ≥ i 6= j ≥ 1, we write

(qi − zjη)2 + m2
i = q2

i + m2
i − 2zjη · qi . (7.6)
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Then, using the on-shell conditions for the shifted internal momenta, which is tantamount

to making cuts, we have

q̄2
i + m2

i = 0 → q2
i + m2

i = 2ziη · qi . (7.7)

Together, they yield

(qi − zjη)2 + m2
i = 2η · qi(zi − zj) . (7.8)

Putting these together, we see the identity holds if one can show

(−1)n

z1z2 · · · zn−1
=

1

z1(z1 − z2)(z1 − z3) · · · (z1 − zn−1)

+
1

(z2 − z1)z2(z2 − z3) · · · (z2 − zn−1)
· · · · · · · · ·

+
1

(zn−1 − z1)(zn−1 − z2) · · · (zn−1 − zn−2)zn−1
. (7.9)

This is so, because (7.9) is just a formula of partial fractioning, or it is just a statement

that the integral ∫
dz

z(z − z1)(z − z2) · · · (z − zn−1)
= 0

for a complex variable z over a contour which encloses all the poles.

Notice that eqn. (7.5) is precisely the identity needed to reassemble a generic tree level

gluon Feynman diagram into lower on-shell amplitudes, as shown in section 5. The reason

for this is that, as we argued before, the vertices which enter the Feynman diagram and

the corresponding lower n-point functions are the same, being insensitive to the shift of the

reference gluons. Also the external line factors that have to be inserted on the cut lines

to recover the lower on-shell amplitudes cancel pairwise, i.e. ε+ε− = 1. Then, one is left

to prove only an identity involving the momentum space scalar propagators. This is the

same as (7.5), with all propagators being massless mi = 0. The combinatorics work out

properly to reproduce the BCFW recursions. We have also checked these points explicitly

for the six gluon amplitudes.

Furthermore, the arguments presented in section 6, relating the momentum space

identity (7.5) to the Fourier transform of the corresponding largest time equation (4.4),

with the singled out vertices corresponding to those of the external reference gluons, can

be easily carried through.

This completes our purely field theoretical proof of the BCFW recursion relations. In

the process, we have identified the underlying principle behind them in the form of the

largest time equation.

8. Adding massive scalars and fermions

Establishing recursion relations to include charged massive scalars is straightforward in

our framework. The current interaction term (Φ∗∂µΦ − Φ∂µΦ∗)Aµ has only ∂+, ∂− and

∂ derivatives, without the dangerous ∂̄ which would have been sensitive to the shift of
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the external momenta, because of the space-cone gauge (a = 0). The quartic interaction

ΦΦ∗AµAµ has no momentum dependence. Therefore the vertices are unchanged under the

zη shifts. Besides there is no external line factor for scalars. This implies that we have

met all the requirements to accommodate recursion relations as stressed over and again.

A more interesting and natural generalization is the inclusion of fermions in the tree

level recursion relations. Consider the Lagrangian of minimally coupled massive fermions

Lf =
∑

i

Ψ̄i(i/∇− mi)Ψi , (8.1)

where ∇µ is the gauge covariant derivative and the Dirac matrices obey the usual anticom-

mutation relations {γµ, γν} = −2gµν . Then the recursion relations which are formulated

with the two reference gluons connected by a path which includes a fermionic line are based

on the following identity involving momentum space fermion propagators 5

1

/q1 + m1
γµ1

1

/q2 + m2
γµ2 · · · γµn−2

1

/qn−1 + mn−1

=
m1 − /q1 + z1/η

(q2
1 + m2

1)
γµ1

1

/q2 − z1/η + m2
γµ2 · · · γµn−2

1

/qn−1 − z1/η + mn−1

+
1

/q1 − z2/η + m1
γµ1

m2 − /q2 + z2/η

(q2
2 + m2

2)
γµ2 · · · γµn−2

1

/qn−1 − z2/η + mn−1

+ · · · · · · · · ·
+

1

/q1 − zn−1/η + m1
γµ1 · · · γµn−3

1

/qn−2 − zn−1/η + mn−2
γµn−2

mn−1 − /qn−1 + zn−1/η

(q2
n−1 + m2

n−1)
.(8.2)

