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Abstract
We revive an old result, that one-loop corrections to the graviton propagator
induce 1/r3 corrections to the Newtonian gravitational potential, and compute
the coefficient due to closed loops of theU(N)N = 4 super-Yang–Mills theory
that arises in Maldacena’s AdS/CFT correspondence. We find exact agreement
with the coefficient appearing in the Randall–Sundrum brane-world proposal.
This provides more evidence for the complementarity of the two pictures.

PACS numbers: 1110K, 1110G, 1125M

It is an old, and seemingly forgotten result that one-loop corrections to the graviton propagator
induce 1/r3 corrections to the gravitational potential [1, 2]:

V (r) = Gm1m2

r

(
1 +

αG

r2

)
, (1)

where G is the four-dimensional Newton constant, h̄ = c = 1 and α is a purely numerical
coefficient given, in the case of spins s � 1, by 45πα = 12N1 + 3N1/2 + N0, where Ns
are the numbers of particle species of spin s going around the loop [3–5]. However, the
importance of this result has recently become apparent in attempts [6–10] to relate two topical
but, at first sight, different developments in quantum gravity. These are Maldacena’s AdS/CFT
correspondence [11–13] and the Randall–Sundrum brane-world mechanism [14].

The AdS/CFT correspondence in general relates the gravitational dynamics of a (d + 1)-
dimensional anti-de Sitter spacetime, AdSd+1, to a d-dimensional conformal field theory,
CFTd . In the case of d = 4, Maldacena’s conjecture, based on the decoupling limit of
D3-branes in type IIB string theory compactified on S5, then relates the dynamics of AdS5 to
an N = 4 superconformal U(N) Yang–Mills theory on its four-dimensional boundary [11].
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Other compactifications are also possible, leading to different SCFTs on the boundary. We
note that, by choosing Poincaré coordinates on AdS5, the metric may be written as

ds2 = e−2y/L(dxµ)2 + dy2, (2)

in which case the superconformal Yang–Mills theory is taken to reside at the boundary
y → −∞.

The Randall–Sundrum mechanism, on the other hand, was originally motivated, not via
the decoupling of gravity from D3-branes, but rather as a possible mechanism for evading
Kaluza–Klein compactification by localizing gravity in the presence of an uncompactified
extra dimension. This was accomplished by inserting a positive tension 3-brane (representing
our spacetime) into AdS5. In terms of the Poincaré patch of AdS5 given above, this corresponds
to removing the region y < 0, and either joining on a second partial copy of AdS5, or leaving
the brane at the end of a single patch of AdS5. In either case the resulting Randall–Sundrum
metric is given by

ds2 = e−2|y|/L(dxµ)2 + dy2, (3)

where y ∈ (−∞,∞) or y ∈ [0,∞) for a ‘two-sided’ or ‘one-sided’ Randall–Sundrum brane,
respectively.

The similarity of these two scenarios led to the notion that they are, in fact, closely tied
together. To make this connection clear, consider the one-sided Randall–Sundrum brane. By
introducing a boundary in AdS5 at y = 0, this model is conjectured to be dual to a cut-off
CFT coupled to gravity, with y = 0, the location of the Randall–Sundrum brane, providing
the ultraviolet cut-off. This extended version of the Maldacena conjecture [15] then reduces
to the standard AdS/CFT duality as the boundary is pushed off to y → −∞, whereupon the
cut-off is removed and gravity becomes completely decoupled. Note, in particular, that this
connection involves a single CFT at the boundary of a single patch of AdS5. For the case of a
brane sitting between two patches of AdS5, one would instead require two copies of the CFT,
one for each of the patches.

