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Introduction
The transportation problem and the assignment problem sre two alterna-
.tiﬁe names for the Hit¢hcock distribution problem. 7This problem has received
considerable attenticn in recent'years because of its importance in a wide
variety of practical situstions, and especially for industrisl operations ré-
search apnl 4:‘ti Ong
- Wie refer the. interested reader to other sources! for a &iscﬁssion of

‘ practiéal épplications; and for furthé. r@fcreaces to the many tecﬁniqueﬁ that

£

have been offersd for solving this problem.

u)

cles

£

Solution techniquek seem to fall into two brozd classes. Ons
»jcoﬁsists-df variants'of the Siﬁplex Method of ﬁaﬁtzigg, including the earliest
Wbrk'by Hitchcﬁck3 and Kantorovichu; also including some previcus work by the

present au thors. The other cless consists of varients of the Hungarian Method
of Kuhné, including the present psaper. Generally.speaking, the Hungarian Method
seems té-be superior to the Simplex lethod, for this spegiallsasé of the geneféll

-1inesr prograrming problem, but efforts to @ute“u the iiea of the Hungarian

4

Method to the gene rai'linéar programmknq problem have not produced computations
technigues superior to the Simplex nethoi»fgr the more general case.

The Hungsriesn Method, and the Hitchéock distrivution problem, seem -
important enough to merit further deyelopment; the pfs:ﬂnt paper discusses a ‘

.new variantAthat has proved to be effective computationally.¥

¥Acknowledgement. I am very grateful to the IBM Research Center for supporting
my work on the computer program for this algorithm, and for the use of the 1BM
70k at the Uenter in testing the computationsl gquality of the program. This
work was done largely during two summers at the Center, while serving as a Con-
. sultant to IBM, including the period of the Combinatorial Problems Institute
during July of 1959. I am especially indebted to V. V. Van Ness, at the Center,
for programming edvice and for generous help in running test problems on the
Center’s IBM TO4.




Problem
The assignment problem is stated as foliows:

Devise an efficient computational algorithm for permuting the rows of &a.
given square matrix so as to minimize Its trzce.

If the rows (or columns) of the metrix are not diuginct then this spec1ai case
is known as the transportation problem, and is exactly the product distribution
prdbiem of Hitchcock3 whén stated in this form.

The problem nuy be rewritten in linssr programming form as followsﬁ

Find non-negative integers Xi3s subject to¢ the restrictions

n m .
L zy.=7r; and L X = Cs
. i s s
=1 _J i1 J J
m n
that minimize the quantity L. Z. 113213, where ry, 3 diJ, m, and n are
. . ©i=1 J=1

given positive integers. Under this formulation, the problem is usually
called an assignment problem if ry = ¢y = 1, otherwise it is usually called
a transportation problem. oS o

Hungarian Method

It is eviﬁént that the solution to the assignment problem is not
changed by addlng 8 Lonstant to nsch element of a "line" of the matrix, where
{'a_line is either a row or a column. It is also evident that if the addition of

suéh constants yiolds a matrix of non«n@gative elements, but such that the
trace is zero aftgr'some permutation of the rows, hen thls permutation is the
solution we seek. The Hungarian Method proceeds in this fashlon, always keepf
Aing the matrix non-negative while iﬁcreasing the numﬁer'of nuli'elements that
can be brought to the mein diagonal by a rovw permutation. |
The mathematical basis for the Hungarian Method is provided by & |

constructive proof of the following theorem of KBnig7 and ErgervéryB:



: KBni'g-Ergervéry Theorem
If D is a square array of two kirid_s of merks, say zeros and plusses,
and if:

a) ‘X is the maximuim qumb«.r of zeros thﬁ; can be found in the
array such ‘that no two of thcm are in. the ssme line s and.

b) y'is the minimum’number'cf lines
every zero of the srray is contal

thenx=yu

The present ?‘uthov' ha% shown c.l. rbﬂr» how the rows and columns of

-

)

5

[ ( [ .
3 .
8 (O +) matrlx can’ be: L)e:"mutwi into the foi.low ug Mstandard” form.

e QN
1 2 N T 5000 ” 4+ .t T

3 0k - @3 g g8 g 8
1 Ol e | + |+ ~=w=-]+ R
2. 0 c + % e m w i - - Iy +-
3. 0 1lec T e =1+ [+ ]+.]+
L 0~ < Tl FF T+ [+ ]+
i i i ¥ \\ \\ ] i ] H

