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Abstract
The low density van Stockum dust solution is extended by including an angular
deficit factor. The resulting model describes a rotating Gott–Hiscock string
surrounded by an annular dust atmosphere. The interior spacetime can be
joined to a vacuum Levi-Civita solution with angular deficit.

PACS numbers: 04.20.Jb, 04.40.−b, 98.80.Hw

1. Introduction

Describing the interior and exterior geometries of spacetimes with cylindrical symmetry has
a long history in general relativity. Recently there has been a renewed interest [1–9], in the
Levi-Civita [10] spacetime

ds2 = −r2m dτ 2 + r2m2−2m(dr2 + dz2) + C2r2−2m dφ2. (1)

The metric describes a vacuum with cylindrical symmetry and is often used to match
cylindrical matter distributions. One reason for the current interest in this spacetime is the
problem in identifying sources that cover the entire range of the Levi-Civita parameters. This
difficulty has been reviewed by Bonnor [11]. In different parts of its parameter range, the
Levi-Civita spacetime is the vacuum solution for two very interesting cylindrical solutions.
One of the early rotating matter solutions, describing an infinite cylinder of rotating dust,
was found by Lanczos [12] and van Stockum [13] and later by Wright [14]. The vacuum
spacetime matching the rotating dust interior was discussed by Lewis [15], van Stockum [13]
and Bonnor [16]. It takes one of three forms depending on the mass density of the cylinder.
The vacuum corresponding to the lowest range of rotating cylinder mass density is locally
static and can be transformed into a Levi-Civita spacetime [17, 18] with the parameterC = 1.
The second solution was developed by Hiscock [19] and Gott [20] and describes the static
interior of an infinite cosmic string. The spacetime of the string interior can be matched to an
m = 0 Levi-Civita solution with C �= 1. This Levi-Civita vacuum has the string trademark
angular deficit.

In this paper, we re-examine the solution for the rotating dust interior in the lowest mass
density region. In the original discussions, several constants were chosen to be zero or one.
If the constants are kept, three new features appear. The first new feature is an angular deficit
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in the locally static Levi-Civita form of the exterior vacuum, C �= 1. The addition of the
constants adds to the sources that can be described by the Levi-Civita parameter range. The
presence of angular deficit suggests a string structure interior to the dust and the second new
feature is a rotating core solution. In the limit of zero rotation the solution is the static spacetime
describing the Gott–Hiscock [19, 20], cosmic string. The new van Stockum constants can be
linked to the string angular deficit through matching. If the axial rotating string is not present,
the dust cylinder will develop closed timelike lines in the interior. This third new feature offers
another venue for the study of closed timelike lines in the presence of matter.

In the following section we develop the extended interior dust solution. The spinning
Gott–Hiscock [19, 20] string is discussed in section 3. The locally static form of the vacuum
with angular deficit is treated in section 4. A discussion of the closed timelike lines is given
in the concluding section.

2. The interior field equations

2.1. van Stockum matter content

Consider a stationary metric of the van Stockum type

ds2 = −(dt + k(r) dφ)2 + eµ(r)(dr2 + dz2) +D2(r) dφ2. (2)

The field equations with an anisotropic fluid source for this metric are

e−µ
(
k,r

2D

)
,r = 0 (3)

8πρ eµ = 3k,2r
4D2

− µ,r ,r

2
− D,r ,r

D
8πpr eµ = k,2r

4D2
+
D,r

D

µ,r

2 (4)

8πpφ eµ = k,2r

4D2
+
µ,r ,r

2
8πpz eµ = − k,2r

4D2
− D,r

D

µ,r

2
+
D,r ,r

D
.

Requiring isotropic dust, we find D,r ,r = 0. The most general solution is D(r) =
d0r + d1. Choosing d1 = 0, we find for the interior potentials and matter density

D(r) = d0r k(r) = ωd0r
2 + c1

(5)
µ(r) = −ω2r2 + c2 8πρ eµ = 4ω2.

