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Abstract
We construct explicit cohomogeneity 2 metrics of G2 holonomy, which are
foliated by twistor spaces. The twistor spaces are S2 bundles over four-
dimensional Bianchi IX Einstein metrics with self-dual (or anti-self-dual)
Weyl tensor. Generically the 4-metric is of triaxial Bianchi IX type, with
SU(2) isometry. We derive the first-order differential equations for the
metric coefficients, and obtain the corresponding superpotential governing the
equations of motion, in the general triaxial Bianchi IX case. In general our
metrics have singularities, which are of orbifold or cosmic-string type. For
the special case of biaxial Bianchi IX metrics, we give a complete analysis
of their local and global properties, and the singularities. In the triaxial case,
we find that a system of equations written down by Tod and Hitchin satisfies
our first-order equations. The converse is not always true. A discussion is
given of the possible implications of the singularity structure of these spaces
for M-theory dynamics.

PACS numbers: 11.25.Yb, 11.25.Ur

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Concrete non-singular examples of seven-dimensional metrics with G2 holonomy have been
known only since about 1989. The original construction involved making an ansatz for
metrics of cohomogeneity 1, where the six-dimensional principal orbits were S3 × S3, or else
the twistor spaces of S4 or CP

2 [1, 2]. The twistor space is a 2-sphere bundle over the S4 or
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CP
2 base, with an SU(2) or SO(3) structure group associated with the chiral spin (or spinc)

bundle of the base. The local construction can be carried out for any base space M4 equipped
with an Einstein metric and for which the Weyl tensor is self-dual or anti-self-dual [1, 2]6. By
a theorem of Hitchin, the only non-singular such examples with positive Ricci tensor (which
implies that M4 is compact) occur when M4 is S4 or CP

2 [3].
The current interest in G2 manifolds in M-theory has been motivated in part by the role

that they can play in compactifying to four dimensions, analogous to the compactification
of ten-dimensional string theory on Calabi–Yau 6-manifolds. Unlike the latter, where non-
singular Calabi–Yau manifolds can naturally give rise to chiral N = 1 theories in four
dimensions starting from the heterotic string in D = 10, non-singular G2 compactifications
of M-theory would necessarily give Abelian non-chiral N = 1 theories in four dimensions.
To get non-Abelian chiral theories from M-theory, one needs to consider compactifications on
singular G2 manifolds. One explicit realization of such an M-theory compactification has an
interpretation as an S1 lift of type IIA theory (compactified on an orientifold) with intersecting
D6-branes and O6 orientifold planes [4]. Non-Abelian gauge fields arise at the locations
of coincident branes, and chiral matter arises at the intersections of D6-branes. The S1 lift
of such configurations results in singular G2 holonomy metrics in M-theory. Co-dimension
four ADE-type singularities are associated with the location of the coincident D6-branes, and
co-dimension seven singularities are associated with the location of the intersection of two
D6-branes in type IIA theory [4–8].

Further analyses of co-dimension seven singularities of the G2 holonomy spaces, leading
to chiral matter, were given in [6–8] and the subsequent work [9–12]. It is expected that
there exist wide classes of 7-manifolds with G2 holonomy and the singularity structure that
again would yield non-Abelian N = 1 supersymmetric four-dimensional theories with chiral
matter, and in particular the explicit construction of such metrics would provide a starting
point for further studies of chiral M-theory dynamics.

Much research on finding new non-singular G2 manifolds has been carried out in
recent times (see, for example, [13–19] and references therein). In view of their potential
phenomenological interest, it is appropriate also to investigate examples of singular G2

manifolds. Typically, these singularities should be of co-dimension seven, and they should be
of the relatively mild orbifold type [5, 6], where the curvature is bounded everywhere except
for δ-function contributions.

One way to obtain singular G2 holonomy spaces is by returning to the original G2

construction in [1, 2], with principal orbits that are S2 bundles over self-dual Einstein four-
dimensional manifolds M4 (forming the base of the twistor space), but with M4 now chosen
to be neither the S4 nor the CP

2 non-singular examples. Instead, one can choose M4 to be
a self-dual Einstein space with orbifold-type singularities. Some investigations of the G2

metrics that result from such a construction have already been carried out [10]. In this paper
we pursue the analysis further, by considering more general possibilities for the base space
M4. Since the procedure for obtaining the G2 metric from a given self-dual Einstein base
space M4 is well established [1, 2], much of the paper will concentrate on the details of the
self-dual Einstein metrics themselves.

There exists a large mathematical literature on self-dual Einstein metrics (sometimes
called quaternionic Kähler). The focus of our study in this paper will be on self-dual Einstein
metrics of the triaxial Bianchi IX type, where there is an SU(2) isometry that acts transitively
on three-dimensional orbits that are (locally) S3. Quite a lot is known about this case

6 Such metrics are generally referred to as ‘self-dual Einstein’, and unless the context makes it necessary in order
to avoid confusion, we shall often use this term regardless of whether the Weyl tensor is actually self-dual or
anti-self-dual.
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[20, 22, 23], but we believe that our results go beyond what is in the existing literature,
and that our viewpoint, derived as it is from the associated G2 metric, is novel. In particular,
we shall derive the general first-order equations for these metrics and analyse their local and
global structures. For the special case of biaxial Bianchi IX metrics, we provide a complete
analysis. In the triaxial case, we compare our analysis with that of Tod [21] and Hitchin
[22, 23], and analyse some of the explicitly known solutions. Some implications for M-theory
of these G2 holonomy metrics are also discussed.

2. Asymptotically conical G2 metrics

2.1. G2 holonomy of R3 bundles over self-dual Einstein 4-metrics

The metrics of G2 holonomy that have twistor-space orbits take the form [1, 2]

ds2
7 = 4

(
1 − 1

r4

)−1

dr2 + r2

(
1 − 1

r4

)
(Dµi)

2 + 2r2 ds2
4 , (1)

where µiµi = 1. The covariant exterior derivative is defined by Dµi ≡ dµi + εijkA
jµk , and

the metric ds2
4 is required to be Einstein, with Rab = �gab (with � taken to be normalized

to � = 3 in (1)). The Yang–Mills fields have the defining property that DJ i = 0, where the
quaternionic Kähler forms J i on the base space M4 have a definite duality, and satisfy

J i
abJ

j

bc = −δacδ
ij + εijkJ

k
ac, (2)

where the gauge-covariant exterior derivative is defined by

DJ i
ab ≡ ∇J i

ab + εijkA
jJ k

ab, (3)

with

∇J i
ab ≡ dJ i

ab + ωacJ
i
cb + ωbcJ

i
ac. (4)

The integrability condition D2J i
ab = 0 has, as a particular consequence,

F i
ab = 1

2J i
cdRabcd , (5)

where F i ≡ dAi + 1
2εijkA

j ∧ Ak . We furthermore require that the Yang–Mills fields F i be
proportional to the quaternionic Kähler forms. We shall take J i

ab to be self-dual, in which case
we have the identity

J i
abJ

i
cd = δacδbd − δadδbd + εabcd . (6)

From this and equation (5), it can be seen that if the Weyl tensor

Cabcd ≡ Rabcd − 1
3�(δacδbd − δadδbc) (7)

of the Einstein metric ds2
4 is anti-self-dual, then we shall have

F i = 1
3�J i. (8)

We can change variables to a set of coordinates ui on R
3, which are unconstrained, by

taking ui = ρµi , and letting 1
3�ρ2 = r4 − 1, leading to the expression

ds2
7 = (Dui)

2√
1 + 1

3�ρ2
+ 2

√
1 +

1

3
�ρ2 ds2

4 , (9)

where ρ means
√

uiui, Dui = dui + εijkA
juk , and we have rescaled so that ds2

4 has
cosmological constant �.
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The G2 holonomy is easily established by noting that we may take the associative 3-form
to be, reverting to � = 3 for convenience,

�(3) = 1
6 (1 + ρ2)−3/4εijkDuiDuj Duk + 2(1 + ρ2)1/4Dui ∧ J i. (10)

The dual of �(3) in the metric (9) is therefore

∗�(3) = 4(1 + ρ2)�(4) + εijkDui ∧ Duj ∧ J k, (11)

where �(4) is the volume form of ds2
4 , which can also be written as �(4) = 1

2J 1 ∧ J 1 =
1
2J 2 ∧ J 2 = 1

2J 3 ∧ J 3. From the identity D2ui = εijkF
juk , one easily sees that �(3) is closed

and co-closed.

2.2. Nearly Kähler geometry and G2 holonomy

If we go to the asymptotic region, where ρ −→ ∞, we get the metric on the cone over the
twistor space of M4,

ds2
7 = 1

ρ
(Dui)

2 + 2ρ ds2
4 . (12)

Defining ρ = 1
4 r2, this becomes

ds2
7 = dr2 + r2 ds2

6 , (13)

and so if ds2
7 has G2 holonomy then

ds2
6 = 1

4 (Dµi)
2 + 1

2 ds2
4 (14)

is the nearly Kähler metric on the twistor space of M4. The associative 3-form becomes

�(3) = 1
6ρ−3/2εijk Dui Duj Duk + 2ρ1/2 Dui ∧ J i, (15)

and its Hodge dual is

∗�(3) = 4ρ2�(4) + εijk Dui ∧ Duj ∧ J k. (16)

The conditions of closure and co-closure of �(3) therefore imply that ds2
6 in (14) is nearly

Kähler.
The definition of a nearly Kähler metric ds2

6 is that the cone over ds2
6 , namely

dŝ2
7 = dr2 + r2 ds2

6 (17)

has G2 holonomy. A more suggestive, but equivalent, terminology for ds2
6 is therefore that it

has weak SU(3) holonomy; we discuss this briefly below.
If the cone metric dŝ2

7 has G2 holonomy, it follows that the associative 3-form �(3), which
may be written as

�(3) = r2 dr ∧ J(2) + r3ρ(3), (18)

must be closed and co-closed. This has the consequences

dJ(2) = 3ρ(3), dρ̃(3) + 2J(2) ∧ J(2) = 0, (19)

where ρ̃(3) ≡ ∗6ρ(3). Immediate further consequences of these equations are J(2) ∧ ρ(3) = 0
and dρ(3) = 0. The associativity relation

�ABE�CDE = δACδBD − δADδBC + 1
6εABCDEFG�EFG (20)

for the 3-form �(3) has the consequences that

JabJbc = −δac, Jadρabd = ρ̃abc. (21)
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This means that J defines an almost complex structure in ds2
6 , and that with respect to

J,ψ(3) ≡ ρ + iρ̂ is a holomorphic 3-form of type (3, 0).
The relation to weak SU(3) holonomy can be made more explicit by considering the

covariantly constant spinor η̂ that exists in the G2 metric (17). In the natural orthonormal
basis ê0 = dr , êa = rea , one finds that the covariant exterior derivative ∇̂ = d + 1

4 ω̂AB
AB is
given by ∇̂ = ∇ − 1

2
0ae
a + dr ∂

∂r
. If ds2

6 has weak SU(3) holonomy then it admits Killing
spinors η± satisfying D±

a η± ≡ (∇a ± 1
2
0a

)
η± = 0, for which the integrability condition is[

D±
a , D±

b

] = 1
4Cabcd


cd . This admits solutions η± if Cabcd

cd generates the SU(3) subgroup

of the tangent-space group SO(6) ∼ SU(4). The two spinors are related by η∗
± = η∓ and


0η± = −η∓. The covariantly constant spinor in the G2 metric dŝ2
7 is given by η̂ = η−.

