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Abstract
Recent experiments have shown that multi-phase epilayers may self-organize
into ordered nanoscale patterns on a solid substrate. In this paper, we
present a phase field model for the self-assembly of three-phase epilayers.
Nanoscale patterns are developed by two competing actions: coarsening due
to phase boundary energy and refining due to substrate-mediated elastic
interaction. The continuum phase field approach leads to a set of nonlinear
diffusion equations, which couples the two concentration fields in the
epilayer and the stress field in the substrate. Numerical simulations reveal
remarkably rich dynamics in the self-assembly of multi-phase epilayers. An
epilayer may evolve into various patterns, suggesting a significant degree of
experimental control in growing nanoscale structures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Advancing technologies demand solid structures of ever
decreasing length scales. Self-assembled nanostructures have
aroused considerable research interest in recent years, thanks
to the advancement of nanoscale microscopy technology, such
as STM (scanning tunnelling microscopy) [1]. Experiments
have shown that a multi-phase epilayer on a solid substrate
may self-organize into various nanoscale patterns. Pohl et al
[2] deposited a mixture of Ag and S on an Ru(0001) surface. An
ordered triangular lattice of S rich dots formed in the Ag matrix.
The size of the dots was about 3.4 nm. Kern et al [3] showed
that a submonolayer of oxygen on a Cu(110) surface could
form stable periodic stripes of alternating oxygen overlayer and
bare copper. The stripes had a width of about 10 nm and ran in
the 〈001〉 direction. Plass et al [4] found that a monolayer of
Cu and Pb on a Cu(111) surface could form ordered patterns of
dots or stripes, depending on the percentage of Pb atoms in the
epilayer. Many ternary semiconductor epilayers demonstrated
lateral composition modulation, such as (In, Ga)P on GaAs [5],
AlInAs on InP [6] and GaAsN on GaAs [7]. The typical feature
size is in the range of 10–50 nm. Ordered patterns have been
observed in other systems involving different mechanisms,
such as electropolishing; see the work of Yuzhakov et al [8].

1 Author to whom any correspondence should be addressed.

The observations include nanoscopic phases and stable
patterns. The phase sizes and the spatial ordering are
determined by two competing actions: coarsening due to phase
boundary energy and refining due to substrate-mediated elastic
interaction. To illustrate the idea, consider a bulk two-phase
alloy. When the alloy is annealed, atoms diffuse to reduce the
surface area and the corresponding surface energy. The phases
will coarsen until only one large particle is left in the matrix.
However, the situation is different for a multi-phase epilayer
on an elastic substrate, where the surface stress causes a phase
refining action [9–11]. The nonuniform surface stress induces
a fringe elastic field in the substrate, whose depth scales with
the phase size. When the phase size is refined, the fringe
field depth is reduced and so is the elastic energy. It is this
reduction in the elastic energy that drives phase refining. This
refining action competes with the coarsening process due to
interfacial energy. As a result, the phases reach an equilibrium
size. Moreover, the competition of two actions minimizes the
total free energy, and causes the system to self-assemble into
patterns.

We recently developed a phase field model to account for
the nanoscale self-assembly behaviour of binary epilayers [12–
15]. Unlike Vanderbilt and co-workers [9, 10], we do
not preassume the pattern types. Our model is a dynamic
model, and the material system can generate whatever
patterns it favours. We have studied a binary epilayer,
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where we performed a linear stability analysis [11] and
numerical simulation [13–15]. Researchers have studied
pattern formation in other systems. For instance, Chang’s
group determined when the stripe and dot patterns could form
in an electropolishing process by a weak nonlinear analysis [8].
This paper extends our work to ternary epilayers. The third
component may be used to effectively influence the growth
of nanoscale patterns. A set of nonlinear diffusion equations
couples the two concentration fields in the epilayer and the
stress field in the substrate. Numerical simulations have
revealed remarkably rich dynamics and suggest a significant
degree of experimental control in growing ordered nanoscale
structures.