1 : : ; IR o8 . i 1l =D
1 ! i | -t Sl < 3 § ; ¥ 1
m-2 - , . , SO e |+ |+ [+ ]+ |+
m-1 ' .- O+ |+ ]+ [+
m . ' e “ .- o o= O+ |+ |+ ]+
m+l . . - - - = e O + |+,
!l""2 . . - e mm wm 0 re +
m+3 rc + | + “+ > - . = . + + + + 1+ | +
m+h T |- |+ |+ | ===+ |+ [+ |+ |+ ]+ 1+

fﬂixe su‘darrays of the ‘standard form have the following forms:
D denotes a subarray each of whose el nt<= may be Wsro or plus,

r_éj' denotes a square subarray all of whose min diagonal elements
are zeros, : ‘

d.em»)te‘s a subarray with at J_,east one zero »inb g.é,ach row,
‘ . denotes s sﬁb&rmy' with at laast one zero in each ¢olumn, -
. denotes = subérréty with no zeros » ‘
In this form, the zeros are all contained within the columns passing'through
D1, Dgg, ===, Dy aﬁd t‘he rows passing through Dyl ;nﬂ snd Dm+2 m+2.' Con-

sequently, if unlty is added to each lement of each of these »li_nes, in turn,
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the new matrix will have all elements positive; hence, unify can next be sub-
tracted. from every eiement;of the ﬁatrix ﬁithout producing any negative ele-
ment. Since more wvas subiracted than was'éddEd, té the matfix as a wholé,
this process must eventually terminate; it doeg &0 when the zero elements fill
fhe,main diagonal in the stand&rﬂ f§rﬁ°

."The Hungarisn Mgthod proceeds by‘two kinds of moveéq "One type of
move involves finding a pérmutation'that produces z standard form, so that the
lines are identified,faf the additions to be madef Thé other t&pe'of move
consisté iﬂ adding %nd subtracting to this set of lines until no further such
unit chahges»can be made.

Foilowing.Kuhn“s6fterminology,.wa éhall,séy that two zeros are "in-
dependent"'if they are not on the same line. Also; & set of lines is called
& "cover" if eQéry zerc is on some line éf the cover. A ”minimal cover" is
one containing the fewest iineso By the KSnig-Efgervéry theorem;, the maximal
nﬁmber of independent zeros'is equal totthe number of lines in & minimal cover.
For further convenience, we shall call the number of elements in a set the
"cardinael" of the set. |

We shall use the phrase "trial set"” to denote any set of independent‘
zéros chosen to that every zero of the mﬁtrix is on line with at least one of
theindependent zeros of the trial set; a "trial zero" is any-zerb in a trial
: sep} ‘The phrase “trialﬁc§ver“ refers -to a covér'obtained using a specific '
tfial‘sét, aﬁd in'the‘§pecific Qﬁy described‘neito |

vForm the trisl cover, for a given trial sét, as follows:

l)‘_lnclude in the trial éovefieach line ‘containing a trial_zero,.

that also includes a zero (called a "candidate") in some per-.

pendicular line containing no trial zero. Consider these lines

in the trial cover deleted from the matrix, and repeat this

step until no further lines are added to the trial cover in

this way.

2) Include in the trisl cover each row containing a trial zero,
in the matrix remaining after the deletions of step 1}.
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Include in & candidate set" all candldate zZeros noted during
step l)

It follows easily by an 1nspection of the standard form, that the trial cover

'1s a minimal cover if the trial set is e maximel set; also, if the cardlnal of

the triel cover exceeds the order of the trial set then the trial set_is not

meximal.

a)

).
"+ than the order of the matrix then add a positive constznt to all. llneok

The Hungarian Method procee&s generally as follows:

Choose & trial set If thc order of this tvlal set is equal to the
order of the matrix then the requlred permutation is the one that _
would permute the rows so as to place these Zeros on the main diagonal.
If not, g0 hext to step b) - v
Consider the trlal cover.- If the cardinal of the trial cover is less

in the trial cover and subtract this constent from all lines of the

matrix, choosing as this constant the largest integer that will leave

all elements of the matrix non-negative; we cell this constant the
"fuse" for the cover and go next to step c). If the cardinal of the
trial cover is not less that the oréexr of- the matrix, go next to

- gtep 4).