In terms of the Killing spinors η± in ds2
6 , the almost complex structure J(2) and the 3-form

ρ(3) are given by

Jab = iη†
+
abη−, ρabc = iη†

+
0abcη−. (22)

From the Killing spinor equations D±
a η± = 0 one can now easily derive the equations

∇aJbc = ρabc, ∇aρ̃bcd = −3J[abJcd]. (23)

These equations, which in particular imply (19), characterize nearly Kähler metrics. Note that
by symmetrizing the first equation on a and b, we obtain the equation for a Yano Killing tensor,
∇(aJb)c = 0 [24]. Thus the nearly Kähler 6-manifolds constructed in this paper provide new
examples of supersymmetric quantum mechanical systems with hidden symmetries [25, 26].
In fact, because Jab is an almost complex structure, the associated symmetric Staeckel Killing
tensor is given by JabJ

b
c = −gac, and hence is trivial in this case.

3. G2 holonomy equations for Bianchi IX base

We now apply the formalism of section 2.1, with the four-dimensional base metric taken to be
of the triaxial Bianchi IX form:

ds2
4 = dt2 + a2

i σ
2
i . (24)

The self-dual SU(2) Yang–Mills connection is

Ai = −ω0i − 1
2εijkωjk, (25)

where the spin connection of ds2
4 , in the vielbein basis e0 = dt, ei = aiσi , is given by

ω01 = β1e
1, ω23 = γ1e

1, (26)

and cyclically, with

β1 ≡ − ȧ1

a1
, γ1 ≡ a2

1 − a2
2 − a2

3

2a1a2a3
, (27)

and cyclically. Since the Yang–Mills potentials are expressed in terms of the left-invariant
1-forms σi ,

Ai = −ai(βi + γi)σi, (28)

the field strengths are necessarily SU(2) invariant, and are given by

F i = −�0i − εijk�jk. (29)

By imposing the closure and co-closure of �(3) given by (10) (or equivalently, and more
simply, (15)), we find that the first-order equations for ai such that the 7-manifold has G2



4244 M Cvetič et al

holonomy are then given by

ȧ1 − ȧ2ȧ3 +

(
a2

3 − a2
1 − a2

2

2a1a2

)
ȧ2 +

(
a2

2 − a2
1 − a2

3

2a1a3

)
ȧ3

+
a4

2 + a4
3 − 3a4

1 + 2
(
a2

1a
2
2 + a2

1a
2
3 − a2

2a
2
3 − 2

3�a2
1a

2
2a

2
3

)
4a2

1a2a3
= 0, (30)

together with the two equations obtained by cyclic permutation of the subscripts 1, 2 and 3.
Note that we have restored the cosmological constant �, so that ds2

4 satisfies Rab = �gab. It
is straightforward to see that after using the first-order equations, (29) becomes

F i = − 1
3�

(
e0 ∧ ei + 1

2εijke
j ∧ ek

) = 1
3�J i. (31)

We saw in section 2 that the conditions for ds2
7 in (9) to have G2 holonomy should be

equivalent to the conditions for ds2
4 to have (anti)-self-dual Weyl tensor. In fact another way

to derive the first-order equations (30) is as follows. We define the family of tensors

Xabcd ≡ Rabcd − κ(gacgbd − gadgbc), (32)

where κ is an as-yet unspecified constant parameter. If we now require that Xabcd be anti-self-
dual, we obtain the equation

∗Rabcd + Rabcd − κεabcd − κ(gacgbd − gadgbd) = 0. (33)

Contraction with gbd gives Rac = 3κgac. It then follows that Xabcd is the Weyl tensor of
an Einstein metric with scalar curvature 12κ , and moreover that the Einstein manifold has
anti-self-dual Weyl tensor. We find that the equations

X0123 = −X2323, X0231 = −X3131, X0312 = −X1212 (34)

give precisely (30), and that the remaining anti-self-duality equations for Xabcd, i.e.

X0101 = −X0123, X0202 = −X0231, X0303 = −X0312, (35)

give second-order equations that are nothing but the derivatives of (30).
One could, in principle, solve (30) for the ȧi themselves, but this involves finding the

roots of a quintic equation. It is, nevertheless, useful to present the first-order equations in
a factorized form. Solving two of the equations (30) for ȧ2 and ȧ3, and substituting into the
third, we get(

ȧ1 − a2
1 − (a2 + a3)

2

2a2a3

)2 (
ȧ1 − a2

1 − (a2 − a3)
2

2a2a3

)2 (
ȧ1 − a2

1 − a2
2 − a2

3

2a2a3
− 1

3
�a2a3

)

− 1

9
�2a2

1a2a3
(
2a2a3ȧ1 + 3a2

2 + a2
3 − a2

1

)(
2a2a3ȧ1 + a2

2 + 3a2
3 − a2

1

) = 0. (36)

Of course the two equations following by cyclic permutation hold too, but it would be
misleading to think of these three as the equations for the ai , since one should not solve
them independently. Rather, we can view (36) itself as the equation for ȧ1, and then substitute
this solution back into the cyclic set defined by (30) in order to obtain the equations for ȧ2

and ȧ3.
It is interesting to observe that in the limit when � −→ 0, then from (36) and (30) we

can see that we get either the ‘Atiyah–Hitchin’ [27] first-order system7

ȧ1 = a2
1 − (a2 + a3)

2

2a2a3
, and cyclic, (37)

7 Or an equivalent one with sign reversals of certain of the ai functions.



Bianchi IX self-dual Einstein metrics and singular G2 manifolds 4245

or the ‘BGPP’ [28] system

ȧ1 = a2
1 − a2

2 − a2
3

2a2a3
, and cyclic. (38)

Equations (37) admit the Atiyah–Hitchin [27] and self-dual Taub–NUT [29] metrics as
particular solutions, whilst equations (38) admit the BGPP [28] and Eguchi–Hanson [30]
metrics as solutions.

It is often more convenient to recast first-order equations such as (30) into a form where
the metric functions αi ≡ a2

i themselves appear without square roots. This can be achieved
by introducing a new radial variable ρ, defined by dt = a1a2a3 dρ. We then find that (30)
becomes

2
dα1

dρ
− 1

α2α3

dα2

dρ

dα3

dρ
+

(α3 − α1 − α2)

α2

dα2

dρ
+

(α2 − α3 − α1)

α3

dα3

dρ

+ α2
2 + α2

3 − 3α2
1 + 2α1(α2 + α3) − 2α2α3 − 4

3
�α1α2α3 = 0, (39)

and cyclically. Note also that in terms of the βi and γi coefficients defined in (26) and (27),
the first-order equations (30) can be written as

(β1 + γ1)(γ2 + γ3) = (β2 + γ2)(β3 + γ3) + 1
3�, (40)

and cyclically.
If we consider the specialization where all three metric functions ai are set equal, ai = a,

the first-order system (30) reduces to

ȧ2 + 1
3�a2 = 1

4 . (41)

This gives

ds2
4 = dt2 +

3

4�
sin2

(√
1

3
�t

)
σ 2

i . (42)

The metric extends to a complete non-singular metric on S4 if � > 0, and to the hyperbolic
space H 4 if � < 0.

The specialization to biaxial metrics, where two of the metric functions are set equal, is
considerably more complicated. We shall study this in detail in the next section.

4. Biaxial anti-self-dual Bianchi IX metrics

In this section we shall specialize to the biaxial case, setting a2 = a1. The first-order equations
(30) reduce to

ȧ3 = ȧ2
1 +

ȧ1a3

a1
− 1 +

3a2
3

4a2
1

+
1

3
�a2

1,

0 = (2a1ȧ1 + a3)(2a1ȧ1 + a3 − 2a1)(2a1ȧ1 + a3 + 2a1) +
1

6
�a1(2a1ȧ1 + 3a3).

(43)

It is easy to see that if we take the limit where � goes to zero, the cubic equation for ȧ1 has
roots giving

ȧ1 = − a3

2a1
+ 1 or ȧ1 = − a3

2a1
− 1 or ȧ1 = − a3

2a1
. (44)

The first two possibilities are associated with the first-order equations that yield the self-dual
Ricci-flat Taub–NUT metrics, whilst the third yields the Eguchi–Hanson metric (which is also
self-dual and Ricci-flat). In the self-dual Taub–NUT case, the SO(3) ⊂ U(2) rotates the three
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hyper-Kähler forms as a triplet, while in the case of the Eguchi–Hanson metrics, they are
singlets under SO(3).

For future reference, we note that equations (43) imply that the Weyl tensor of ds2
4 satisfies

the relation

Y 2 = X3, (45)

where

X ≡ 1
24CabcdC

abcd , Y ≡ 1
48CabcdC

cdef Cef
ab. (46)

4.1. Self-dual Taub–NUT–de Sitter metrics

The general biaxial Bianchi IX Einstein metrics have long been known; these are the Taub–
NUT–de Sitter solutions. Their local form can straightforwardly be derived by directly solving
the Einstein equations in a suitable coordinate gauge. Writing (24) as

ds2
4 = dr2

a2
3

+ a2
1

(
σ 2

1 + σ 2
2

)
+ a2

3σ
2
3 , (47)

the Ricci tensor is given (in the natural orthonormal frame) by

R00 = −a3a
′′
3 − a′2

3 − 2
(
a′

1a
′
3a3 + a′′

1a2
3

)
a1

,

R11 = R22 = −a′′
1a2

3

a1
− a′2

1 a2
3

a2
1

− 2a′
1a

′
3a3

a1
− a2

3

2a4
1

+
1

a2
1

, (48)

R33 = −a3a
′′
3 − a′2

3 − 2a′
1a

′
3a3

a1
+

a2
3

2a4
1

.