ω is a constant identified from the original van Stockum solution. The original choice [12–14]
was c1 = c2 = 0, d0 = 1, d1 = 0. The d0 factor cannot be scaled away by redefining ϕ,
but signals the presence of an angular deficit in ϕ. Angular deficits are commonly associated
with axial strings. In the following section we develop a core string solution inside the dust
cylinder. c1 and d0 are independent but will be related when the van Stockum dust becomes
the annular atmosphere for the rotating string.

3. A core metric

3.1. Describing the core

The Gott–Hiscock [19, 20] static string describes the interior spacetime of a string with
constant density, ε, axial tension T = ε and no other stresses. To describe a rotating string,
assume an interior structure described by coordinates (t, χ,ψ, ξ) with boundary χ = χ0.
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The core spacetime will have a ξ axial tension , T 2
0 and no radial stress . With the change in

coordinates and stress energy content, the field equations are repeated for clarity

k,χ = λD(χ) (6)

8πρ eµ = 3λ2

4
− µ,χ ,χ

2
− D,χ ,χ

D
(7)

8πpχ eµ = λ2

4
+
µ,χ

2

D,χ

D
= 0

8πpψ eµ = λ2

4
+
µ,χ ,χ

2

8πpξ eµ = −λ
2

4
− µ,χ

2

D,χ

D
+
D,χ ,χ

D
= −T 2

0 ,

(8)

where λ is a constant. The ξ -field equations determine D(χ) and from that µ(χ) and k(χ)
are found. Assuming a Minkowski axis, the solutions are

D(χ) = sin(T0χ)

T0
eµ(χ) = [cos(T0χ)]λ

2/2T 2
0 k(χ) = λ

(T0)2
(1 − cos(T0χ)). (9)

The fluid parameters associated with this solution are

8πpψ = −λ
2 e−µ

4
tan2(T0χ) 8πρ = e−µ

(
3λ2

4
+ T 2

0 +
λ2

4
sec2(T0χ)

)
. (10)

Because of the trigonometric structure of the matter descriptions there is a constraint for
well-behaved solutions

T0χ <
π

2
. (11)

In the limit of zero rotation, λ −→ 0, the solution becomes the Gott–Hiscock [19, 20]
static string with equation of state 8πρ = −8πpξ = T 2

0 .

3.2. Matching the string to dust

The metric and extrinsic curvatures of the dust and string are matched across the bounding
surface (χ = χ1, r = R1). It proceeds exactly as in the vacuum match for the Gott–Hiscock
string [19, 20]. Matching the D functions we have

sin(T0χ1) = d0T0R1 cos(T0χ1) = d0. (12)

Relating the tension to d0 and R1 we find

T 2
0 R

2
1 = 1 − d2

0

d2
0

. (13)

This implies that d0 � 1. This relation is very interesting. In a later section we will
demonstrate that the angular deficit in the locally flat vacuum is related to d0. Here we see
that d0 is related to the sizes of the tension and inner radius. Matching the off-diagonal gij
provides the relation

λ

T 2
0

(1 − cos(T0χ1)) = ωd0R
2
1 + c1

λ

T0
sin(T0χ1) = 2ωd0R1. (14)

Combining the equations we identify λ and c1

λ = 2ω c1 = ωd0R
2
1
d0 − 1

d0 + 1
. (15)
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Since d0 � 1, the last equation requires c1 � 0. This relation links c1 and d0. d0,
representing angular deficit, cannot be scaled away and through matching, c1 is also now a
necessary part of the metric. The final match is in the coordinates ξ and z. It duplicates
λ = 2ω and sets a value for c2

c2 = ω2R2
1

(
1 +

2d2
0

1 − d2
0

ln(d0)

)
. (16)

The interior solution can be described as a string-like structure with axial tension and
tension loops around the circumference of the inner core cylinder. The core is surrounded by
an annular atmospheric region of dust. The dust can be matched to a vacuum and this is where
the final angular deficit will appear.