2. A model for the self-assembly of multi-phase
epilayers

This section develops a continuous phase field model for
the self-assembly of a ternary epilayer on a solid substrate.
Imagine an epilayer of three atomic species A, B, and C on a
substrate of atomic species S. The substrate is a semi-infinite
elastic body occupying the half space below the x1–x2 plane
(x3 < 0). The epilayer is treated as a surface object. We
assume that the epilayer is a substitutional alloy of species
A, B and C, and the atomic diffusion is confined within the
epilayer.

2.1. Kinematics

Two sets of kinematic quantities describe the configuration of
the epilayer–substrate composite: one for elastic deformation,
and the other for mass transport. The epilayer–substrate as a
thermodynamic system can vary by two means [12]: elastic
displacement variation δui , and atomic relocation variation
δ I A
α and δ I B

α . In this paper a Latin letter in a subscript runs from
1 to 3 and a Greek letter in a subscript runs from 1 to 2. The
meaning of atomic relocation vector is briefly explained in the
following. Imagine a curve in the surface of the epilayer. When
some number of A atoms cross the curve, to maintain a flat
epilayer, an equal number of B and C atoms must cross in the
opposite direction. Let m be the unit vector lying in the surface
normal to the curve. The atomic relocation vector IA is defined
such that I A

α mA
α is the number of A atoms across a unit length

of the curve. The vector IB is defined in a similar manner. We
denote the atomic fraction of component A and B in the epilayer
by C1 and C2, respectively. The fraction of atomic sites in the
epilayer occupied by species C is 1−C1 −C2 since the epilayer
is a substitutional alloy. We assume that the concentration
fields C1(x1, x2, t) and C2(x1, x2, t) are time-dependent and
spatially continuous. Due to mass conservation, the variation
in the concentration fields relates to the variation in the atomic
relocation by �δC1 = −δ I A

α,α and �δC2 = −δ I B
α,α , where

� is the number of atoms per unit area on the surface. The
quantity IA (or IB) parallels a more familiar quantity, the atomic
flux JA (or JB), in the same way as the displacement parallels
the velocity. Due to mass conservation, the time rate of the
concentration compensates the divergence of the flux vector,
namely,

�∂C1/∂t = −J A
α,α,

�∂C2/∂t = −J B
α,α.

(1)

2.2. Energetics

The free energy of the system consists of the surface energy
plus the bulk elastic energy, namely,

G =
∫
� dA +

∫
W dV, (2)

where � is the surface energy per unit area of the epilayer, and
W the elastic energy per unit volume of the substrate. The area
and volume are measured in the undeformed configuration of
an infinite substrate. Generally speaking, the surface energy
per unit area, �, is a function of the concentrations C1, C2,
the concentration gradients C1,α , C2,α , and the strain in the
surface, εαβ . The surface energy can be expanded by

� = g + h1C1,αC1,α + h2C2,αC2,α + f εββ, (3)

where g, h1, h2 and f are functions of C1 and C2. Here we
have assumed isotropy within the plane of the surface. The
leading-order term in the concentration gradient is quadratic
because, by symmetry, the term linear in the concentration
gradient does not affect the surface energy.

When the concentration field is uniform in the epilayer, the
substrate is unstrained, and the function g(C1,C2) is the only
remaining term. Thus it represents the surface energy per unit
area of the uniform epilayer on the unstrained substrate. For a
ternary material system, we adopt Muggianu’s equation [16]:

g(C1,C2) = C1gA + C2gB + (1 − C1 − C2)gC + ḡ(C1,C2),

ḡ(C1,C2) = �kBT {C1 ln C1 + C2 ln C2

+ (1 − C1 − C2) ln(1 − C1 − C2)

+ C1C2[�0
12 +�1

12(C1 − C2)]

+ C2(1 − C1 − C2)[�
0
23 +�1

23(C1 + 2C2 − 1)]

+ C1(1 − C1 − C2)[�0
13 +�1

13(2C1 + C2 − 1)]}, (4)

where gA, gB and gC are the excess energy when the epilayer
is composed of pure A, B or C. The average concentration is
constant due to mass conservation. Hence the linear term of
excess energy does not affect diffusion and can be neglected.
The remaining term ḡ(C1,C2) represents the contribution
from the entropy of mixing and the energy of mixing. In
equation (4), kB is Boltzmann’s constant and T is the absolute
temperature. The dimensionless numbers �0