From this we see that R00 − R33 = −a2
3

(
a−4

1 + 4a′′
1a−1

1

)/
2, and since this must vanish by the

Einstein condition, it is easy to solve for a1, and hence, using the remaining Einstein equations,
for a3. Any Einstein solution to (48) is by definition a Taub–NUT–de Sitter metric. Apart
from special limiting cases, the general solution has three parameters that we can think of as
the mass m, the NUT charge n and the cosmological constant �. This general metric is given
by8

ds2
4 = r2 − n2

�
dr2 +

4n2�

r2 − n2
σ 2

3 + (r2 − n2)
(
σ 2

1 + σ 2
2

)
, (49)

where

� ≡ r2 − 2mr + n2 + �
(
n4 + 2n2r2 − 1

3 r4). (50)

The metric (49) has a self-dual or anti-self-dual Weyl tensor if [35]

m = ±n
(
1 + 4

3�n2
)
, (51)

in which case we find

� = (r ∓ n)2
(
1 − 1

3�(r ∓ n)(r ± n)
)
. (52)

Making the specific choice of the upper sign, we obtain the self-dual Taub–NUT–de Sitter
metric

ds2
4 = dr2

F
+ 4n2Fσ 2

3 + (r2 − n2)
(
σ 2

1 + σ 2
2

)
, (53)

8 The metric (49), parametrized by m, n and �, covers an open dense set in the modulus space of solutions of
(48). However, for special choices of the relation between the parameters, it may be necessary to change the radial
coordinate r because (49) degenerates unless a limit is taken.
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where

F =
( r − n

r + n

) (
1 − 1

3
�(r − n)(r + 3n)

)
,

= �

3

( r − n

r + n

)
(r+ − r)(r − r−), r± ≡ −n ±

√
4n2 +

3

�
. (54)

The Weyl tensor is given by

C0101 = C2323 = −C0123 = −n
(
1 + 1

3�n2
)

(r + n)3
,

C0303 = C1212 = −C0312 = 2n
(
1 + 1

3�n2
)

(r + n)3
.

(55)

It can easily be verified that this metric satisfies the first-order equations (30). Note that
because it is biaxial, and thus satisfies our reduced first-order system (43), it follows that the
Weyl tensor of the self-dual Taub–NUT–de Sitter metrics obeys relation (45). It is evident that
if we send � to zero in (53), we obtain the self-dual Taub–NUT metric first written down as a
Euclidean-signature metric in [29]:

ds2
4 =

( r + n

r − n

)
dr2 + 4n2

( r − n

r + n

)
σ 2

3 + (r2 − n2)
(
σ 2

1 + σ 2
2

)
. (56)

We saw, however, that the first-order equations (43) have three branches, and in the limit
where � goes to zero two of these should lead to the self-dual Taub–NUT metric, whilst the
third should lead instead to the Eguchi–Hanson metric. As noted above, the metric form (49)
with parameters m, n and �, and radial coordinate r, does not necessarily cover all regions of
the modulus space, and in the present case the existence of three branches suggests that there
should exist a different parameterization of biaxial self-dual Einstein metrics whose limiting
form when � goes to zero is the Eguchi–Hanson metric.

The required metrics cannot be those found in [35], which are referred to as the Eguchi–
Hanson–de Sitter metrics,

ds2
4 = dr2

F
+

1

4
r2Fσ 2

3 +
1

4
r2

(
σ 2

1 + σ 2
2

)
, (57)

where F = 1 − �4r−4 − 1
6�r2, because these metrics have neither self-dual nor anti-self-dual

Weyl tensor, when � and � are both non-zero, and thus they do not satisfy (30). They are
in fact Einstein–Kähler, and the Weyl tensor has a definite duality only if � = 0 (giving
the Fubini–Study metric on CP

2 if � > 0, and the Bergmann metric on the open ball
in C

2 if � < 0), or if � = 0, in which case the Weyl tensor has the opposite duality
and the metric is Eguchi–Hanson9. In order to find the ‘missing’ metrics, which we shall
distinguish from (57) by giving them the name ‘self-dual Eguchi–Hanson–de Sitter’, it is
helpful to study the first-order equations (43) in greater detail. This forms the topic of the next
subsection.

4.2. Biaxial first-order equations and self-dual Eguchi–Hanson–de Sitter

To proceed with studying the biaxial first-order equations (43), we define

u ≡ ȧ1 +
a3

2a1
. (58)

9 We shall discuss Bianchi IX Einstein–Kähler metrics briefly in appendix A.
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The cubic equation for ȧ1 now becomes

3u3 +
(
�a2

1 − 3
)
u − �a1a3 = 0. (59)

One approach is to follow Cardano’s procedure for solving the cubic equation, but other than
establishing the principle that there will be two roots whose � −→ 0 limit yields the self-dual
Taub–NUT first-order equation u = ±1, with the third yielding the Eguchi–Hanson first-order
equation u = 0 (see (44)), the direct solution of the cubic equation is not very enlightening.

A more profitable route is to view (59) as an equation expressing a3 in terms of u,

a3 = −u
(
u2 + λa2

1 − 1
)

λa1
. (60)

Note that we are defining

λ ≡ 1
3� (61)

for convenience. In view of (60), we can now choose to regard (a1, u) as our two metric
functions, rather than (a1, a3). From the first-order equations (43) we can now deduce that a1

and u satisfy the first-order equations

u̇ = −λa1, ȧ1 = u
(
u2 + 3λa2

1 − 1
)

2λa2
1

. (62)

In order to find the solution that gives rise to Eguchi–Hanson in the λ ≡ 1
3� −→ 0 limit,

it is useful to make a redefinition that casts equations (62) and (60) into a form where this
limit can be taken smoothly, and such that u tends to zero in the limit. This is easily done, by
letting u = λw. The first-order equations (62) become

ẇ = −a1, ȧ1 = w
(
λ2w2 + 3λa2

1 − 1
)

2a2
1

, (63)

and (60) gives

a3 = −w
(
λ2w + 3λa2

1 − 1
)

a1
. (64)

It follows that the solution to (63) for general non-vanishing λ will give the required self-dual
Eguchi–Hanson–de Sitter metrics. By defining a new radial variable x such that dx = −a1 dt ,
the equation for w can be solved to give w = x, and hence the solution for a1 can be found.
After a further simple coordinate redefinition, the solution can be expressed as

ds2
4 = dρ2

UV
+

1

4
ρ2 V

1 − 2µ�2

(
σ 2

1 + σ 2
2

)
+

1

4
ρ2

(
1 − µ�2

1 − 2µ�2

)2

UV σ 2
3 , (65)

where

U ≡ 1 − �4

ρ4
, V ≡ 1 − µ(�2 + ρ2). (66)

The metric is Einstein, with cosmological constant � = 12µ, and its Weyl tensor is anti-
self-dual. In fact, we find that the tangent-frame components of the Weyl tensor are given
by

C0101 = C2323 = −C0123 = −2�4(1 − µ�2)

ρ6
,

C0303 = C1212 = −C0312 = 4�4(1 − µ�2)

ρ6
.

(67)
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Since (65) is Einstein and of biaxial Bianchi IX type, it must be contained within the
general Taub–NUT–de Sitter class of solutions (49). Furthermore, since its Weyl tensor is
anti-self-dual, it can be expected to lie within the subclass of (49) that satisfy (51). After simple
algebra we find that there is indeed a transformation that maps (49) with the anti-self-dual
specialization given by (51) into (65), namely

r2 = − (12 − ��2 − 2�ρ2)2

32�(6 − ��2)
, n2 = − (12 − ��2)2

32�(6 − ��2)
. (68)

Substituting these redefinitions into (49) with (52), we recover (63). It should be noted
that when ��2 < 6, the self-dual Eguchi–Hanson–de Sitter metric corresponds to a
section of the self-dual Taub–NUT–de Sitter metric in which the NUT parameter and radial
coordinate are imaginary. Thus from the point of view of the real geometry, the self-dual
Taub–NUT–de Sitter and self-dual Eguchi–Hanson–de Sitter metrics should be viewed as
inequivalent.

In order to clarify the relations between the self-dual Taub–NUT–de Sitter and self-dual
Eguchi–Hanson–de Sitter metrics, and more generally to investigate the full solution space of
the self-dual biaxial metrics, it is useful to study the phase-plane for the first-order system (62).
Before doing so, we shall close this subsection by showing where two well-known self-dual
Einstein metrics that are contained within the biaxial Bianchi IX class fit in, namely S4 and
CP

2.
Setting � = 0 in (65) gives S4, as can be seen by changing to the radial coordinate t

defined by
√

µρ = sin 1
2 t . This gives

ds2
4 = 3

�

(
dt2 +

1

4
sin2 tσ 2

i

)
. (69)

From (68), this corresponds to n2 = −3/(4�) in the self-dual Taub–NUT–de Sitter
parametrization.

Another special case of (65), which arises when ��2 = 12, also gives rise to S4.
This is a singular limit, for which we must first rescale the Euler angle ψ that appears in
σ3 = dψ + cos θ dφ according to ψ = (

1 − 1
12��2

)−1
τ . Substituting into (65), and then

sending �2 −→ 12/�, we obtain

ds2
4 = 3

�

[
dχ2 + sin2 χ

(
σ 2

1 + σ 2
2

)
+ cos2 χ dτ 2

]
, (70)

where we have also set �ρ2 = 12 sin χ . We can recognize (70) as the metric on S4, written as
a foliation by S2 ×S1 surfaces. The fact that (65) describes S4 both for �2 = 0 and �2 = 12/�

is not unexpected in view of the expressions (67), since the Weyl tensor can be seen to vanish
for these two values of �2. Note that from (68) the value of the NUT parameter in the self-dual
Taub–NUT–de Sitter parametrization corresponding to the S4 limit with ��2 = 12 is n = 0.

A further special case of (65) is when ��2 = 6. This gives CP
2. One must first define

a new radial coordinate, for example by setting ρ2 = (2µ)−1[1 + (1 − 2µ�2) cos 2χ ], before
taking the limit. We then obtain the metric

ds2
4 = 6

�

[
dχ2 +

1

4
sin2 χ

(
σ 2

1 + σ 2
2

)
+

1

4
sin2 χ cos2 χ σ 2

3

]
, (71)

which can be recognized as the Fubini–Study metric on CP
2 [35]. From (68), it corresponds,

in the self-dual Taub–NUT–de Sitter parametrization, to sending the NUT parameter n to
infinity. Note that with the conventions of this paper, the Weyl tensor is anti-self-dual, as is
the (covariantly constant) Kähler form J = e0 ∧ e3 − e1 ∧ e2. Of course none of the self-dual
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quaternionic Kähler forms J i is covariantly constant, since the right-handed SU(2) part of the
spin connection is non-vanishing.