4. The vacuum region

The annular dust atmosphere is bounded by a vacuum at r = R2. The vacuum field equations
have been written down by van Stockum [13] and Bonnor [16] and discussed in detail by Islam
[21] for the general metric

ds2 = −fv
(

dt +
kv

fv
dφ

)2

+ eµv (dr2 + dz2) +
D2
v

fv
dφ2. (17)

We useDv = d0r which produces a slight modification in the form of the vacuum solution
used by Bonnor. For r � R2 the vacuum solution with unmatched constants is

Dv(r) = d0r (18)

fv(r) = Dv(r)(α sinhU + β coshU)

kv(r) = Dv(r)(γ sinhU + δ coshU)
(19)

U = A ln

(
r

R2

)
(20)

µv(r) = µ1 +
A2 − 1

2
ln

(
r

R2

)
. (21)

A is an undetermined constant. In the interior of the annular dust region, r � R2, the
metric potentials are

D(r) = d0r (22)

f = 1 k(r) = ωd0r
2 + c1 µ(r) = −ω2r2 + c2. (23)

Matching f and fv one finds

d0R2β = 1
1

d0R2
+Aα = 0. (24)

From the k, kv match we have

δ = ωR2 +
c1

d0R2
Aγ = ωR2 − c1

d0R2
. (25)

Matching µ and µv at r = R2, we find that the constants µ1 and A are both identified

µ1 = −ω2R2
2 + c2 A2 = 1 − 4ω2R2

2 . (26)
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The complete vacuum solution including the effects of d0, c1 and c2 is

eµv = e−ω2R2
2 +c2

(
R2

r

)2ω2R2
2

fv = r

R2

(
coshU − sinhU

A

)

kv = d0r

(
ωR2 − c1

d0R2

A
sinhU +

(
ωR2 +

c1

d0R2

)
coshU

)
(27)

A2 = 1 − 4ω2R2
2 Dv = d0r.

The original Bonnor [16] vacuum matched to dust is

eµB = e−ω2R2
2

(
R2

r

)2ω2R2
2

fB = r

R2

(
coshU − sinhU

A

)

kB = r

(
ωR2

A
sinhU + ωR2 coshU

)
(28)

A2 = 1 − 4ω2R2
2 DB = r.

The new constants do not change g00. The off-diagonal metric does change with the
original Bonnor solution recovered in the d0 → 1, c1 → 0 limit. eµv is an overall constant
different from the original value. The Bonnor vacuum can be transformed into a locally static
Levi-Civita form with no angular deficit. The new solution will exhibit an angular deficit.

5. The locally static form for ωR2 � 1/2

Bonnor [16] has shown that the spacetime described by equation (28) is locally static with a
periodic time coordinate. The transformation to the locally static case has also been discussed
by Frehland [17] and Som [18]. We wish to check the effect of adding the new constants on the
locally static form. To do this we will consider a coordinate transformation of the spacetime
of equation (17). Consider the transformation

t = aτ + cθ ϕ = bτ + hθ, (29)

with ah− bc = 1. With this transformation, the spacetime becomes

ds2 = −fv
[
(a dτ + c dθ) +

kv

fv
(b dτ + h dθ)

]2

+ eµv (dr2 + dz2) +
D2
v

fv
(b dτ + h dθ)2. (30)

Use the forms of fv(r) and kv(r), equation (19) before matching. Examining first the
off-diagonal component and requiring it to vanish one finds

a = −b γ + δ

α + β
c = −h δ − γ

β − α
, (31)

with the conditions

α2 − β2 = (βγ − δα)2 (32)

b2h2 = α2 − β2

4
. (33)

Equation (32) only restates equation (26), determining the value of A. The last condition
follows from the unit transformation determinant. With these choices, the metric is

g00 = −b2

(−2d0R
A
2

α + β

)
r1−A (34)
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gθθ = h2 2d0

β − α
r1+A grr = e(A

2−1)/4 ec2

(
R2

r

)(1−A2)/2

. (35)

In the original formulation, with c2 = 0, d0 = 1, new r and z coordinates can be defined
as

r ′ = �r z′ = �z � = e(A
2−1)/2(A2+3)

R
(A2−1)/(A2+3)
2

. (36)

This moves the grr and gzz parts of the metric into the Levi-Civita form and g00 becomes

g00 = −(r ′)1−Ab2

(−2RA2
α + β

)
�A−1. (37)

If we again choose a Levi-Civita form for g00 by setting

b2 = − α + β

2�A−1RA2
,

the form for gθθ is also determined and we find for the metric

ds2 = −(r ′)1−A dτ 2 +
(r ′)1+A

�2
dθ2 + (r ′)(A

2−1)/2(dr ′2 + dz′2). (38)

An angular deficit can be calculated by comparing the limiting ratio of the circumference
to the proper radius [22]

δθ = 2π − lim
Rp→0

circumference

proper radius
.