It has been suggested [7–9] that a crucial test of this Randall–Sundrum version of the
Maldacena conjecture would be to compare the 1/r3 corrections to Newton’s law in both
pictures. From the above, we see that the contribution of a single CFT, with (N1, N1/2, N0) =
(N2, 4N2, 6N2), is

V (r) = Gm1m2

r

(
1 +

2N2G

3πr2

)
. (4)

Using the AdS/CFT relation N2 = πL3/2G5 [11] and the one-sided brane-world relation
G = 2G5/L [8, 14], where G5 is the five-dimensional Newton’s constant and L is the radius
of AdS5, this becomes

V (r) = Gm1m2

r

(
1 +

2L2

3r2

)
. (5)

The coefficient of the 1/r3 term is 2
3 of the Randall–Sundrum result quoted in [14], but, in fact,

agrees with the more thorough analysis of [16]. We shall confirm below that a more careful
analysis of the Randall–Sundrum picture using the results of [9, 17] yields exactly the same
answer as the above AdS/CFT calculation, thus providing strong evidence for the conjectured
duality of the two pictures.

First we derive (4) in more detail by computing the lowest-order quantum corrections to
solutions of Einstein’s equations. Working with linearized gravity, we begin by writing the
metric as

gµν = ηµν + hµν, (6)
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so that
√−ggµν ≡ g̃µν = ηµν − h̃µν + · · · , (7)

where

h̃µν = hµν − 1
2ηµνh

α
α. (8)

In harmonic gauge, ∂µg̃µν = 0 (i.e. ∂µh̃µν = 0), the classical linearized Einstein equation
reads

�h̃ cµν(x) = −16πGTµν(x), (9)

where the superscript c denotes the classical contribution. Fourier transforming to momentum
space results in

h̃ cµν(p) = −16πG�4(p)Tµν(p), (10)

where �4(p) = −1/p2 is the four-dimensional massless scalar propagator.
Incorporating one-loop corrections, the quantum-corrected metric becomes

h̃µν = h̃ cµν + h̃ qµν, (11)

where the quantum correction h̃µνq is given in momentum space by

h̃ µνq (p) = Dµναβ(p)"αβγ δ(p)h̃ γ δc (p). (12)

Dµναβ is the graviton propagator,

Dµναβ(p) = 1
2�4(p)(η

µαηνβ + ηµβηνα − ηµνηαβ + · · ·), (13)

and "αβγ δ is the one-loop graviton self-energy, which by symmetry and Lorentz invariance
must be of the general form

"αβγ δ(p) = p4
[
"1(p

2)ηαβηγ δ +"2(p
2)(ηαγ ηβδ + ηαδηβγ ) +"3(p

2)(ηαβp̂γ p̂δ + ηγ δp̂αp̂β)

+"4(p
2)(ηαγ p̂βp̂δ + ηαδp̂βp̂γ + ηβγ p̂αp̂δ + ηβδp̂αp̂γ ) +"5(p

2)p̂αp̂βp̂γ p̂δ
]
.

(14)

The ellipses in (13) refer to gauge-dependent terms in the propagator which make no
contribution if coupled to conserved sources. Combining (12)–(14), one thus obtains the
quantum-corrected metric in the form

hqµν(p) = −p2
[
2"2(p)δ

α
µδ
β
ν +"1(p)ηµνη

αβ + ("3(p) + · · ·)p̂µp̂νηαβ
]
h̃ cαβ, (15)

where non-physical gauge-dependent terms have again been dropped. Finally, combining both
classical and one-loop quantum results at the linearized level yields

hµν(p) = −16πG�4(p)[Tµν(p)− 1
2ηµνT

α
α(p)]

−16πG[2"2(p)Tµν(p) +"1(p)ηµνT
α
α(p)]. (16)

Note that we have ignored the gauge-dependent term in hµν proportional to p̂µp̂ν . It makes
no contribution when hµν is attached to a conserved source Tµν satisfying pµTµν = pνTµν =
0.