12, �1
12, �0

23,
�1

23, �0
13 and �1

13, which measure bond strengths relative to
the thermal energy kBT , control the shape of the function.
Figure 1 shows the 3D surface of the function ḡ(C1,C2) with
parameters �0

12 = 2.9, �1
12 = 0, �0

23 = 2.9, �1
23 = 0,

�0
13 = 2.9 and �1

13 = 0. The surface has three wells
with this parameter combination. The function ḡ(C1,C2)

is symmetric about C1 and C2 with these parameters, and
reaches minima at (C1,C2) = (0.116, 0.116), (0.768, 0.116),
and (0.116, 0.768). The contours of ḡ(C1,C2) are shown in
figure 2 for (a) �0

12 = 2.9, �1
12 = 0, �0

23 = 2.9, �1
23 = 0,

�0
13 = 2.9,�1

13 = 0 and (b)�0
12 = 2.9,�1

12 = 0.7,�0
23 = 2.9,

�1
23 = 0.7,�0

13 = 2.9,�1
13 = −0.7. The contour is symmetric

about a symmetry line with the parameters in (a), and is twisted
with the non-zero �1

12, �1
23, �1

13 in (b).
In the phase field model, the second and third term in

equation (3) represent the phase boundary energy, which drives
phase coarsening. We assume that h1(C1,C2) and h2(C1,C2)
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Figure 1. The 3D surface of the function ḡ(C1,C2) with parameters
�0

12 = 2.9,�1
12 = 0, �0

23 = 2.9,�1
23 = 0, �0

13 = 2.9 and�1
13 = 0.
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Figure 2. The contours of the function ḡ(C1,C2) with parameters
(a) �0

12 = 2.9, �1
12 = 0, �0

23 = 2.9, �1
23 = 0, �0

13 = 2.9,�1
13 = 0

and (b)�0
12 = 2.9,�1

12 = 0.7,�0
23 = 2.9,�1

23 = 0.7, �0
13 = 2.9,

�1
13 = −0.7. Positions 1, 2 and 3 correspond to

(C1,C2) = (0.4, 0.35), (0.25, 0.55) and (0.2, 0.5), respectively.

are positive constants, i.e. h1(C1,C2) = h1 and h2(C1,C2) =
h2.

The change in the surface energy per unit strain, f , is
known as surface stress [17, 18]. It can be interpreted as the
residual stress in the surface. More precisely, it is the resultant
force per unit length. The surface stress is assumed to be a
linear function of concentrations C1 and C2, namely [14],

f (C1,C2) = ψ + φC1 + ηC2, (5)

whereψ is the surface stress when the epilayer comprises pure
C atoms. φ and η are the slopes. When the concentration
fields are nonuniform in the epilayer, the surface stress is also
nonuniform, which induces an elastic field in the substrate.
This elastic field drives phase refining.

2.3. Kinetics

Finally we specify the kinetics, namely, the rate at which the
configuration changes. The system evolves by making two
kinds of changes: elastic deformation in the substrate, and
atomic relocation in the epilayer. Elastic deformation does not
dissipate energy, but mass transport does. Define the driving
force FA

α (or FB
α ) as the reduction of the free energy of the

system when an atom A (or B) relocates by unit distance.
Following Cahn [19], we assume that the atomic flux is linearly

proportional to the driving force:

J A
α = M1 FA

α ,

J B
α = M2 FB

α ,
(6)

where M1 and M2 are the mobilities of atoms in the epilayer.