Add to the trial set any new zeros that are eligible. If the cardinal

of the new trial ‘set is less than the order of the matrix then return

to step’ b), otherwise the process ends.

The trial set is not maximal Delete all zeros from the trial set
that are on two lines of the minimal cover, such zeros are called
"degenerates." Add to the trial set from the candidate set, form- -

ing a new trial set, using candidates on the paired lines (of the -

trial cover) that led to the deletion of zeros from the trial set

at the start of step d).. If the cardinal of the new trial set is
less than the order of the m”trlw then return to btep b), otherwxse
the process ends.v : '

This bfief deScription of theiHungarian Method,’inclﬁding one specific,method

cfor flnding trial sets and trlal coveru, is inteqded only to 1nd1cate the

general nature of the method A more dctalled and nrec1se descrlptlon of the

| steps actually used, in the variant presented in thlb paper, w1ll be glven in

' following-sectlons; the variantvactually used differs somewhat from the one

"descrlbed above, and choices left arbltwery above are made entlrely definlte

.purposes.

'va in the computer code, but the differences are not signlflcant for present



.Initiai Preblethreparation

It would be poeeible.to solve an assignmeht problem, or a transporta-
| tion problem, by use of the Hungarlan Method from beglnnlng to end. However,
" there are'a number of 1mprovements that can be made ea51ly, and several of
these are discussed in the.present paper and used, to advantage, in the IBM -
70& code. We'first‘list some of these, and descriﬁé them biiefiy;ethen p;ingipal'
- features w1ll be 1llustrated by 51mple numerlcal examples | o

- vomp”ess1on uubroutlne Lines of the matrix (row or column). hav1ng

"the same p@ttern of zero entrles are comblned Except-When determlnlng fuses;‘
‘compression leaves the procedures unchanged..'

Reduction Subroutine. Each compressed line is made to have at least

eas many zeros as its frequency reqplres Thus, if a compreesed line inCludes
| Y. of the orlglnal rows then it is made to have zeros in compressed columns that
;include'at least X of the‘original columns .

Tsolation Subroutine. The trial set is chosen by first selecting |

"iselated" zeros that stand alone in semeicompressed line.»'One.or both of the
~ compressed lines through such an-isolatebare then deleted, after their zerosfv
‘are exhausted, and nev isolates ere‘added £e.the tfiai eetjuhtii no isoiate‘
remains. |

Shortening Subroutine. If a compressed line has no more.zeros than -

its frequency reqplres, then all these zeros.are added to the trial set

~ Zero Subroutlne. A zero is chosen in a compreesed llne that contalns
zeros in_the feﬁest perpendicuiar‘lines. When several such zeros exist, per-
“haps;eVeh in more than one eemﬁreseed line, that one is chosen which has the
»moet-lines farallel to it through'Zeroe’in'the compreseed'linevperpendieularf
) to'it;nif a tie siill'femeiﬁs, the zerobis ehOSen arbifrarily from among tied_
These Subroutines yield a trial set.and also reduce the-elements ,‘

of the matrix.



f7-'

~ Compression Example

3 2 1 4 5 8 | 2 1 L
2 2 0 3 1 5 6 - 0 + +' 1, 5
3Ly o 1 o 2 3 |+ o + o0
511 03 2 o k. 3 |4 e%; ¥ 0
313 o o 21 '- 3 |+ o o o«
¥ |5 o e 3 R ;yrﬁ :

The first and fifth rows, with. frequencies 2 and %, compress into a new first,

row with freqﬁency"ég similarly the first and fifth columns compress.

Reduction Example
| 1 The fi?st'compresSéd_rdw ré@ﬁires_6:zéro§‘but has only 2; similérly:.
the first compressed célumn reqnires 8'zeros'and'5éé;n6ne;'AThe emallest
_amouptithat éan be subtracged»from ﬁhe.first comprassed row, and yield a new

zero, is 1 {the fuse}; to retain the old zero in the first compressed rowvandi

second column, we must add 1 to the second column.

