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Abstract. We have calculated the coincidence site lattice Z twist boundary energies for 
copper and aluminium. The boundaries were on (100) planes and we considered Z values 
of 5, 13. 17. 25, 29 and 37. The method employed was a wavenumber space summation 
which includes all effects due to the long-ranged potentials. The trend was for the twist 
boundary energy. 7 .  to be proportional to Z independent of the metal and the potential 
used. 

There have been numerous efforts to determine the grain boundary energy and 
structure of C twist boundaries in metals (see, e.g., Weins er crl 1971, Chaudhari and 
Charbau 1972, Lodge and Fletcher 1975, Guyot and Simon 1976, Bristowe and 
Crocker 1978, Bristowe and Sass 1980). All of these previous determinations were 
based either on short-ranged potentials (including only up to the third nearest 
neighbours) or they assumed an elastic continuum outside the vicinity of the boundary 
plane. Yet i t  is well known (Harrison 1966) that potentials derived from first 
principles (pseudopotentials or model potentials) have long-ranged oscillatory tails. In 
this letter we point out how these long-ranged potentials may be included into a 
grain boundary energy calculation. The appropriate mathematical procedure for 
dealing with this type of potential is to perform the necessary summations in 
reciprocal space (wavenumber space) where the Fourier transform of the potential, 
the wavenumber characteristic F ( q ) ,  is relatively short-ranged. 

The essence of this letter is to point out that an expression recently developed 
for the reciprocal space summation for the energy of a general stacking fault (Devlin 
1981) can also be used for unrelaxed coincidence site lattice (CSL) grain boundaries. 
From that paper the requisite expression is 

i ' = -  
N ,  y. ( J-',' .F'((I)F(y(l)) - .F"(z)F(q(;)) dz 

(: - / ) 2  4z2N, G _  1 = - 

In developing this expression i t  was assumed that the faulted crystal could be 
described by an orthogonal CSL extending throughout an infinite bicrystal. Here N ,  
is the number of ions per CSL unit cell, N ,  is the number of ions in a boundary 
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layer CSL unit  cell that lie on the boundary plane, the G, are the reciprocal lattice 
vectors of the CSL boundary plane, and y(z) = ( G ,  + ( 2 n ~ / d ) ~ ) '  with d being the 
CSL cell dimension normal to the boundary plane. The functions .PE and 9' contain 
the specific information concerning the unit cell structures on each side of the 
boundary layer of the bicrystal. Equation (1)  is the lowest order structure-dependent 
term for the grain boundary energy in pseudopotential theory. It includes I I O  approxi- 
mations other than the choice of potential (or equivalently, wavenumber 
characteristic) for a given atomic volume (which is taken to be constant everywhere 
in the bicrystal). The difficulty in applying equation (1) to a general boundary lies in 
determining the .P' and .Po functions as they can be quite complicated even for 
CSL boundaries. 

We have succeeded in applying equation (1) to CSL Z twist boundaries on (100) 
planes in FCC metals. The extension to other planes and other phases is evidently 
also possible. For the FCC structures N ,  = 2 2 .  In the case of (100) boundary planes, 
N ,  = Z, d = a, (the lattice constant), and the basal plane reciprocal lattice vectors 
are of the form 

where It and k are integers. We have taken the boundary normal to lie along the i 
axis. In order to determine the .FE and .Po functions we assumed the following 
unrelaxed ionic positions using the direct basis vectors (a,  b, c),  

I 1  - 1 
Z 

y," = ~ ( a  + mb) for 11 = 1, Z 
(3) 

for 11 = 1, I: 1 
r t + r  = Y,* + - ( a  + mb) + fc 21: 

for the A side of the bicrystal. and the ionic positions on the B side are of the 
same form except a is replaced by - a .  Here the integer m depends on the particular 
geometry of the CSL unit cell. The value of m can be shown to be determined by the 
smallest integer solution of 

m = [2Z(i2 + j 2 )  - 13' (4) 

where i and j are also integers. The Z values studied are listed in table 1 along with 
the appropriate values of m. Figure 1 shows an example of the ionic positions when 
Z = 5 ,  in which case m = 3. 

Using the ionic positions of equation (3) the methods of Devlin (1981) lead to 
.Po = 0 for all GL vectors and the only values of h and k for which YE is non-zero 

Table I .  Geometrical parameters for the Z twist boundaries. 0 is the rotation angle 
between the half crystals and m is the integer parameter of equation (3). 