2.4. Variational statement and partial differential equations

We now mix the ingredients. The energy variation of
equation (2) gives

δG =
∫

f δuα,α dA +
∫
σi jδui, j dV

+
∫

∂

�∂xα

(
∂ ḡ

∂C1
+
∂ f

∂C1
εββ − 2h1∇2C1

)
δ I A
α dA

+
∫

∂

�∂xα

(
∂ ḡ

∂C2
+
∂ f

∂C2
εββ − 2h2∇2C2

)
δ I B
α dA. (7)

Elastic deformation does not dissipate energy. The free energy
variation with the elastic displacement vanishes, leading to

σi j, j = 0 (8)

in the substrate and

σ3α = f,α, σ33 = 0 (9)

on the surface. Equation (9) is the boundary condition for the
elastic field in the substrate. The free energy variation with the
atomic relocation defines the driving forces:

FA
α = − ∂

�∂xα

(
∂ ḡ

∂C1
+
∂ f

∂C1
εββ − 2h1∇2C1

)
,

FB
α = − ∂

�∂xα

(
∂ ḡ

∂C2
+
∂ f

∂C2
εββ − 2h2∇2C2

)
.

(10)

A combination of equations (1), (6) and (8)–(10) gives a set of
nonlinear diffusion equations:

∂C1

∂t
= M1

�2
∇2

(
∂ ḡ

∂C1
+
∂ f

∂C1
εββ − 2h1∇2C1

)
, (11a)

∂C2

∂t
= M2

�2
∇2

(
∂ ḡ

∂C2
+
∂ f

∂C2
εββ − 2h2∇2C2

)
. (11b)

The non-uniform surface stress generates a traction field
on the surface (see equation (9)), and this traction field induces
an elastic field in the substrate. Cerruti [20] solved the elastic
field in a half-space caused by a tangential point force acting
on the surface. The elastic field generated by the distributed
traction on the surface is given by a linear superposition:

εββ = − (1 − ν2)φ

πE

∫ ∫
(x1 − ξ1)

∂C1
∂ξ1

+ (x2 − ξ2)
∂C1
∂ξ2

[(x1 − ξ1)2 + (x2 − ξ2)2]3/2
dξ1 dξ2

− (1 − ν2)η

πE

∫ ∫
(x1 − ξ1)

∂C2
∂ξ1

+ (x2 − ξ2)
∂C2
∂ξ2

[(x1 − ξ1)2 + (x2 − ξ2)2]3/2
dξ1 dξ2,

(12)

where E is Young’s modulus and ν Poisson’s ratio of the
substrate.

The diffusion equation (11) couples the two concentration
fields and the elastic field. Equations (4), (11) and (12)
define the evolution of the system. Given the initial
concentration field C1(x1, x2, 0) and C2(x1, x2, 0), these
equations determine the subsequent concentration fields
C1(x1, x2, t) and C2(x1, x2, t). The following section details
the simulation technique.
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3. Numerical simulation

The infinite integration in equation (12) makes it inefficient
to solve equation (11) by a finite difference method in real
space. A better method is to solve the equation by Fourier
transform, which converts the integral–differential equation
into a regular partial differential equation. The integration
operation, as well as the differentiation over space, is removed,
and the evolution equation can be dramatically simplified.
Thanks to the exponential convergence of the Fourier spectral
discretization, it requires a significantly smaller number of
grid points to resolve the solution to within a prescribed
accuracy [21].

Now we normalize the length and time of the system. A
length scale is defined by a comparison of the first and the last
term in the parentheses in equation (11a), which is

b =
(

h1

�kBT

)1/2

. (13)

In the Cahn–Hilliard model [19], this length scales the width
of the phase boundary that the concentration changes from
the level of one phase to that of the other. The magnitude
of h1 is of the order of energy per atom at a phase boundary.
Taking the magnitude of h1 ∼ 1 eV, � ∼ 5 × 1019 m−2,
and kBT ∼ 5 × 10−21 J (corresponding to T = 400 K), we
have b ∼ 0.6 nm. Other lengths are defined by comparing the
second and the last terms in the parentheses in equation (11),
namely

l1 = Eh1

(1 − ν2)φ2
, l2 = Eh1

(1 − ν2)φη
,

l3 = Eh1

(1 − ν2)η2
.

(14)

Young’s modulus of a bulk solid is about E ∼ 1011 N m−2.
According to Ibach [22], the slope of the surface stress is of
the order φ ∼ 4 N m−1. These magnitudes, together with
h1 ∼ 1 eV, give l1 ∼ 0.6 nm. The lengths l2 and l3 are of the
same order.