4.3. Phase-plane analysis for the biaxial system

As we have seen above, finding a uniform parametrization of the space of solutions, even in
the biaxial case, is non-trivial. The approach taken in this section will be to classify all the
possible orbits in the phase space of the first-order equations (62). We shall find that not all
solutions can be parametrized by giving real and finite values of � or n.

We begin by making the definition v = 3a1, choosing the scale size λ = 3 for convenience,
and sending t −→ −t for inconvenience. The first-order equations (62) become

u̇ = v, v̇ = 9u(1 − u2 − v2)

2v2
, (72)

and so the solutions can be represented as flows in the (u, v) plane. We can divide the two
equations to get

dv

du
= 9u(1 − u2 − v2)

2v3
. (73)

In general, equation (73) can be integrated to give the flows for any biaxial self-dual
solution. The constant of integration is related to the NUT parameter n, or, equivalently, the
scale parameter � in the self-dual Eguchi–Hanson–de Sitter formulation. In terms of n, the
integral of (73) is given by

(
u2 + 1

3v2 − 1
)2 = 12n2(u2 + 2

3v2 − 1
)
. (74)

Since this is symmetrical under reflections in the u and v axes, it suffices to consider flows
within the positive quadrant.

It follows from (73) that flow lines inside the unit circle have positive gradient, whilst those
outside the unit circle have negative gradient. The v axis corresponds to a3 = 0, signifying
an endpoint of the metric at which the three-dimensional orbits degenerate to an S2 bolt. The
u axis, on the other hand, corresponds to a1 = 0, and the metric will be singular here unless
it happens that u = ±1 or u = 0, in which case the orbits degenerate to a point, implying a
NUT endpoint in the metric. By a theorem of Hitchin, the only complete and non-singular
metrics with positive � are S4 and CP

2.
It is straightforward to establish that the CP

2 solution (71) corresponds to the ellipse
u2 + 2

3v2 = 1. The flow starts on the v axis at v2 = 3
2 at a bolt, and runs along the ellipse to a

NUT on the u axis at u = 1. Since we have chosen the normalization µ = 1
12� = 1

4λ = 3
4 in

this subsection, it follows that this occurs for �2 = 2
3 .

The S4 solution (69) with �2 = 0 corresponds to the ellipse
(
u − 1

2

)2
+ 1

3v2 = 1
4 . This

runs from the NUT at u = 0, v = 0 to the NUT at u = 1, v = 0. The other S4 solution
(70), with �2 = 12/� = 4/3, corresponds to the ellipse u2 + 1

3v2 = 1. Although this
appears to be singular since, from (60), we have a3 = 0, we saw that to obtain (70) it was
necessary to rescale the ψ coordinate and this has the effect of compensating for the vanishing
of a3.

The phase-plane plot, with the various ellipses and unit circle mentioned above displayed,
is given in figure 1.



Bianchi IX self-dual Einstein metrics and singular G2 manifolds 4251

-1 -0.5 0.5 1

-1

1

2

S
4

CP
2

u

v

Figure 1. The phase plane for the first-order system of equation (72). The solid blue ellipse
corresponds to the CP

2 flow, and the three solid red ellipses to S4 flows. The dashed green circle is
u2 + v2 = 1; all solutions that cross this do so horizontally. To label distinct metrics it is sufficient
to consider flows lying within the positive quadrant. We label qualitatively similar flows by A, B, C
and D, which indicate the regions they occupy and their initial points. Thus the regions A, B and C
indicate starting points for solutions on the v axis. Region A ranges from v = 0 to the intersection
of the CP

2 ellipse with the v axis. Region B ranges from this intersection to the intersection of the
outer ellipse (the S4 solution (70)) with the v axis. Region C ranges from this point to v = +∞.
Region D denotes (singular) starting points on the u axis for solutions in the range 0 < u < 1. For
clarity we have plotted complete ellipses for the S4 and CP

2 special cases, but only flows in the
upper half-plane for the other representative examples.

(This figure is in colour only in the electronic version)

From (74), we see that solutions starting from a bolt on the v axis are specified at
u = 0 by

region A: −∞ < n2 < − 1
12 : 3

2 > v2 > 0,

region B: −∞ < n < 0: 3
2 < v2 < 3,

region C: 0 < n < ∞ : 3 < v2 < ∞.

We also have solutions starting from the singular curvature singularity along the u axis,
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specified at v = 0 by

region D: − 1
12 < n2 < 0: 0 < u < 1. (75)

In terms of the parameter �2 of the self-dual Eguchi–Hanson–de Sitter formulation of the
metrics, we see from (68) that region A, where n is imaginary, is covered by real values
of �, and so the self-dual Eguchi–Hanson–de Sitter form of the metrics is better adapted
to describing this region of the phase plane. On the other hand, in region D, where n is
again imaginary, � is complex, and so neither the self-dual Taub–NUT–de Sitter nor the
self-dual Eguchi–Hanson–de Sitter formulation is well adapted to describing this region
of the phase plane. It is straightforward to find an adapted parametrization where the
analogue of the NUT parameter, and the radial coordinate, is real in region D, but since the
metrics there have power-law curvature singularities there is not much value in writing them
down.

It is instructive to express the Weyl tensor for the biaxial self-dual metrics in terms of u
and v. We find that it is given by

C0101 = −C0123 = C2323 = −2C0303 = 2C0312 = −2C1212 = f, (76)

where

f = − 81
2 v−6

(
u2 + 1

3v2 − 1
)((

u − 1
2

)2
+ 1

3v2 − 1
4

)((
u + 1

2

)2
+ 1

3v2 − 1
4

)
. (77)

As expected, this vanishes only on the S4 ellipses, and it diverges everywhere on the u axis
except at the points u = 0,±1, provided they are approached along the S4 flows.

4.4. Global structure of the biaxial solutions

As we have already remarked, a theorem of Hitchin implies that when the cosmological
constant � is positive, only the S4 and CP

2 self-dual Einstein metrics can be non-singular.
In particular, therefore, this means that the self-dual Taub–NUT–de Sitter and self-dual Eguchi–
Hanson–de Sitter metrics will be singular except for the special values of n or �2 for which
they reduce to S4 or CP

2.
We shall analyse the self-dual Taub–NUT–de Sitter metrics first, described by (53) and

(54). The coordinate r is taken to lie in the interval n � r � r+. For convenience, we shall
again set � = 9 here. Near r = n, letting r − n = ρ2, the metric becomes

ds2
4 ∼ 8n

[
dρ2 + 1

4ρ2
(
σ 2

1 + σ 2
2 + σ 2

3

)]
, (78)

which describes a NUT. The metric smoothly approaches the origin of R
4, provided that the

Euler angle ψ appearing in σ3 = dψ + cos θ dφ has its canonical period 4π .
Near r = r+, by letting r+ − r = ρ2 we see that the metric becomes

ds2
4 ∼ 2(√

3
√

12n2 + 1 − 6n
)(

dρ2 + 4n2(√3
√

12n2 + 1 − 6n
)2

ρ2σ 2
3

)
+

(
r2

+ − n2)(σ 2
1 + σ 2

2

)
.

(79)

This approaches R
2 × S2 locally, but in general there will be a conical singularity. If ψ has

period �ψ = 4π/N , then regularity at r = r+ is achieved if

N = 4n
(−6n +

√
3
√

12n2 + 1
)
. (80)

Regularity at r = n required N = 1. This is compatible with (80) if n = ∞, which is
the limit where the self-dual Taub–NUT–de Sitter metric becomes CP

2 [35]. (Another case
where the singularity can be avoided is by taking a limit where n2 −→ −3/(4�) = − 1

12 , in
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which case one must first rescale coordinates in the metric. This case is S4.) For all other
values of n, there will be a deficit angle at the origin, and hence a conical singularity.

The G2 metrics (9) obtained by taking ds2
4 to be self-dual Taub–NUT–de Sitter were

discussed recently in [10]. They have cohomogeneity 2, since there are two ‘radial’ coordinates
ρ and t. The conical singularities in the Taub–NUT–de Sitter metrics imply, of course, that
the corresponding G2 metrics will have conical singularities too.

A further class of geometries within the biaxial Bianchi IX class is obtained by considering
instead the self-dual Eguchi–Hanson–de Sitter form of the metrics, given by (65). If 2µ�2 < 1,
meaning that ��2 < 6, the radial coordinate ρ can be chosen to lie in the interval � � ρ � ρ0,
where ρ2

0 = 1/µ − �2. Near ρ = �, setting ρ = � + x2, we find

ds2
4 ∼ �

1 − 2µ�2

[
dx2 + (1 − µ�2)2x2σ 2

3

]
+

1

4
�2

(
σ 2

1 + σ 2
2

)
, (81)

whilst near ρ = ρ0, we have, setting ρ = ρ0 − x2,

ds2
4 ∼ 1 − µ�2

1 − 2µ�2

(
dx2 +

1

4
x2σ 2

i

)
. (82)

Thus regularity at the NUT at ρ = ρ0 requires that ψ have period 4π , which implies that there
is a conical singularity on the bolt at ρ = �.

4.5. Phase plane and global structure for negative �

The phase-plane analysis of section 4.3 can be repeated for the case where the cosmological
constant � is taken to be negative. Starting from (62) and (60), and fixing the scale by choosing
λ ≡ 1

3� = −3, we now have

u̇ = v, v̇ = 9u(1 − u2 + v2)

2v2
,

dv

du
= 9u(1 − u2 + v2)

2v3
, a3 = −u

v

(
1 − u2 + 1

3 v2
)
.

(83)

The flow can be integrated, giving(
u2 − 1

3v2 − 1
)2

+ 12n2(u2 − 2
3v2 − 1

) = 0. (84)

As in the case when � > 0, this is symmetric under reflections in the u and v axes.
The hyperbola u2 − 2

3v2 = 1, which arises when n = ∞, corresponds to the Bergmann
metric on the open ball in C

2 (i.e. the Fubini–Study metric with negative �, which is the
coset SU(2, 1)/U(2)). The hyperbolic 4-space H 4 arises if n = 0, giving the hyperbola
u2 − 1

3v2 = 1. It also arises if n2 = 1
12 , giving the hyperbolae

(
u ± 1

2

)2 − 1
3v2 = 1

4 .
The Weyl tensor is given by (76), where f is now given by

f = 81
2 v−6

(
u2 − 1

3v2 − 1
)((

u − 1
2

)2 − 1
3v2 − 1

4

)((
u + 1

2

)2 − 1
3v2 − 1

4

)
. (85)

The Weyl tensor therefore vanishes on the H 4 hyperbolae, and has a power-law divergence at
all points on the u axis except if one approaches u = 0,±1 along the H 4 flows.