5 36.78 3 
13 22.62 5 
1 7  6 I .93 13 
25 16.26 7 
29 43.60 17 
37 71.08 31 
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i a l  i b )  
Figure I .  Ionic positions for the respective halves of the = 5 bicrystal. The open circles 
represent In plane ions. crosses represent ions displaced half a plane above. The full circles 
represent some of the coincidence sites. 

are those for which mk + h = 0 (modulo E)  when mk - h # 0 (modulo C) or  those 
values for which mk - h = 0 (modulo E) when mk + Ir # 0 (modulo E). Specifically, 
if mk & h = j C  while mk T It # 0 (modulo Z) then 

T[: [ - sin' if j is an odd integer 

.FE(:) = { 
71z [ - cosz if j is an even integer. 

These functions lead to relatively simple integrations in equation (1 ). Furthermore, the 
restrictions on  h and k for non-zero values of .FF yield a rather restricted sum for 
the reciprocal lattice vector sum. Hence. for these boundaries equation (1) is an 
inexpensive calculation for each value of Z and the effect of C on the grain boundary 
energy, y, is thereby easily determined. 

We have performed our numerical calculations using the aluminium potential of 
Appapillai and Williams (1973) and the copper potential of Moriarty (1972). Both of 
these long-ranged potentials were found to be useful in stacking fault studies (Devlin 
1974). The integral sums were carried out to about q = 8 k ,  where k ,  is the Fermi 
wavevector. This would normally correspond to 296 basal plane reciprocal lattice 
vectors in the case of C = 17 but the restrictions on contributing vectors reduced the 
sum to one over only thirty vectors. This reduction was typical of the other Z 
values, too. Our  results for 7 are presented in table 2. In that table yES refers to the 
contribution due to F"(q), the electrostatic interaction wavenumber characteristic 
representing the interaction between the bare ion cores, while yRS refers to the 
contribution coming from FBS(q), the band structure contribution to the wavenumber 
characteristic which summarises the electron-ion effect. The total F ( q )  = FEs(q) + 
FBS(Y). 

In general our values for : are quite large compared to experimental values 
(of approximately 600 ergscm-'). Our  results, because of our choice of ionic positions 
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Table 2. Twist boundary energies for aluminium and copper. The aluminium results were 
obtained using the wavenumber characteristic of Moriarty (1972) while the copper results 
were obtained with the wavenumber characteristic of Appapillai and Williams (1973). All 
results are in ergs cm ’. 

. , ES .,RS 
I I 7!,,,1 

- 15414 
- 40076 
- 52407 
- 77070 
-89401 
- 114063 

- 922 
- 2402 
-3141 
-4619 
- 5358 
- 6836 

20750 
54066 
70702 

103974 
120610 
153881 

3982 
10376 
13569 
19954 
23147 
29532 

5337 
13990 
18295 
26904 
3 1209 
398 18 

3060 
7974 

10428 
15334 
17789 
22696 

in equation (3), are only for unrelaxed twist boundaries, so a direct comparison is not 
appropriate. Undoubtedly, the inclusion of relaxations in the ionic positions in the 
region of the boundary would reduce our y values. 

The trend in our y(C) values for both metals is that (except for X = 5 ) ,  
?(Xi) = (Ci/Cj)y(Xj), where Ci and X j  are different C values. In other words y(C)  is 
proportional to the C value. This is along the lines of the expected trend (Bollmann 
1970) and is the reason low C CSL boundaries are hypothesised to be common in 
metals because of this lower energy. This trend does not seem to be just a function 
of the FCC structure, as we have also performed similar calculations on the simple 
cubic phase and achieved the same result. It is doubtful though that this would be 
the correct physical trend for large Z values. Our results are clearly limited to small 
values of I: (say X 5 100) where relaxation effects would not completely dominate 
the total grain boundary energy. 

In summary then we have shown that the wavenumber space formulation can be 
used to include the important long-ranged potentials into a grain boundary energy 
calculation. In particular this formulation leads to a computationally quick result for 
the twist boundaries in FCC structures, which are physically reasonable at least for 
small C values. The extension to large X values would necessitate including relaxation 
effects into this formulation. We are presently extending the formulation to include 
these important effects. 
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