The actual form of the one-loop "is depend on the theory at hand. However, for
any massless theory in four dimensions, after cancelling the infinities with the appropriate
counterterms, the finite remainder must necessarily have the form

"i(p) = 32πG

(
ai ln

p2

µ2
+ bi

)
, (17)
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where ai and bi (i = 1, 2, 3, 4, 5), are numerical coefficients and µ is an arbitrary subtraction
constant having the dimensions of mass. In order to make connection with the Newtonian
potential, we Fourier transform (16) back to coordinate space. For the static potential we obtain
the expected 1/r behaviour at the classical level, while the quantum term generates the claimed
1/r3 correction. In addition, the constant parts in (17) give rise to a regulator-dependent δ3(r)

contact interaction. However, we have no real expectation that this one-loop perturbative result
remains valid when continued down to zero size. Moreover, possible r−3 lnµr terms come
only from the p̂µp̂ν terms in (15) and hence drop out. For a point source, T00(x) = mδ3(r),
we obtain to this order

g00 = −
(

1 − 2Gm

r
− 2αG2m

r3

)
,

gij =
(

1 +
2Gm

r
+

2βG2m

r3

)
δij ,

(18)

where, in agreement with [2], α = 4 · 32π(a1 + 2a2) and β = −4 · 32πa1. This yields
the potential given in (1). Explicit calculations of the self-energy (17) for spin 1 [3], spin 1

2
(two-component fermions) [4] and (real conformally coupled) spin 0 [5] yield1

ai(s = 1) = 4ai
(
s = 1

2

) = 12ai(s = 0)

= 1

120(4π)2
(−2, 3, 2,−3, 4). (19)

Note that all spins contribute with the same sign as they must by general positivity arguments
on the self-energy [4]. Thus

α = 2β = 1

45π
(12N1 + 3N1/2 +N0) = 2N2

3π
, (20)

as quoted in the introductory paragraph above.
This α coefficient also determines that part of the Weyl anomaly [18, 19] involving the

square of the Weyl tensor [20, 21]:

gµν〈T µν〉 = b (
F + 2

3 �R
)

+ b′G, (21)

where

F = CµνρσCµνρσ = RµνρσRµνρσ − 2RµνR
µν + R2,

G = ∗Rµνρσ ∗Rµνρσ = RµνρσRµνρσ − 4RµνR
µν + 1

3R
2,

(22)

and where b and b′ are constants

b = 1

120(4π)2
[12N1 + 3N1/2 +N0],

b′ = − 1

720(4π)2
[124N1 + 11N1/2 + 2N0].

(23)

Note that for the N = 4 SCFT, the coefficient of the (Riemann)2 term, b+b′, vanishes [21]. The
same result is obtained if one calculates the holographic Weyl anomaly using the AdS/CFT
correspondence [22]. Thus b = 3α/128π = c/(4π)2, where the c is the central charge

1 Note that a symmetry factor of 1
2 was omitted in [3]; this was subsequently corrected in [5].
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given in the normalization of [8]. For the central charge, one obtains c = πL3/8G5 [22], so
that

Gα = GL3

3G5
= 2L2

3
, (24)

where the second equality makes use of the brane-world relation G = 2G5/L. Although we
have focused on the N = 4 SCFT to relate the coefficient appearing in Newton’s law to the
central charge, the result (24) is universal, being independent of which particular CFT appears
in the AdS/CFT correspondence, which is just as well since the Randall–Sundrum coefficient
does not depend on the details of the fields propagating on the brane.

We now turn to this brane-world, where the five-dimensional action has the form [14]

S =
∫

d5x
√−g(5)[M3R(5) −/] +

∫
d4x

√−g(4)Lbrane. (25)

Here M is the five-dimensional Planck mass, M3 = 1/(16πG5), and / is the cosmological
constant in the bulk. Small fluctuations of the metric on the brane may be represented by [9,14]

ds2 = e−2|y|/L[ηµν + hµν(x, y)] dxµdxν + dy2, (26)

where L is the ‘radius’ of AdS,

R
(5)
MNPQ = − 1

L2
(g
(5)
MP g

(5)
NQ − g(5)MQg(5)NP ), (27)

and is related to / by / = −12M3/L2. The brane-world geometry has been chosen such
that xµ are coordinates along the 3-brane, while y is the coordinate perpendicular to the brane
(which sits at y = 0).