Writing the metric in the self-dual Eguchi–Hanson–de Sitter form (65), where now
µ ≡ 1

12� is taken to be negative, say −µ ≡ ν > 0, we see that the radial variable can
be taken in the range ρ � �. Near ρ = � we set ρ = � + x2, giving

ds2
4 ∼ �

1 + 2ν�2

[
dx2 + (1 + ν�2)2x2σ 2

3

]
+

1

4
�2

(
σ 2

1 + σ 2
2

)
. (86)
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Figure 2. The phase plane for the first-order system of equation (83). The solid blue hyperbola
corresponds to the Bergmann flow, and the three solid red hyperbolae to H 4 flows. The discussion
of other flows is analogous to that for � > 0; some representative examples are depicted.

(This figure is in colour only in the electronic version)

Thus we have a regular S2 bolt, provided that the period �ψ of ψ is chosen to be

�ψ = 2π

1 + ν�2
. (87)

Provided that � is such that this period is 4N , for N an integer, we shall have a regular metric,
with S3/ZN orbits.

Now consider instead writing the metric in the self-dual Taub–NUT–de Sitter form (53).
Taking � = −9 for simplicity, the roots r± are given by r± = −n± 1√

3

√
12n2 − 1. Assuming

n2 > 1
12 , this means that the roots r± are both less than n (assumed positive), and so we can

take r � n. Near r = n we set r = n + x2, finding

ds2
4 ∼ 8n

(
dx2 + 1

4x2σ 2
i

)
. (88)

Thus r = n is a regular NUT, provided ψ has period 4π .
The regular solutions with a bolt, which we described in the self-dual Eguchi–Hanson–

de Sitter form (65) above, can also be expressed in the self-dual Taub–NUT–de Sitter form.
They correspond to running the radial coordinate r from r = r− to r = −∞ (note that
r− < −n, so the curvature singularity at r = −n is avoided).

All the other solutions represented in figure 2 have flows that intersect the u axis at points
other than u = 0 or ±1, and thus they have power-law curvature singularities.
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4.6. Superpotential for the biaxial system

Although the D = 4 self-dual Einstein spaces do not themselves have special holonomy,
the existence of the first-order system implies that it might be possible to derive it from a
superpotential. To obtain such a superpotential, we first note that the Hamiltonian of the
cohomogeneity one Einstein space is given by H = T + U , where

T = 2a′
1a

′
2

a1a2
+

2a′
1a

′
3

a1a3
+

2a′
2a

′
3

a2a3
,

U = 1
2

(
a4

1 + a4
2 + a4

3 − 2a2
1a

2
2 − 2a2

1a
2
3 − 2a2

2a
2
3 + 12λa2

1a
2
2a

2
3

)
,

(89)

and a prime denotes a derivative with respect to η defined by dt = a1a2a3 dη.
Here, we shall consider the biaxial system with a2 = a1, and use the u and a1 variables

defined in section 4.2. We can write T = 1
2gij (dαi/dη)(dαj/dη), with αi = (a1, u), which

implies that gij is given by

gij =
( 4x

a2
1y

4z
a1uy

4z
a1uy

0

)
, x ≡ 1 + 3λa2

1 − u2

y ≡ −1 + λa2
1 + u2, z ≡ −1 + λa2

1 + 3u2.

(90)

We find that the potential U can then be expressed as U = − 1
2gij (∂W/∂αi)(∂W/∂αj ), with

the superpotential W given by

W = −u2(u2 − 1)2

λ2a2
1

− u2(5u2 − 4)

λ
− a2

1(3u2 + 2) + λa4
1 . (91)

It is straightforward to derive the first-order equations from this superpotential.

5. Triaxial anti-self-dual Bianchi IX metrics

In this section we discuss the full triaxial system of equations, which are considerably more
complicated than the biaxial case.

5.1. Phase-plane and superpotential for triaxial system

We begin with an outline of a phase-plane analysis for the triaxial system, using methods
similar to those that we used for the biaxial case.

Starting from the first-order equation for ȧ1 obtained in (36), it is natural to define the
auxiliary variable w, by

w ≡ ȧ1 − a2
1 − a2

2 − a2
3

2a2a3
. (92)

In terms of w, equation (36) becomes

(w2 − 1)2(w − λa2a3) − λ2a2
1(a2w + a3)(a3w + a2) = 0. (93)

The remaining first-order equations in (30), namely those for ȧ2 and ȧ3, then become

ȧ2 = a2
2 − a2

1 − a2
3

2a1a3
− λa1(a2w + a3)

w2 − 1
,

ȧ3 = a2
3 − a2

1 − a2
2

2a1a2
− λa1(a3w + a2)

w2 − 1
.

(94)

We can now try following the strategy of treating (w, a2, a3) as the independent variables,
instead of (a1, a2, a3). This is similar to the strategy used in the biaxial case, although
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not exactly parallel. Differentiating (93), using (94) and (92), and then using (93) itself to
substitute for a2

1 , we get

(ẇ + λa1)(w
2 − 1)2

[
a2a3(3w4 + 6w2 − 1

) − 4
(
a2

2 + a2
3

)
w3

− λa2a3
((

a2
2 + a2

3

)
(1 + 3w2) + 2a2a3w(w2 + 3)

)] = 0. (95)

Unless the algebraic expression contained in square brackets vanishes, we therefore have the
first-order equation

ẇ = −λa1. (96)

We should think of a1 as being solved for here, using (93). Since this would involve the use of
square roots, it seems preferable to introduce a new radial variable ρ, defined by dρ = −a1 dt .
We then have

w′ = λ. (97)

The remaining first-order equations (94) will also involve a1 only through a2
1 , and so we shall

have the system

w′ = λ,

a′
2 = −a2

2 − a2
1 − a2

3

2a2
1a3

+
λ(a2w + a3)

w2 − 1
,

a′
3 = −a2

3 − a2
1 − a2

2

2a2
1a2

+
λ(a3w + a2)

w2 − 1
,

(98)

where from (93), a2
1 is given by

a2
1 = (w2 − 1)2(w − λa2a3)

λ2(a2w + a3)(a3w + a2)
. (99)

Analogously to the biaxial case, we see from (93) that when λ = 0 we have w = 0
corresponding to the ‘BGPP’ first-order equations, and w = ±1 corresponding to the ‘Atiyah–
Hitchin’ first-order equations.

The problem of solving the general triaxial first-order equations can be reduced to a
second-order equation in a single variable. Defining y ≡ a2/a3 and z ≡ a2a3, we find, after
normalizing so that λ = 1, that y satisfies the equation

y ′′ − 3y2 − 2ρy + 1

y(y2 − 1)
y ′2 − 2ρy2 − 3ρ2y − y + 2ρ

ρ(ρ2 − 1)y
y ′ +

2(y2 − 1)

ρ(ρ2 − 1)2
= 0, (100)

and that z is given by

z = ρ(ρ2 − 1)y[(ρ2 − 1)y ′ + 1 − y2]

(ρ2 − 1)2yy ′ + ρ(y4 − 1) + 2y2(y2 − 1)
. (101)

We find that it is possible to derive the triaxial first-order system from a superpotential
also. We use αi = (u, a2, a3) as variables, as discussed above. The kinetic energy T given
in (89) can be straightforwardly rewritten in terms of derivatives of (u, a2, a3), and hence we
can read off the components of the sigma-model metric gij in T = 1

2gij (dαi/dη)(dαj/dη),
where as before dt = a1a2a3 dη. Since the expression for gij is quite complicated, we shall
not present it here. Then, we find after some calculation that the potential U given in (89) can
be written in terms of a superpotential W as U = − 1

2gij (∂W/∂αi)(∂W/∂αj ), with

W = −a2
2 − a2

3 − 2λ−1w2 +
a2a3(3w2 − 1)

w
+

(
λ2a2

2a
2
3 − w2

)
(w2 − 1)2

λ2w(a2w + a3)(a3w + a2)
. (102)

It is easily verified that if one sets a2 = a1, then w reduces to the function u of the
biaxial system, and, after using (60) to replace a3 by u, then W + λ−1 becomes the biaxial
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superpotential given in (91), where W denotes the triaxial superpotential (102) after the biaxial
specializations.

5.2. The Tod–Hitchin first-order system

In this section we shall follow Tod [21] and Hitchin [22, 23], who use a different approach to
study the general triaxial system (30). The metric is written as

ds2
4 = F

(
dx2

x(1 − x)
+

σ 2
1

�2
1

+
(1 − x)σ 2

2

�2
2

+
xσ 2

3

�2
3

)
. (103)

Tod [21] shows that ds2
4 is Einstein with anti-self-dual Weyl tensor if the functions �i satisfy

�′
1 = − �2�3

x(1 − x)
, �′

2 = −�3�1

x
, �′

3 = −�1�2

1 − x
, (104)

where a prime denotes a derivative with respect to x, and F is given by

F = −8x �2
1�

2
2�

2
3 + 2�1�2�3

[
x
(
�2

1 + �2
2

) − (
1 − 4�2

3

)(
�2

2 − (1 − x)�2
1

)]
4
(
x �1�2 + 2�3

(
�2

2 − (1 − x)�2
1

))2 . (105)

(We have normalized the Einstein constant so that Rab = 3gab.)
This first-order system can be reduced to the problem of solving the Painlevé VI equation

[21]. One introduces a function y(x), in terms of which the �2
i are written as

�2
1 = (y − x)2y(y − 1)

x(1 − x)

(
z − 1

2(y − 1)

) (
z − 1

2y

)
,

�2
2 = y2(y − 1)(y − x)

x

(
z − 1

2(y − x)

) (
z − 1

2(y − 1)

)
, (106)

�2
3 = (y − 1)2y(y − x)

(1 − x)

(
z − 1

2y

) (
z − 1

2(y − x)

)
,

where

z = x − 2xy + y2 − 2x(1 − x)y ′

4y(y − 1)(y − x)
. (107)

(Note that �2
1 − �2

2 − �2
3, which is conserved, must take the value − 1

4 in order that ds2
4 be

Einstein.) The claim then is that the first-order equations are satisfied if y satisfies the Painlevé
VI equation

y ′′ = 1

2

(
1

y
+

1

y − 1
+

1

y − x

)
y ′2 −

(
1

x
+

1

x − 1
+

1

y − x

)
y ′

+
y(y − 1)(y − x)

x2(x − 1)2

(
α + β

x

y2
+ γ

x − 1

(y − 1)2
+ δ

x(x − 1)

(y − x)2

)
, (108)

with (α, β, γ, δ) = (
1
8 ,− 1

8 , 1
8 , 3

8

)
. Note that expression (105) for F is actually quite simple,

expressed in terms of y:

F = y(1 − y)(y − x)z

2x(1 − x)

= x − 2xy + y2 − 2x(1 − x)y ′

8x(1 − x)
. (109)

It is a straightforward, although somewhat involved, exercise to show that if the first-
order equations (104) are satisfied, then the metric functions ai indeed satisfy our first-order
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equations (30). Note, however, that the converse is not true; not every solution of the general
first-order equations (30) for anti-self-dual Einstein metrics gives a solution of (104). For
example, the uniaxial solutions certainly do not satisfy equations (104); setting the a2

i equal
implies that �2

2 = (1 − x)�2
1 and �2

3 = x�2
1, and one can easily see that substituting into

(104) leads to a contradiction. Likewise, one can show that setting any two of the metric
functions equal leads to a degeneration in (104). This can be understood from the fact that the
radial coordinate used in [21, 22] becomes a constant if any two of the metric functions are set
equal.