From equation (11a), disregarding a dimensionless factor,
we note that the diffusivity scales as D ∼ M1kBT/�. To
resolve the event occurring over the length scale b, the time
scale is τ = b2/D, namely,

τ = h1

M1(kBT )2
. (15)

Normalize the coordinates by b and the time by τ .
Equations (4), (11) and (12) combine into a set of
normalized diffusion equations. Denote the Fourier transform
of C1(x1, x2, t) by Ĉ1(k1, k2, t), where (k1, k2) are the
coordinates in Fourier space. Then

Ĉ1(k1, k2, t) =
∫ ∞

−∞

∫ ∞

−∞
C1(x1, x2, t)e−i(k1 x1+k2 x2) dx1 dx2.

(16)
Taking the Fourier transform on the normalized diffusion
equations gives

∂Ĉ1

∂t
= −k2 P̂1 − 2k4Ĉ1 + 2k3 Q1Ĉ1 + 2k3 Q2Ĉ2,

∂Ĉ2

∂t
= S(−k2 P̂2 − 2k4 HĈ2 + 2k3 Q2Ĉ1 + 2k3 Q3Ĉ2),

(17)

where k =
√

k2
1 + k2

2 , Q1 = b/ l1, Q2 = b/ l2, Q3 = b/ l3,

S = M2/M1 and H = h2/h1. Ĉ2(k1, k2, t), P̂1(k1, k2, t)
and P̂2(k1, k2, t) denote the Fourier transform of C2(x1, x2, t),
P1(x1, x2, t) and P2(x1, x2, t), respectively. Details about
the derivation of strain fields in Fourier space can be found
in [15]. The function P1(C1,C2) comes from the derivative
of ḡ(C1,C2)/�kBT with respect to C1, and P2(C1,C2) comes
from the derivative of ḡ(C1,C2)/�kBT with respect to C2.
The expressions are

P1(C1,C2) = ln

(
C1

1 − C1 − C2

)

+ C2
{
�0

12 +�1
12(2C1 − C2)

}
− C2

{
�0

23 +�1
23(2C1 + 3C2 − 2)

}
+ �0

13(1 − 2C1 − C2)

+ �1
13(6C1 + 2C2 − 6C2

1 − C2
2 − 6C1C2 − 1),

P2(C1,C2) = ln

(
C2

1 − C1 − C2

)

+ C1
{
�0

12 +�1
12(C1 − 2C2)

}
− C1

{
�0

13 +�1
13(3C1 + 2C2 − 2)

}
+ �0

23(1 − C1 − 2C2)

+ �1
23(2C1 + 6C2 − C2

1 − 6C2
2 − 6C1C2 − 1).

(18)

The next consideration is the time variable in equation (17).
Instead of the explicit forward Euler method, which requires
a very small time step to maintain stability, we employ
a semi-implicit scheme proposed by Chen and Shen [21].
We treat the linear term implicitly to reduce the stability
constraint, while we still treat the nonlinear term explicitly
to avoid solving nonlinear equations at each time step.
For a given time t and a time step �t , we denote
Ĉn

1 = Ĉ1(k1, k2, t), Ĉn+1
1 = Ĉ1(k1, k2, t + �t), P̂n

1 =
P̂1(k1, k2, t), Ĉn

2 = Ĉ2(k1, k2, t), Ĉn+1
2 = Ĉ2(k1, k2, t + �t),

and P̂n
2 = P̂2(k1, k2, t). In equation (17), we replace Ĉ1 by

Ĉn+1
1 , ∂Ĉ1/∂t by (Ĉn+1

1 − Ĉn
1 )/�t , and P̂1 by P̂n

1 , and treat Ĉ2,
∂Ĉ2/∂t , P̂2 in the same way. Then, we obtain the simulation
algorithm in a discretized matrix form:{

Ĉn+1
1

Ĉn+1
2

}

=
[

1 + (2k4 − 2k3 Q1)�t −2�tk3 Q2

−2�t Sk3 Q2 1 + S(2Hk4 − 2k3 Q3)�t

]−1

×
[{

Ĉn
1

Ĉn
2

}
− k2�t

{
P̂n

1

S P̂n
2

}]
. (19)

For a simulation with a given time step, the coefficient matrix
on the right-hand side of equation (19) is constant. Hence it is
only necessary to perform the matrix inverse operation once,
which is a significant benefit from the semi-implicit scheme.