3 2 1 4 5 o
2 : R : .
22 © 3.1 5[-2 1 0 2 0 k.2 [+ 0 + 0f
314 o 1.0 2 o110 2|6 |+ + + ol 23
311 3 2 0o | = |1 ¥ 2 0 Lf=3 |+ + 0 +
31370 0 2 1 3 1.0 2 1/ .3 |+ o o +
bls o 1 2 3[-1. ¥ 0 o 1 2| - [5

+1
Compressed Rows 2 ané 3, and compressed Column 1, all require reduction; con-

_'isider compressed Column 1 next, with fuse 1.
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3 2 1 4k 5
c 0o 2 0o 3
31 1 0 1
o L 2 o0 3
2 1 0 2 o0
3 0 0 1 1

compression is possible and only Row 5 and Column 5 require reduction;

3 1 5
2 1 2 N
3 |k 1 2
3 1 2 L
3 3 1
b L 2
-1 -1
Here, no
consider Row 5 next, with fuse 1.
3 2 1 k 5
210 0 2 0 3 0
313 ¥ 1 0 1 3
310 & 2 0 3 0
312 1 0 2 0
3 0 o 1 1f1
+1 +1

No further compression is possible, so the reduction is complete.

(@]

Isolation Subroutine

¢

153

The trial set is obtained by choosing isolated zeros (in the compressed

matrix) as shown next, where the entry replacing the zero is the frequency for

that trial zero and the subscripts indicate the order in which the isolated

zeros were chosen.

0 0 L
32 + 0
+ + 0
+ + L+ 1
+ 3§ 0

0 0 0] 1
32+ g o+
- + 25 &
4 + + 31
+ 33 0] 1s
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Note that lines are treated as though they were deieted after their frequency
goes to Q.

iy

This exsmple doss not stress the use of re

1]

fon during our

choice of the trial set, but recompression rnorw nally occurs seversd times

Shortening subroutine

L oand compressed mebrin resches a

When the reds

stege where no

further isolated. 2o

dons of lines

: are found, perhapm af

7 Subroutine may add

during construction of a trial set, then the Bhortening
p]

zeros te the trisl set, as indicsted for the following =

5 203 o500
5 1+ o0 0 o {+ 2 3
2 (o o o+ = o |2 o -

Zero Subroutine

When reduced and compressed metrix a stage w

application of the Isclation and Shortaning Subroutines yield no further trisl
zeros, then the Zero Subroutine takes effect. The following example 1llu @tratee

this process.

3%

A3

=
<
o

e

4

2 o o  +| = s lo .o o+

2 Jo + 0 o |2 + 0

The trial zero in Row 3 znd Column 1 is chos en baecause it is in the line having
3 &

fewest zercs, a&mﬁly_& in Column 1, and is preferred over the zero in Row 2 be-

cause Row 3 has more zeros, with 6, thsn dces Row 2, with only 5.

Fuse Rule. The Reduction Subroutine 1s usually improved if each un-

o '

compressed line is first reduced enough in one step to yileld the required
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number of zeros; this will sometimes mean the use of more than one fuse in &
single step. The‘fuses'are selected according to fhe "Fuse Rule,” which states
simply that just enough fuses afe_seiected, in increasing order of,numeriba;
gize, to yield the‘reqpired number of zeros for the line»being reduced. Thé
following ekamplé illustrates application of the Fusé Rule. |

3 2 1 4

5 3 2 1 4 .5

2 |1 o 2 o & > [0 o 2 o o

3 1% 1 1 o 2 3' 3 1 1 6 o'

3 /1 % 2 o 4 = 3 lo & 2 o .2

3 |3 1 o 2 1p1 3 (3 2 1 3 o

b |4 o o 1 2 b [3 0o 0o 1 0
1 2

The fuse for Column 1 is 1, because Rows 1 &nd 3 yield 5 zeros to meét the
'reqp:remenf of 3. The fuse for Column 5 is 2, because Row 4 (and fuse = 1)
does not y;e*d the 5 zeros required f‘or Column 5, the next larger entry in
Column 5 is 2, and this becomes the actual fuse_used‘wnen‘the Fuse Rule is
~applied to Column 5. Actually, for this exampie;.our reduction using the
_Fuse Rule hes compleﬁed the probiem, excepf»for finding.the trial set vhich

~ then proves tO»be;a solution. |

Many problems are completely solved by the first triel set, éfter

- the initial preparation. When they are not completely solved, ﬁhe‘rédUCtiogl
in the mstrix i% lsrge anougn to ﬂaka a ube* ntial cut in ccmputational timé-
required to complete the solution by some other procedure For,example{ the.
Slmplex Method'coul@ be used.aftgr thls 1n1tial prepar&tiqn with the-trial éétv
8 part of the firs ’trial'baéis. We shall returnvnext t§ the Hungarian Method,

and illustrate the use of the trial cover by & numerical sxample.