A Dirac matrix inserted between two fermion propagators corresponds to a cubic interaction

vertex with a gluon field. For the case when this gluon field is an external one, one must

insert external line factors and thus contract the space-time index of the Dirac matrix with

that of the corresponding polarization vector. If the gluon field corresponds to an internal

line, then we must contract the space-time index of the Dirac matrix with that of the gluon

propagator. At this stage it is important to stress that we are in the space-cone gauge,

such that η ·A = 0, which means that /η/A = −/A/η. Thus in (7.5) we consider only insertions

of Dirac matrices which effectively anticommute with the null vector η.

The proof of (8.2) relies partly on one identity which we have already established,

namely (7.5). First rewrite the fermionic propagators such that all denominators will

correspond to scalar propagators. Next cancel out in the numerator all terms with at

least one insertion of /η. This can be done, since /η/η = 0, corroborated with the previous

observation that /η and γµ anticommute. Finally, we need to employ one other algebraic

identity, namely
∫

dz
zm

(z − z1)(z − z2) . . . (z − zn−1)
= 0, for m < n − 2 , (8.3)

where the integral is evaluated over a contour which encircles all the poles. As mentioned

many times before, the structure of the vertices is unchanged by the shift with ziη in the

momenta of the reference gluons. We complete the proof of the recursion relations by

5For concreteness we considered here a quark line. Otherwise, for an antiquark the signs in /qi −zj/η +mi

must be flipped to −/qi + zj/η + mi.
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observing that each term in (8.2) corresponds to a factorization into lower on-shell ampli-

tudes, such that each propagator belonging on the path that connects the two reference

external gluons is cut and put on-shell, accompanied by the corresponding shift of the

external gluons. The left and right amplitudes are multiplied by the propagator of the line

which was cut. The reason why in the recursion relations the “cut” fermionic lines have

an extra factor mi − /qi + zi/η has to do with the fact that this corresponds exactly to the

appropriate insertion of the external line factors.

Thus we have provided a field theoretical proof of the recursion relations for massive

scalars and fermions found by [9, 10].

9. Conclusions

To summarize our results, we have shown that the BCFW recursion relations can be

proven starting from the standard gauge theory Feynman diagrams. Perhaps the only

less familiar ingredient is the use of a certain convenient gauge, space-cone. We have

shown that each tree level gluon Feynman diagram “factorizes”, i.e. it can be written

as a sum of product of lower on-shell amplitudes that arise from successive cuts of all

internal lines which connect two reference gluons. To be able to still satisfy the momentum

conservation laws, the momenta of the reference gluons must be shifted in a particular

way. Moreover, the amplitudes arising from cuts must be multiplied by the propagator

of the line which was cut. The proof of factorization is based, among other things, on an

algebraic identity involving the momentum space propagators, which we recognized as the

complexified Fourier transform of the largest time equation.

Let us recall that the largest time equations are exact identities in quantum field

theories, independent of loop levels. They yielded results for spectral representation of

two-point functions, side-wise dispersion relations for vertex functions, etc. We may infer

from these examples that exploiting them in the area of complexified unitarity to comple-

ment space-cone gauge freedom should likely offer new opportunities at the loop level for

organizing QCD computations, among other things. In particular, it should facilitate a

field theoretical perspective of the one-loop recursion relations [11].

We have also addressed generalizations of the tree level BCFW recursion relations

involving massive charged scalars and fermions, proving them in a purely field theoretical

setup.

Note added. While this manuscript was being written, we became aware of [12] which

has partial overlap with our results.
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