The simulation is carried out in a square cell of size L×L in
real space (x1, x2). The periodic boundary condition is applied
to replicate the cell to the entire surface. The cell size must be
large enough to contain sufficient numbers of features but small
enough to shorten the computation time. According to the
linear perturbation analysis [11], the equilibrium wavelength
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is estimated as 4πl1. We choose a cell size of the order
L ∼ 200l1 in our simulation. The cell is divided into N × N
grids. The grid space � = L/N should be small enough
to describe the phase boundary. We choose � = b in our
simulation. The corresponding cell size in Fourier space
(k1, k2) is 2π/� × 2π/�. The corresponding grid space is
2π/L . To connect the values of C1, C2, P1 and P2 at the grid
points in real space to those in Fourier space, we adopt the
fast Fourier transform (FFT). FFT exploits various properties
of the Fourier transform to enable the transformation to be
done in O(N log2 N) operations instead of O(N 2) operations.
The input contains the initial concentration distribution and
the parameters Q1, Q2, Q3, S, H , �0

12, �1
12, �0

23, �1
23, �0

13,
�1

13. At each time step, the values of Pn
1 , Pn

2 at each grid point
are calculated with equation (4). Then Cn

1 , Cn
2 and Pn

1 , Pn
2

are transformed to Ĉn
1 , Ĉn

2 and P̂n
1 , P̂n

2 by FFT. Ĉn+1
1 and Ĉn+1

2
are updated by equation (19). With the inverse FFT, Cn+1

1 and
Cn+1

2 in real space are obtained. The simulation advances by
repeating the procedure.

4. Results and discussions

The free energy ḡ(C1,C2) induces phase separation. Its shape
is controlled by several dimensionless parameters. We apply
two sets of parameters in the simulation:

(a) �0
12 = 2.9, �1

12 = 0, �0
23 = 2.9, �1

23 = 0, �0
13 = 2.9,

�1
13 = 0 and

(b) �0
12 = 2.9,�1

12 = 0.7,�0
23 = 2.9,�1

23 = 0.7,�0
13 = 2.9,

�1
13 = −0.7.

The free energy ḡ(C1,C2) has three wells with these
parameters. The bottoms of the three wells are located at
(C1,C2) = (0.116, 0.116), (0.768, 0.116), (0.116, 0.768) for
the first case and (C1,C2) = (0.061, 0.150), (0.789, 0.061),
(0.150, 0.789) for the latter. The contours are shown in figure 2.

Figures 3–6 show selected simulation results. We choose
H = 1 (i.e. h1 = h2) and S = 1 (i.e. M1 = M2) in the
simulation. Other parameters are specified individually for
each simulation. Each calculation cell contains 256 × 256
grids with grid size equal to b. Time is normalized by the
time scale τ . The time step used in the computation is
�t = 1.0×10−2. At a given time the concentration fields in the
(x1, x2) plane are visualized by greyscale graphs. The darker
region corresponds to higher concentration and the brighter
region corresponds to lower concentration. The concentration
fields C1(x1, x2) and C2(x1, x2) evolve over time, but the
average concentrations over the calculation cell do not change
thanks to mass conservation. We use Cave

1 and Cave
2 to represent

the average concentration of C1 and C2, respectively. The
average concentrations enforce a constraint to a self-assembly
process. To examine the effect, the simulations in this paper
involve (Cave

1 ,Cave
2 ) = (0.4, 0.35), (0.25, 0.55) and (0.2,

0.5), as illustrated in figure 2. The initial conditions are
given by fluctuating randomly within 0.001 from the average
concentrations.