11

Trial Cover Example

We use the Isolation Subroutine example to illustrate the procedure
for forming a trial cover. The trial set is shown as numerical entries in the
compressed matrix, where a O denotes a.zero in the compressed matrix that is

not in the trisl set.

5 3 + 2 +
3 + + 2 o+
3 |+ + + 3
4

+ 3 o 1

We first note that the‘trial zeros in positions (3;.45 ané'(&,.k} ere cendidates, - :
and this leads immediatély to fhé'incluSion of.compréSSGd ﬁowsﬂ3';nd'ﬁ in the
triai éover; this is s0 because.compressed Coiumn L includeé,fi&e lines'but
only four trial zefos. Siﬁilarly, the trial zero in position (2, 3),is a can-
diaate, an&,places Column 3 in‘the trial cqver, After'deleting cOmpréSSed;‘

Rows 3 and h} and compressed Column 3, the following array remains.

p) 3 + o F

3 + + o+

In this array, the zero in position (1, 1) is a candidate, and the f;rstvcoluﬁn
is added to the trial éovef; thus,‘éompréssed Column 1 of the original.matrik 
is in the trial cover. No zeros remain, after deleting Column 1, so the trial
dover is complete; it -consists of compressed lines (R3, Rl, Cl,‘C3)f' Note that .
the cardinal of thé trial cover is lﬁ; and'isveqpal to the,cardinal of the.
trial set, so it’fﬁllows thatvthe trial set is maximal.

Our next example shows how the trial co&er is formed when the trial

set is not maximal.
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5 * o+ o* o+
3 + +e 'o*‘ov +
3 + AR %
L + 0% bk o o

The trial cover includee.compressed.iines (R3, R4, C1, C3), with cardinal 1k,
while the cardinal of the trial set is 10. The candidate zeros are marked by
asterisks. The zero in position (4, 3) must be removed from’the trial set:
because it llee in intersecting palred lines of the trial cover; after its re;.

moval the trial set is increased by u31ng candidate zeros in lines Rh and C3

FORTRAN Codes

Two separate FORTRAN IT codes were written and tested, basedAon the
general principles of the algorithm. The earlier of these, called "CODE I," -
ueed recompression at intermediate stages‘of Steple but the‘later one, called
"CODE II," did not. There were other important differences between CODES I and
II, and neither code proceeds exactly as in the flow diagram for tﬁe algorithm
We shall discuss only CODE II in the pfesent paper;'results with CODE I ﬁere
reported prevlouslylo

CODE II was written to include provision for measuring the computing
" time required, in any partlcular run, for each of several btageu within .the whole
run. This was. made possible by the use of an 1nternal clock that could be read
and recorded at any point during the calculatlon, when required by the code.
Prov;s;on was made for reading the clock at 12 such points in the code, in-
cluding T clock readings at p01nts normally passed more than once during a
problem; these repeated clock readings can be made the first 20 times the point
is reached, or fewer at each point if desired. Clock readings may also be taken
at the start and end of the'computing cycle on a problem, and are always teken

at the beginning and end of work on & problem.
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CODE II also provides fof a count of the number of times'eéch of 17
points 1s reached during the calculatlon of each problem.
CODE 1T 1ncludes a sdbroutlne that may be cslled in to compose &
probiem of any de51red 51ze, up to the dimensionsl limit of 6Qx150 for the
 §ost matrix, ‘The‘ccst matrix,.and,thé row end coiumn fxgqpencigs,‘are één-'
erated by the subroutine ﬁéing.a pSeﬁdoréhdom number techﬁidue;
| Aithough CODE 1T vas wrltten end compiled to handle-a transportatlon
‘ problem having at most 60 rows and 150 »olumns, it would be qplte 8 31mple matter'
;td recompiie the code to hanale any prob¢tm having fewer than Zh 000 elements 1n
‘th¢4°°$? metrix. |
: Othew spec1al features of CODE 11, that will not be dlscua ed in any ‘
detéil in this p&per,<1nclude‘prav1310n fo* electlng anong & few alternatlvei-
algorithmsvahd several thiOng on,contrél of»outputfdata,
Qe ne#t p%aqent é condensed flow diagram for the CODE'II FORTRAN Sub-
‘foutinésj 5:” hnc whare CMGQK and, INBIL&“OR readings are taken during a computa-»
»-'tionq Thi« Wlli b# usaful for our subuegpent dlscuus1on of times and freqpenc1es

through various comput;ng stagea of actual problems run.