The ratio of the circumference to the radius for this spacetime with d0 = 1, c2 = 0 is

C

Rp
= 2πR(1+A)/2

2

R
(A2+3)/4
2

A2 + 3

4�
. (39)

In the limit that the proper radius (or R2) approaches zero, A → 1,� → 1 and this ratio
is just 2π . There is no angular deficit in the original formulation. With the new constants
we can follow the same procedure. There are two differences: the redefinition of the r and z
coordinates acquires a factor from c2 and d2

0 appears in gθθ . Defining �′,

�′ = � e2c2/(A
2+3),

the new spacetime becomes

ds2 = −(r ′)1−A dτ 2 +
(r ′)1+A d2

0

�′2 dθ2 + (r ′)(A
2−1)/2(dr ′2 + dz′2). (40)

The only new thing to examine is the behaviour of c2. From equation (16) we have

c2 = ω2R2
1

(
1 + 2 d2

0

1−d2
0

ln(d0)
)
. As the R2 limit is taken, R1 should also approach zero and

c2 → 0. The overall limit gives an angular deficit in θ

δθ = 2π(1 − d0). (41)

d0 is related to the axial tension and in the limit of small T0R1 we have d0 ≈ 1 − T 2
0 R

2
1

2 and the
angular deficit is

δθ ≈ πT 2
0 R

2
1 .

In the zero rotation limit, the tension and density have a string equation of state and
d0 = 1 − 4πρR2

1. In this limit, the linear mass density of the string, m/L, is (1 − d0)/4 and
the angular deficit is simply the Vilenkin [23] value of 8πm/L.
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6. Conclusion

The new spinning string solution with an annular dust atmosphere links a rotating Gott–
Hiscock [19, 20] spacetime and an extended van Stockum [13] solution. Together they
provide a source for a locally static vacuum Levi-Civita spacetime with angular deficit. The
original van Stockum solution has been of interest because closed timelike lines [24] can
develop in the high density region of the vacuum exterior and it, along with the Kerr [25],
Godel [26] and other solutions [27], has provided a means to study this effect. Adding angular
deficit to the van Stockum dust interior could also create closed timelike lines in the interior
spacetime. The metric potential gφφ of the extended dust solution is

gφφ = d2
0 r

2 − (ωd0r
2 + c1)

2 � 0. (42)

Closed timelike lines will develop inside the cylinder if gφφ < 0. Requiring the interior
gφφ � 0, we see that there is a lower limit on the radial coordinate, below which closed
timelike lines will develop

1 − 2ω
c1

d0
−
√

1 − 4ω
c1

d0
� 2ω2r2 � 1 − 2ω

c1

d0
+

√
1 − 4ω

c1

d0
. (43)

The original van Stockum solution ( c1 = 0, d0 = 1) had limits 0 � ω2r2 � 1. As van
Stockum [2] pointed out, this is just the special relativistic limit on velocity, although r in
this case is not a proper radius. There are no closed timelike lines in the van Stockum dust
interior. When c1 �= 0, there can be interior closed timelike lines if the dust extends to the
centre. If the van Stockum dust is the only matter in the cylinder, if there is no string core,
then, c1 and d0 are independent. The extended van Stockum solution, by itself, then has new
effects in the low density region associated with the constants d0 and c1: closed timelike lines
associated with c1 develop in the dust interior and there is a vacuum angular deficit associated
with d0. If there is a cosmic string interior to the rotating dust, the constants c1 and d0 are
related by the string-dust matching. The dust in the model discussed in this paper is in an
annular region R1 � r � R2. A particular choice of R1 could either eliminate or include the
interior closed timelike lines. Bonnor [27] has recently stressed the importance of developing
a better understanding of closed timelike lines and this solution offers another venue for their
study.
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