Figure 3 shows an evolution sequence from t = 0 to 1000.
The parameters Q1, Q2, Q3 are taken to be 1, corresponding to
a symmetric material system. �0

12 = 2.9,�1
12 = 0,�0

23 = 2.9,
�1

23 = 0, �0
13 = 2.9 and �1

13 = 0 are chosen for the function
ḡ(C1,C2). The left-hand column plots the concentration field

C1 C2

t = 1000

t = 300

t = 30

t = 0

Figure 3. An evolution sequence from a random initial condition.
The average concentrations of C1 and C2 are 0.4 and 0.35,
respectively. The parameters Q1, Q2, Q3 are taken to be 1.
�0

12 = 2.9,�1
12 = 0, �0

23 = 2.9,�1
23 = 0, �0

13 = 2.9 and�1
13 = 0.

C1 and the right-hand column plots the concentration field
C2. The simulation starts from a random initial condition with
average concentrations of Cave

1 = 0.4 and Cave
2 = 0.35.

Shortly after the simulation starts, the amplitudes of the
concentration fields rapidly evolve close to the equilibrium
values of the three phases, i.e. (0.116, 0.116), (0.768, 0.116),
(0.116, 0.768). These equilibrium values are estimated by
the ḡ(C1,C2) term only. The competition of phase boundary
energy and elastic energy mainly determines the phase sizes
and their spatial ordering, having only minor influence on
the equilibrium compositions. At t = 300, we can clearly
identify three phases by their shades. The dark and grey
phases organize into a serpentine structure with a bright dot
phase scattering in between. The C2 graph on the right
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C1 C2

t = 3000

t = 1000

t = 3000

t = 1000

(b)

(a)

Figure 4. Two evolution sequences without surface stress (Q1 = 0,
Q2 = 0, Q3 = 0). The average concentrations of C1 and C2 are 0.4
and 0.35, respectively. The simulations start from the same initial
conditions as those in figure 3. Other parameters are (a) �0

12 = 2.9,
�1

12 = 0, �0
23 = 2.9,�1

23 = 0, �0
13 = 2.9, �1

13 = 0 and
(b) �0

12 = 2.9, �1
12 = 0.7, �0

23 = 2.9, �1
23 = 0.7, �0

13 = 2.9,
�1

13 = −0.7.

is almost a negative of the C1 graph on the left except for
the bright dot phase. This suggests that the dark and grey
phases have compositions complementary to each other, while
the bright dot phase has a composition symmetric about C1

and C2. Thus the composition of the three phases can be
identified. In the C1 graph, the dark, grey and bright phases
have compositions close to (C1, C2) = (0.768, 0.116), (0.116,
0.768) and (0.116, 0.116), respectively. We can distinguish the
grey and bright phases in the C1 graph because the existence
of elastic energy and phase boundary energy has shifted the

t = 600

t = 1000

t = 100

t = 1000

C1 C2

(b)

(a)

Figure 5. Two evolution sequences with random initial conditions.
The parameters Q1, Q2, Q3 are taken to be 1. Other parameters are
�0

12 = 2.9,�1
12 = 0, �0

23 = 2.9,�1
23 = 0, �0

13 = 2.9 and�1
13 = 0.

The average concentrations are (a) (Cave
1 , Cave

2 ) = (0.25, 0.55) and
(b) (Cave

1 , Cave
2 ) = (0.2, 0.5).

equilibrium compositions slightly from C1 = 0.116 (estimated
from ḡ(C1,C2) only) to two different values. The dark,
grey and bright phases in the C2 graph have compositions
close to (0.116, 0.768), (0.768, 0.116), and (0.116, 0.116).
Compared with the other two phases, the bright phase has
quite small phase size (or stripe width). This can be explained
in terms of the constraint of average concentration. Consider
the concentration component C3 of the three phases, namely
1−C1−C2. The dark, grey and bright phases have C3 = 0.116,
0.116, and 0.768, respectively. The average concentration (0.4,
0.35), or C3 = 0.25, is closer to the composition of the dark
and grey phases. As a result of mass conservation, the size

672



Self-organized nanostructures in multi-phase epilayers

C2
C1

t = 1000

t = 500

t = 200

t = 0

Figure 6. An evolution sequence with four guide discs. Initially, the
background has average concentrations Cave

1 = 0.4 and Cave
2 = 0.35.