FO&TRAN Flow Diagram

| The namevof“%he:FORTRAN'Iiiﬁubrcutine;appears first in each box‘of the
" flow diagramo’.CLOCK X eﬁtriééfshow the pbinté @uﬁing the cémpufatipn ét_which
clock readings mey be teken. 'INDICATOR Y entries show the points aur;ng the
o com“utatlon at which "ounte are made of the frequennlw@ of’passiﬁg thése points. .
B LUDE 1T is rcprmsented Larrectly by thiﬁ FORTRAN Flow Dlagram, but
'différs in ﬁeveral respectq from th@ h¢gor1thm E¢ow Dl&gramo_ For example, the’
ﬁatrlx is not recompr°s=ed at each step in CODE II that is 1nd1cated by the
Algor1+hm Flow Jlagram, and several other important changes have been made 1n

CODE II to fa01litate the use of FOETRAN;
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FORTRAN Flow Diagram
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* FORTRAN Flow Disgram
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. each row containing a

— 'f:“plgvi

B Indicator 9

—_——-—é——-.——.

P5

o .ers

No

- - il

’:. Indicator h

Are there 8Ny Zeros’ left
. in lines not deleted?

Add a zero to trial set
using zero subroutine

—-———.—--—.——-—.—.—————.—--

. ndd tc trial cover ror i

. Indicator 17

"916'.

~each column containe.
ing & trial zero not
S yet covered :

| nrdm

e, ot e e ]

of metrix?.

Yes

.—--—.—.—.——-”—-.

Find the fuse for the o
 trial cover:

—-—-.—--—-——-u—-_

S

—.—._,—.-.__—--—- -——-ﬂ..—p

"~1 Was weighted sum. ) of all

'Add fuse to elements Of

L tract fuse fram
x_elements of columns
not covered.

—————-u-—— - o - e

" ‘elements of matrix

P17 €

No

- oqme awe on. =

| Yes

~ reduced by preceding
step?

'““PlTjefeﬁi

Indicator 12

01ock 9

~-s— .--——oh--qq--p.-.-'.-d

- |'Is cardinal of triel

- cover. less than
. order of matrix?

- -

’.ﬂ Subtraet fuse from

1 elements .of ‘covered -
" rows and sdd fuse to -
: elements of columna,' i

not covered

)-.—————.4—0--—---——--—-—.- .

.| T6 cardinal of tiial A
' cover/less than or&er PRI

Is the fuse positive? ;ﬁﬂ?f”

. covered rows and. sub-:.‘ e

—--b—»—.--,-.'.q.u-—-d .
e - N

I—->| Clock 8 - :

)1 Delete degenerates fron

. matrix

Pl&
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There is s8lso a coding error in CODE II, but this error results only
in stopping a few problemg before the computation is entirely oompletodo CODE I1
is arrongo&'so that'thiﬁ case ré@u;ts in & special output, through Subroutine
' PO, that provides the data neces;ary to complﬂte the proolem easily This output,
like several others~1ncludeo 1n-CODE'II, automatic&loy indicates the p01nt of
.‘error'whether due.to machine‘difficulty or some othor unsxpected trouble. _Thosé
posaible sourceo of errof will.bg-ignoréd thronghoutothe.rest of Ouf aisoussion,

since they are rare and recognizsble.

‘Comgutational Results-
| W§'§ro$ant our oomoutétionrv@sulto firsﬁ in‘tﬁrmw of'CLOCK timeso For
exampleer CLOCK 21 CLOCK Jl repics ontc &ctual total romputlng time, if oUB-