Both brane and bulk quantities are contained in the linearized metric hµν(x, y). However,
for comparison with the CFT on the brane, we are only concerned with the former. Hence we
consider a matter source on the brane, and examine hµν(x) ≡ hµν(x, y = 0). For this case,
the results of [9, 17] indicate

hµν(p) = − 2

LM3
�4(p)[Tµν(p)− 1

2ηµνT
α
α(p)] − 1

M3
�KK(p)[Tµν(p)− 1

3ηµνT
α
α(p)].

(28)

This expression has a clear physical meaning; �4(p), the four-dimensional massless
propagator, corresponds to the zero-mode graviton localized on the brane, while

�KK(p) = − 1

p

K0(pL)

K1(pL)
(29)

is the propagator for the continuum Kaluza–Klein graviton modes. Comparing the first term
of (28) to (16), we obtain the relation between four- and five-dimensional Newton’s constants,
G = 2G5/L = 1/(8πLM3) given above. Note that in the above we have taken the brane to
be at the end of a single patch of AdS5, as was done in [8, 9]. This corresponds to the case
at hand, since the AdS/CFT relations we have employed above pertain to a single copy of
AdS5.

The continuum graviton modes give rise to corrections to the Newtonian potential. At
large distances, corresponding to pL � 1, a small argument expansion for Bessel functions
yields

�KK(p) = L

2

(
ln
p2L2

4
+ 2γ

)
+ O(p2), (30)
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and, just as in (17), is the source of the 1/r3 correction to the Newtonian potential. For a
static gravitational source of massm on the brane, T00(p) = 2πδ(p0)m, evaluating the Fourier
transform for r � L yields the linearized metric [16]

h00 = 2Gm

r

(
1 +

2L2

3r2
+ · · ·

)
,

hij = 2Gm

r

(
1 +

L2

3r2
+ · · ·

)
δij ,

(31)

from which one may read off the Newtonian potential (5).
Moreover, all the metric components in (31) agree with those of (18) and not merely

the g00 component. In momentum space, this may be traced to the behaviour of hµν in the
two pictures, namely (16) and (28). In (28) the factor of − 1

3 in the non-leading term, as
compared with factor − 1

2 in the leading term, is attributable to the fact that the Kaluza–Klein
gravitons are massive. Whereas in (16), it is because the CFT requires loop corrections with
"2(p) = − 3

2"1(p), which is, in fact, satisfied, as far as the lnp2 term is concerned, since
a2 = − 3

2a1.
We have thus demonstrated that the 1/r3 corrections to Newton’s law are identical between

the Maldacena and Randall–Sundrum pictures. This was examined in the context of a single
CFT corresponding to a one-sided brane-world scenario. Had we chosen instead to take
the brane-world to be sitting between two patches AdS5 (one on either side), as was the
case considered in [10, 14], we would have obtained a factor of two in the relation between
Newton’s constants, with a corresponding factor in the propagator, equation (28). While this
would ensure the correct four-dimensional behaviour of gravity, given in (31), the two-sided
brane-world relation G = G5/L will modify the comparison with the one-loop CFT result,
equation (24). To compensate for this mismatch, one may assume that the two-sided brane-
world is dual to two copies of the CFT coupled to gravity, as is implicit in [10]. This leads to
the natural picture that a one-sided brane corresponds to a single CFT while a two-sided brane
corresponds to two CFTs.

An intriguing feature of this comparison of the gravitational potential in both pictures is
a highlighting of the classical/quantum nature of this duality, as seen in the relation

"2(p) + O(G2) = L

4
�KK(p). (32)

The propagator for the continuum graviton modes in the Randall–Sundrum picture thus
incorporates all quantum effects of matter on the brane. It may be worthwhile to examine
this relation at the two-loop or higher level. Nevertheless, this agreement at one-loop lends
strong support to the conjectured duality between the two pictures.
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