The first-order equations (104) were obtained in [21–23] by first solving the conditions
for metrics with anti-self-dual Weyl tensor and vanishing Ricci scalar, and then performing a
conformal rescaling of the metric to arrive at one that was Einstein. We have shown that every
solution of the Tod–Hitchin system provides a solution of our system of first-order equations.
Our equations are valid not only for the triaxial case but also for the biaxial and uniaxial cases,
and yield all possible Bianchi IX self-dual Einstein metrics. The method of Tod and Hitchin
breaks down in the biaxial and uniaxial cases. The arguments from twistor theory presented
in [23] show that the Tod–Hitchin method gives the general triaxial metric, but the explicit
correspondence to our first-order equations remains unclear.

5.3. Explicit examples

Hitchin gives explicit solutions to (108) characterized by an integer k, with k = 3, 4, 6, 8
[22, 23]. The case k = 3 corresponds to the round metric on S4, written in triaxial form [32],
whilst k = 4 corresponds to the Fubini–Study metric on CP

2, again written in triaxial form
[38]10. For k � 5 the metrics will necessarily have orbifold-type singularities.

In general it is easiest to give these solutions y(x) by introducing a ‘parametric variable’
r, with y and x both expressed in terms of r. Thus one has

k = 3: y = r2(2r2 + 5r + 2)

(2r + 1)(r2 + r + 1)
, x = r3(r + 2)

2r + 1
,

k = 4: y = r, x = r2,

k = 6: y = r(r2 + r + 1)

(2r + 1)
, x = r3(r + 2)

(2r + 1)
,

k = 8:
4r(3r2 − 2r + 1)

(r + 1)(1 − r)3(r2 + 2r + 3)
, x =

(
2r

1 − r2

)4

.

(110)

It is straightforward to verify that these expressions all satisfy the Painlevé equation (108).
For k = 3, after normalizing so that Rab = 3gab, the metric (103) becomes [22]

h2 = 3

(1 + r + r2)2
, a2

1 = (1 + 2r)2h2, a2
2 = (1 − r2)2h2, a2

3 = r2(2 + r)2h2.

(111)

Note that the radial variable r being used here is precisely the parametric variable in (110).
Defining a new radial variable t by r = − 1

2 +
√

3
2 tan

(
1
2

√
3t

)
, the k = 3 metric becomes

ds2
4 = dt2 + 4 sin2 tσ 2

1 + 4 sin2 (
t − 2

3π
)
σ 2

2 + 4 sin2 (
t + 2

3π
)
σ 2

3 , (112)

which can be recognized as the triaxial form of the Einstein metric on S4, discussed in [32].

10 The triaxial form of the Fubini–Study metric is derived in appendix B.
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For k = 4, and normalizing for convenience so that Rab = 6gab, the metric in [22] has

h2 = 1

4r(1 + r)2
, a2

1 = 1

1 + r
, a2

2 = (1 − r)2

(1 + r)2
, a2

3 = r

1 + r
. (113)

Defining a new radial variable by r = tan2 t , the k = 4 metric becomes

ds2
4 = dt2 + cos2 tσ 2

1 + cos2 2tσ 2
2 + sin2 tσ 2

3 , (114)

which can be recognized as the triaxial CP
2 metric [38], discussed in appendix B.

For k = 6, the metric functions are given by

h2 = 3(1 + r + r2)

r(r + 2)2(2r + 1)2
, a2

1 = 3(1 + r + r2)

(r + 2)(2r + 1)2
,

a2
2 = 3(r2 − 1)2

(1 + r + r2)(r + 2)(2r + 1)
, a2

3 = 3r(1 + r + r2)

(r + 2)2(2r + 1)
.

(115)

The radial coordinate runs from r = 1 to r = ∞, and we have normalized the metric so that
Rab = 3gab.

For k = 8, after rederiving the metric using the construction given in [22], we find that
the metric functions are given by

h2 = 4(1 + r)(3 − 2r + r2)(1 − 2r + 3r2)(1 + 2r + 3r2)

(1 − r)r(1 + r2)(1 + 2r − r2)2(3 + 2r + r2)2
,

a2
1 = 4(1 − r)(1 + r)3(3 − 2r + r2)(1 − 2r + 3r2)

(1 + 2r − r2)(3 + 2r + r2)2(1 + 2r + 3r2)
,

a2
2 = 4(1 + r2)(3 − 2r + r2)(1 − 2r − r2)2(1 + 2r + 3r2)

(1 + 2r − r2)2(3 + 2r + r2)2(1 − 2r + 3r2)
,

a2
3 = 16r(1 − 2r + 3r2)(1 + 2r + 3r2)

(1 + 2r − r2)(3 − 2r + r2)(3 + 2r + r2)2
,

(116)

where we have again chosen the normalization so that Rab = 3gab. (This corrects a
typographical error in [22], where there is an extra factor (1 + r)2 in the coefficient of σ 2

3

that should not be there.) The radial coordinate lies in the interval
√

2 − 1 < r < 1.
The k = 3 and k = 4 Tod–Hitchin metrics are S4 and CP

2 respectively, albeit in their less
common triaxial forms. The existence of more than one Bianchi IX form is a consequence
of the homogeneity of these metrics. The isometry algebra contains more than one SU(2)

subalgebra, and the orbits are different. The full set of homogeneous Einstein 4-manifolds is
known, and from that list we deduce that this can only happen for self-dual Einstein metrics in
the case of S4 and CP

2. Thus for higher values of k, the Tod–Hitchin metrics and the biaxial
Bianchi IX self-dual Einstein metrics form disjoint classes. An explicit demonstration of this
for the k = 6 and k = 8 metrics can be given by computing the quantity X3/Y 2, where X
and Y are the quadratic and cubic Weyl tensor invariants defined in (46). We showed that
any biaxial self-dual Einstein metric must satisfy X3/Y 2 = 1 (see (45)), and an elementary
calculation shows that whilst this is true for the k = 3 and k = 4 metrics, it does not hold for
the k = 6 and k = 8 metrics.

5.4. Global structure of the metrics

The global structure of the Tod–Hitchin metrics is described in detail in [22, 23]. Here, we
summarize the conclusions, presenting them in a way that is perhaps more readily accessible
to physicists.
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The key to understanding the global structure is to understand the nature of the degenerate
orbits where metric coefficients vanish. An important feature of the metrics, for all k including
k = 3 and k = 4, is that at one end of the radial coordinate range the coefficient of σ1 vanishes,
while at the other end it is the coefficient of σ2 that vanishes instead. This ‘slumping’ is
reminiscent of the metric behaviour in the Atiyah–Hitchin metric, where the coefficient of one
of the σi vanishes at short distance, while the coefficient of another of them stabilizes in the
asymptotic region. In fact, as shown in [22], the Atiyah–Hitchin metric itself arises as the
k −→ ∞ limit of the Tod–Hitchin metrics.

Because of the slumping, it is useful to introduce two different Euler-angle
parametrizations of the left-invariant 1-forms, one adapted to the region where σ1 collapses,
and the other adapted to the region where σ2 collapses. The procedure was described in [33],
and elaborated somewhat in [34]. Here we shall present a brief summary of the description in
[34], with labelling adapted to our present conventions.

Let us introduce Euler angles (θ, φ, ψ) and (θ̃ , φ̃, ψ̃), such that

σ1 = dψ + cos θ dφ, σ2 + iσ3 = eiψ(dθ + i sin θ dφ), (117)

σ2 = dψ̃ + cos θ̃ dφ̃, σ3 + iσ1 = eiψ̃ (dθ̃ + i sin θ̃ dφ̃). (118)

We begin by taking ψ and ψ̃ both to have period 2π , so that the orbits are RP
3. Clearly one

could, in principle, solve for the transformation that relates the tilded and untilded coordinates,
but we shall not need this.