ROUTIﬁE?PO is usedj'then-actu&l-totax.computlng tlmgris T. & CLOCK T-LLObKvllb

o

Aévanother exampie' Ta 3 2 CLUCK SéﬁﬂOCK.E répréoﬂnt? .ctuax computlng time used
in gomng once throngh UBR@F TIN '& F5, P8, P15, PL6 if CLOGK 9 was not read mean-
o while. Thlb la%ter example 1llustrat°s one way in whlch 1ndiv1dual CLOCK readings..
:may oe used to trace cycle times in various portions of the complete run. ‘
Similorly;>if CLGGK 4 foiiow: U;AM (or MMGQK 5, 6 8 or 31) then SUBROUTINE
P3 (rather than SUBROUTINE PT) followed SUBROUTINE P6 in this general manner the
}computlng tlhm taken for vaﬂiouﬁ segments of the run can be determined
CODn I1 is wxltten s0 that 1nt&rmsd19te outputs can br obtained during
a run, in vary maPJ different wwy Ly out thlS feature w1ll not be dlscussed in
| :the present-paperv_ guff;c it to say that ‘this feature pormits the use of IN-
.VDICATOR readings, in conjunotion with CLOCK resdings, to follow the path‘and
”ﬂléiming 5£ computationgl steps.iﬁ4con§ideréble deﬁail.when‘approoéiéte inter=-
omediaﬁe;outouts'aré available. | |
'. We turn how.to CLOCK results on one particular-problem_(#Ell6.l% in:

" ‘order to show the kind of timing dsta obteined. This is the only problem that -
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has been computed -also by a competing code, called IB-TFL, perhets the'fastest_
standard 1EM 70h code (SHARE h6h)* available for the transportation problem |
v This problem was & 29x116 pseudorandom transportation problem that took 3 03
nutes with CODE II, in comparison with 3.17 minutes with IB-TFL, this dif-
Vﬂ;_ference is S0 small that the two codes may be considered eqpally efficient for
':fhthie one 29xll6 problem On a second pseudorandom problem (#Ell6 2), of size .
29x116 CODE 1T took 1. % ‘minutes.

. The beginning of the flow through #Elib 1 may be followed by noting

CLOCK readings, as foilows

Time T o[22 _' 5575 (28] 2B[30] 31[33] L[] 37]39] B0 etc.

;{cLogKZA anf32| | 5| 4 5| 4

%
+
\Ji
P
£
AW
=
v

SUB- 1 | 1 | |
ROUTINE | P9|P2|P3|P13|P3|P13 (P3| P13 P3(P13|P3|Pa3|p3|piz|p3| 13|

Fime [ 58|&[GOGo[G0[G0]G0] G5 [0 [72[ 72 |ete | 73| 79[ B 5 [ete |

ewock | 2| 2| 2| 2| 2| 2| 3| 8| 2|2|2 |3 83 8 |

o L e e
. IROUTINE. | P7]P7|P7|P7|P7|P7|P5|PI6|PTIPT|PT| . |P5|PI6|P5|P16

:In other words, ‘the 1nitial uncompressed reduction through P2 took 0. 2h minutes. ,

:Then the Ph+>P6-aP3—>Pl3 cycle was repeated 9 times in O 3h minutes, to completei‘
" the compressed 1solate columns reduction. Next the P7 cycle was repeated 6
":times, in 0. 02 minutee, to list the isolated zeros. Next the 9124P59989P15%P16
“.nsequence took 0. 05 minutes to find a trial cover, fuse, and reduction before re-l
turning to Ph—>P6-9P7 Since we had arranged to havr only 9 readings on CLOCK 2;'
‘.we cannot trace the path through all the subroutines after 72 minutes _ We do
’;iobtein the first 10 tires at which CLOCKS 3 end 8 are reed and, from these data,

"»it is seen that .~ the. P5~>P8—>P15e>Pl6 portion takes about 0. 06 minutes each

A T QHARE h64 is a code bat 2d upor the FordwFulkersonll network flow :
‘ﬂelgorithm, which is enother variant of Kuhn's Hungerien dethod
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time, and the portion from P16 back to P5 ﬁhrough P@4¥P6—>P7<>P12 takes about
©0.09 minutes‘each time. | |
| | The'IndiCatorg nét'only sﬁéw'frééueﬁcieg with_whichAééCh of.Sévefal.
points-are passed during the cqmputatiéng bﬁt B850 may bé,used\tp assist in -
_ ’>tfaéing %he‘actuai'path of the”computéfion_thrqugh the rua. The Indicator

~readihgs for problam-%Ell6ol follow.

Tndicator # | 3] B]12[1k] 15] 18] 5

pSo)
£
e
. N
s
F

O ] R

Frequency | 27[42|2736] 11| 0[99[15 | o|15| 79|

Subroutine |Pilp6| 3 |Pizlpikip7| P2 |p5ipis|pit

For exsmple, sines 112 = I16 = 0 it is seon thet P14 and PL7 were not used; also
since Ik = 0y the segment Elﬁf>P6 was never used. By continuing in this way, we .

find that the paths uzed were os follows.

Wi
-~

Indi¢atorf 3 a0 13 ikl 15 | 18 Stop'

Start

[ 21
FARCRECE R Y

-~ ] W | W

15 |

(o]
*.J

(&)

[AY]
-3

15 11

This shows that Subroﬁtine P27 was eﬁtér&i 99 ﬁiﬁeﬁ; 6f thége,ls led to P12,
.15 to P6, 68 back through P7, and 1 to>St6p~ It shows elso that Subroutine -
PT was eﬁtﬁf@& i5 times from P6,'16 ffom P3,vand,68 from itgelf;.
~‘Other pﬁeudoréndom probiscns ﬁer@.gﬁﬁéfﬁtﬁi:&nﬁ solved by_cﬁﬁﬁ llslwith

" results az follows.



Smallest

- . Kumber - Median - _ LafgeSt ‘Input‘
Dimension Solved " Computing Computing Computing Output!
- Time Time _ Time Time
In minutes
| 58x145° 2 13.56% 12.72% . h1x ?
29x116 2 o7 1.90- 3.03 .18
29x29 3 .53 .35 .82 L1k
| 20x29 13 .25 18- .36 Jk
9x10 T .145** 1w 65%% 2
“*Actually, theee problems were not quite completed but the output. is
adequate for eesy completion.
*¥A11 times too high because intermediate outputb were obtalned

Several other small problems were run, for various tests, each of whlch was con-

-structed for some partlcular purpose.

Among these wers one 9x9 assxgnment

problem (wnit rim totals) and 30 5xl5 assignment problems (unit column rim

’totals)o

The 30 5&15 aesignmen+ nroblems each took lesu than 0.02 mlnutes com—,

puting tlmeu except for one that was not qulte completed--due to the same error

in CODE II that kept the 58xlh5 problems from finishingo

The 9x9 assignment

problem was constructed carefully to stretch CODE II, and did in fact require

0.26 mlnutes computlng plus system time

Test runs with the recompression subroutines (P3, P13, Plh) omitted in-

CODE II have shown that their 1nclusion shortens computation times appreciably

for larger problems.

Experlence with CODE I, where complete recompression was

| -[_done at each step rather than recompression‘only of llnes having eommon,isolateS”

'asvin CODE II, indicates the deeirability‘of more extensive'recompreesion then'

'f‘ls used in CODE II however, the FQRTRAN technlques used in CODE I are not ef-

.. fective 1n accompilshing nore extensive recompression.

Comparatlve tests of

“other alternatives have suggested various 1mprovemente that can easlly be made

in CODE II, ‘but w;thout deviatlng from the essentlai stepe of our mathematlcal

algorithm, and data on segmental computlng times have helpea 1n ch0031ng among

some of these alternatlveso
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Coﬂ&lu%ioné 
COLE II ‘makes effective use of the Hungerian Method for solving tvansportae

..tion and a051gnment problems on the IBM: TOh Computing Pxpe ience indicates
that CODE 1I is now as fast as the IB-TFL code, or any other exiétiﬁg code, and<
CODE IT would surely be 1mproved further if rewritten tc gain efieciency and
spggdo |

'Thé ﬁéthematical algorithm supporting oonE 1T makes essentlal use of
several reduction stevs, preiiminary to the ex&cution of zero covering and selec- '
;t§o@.égbrou%inéph§améd on the piws nt aufhor’" proo“ of the K&nlg—krgervary
"‘Thédre@ai These Uru;lminafy reductlong should be useful with other codes for
ﬁhe Hitcheock &istribution problem, whether based upon the Hungarign Method,
: thm Simplex Method, or any other method. |

The techniqyﬂ» emplgyc in LODL_II, for observing pimiﬁg and frer@ﬁcieS'
of passages through aegments of & pafticglar’compﬁtatioﬁ, are'veryvuﬁeful‘in de-
termining cholces %mong alt@rnative codes. Experience with CUDE Ti has proveded
‘timlng and frnqpency data that shows where further substantlal 1mprovements may

p0531bly be madw in CODE II, while holding to thL same mmthamatlcax ailgorithm.
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