We now consider the operation, which we shall denote by I1, which implements the
identification ψ ≈ ψ + π . It is easily seen that in terms of the tilded coordinates, this
corresponds to θ̃ −→ π − θ̃ , φ̃ −→ φ̃ + π , ψ̃ −→ −ψ̃ . Likewise we define Ĩ 2 which
implements ψ̃ ≈ ψ̃ + π . Since the tilded basis is related to the untilded by a cyclic permutation
of (σ1, σ2, σ3), we can see that in our notation we shall have Ii = Ĩ i , and so we can deduce
that the effect of the Ii on the untilded coordinates is

I1 : θ −→ θ, φ −→ φ, ψ −→ ψ + π,

I2 : θ −→ π − θ, φ −→ φ + π, ψ −→ −ψ,

I3 : θ −→ π − θ, φ −→ φ + π, ψ −→ π − ψ,

(119)

while on the tilded coordinates we have

I1 : θ̃ −→ π − θ̃ , φ̃ −→ φ̃ + π, ψ̃ −→ π − ψ̃,

I2 : θ̃ −→ θ̃ , φ̃ −→ φ̃, ψ̃ −→ ψ̃ + π,

I3 : θ̃ −→ π − θ̃ , φ̃ −→ φ̃ + π, ψ̃ −→ −ψ̃,

(120)

Consider first the case k = 3, which gives the triaxial metric (112) on S4. Near t = 0 we
have

ds2
4 ∼ dt2 + 4t2σ 2

1 + σ 2
2 + σ 2

3 . (121)

From expression (117) we see that regularity at t = 0 requires that ψ have period π , and so
from (119) we should impose the identification I1. Near the other endpoint t = 2

3π , we set
t = 2

3π − τ , and so the metric takes the form

ds2
4 ∼ dτ 2 + 4τ 2σ 2

2 + σ 2
1 + σ 2

3 . (122)

From (118) we see that regularity requires that ψ̃ have period π , and so from (120) we should
in addition impose the identification I2. Thus the principal orbits are SO(3)/(Z2 × Z2). We
also see that the two-dimensional bolt described by σ 2

2 + σ 2
3 = dθ2 + sin2 θ dφ2 at t = 0,

and the two-dimensional bolt described by σ 2
1 + σ 2

3 = dθ̃2 + sin2 θ̃ dφ̃2 at t = 2
3π each has
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the topology of RP
2, since there is an antipodal identification in the former implied by I2 in

(119), and in the latter implied by I1 in (120). The metric therefore extends smoothly on the
Veronese surfaces RP

2 at each endpoint [22].
The case k = 4 gives the triaxial CP

2 metric (114). We can take the two endpoints to be
at t = 1

2π and t = 1
4π . Near t = 1

2π , after setting t = 1
2π − τ the metric takes the form

ds2
4 ∼ dτ 2 + τ 2σ 2

1 + σ 2
2 + σ 2

3 . (123)

Regularity therefore requires that we not impose the identification I1. On the other hand, at
the other endpoint t = 1

4π , after defining t = 1
4π − τ we have

ds2
4 ∼ dτ 2 + 4τ 2σ 2

2 + σ 2
1 + σ 2

3 . (124)

Regularity therefore requires that we impose the identification I2. This means that the principal
orbits are SO(3)/Z2, and that the metric extends smoothly onto RP

2 at t = 1
2π , and onto S2

at t = 1
4π [22]. This reflects the fact that CP

2 can be described as the double covering of S4

branched over RP
2.

For k = 6, we see by letting r = 1 + 3ρ that near r = 1 the metric (115) takes the form

ds2
4 ∼ dρ2 + 4ρ2σ 2

2 + 1
3

(
σ 2

1 + σ 2
3

)
, (125)

whilst letting r = 1/ρ2 the metric near r = ∞ has the form

ds2
4 ∼ dρ2 + 1

4ρ2σ 2
1 + 3

2

(
σ 2

2 + σ 2
3

)
. (126)

Thus if we impose the identification I2 the metric extends smoothly over RP
2 at r = 1, and

extends over RP
2 with an orbifold singularity having angle 1

2π at r = ∞ [22].

For k = 8, after letting r = √
2 − 1 + (

√
2 − √

2)ρ, the metric near r = √
2 − 1 can be

seen to have the form

ds2
4 ∼ dρ2 + 4ρ2σ 2

2 + (3 − 2
√

2)
(
σ 2

1 + σ 2
3

)
. (127)

Letting r = 1 − 3
8ρ2, the metric near r = 1 takes the form

ds2
4 ∼ dρ2 + 1

9ρ2σ 2
1 + 4

3

(
σ 2

2 + σ 2
3

)
. (128)

Thus by imposing the identification I2 the metric extends smoothly over RP
2 at r = √

2 − 1,
and extends over RP

2 with an orbifold singularity having angle 1
3π at r = 1 [22].

In [22] it is shown that all the metrics obtained from solving the Painlevé equation are
positive definite with x lying in the interval 1 < x < ∞, for all values of the constant k
parametrizing the solutions described in [22]. Near x = 1, the metric takes the form

ds2
4 ∼ 1

16
cos2 π

k

(
dr2 + 4r2σ 2

2

)
+ σ 2

1 + σ 2
3 . (129)

This shows that the metric extends over the degenerate orbit at r = 0, with σ 2
1 + σ 2

3 describing
RP

2 [22]. As x −→ ∞ the metric assumes the form

ds2
4 ∼ dρ2 +

4ρ2

(k − 2)2
σ 2

1 + 28/k−2
(
σ 2

2 + σ 2
3

)
, (130)

where x = ρ−k , which shows that there is an orbifold singularity with angle 2π/(k−2) around
RP

2 [22]. These results are consistent with the explicit calculations for the k = 6 and k = 8
cases above.
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6. Singularity structure and M-theory

In this paper, we have extended the analysis of G2 holonomy spaces to those whose principal
orbits are twistor spaces, constructed as S2 bundles over four-dimensional self-dual Einstein
metrics of the general Bianchi IX type. We obtained the general first-order differential
equations for these triaxial Bianchi IX metrics, and we showed how they can be derived from
a superpotential. In special cases, the self-dual Einstein metrics reduce to S4, CP

2 and the
(biaxial) Taub–NUT–de Sitter metrics,

We focused on the analysis of the local and global structures of the self-dual Einstein
Bianchi IX metrics. For the biaxial specialization, where the local form of the general solution
is well known, we gave a complete analysis of the solutions by studying the flows in the phase
plane of the first-order equations. Even in this biaxial case the analysis is quite subtle, since
there is no single local expression for the metric that directly covers all the possible regions
of flows in the phase plane. Some regions are well described by the standard expression
for the self-dual Taub–NUT–de Sitter metrics, but our analysis reveals that in another region
there are flows that are more appropriately described by a different local form of the solution,
which we refer to as the self-dual Eguchi–Hanson–de Sitter metrics. These metrics, which
as far as we are aware have not been presented explicitly before, describe flows in a region
of the phase plane that can be viewed as generalizations of the Eguchi–Hanson metric in
which the cosmological constant is non-zero. Unlike the usual Eguchi–Hanson–de Sitter
metrics [31], which are Kähler but neither self-dual nor anti-self-dual, the new metrics have
a self-dual Weyl tensor even when the cosmological constant is non-zero. In the self-dual
Taub–NUT–de Sitter form, the two parameters of biaxial solutions can be thought of as the NUT
parameter and the cosmological constant. In the self-dual Eguchi–Hanson–de Sitter form, the
two parameters can be thought of as the Eguchi–Hanson scale size and the cosmological
constant.

We discussed the global structure for the biaxial self-dual metrics, both for positive
and negative cosmological constant. For the positive cosmological constant the metrics are
compact, in general with singularities. The radial coordinate ranges over an interval that
terminates at endpoints where the SU(2) principal orbits degenerate; to a point (a NUT) at
one end, and to a two-dimensional surface (a bolt) that is (locally) S2 at the other. For generic
choices of the NUT parameter (or, in the alternative local description, the Eguchi–Hanson scale
size), the metrics cannot be smoothly extended on the NUT and bolt endpoints simultaneously.
This is because the periodicity requirements needed for regularity at one end are in general
incommensurate with the periodicity requirements at the other end. Only for very special
values of the NUT parameter is the metric regular at both endpoints. In general, however, one
encounters singularities at either endpoint of the four-dimensional radial coordinate.

In the generic case, a specific choice of the period for the azimuthal angle ψ allows the
singularity at the S2 bolt to be removed, but then the NUT has a co-dimension four orbifold
singularity. Alternatively, choosing the periodicity appropriate for regularity at the NUT, there
will be a co-dimension two singularity on the S2 bolt. The associated seven-dimensional G2

holonomy space therefore has singularities of the same co-dimensions. The co-dimension
four NUT singularities may admit an M-theory interpretation associated with the appearance
of non-Abelian gauge symmetries [10] and the circle reduction of M-theory on these G2

holonomy spaces may have a type IIA interpretation in terms of a location of coincident D6-
branes [10]. On the other hand, the co-dimension two singularities at the bolts do not seem to
have a straightforward interpretation in M-theory dynamics. Since neither type of singularity
is of co-dimension seven, these spaces do not seem to shed light on the appearance of chiral
matter.
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The triaxial self-dual Einstein Bianchi IX metrics described by the Tod–Hitchin system
are defined on compact spaces with bolts at each endpoint. For the solutions discussed in
section 5.3, with k � 6, one endpoint has an RP

2 bolt, while the other endpoint is an RP
2 bolt

with a Zk−2 conical co-dimension two singularity. The corresponding G2 holonomy spaces
again have co-dimension two singularities, and so M-theory on these spaces does not have a
straightforward interpretation; in particular, their relevance for obtaining non-Abelian gauge
group enhancement or the appearance of chiral matter is not clear.

Despite the fact that the role of the singularities in our metrics in M-theory is unclear,
one thing is certain: the singularities do not affect the amount of supersymmetry. Because
the Killing spinor is a singlet, it is invariant under all elements of the isometry group. In
particular, it is invariant under the action of the binary dihedral group generated by I1, I2 and
I3, and in the biaxial case it is invariant under arbitrary shifts of the coordinate ψ . Since it was
these symmetries that entered into the discussion of singularities, it is clear that no matter what
identifications we choose to make, it will not affect the existence of the Killing spinor. This
should be contrasted with the co-dimension two and co-dimension four singularities discussed
in [43]. In that case, the Killing spinors are not singlets, and identifications may or may not
leave them invariant. The singularities for which the identifications are incompatible with the
existence of Killing spinors are believed to be unstable, due to closed-string tachyons, whilst
those that are compatible with the Killing spinors are believed to be stable. In our case, it is
clear that there is no room for a closed-string tachyon instability, or its M-theoretic analogue.
In other words, “Don’t Panic, it’s G2!”
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Appendix A. Bianchi IX Einstein–Kähler metrics

The purpose of this appendix is to clarify the distinction between the anti-self-dual Einstein
metrics considered in this paper and Bianchi IX Einstein–Kähler metrics. These two classes
do not overlap except when the metrics are Ricci-flat, or else the Fubini–Study metric on
CP

2 (or the Bergmann metric on the open ball in C
2 if � < 0). In the case that the

metrics are biaxial, the general Einstein–Kähler solutions, together with their Kähler potential,
were obtained in [31], where they were called the Eguchi–Hanson–de Sitter metrics (see
equation (57)). A subsequent discussion was given in [36].

The triaxial case has been considered by Dancer and Strachan in [37], where a first-order
system was obtained. This generalizes that for hyper-Kähler metrics with triholomorphic
SU(2) action, written down and solved in [28]. The general solution of the Dancer–Strachan
system is not known, but particular cases, such as triaxial forms of the Fubini–Study metric on
CP

2 and the product metric on CP
1 × CP

1, are known, and turn out to be remarkably simple.
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Writing the Bianchi IX metrics in the form (24), with e0 = dt and ei = aiσi , a basis for
anti-self-dual 2-forms is �i = e0 ∧ ei − 1

2εijkε
j ∧ ek , and so an ansatz for the SU(2)-invariant

anti-self-dual Kähler form is

� = αi�i, (A.1)

where the coefficients αi depend only on t, and α2
i = 1. The metric will be Kähler if � is

covariantly constant, which leads to the first-order equations

α̇1 = (β3 + γ3)α2 − (β2 + γ2)α3, and cyclic, (A.2)

where βi and γi are defined in (27). From these, and the Einstein equations, one can show that
α1 = α2 = 0 and α3 = 1 (or cyclic permutations) [37], and hence that the metric coefficients
satisfy the first-order equations

ȧ1 = −a2
1 − a2

2 − a2
3

2a2a3
,

ȧ2 = −a2
2 − a2

1 − a2
3

2a1a3
, (A.3)

ȧ3 = −a2
3 − a2

1 − a2
2 + 2�a2

1a
2
2

2a1a2
.

Rewriting in terms of the radial variable η, defined by dt = a1a2a3dη, it is easily
seen that the first-order equations can be derived from a superpotential. In the notation of
section 4.6, the potential U in (89) can be written as U = − 1

2gij (∂W/∂αi)(∂W/∂αj ), where
we now define αi = (log a1, log a2, log a3), and hence gij = 2 − 2δij . We find that the
superpotential is then given by

W = −(
a2

1 + a2
2 + a2

3

)
+ �a2

1a
2
2 . (A.4)

Two particular triaxial solutions of the first-order Einstein–Kähler system (A.3) are the
Fubini–Study metric on CP

2, which can be written (setting � = 6 for convenience) as [38]

ds2
4 = dt2 + sin2 tσ 2

1 + cos2 tσ 2
2 + cos2 2tσ 2

3 , (A.5)

and the product metric on S2 × S2, which can be written (setting � = 2 for convenience) as
[39]

ds2
4 = dt2 + sin2 tσ 2

1 + σ 2
2 + cos2 tσ 2

3 . (A.6)

In view of the somewhat unfamiliar forms of these metrics, we shall give a brief description
of them below.

Appendix B. Iwai’s construction, Dragt coordinates and the Guichardet connection

In this appendix, we shall derive the triaxial forms of the Einstein metrics on CP
2 and S2 ×S2.

The method used differs slightly from those in [38, 39], but it has the merit of giving a unified
description of the two cases. The basic idea is to express the metric in flat Euclidean 6-space
in an appropriate coordinate system, adapted to an SO(3) action. We shall here follow the
paper of Iwai [40], who was interested in the three-body problem in molecular physics. It
turns out that we can use his results not only to obtain Bianchi IX metrics but we can also use
Scherk–Schwarz reduction to obtain some insight into global monopoles of the sort recently
studied by Hartnoll [41].
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We think of E
6 as E

3 ⊕ E
3 � (x, y) and consider the diagonal action11 of SO(3).

Projection from the principal orbits is Iwai’s generalization of the standard Hopf map used in
the Taub–NUT metric. The standard Hopf map π : E

4 ≡ (C ⊕ C) � (z1, z2) → R
3 ≡ R ⊕ C

onto the orbits of the diagonal action of U(1) is given by

(z1, z2) → (|z1|2 − |z2|2, 2z1z̄2). (B.1)

Introducing polar coordinates on R
3, and an angle ψ along the Hopf fibres, we may write the

flat metric on E
4 as a special case of the multi-centre metrics, which have an interpretation in

terms of Kaluza–Klein monopoles and D6-branes. Iwai’s procedure is rather similar and may
have a corresponding generalization.

In the case of flat six dimensions, Iwai’s map is π : E
6 → R

3
+ � (w1, w2, w3), given by

(x, y) → (x2 − y2, 2x · y, 2|x × y|) = (w1, w2, w3), (B.2)

with w3 � 0. The orbit space R
3
+ may be given coordinates (ρ, ψ, χ), called Dragt coordinates,

such that

(w1, w2, w3) = (ρ2 cos ψ cos χ, ρ2 sin ψ cos χ, ρ2 sin χ), (B.3)

with 0 � ρ < ∞, 0 � ψ < 2π , 0 � χ < π
2 . Note the range of χ . One checks that

x2 + y2 = ρ2 =
√

(w1)2 + (w2)2 + (w3)2. (B.4)

To fix the SO(3) freedom we introduce an orthonormal moving frame (u1, u2, u3) related to a
fixed orthonormal frame (e1, e2, e3) by a rotation with standard Euler angles and left-invariant
1-forms (σ1, σ2, σ3) say. Now if

x = ρ cos
ψ

2
cos

χ

2
u1 − ρ sin

ψ

2
sin

χ

2
u2, (B.5)

and

y = ρ sin
ψ

2
cos

χ

2
u1 + ρ cos

ψ

2
sin

χ

2
u2, (B.6)

Iwai finds that the flat metric on E
6 is given by

ds2 = dρ2 +
1

4
ρ2(dχ2 + cos2 χdψ2) + ρ2 sin2 χ

2
σ 2

1

+ ρ2 cos2 χ

2
σ 2

2 + ρ2

(
σ3 − 1

2
sin χdψ

)2

. (B.7)

If we set ψ = 1
2π and ρ2 = 2, the vectors x and y have unit magnitudes, and thus

parametrize points on S2 × S2, embedded in R
3 × R

3. The result is the metric (A.6) on
S2 × S2, obtained in [39].

If instead we set ρ = 1 we obtain the unit S5. The angle ψ is a coordinate along the
Hopf fibres. Projecting orthogonally to the Hopf fibres, we obtain the triaxial form (A.5) of
the Fubini–Study metric on CP

2 obtained in [38].
We note en passant that we could consider the seven-dimensional flat metric on E

6,1

as a trivial solution of supergravity, and perform a Scherk–Schwarz reduction on the orbits
of SO(3). We get in four dimensions a global monopole coupled to an SO(3) gauge field
Ai, i = 1, 2, 3, with the Higgs field in the symmetric tensor (i.e. the 5) representation of

11 Note that the triaxial form of the standard round metric on S4 can also be obtained from the flat metric on E
6, but

now the action of SO(3) is different. In this case, one identifies E
6 with the space of real symmetric 3 × 3 matrices

on which SO(3) acts by conjugation [32].
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SO(3). The gauge connection coincides with the Guichardet connection, and in the present
case the only non-zero gauge field is

A3 = − 1
2 sin χdψ. (B.8)

Ignoring the Weyl rescaling, the interpretation is as follows. One should think of ψ as an
azimuthal angle, i.e. a longitude, while χ is to be thought of as a latitude. Because χ ∈ [0, π

2 ),
there is a deficit solid angle, and hence a conical singularity at the origin. Moreover, the
metric is not asymptotically flat. We have an embedding of an Abelian monopole into the
non-Abelian gauge group SO(3). This monopole may be thought of as sitting at the centre of
a global monopole supported by a Higgs field.

Appendix C. Killing spinors

Since the seven-dimensional metric constructed from the anti-self-dual Einstein 4-metric
according to (12) has G2 holonomy, it follows that it admits a covariantly constant spinor.
It is instructive to look at how this is related to spinors in the four-dimensional base
space. To do this, we begin by calculating the Lorentz-covariant exterior derivative on
spinors in seven dimensions in terms of quantities in the four-dimensional base metric. We
adopt a notation where quantities in seven dimensions carry hats, and so we write (12) as
dŝ2

7 = ρ−1(Dui)
2 + 2ρds2

4 , for which we choose the natural vielbein basis êi = ρ−1/2Dui ,
êa = √

2ρea . The spinor-covariant exterior derivative is given by ∇̂ ≡ d + 1
4 ω̂AB
̂AB , and

after some calculation we find that this is given by

∇̂ = d + 1
4ωab
̂

ab − 1
4εijkA

k
̂ij + 1
16ρ−3/2uj

(
εijkJ

k
ab
̂

ab − 4
̂ij
)
êi

+ 1
8ρ−3/2ui

(
εijkJ

j

ab
̂
kb − 2
̂ia

)
êa. (C.1)

The covariantly constant spinor η̂ in the seven-dimensional G2 metric satisfies ∇̂η̂ = 0. It
can be seen from (C.1) that this spinor is annihilated by the terms involving the R

3 coordinates
ui , and that it is independent of ui . In fact in this basis we find that η̂ is the spinor that is
determined, up to overall ui-independent scale, by the conditions


̂ij η̂ = 1
4εijkJ

k
ab
̂abη̂. (C.2)

It then follows from (C.1) that η̂ satisfies(
d + 1

4ωab
̂
ab − 1

4εijkA
k
̂ij

)
η̂ = 0. (C.3)

Decomposing spinors into the tensor product of spinors in the four-dimensional base and
the R

3 fibres, we choose Dirac matrices 
̂a = 
a ⊗ 1l and 
̂i = 
5 ⊗ τi . The Pauli matrices
τi can be viewed as the generators of an internal SU(2) isospin, and so (C.2) and (C.3) can be
written as

J i
ab


abηα = 4i(τi)
α

βηβ, ∇ηα − i

4
Ai(τi)

α
βηβ = 0. (C.4)

The second equation is the condition for the 4-component spinor ηα with its isospin doublet
index α to be gauge covariantly constant with respect to the SU(2) Yang–Mills covariant
derivative.

Using (C.2) we can rewrite (C.3) as the four-dimensional equation

dηα + 1
4

(
ωab − 1

2AiJab

)

abηα = 0. (C.5)

With the Yang–Mills connection taken to be the self-dual part of the four-dimensional spin
connection as in (25), we therefore find that (C.5) is nothing but

dηα + 1
4ω−

ab

abηα = 0, (C.6)
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where ω−
ab ≡ 1

2

(
ωab − 1

2εabcdω
cd

)
is the anti-self-dual part of the spin connection. In fact it

follows from the conditions (C.2) satisfied by η̂ that 
̂abη̂ is self-dual in the four-dimensional
base space, and hence (C.6) reduces simply to dηα = 0.

It is interesting to note that in the special case of CP
2, which does not admit an ordinary

spin structure, ηα is a generalized spinor (in the terminology of [42]) that is charged with
respect to the Yang–Mills connection Ai . In this case the connection is actually SO(3)-valued,
as opposed to SU(2)-valued, and it is this that serves to compensate for the minus sign that
ordinary spinors would acquire upon parallel propagation around a family of curves spanning
the bolt in CP

2 [42].
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