The four guide discs are assigned the equilibrium concentrations
C1 = 0.768 and C2 = 0.116. The parameters Q1, Q2, Q3 are taken
to be 1. Other parameters are�0

12 = 2.9,�1
12 = 0, �0

23 = 2.9,
�1

23 = 0, �0
13 = 2.9 and�1

13 = 0.

of the bright phase has to be smaller. At time t = 1000, the
bright dots aggregate at the boundary of the dark and grey
phases, forming narrow stripes separating the two phases. The
serpentine structures have been observed experimentally in
many bulk or film systems. The systems are typically isotropic
in the plane of the film.

Figure 4 shows two evolution sequences without surface
stress, i.e. Q1 = 0, Q2 = 0, Q3 = 0. The simulations
start from the same initial conditions as those in figure 3 with
(Cave

1 ,Cave
2 ) = (0.4, 0.35). The two sequences in figure 4 use

different parameters for ḡ(C1,C2). Figure 4(a) has�0
12 = 2.9,

�1
12 = 0, �0

23 = 2.9, �1
23 = 0, �0

13 = 2.9, �1
13 = 0, while

figure 4(b) has �0
12 = 2.9, �1

12 = 0.7, �0
23 = 2.9, �1

23 = 0.7,
�0

13 = 2.9 and �1
13 = −0.7. In both cases, the phases try to

increase their sizes as much as possible, being restricted only
by mass conservation and the size of calculation cell.

Now observe the C1 and C2 graphs at t = 1000 in
figure 4(a). The phases have compositions very close to
the average concentration (0.4, 0.35), suggesting that phase
separation is far from completion at this time. As a result,
the phases look fuzzy and are barely distinguishable. In
contrast, the phases attain their equilibrium compositions in
less than t = 300 in the sequence of figure 3, indicating that
the presence of surface stress accelerates the evolution. The
patterns in figure 3 also exhibit different features from those in
figure 4(a), especially the formation and aggregation of dots.
Figure 4(b) has larger phase sizes compared with figure 4(a),
which suggests that the parameters in ḡ(C1,C2)may influence
the coarsening process. Such an influence is effected through
the driving force.

Figure 5 shows two evolution sequences with different
average concentrations. The simulations start from random
initial conditions. Figure 5(a) has an average concentration
(Cave

1 , Cave
2 ) = (0.25, 0.55) and figure 5(b) has (Cave

1 , Cave
2 ) =

(0.2, 0.5). Q1, Q2, Q3 are taken to be 1 in the simulation.
Other parameters are �0

12 = 2.9, �1
12 = 0, �0

23 = 2.9,
�1

23 = 0, �0
13 = 2.9 and �1

13 = 0. Narrow stripes and
scattered dots are observed in figure 5(a). In the C1 graph, the
bright stripes have composition close to (0.116, 0.116) and the
dark dots have composition close to (0.768, 0.116). The grey
phase has composition (0.116, 0.768). As is shown in figure 2,
the composition (0.116, 0.768) is the closest to the average
concentration (see point 2 in figure 2) among the three. Hence
the grey phase occupies most of the area. In the C2 graph, the
bright, grey and dark phases have compositions close to (0.116,
0.116), (0.768, 0.116), (0.116, 0.768), respectively. From t =
600 to 1000, the bright stripes extend their lengths and form
a network-like structure. Figure 5(b) shows quite different
patterns. The bright phase forms small densely packed dots
instead of narrow stripes. A comparison of figures 3, 5(a)
and (b) clearly demonstrates the important effect of average
concentration on pattern formation.

Figure 6 shows an evolution sequence with four guide
discs. The background has average concentrations Cave

1 = 0.4
and Cave

2 = 0.35. The guide discs are assigned the equilibrium
concentrations C1 = 0.768 and C2 = 0.116. Consequently,
they evolve little and serve as guidance to direct the self-
assembly process. Interesting patterns are obtained. The
example shows that the pattern at a finite time is influenced
by the initial conditions. When a pattern at a coarse scale
is introduced, for example by photolithography, the coarse
pattern acts like a framework, which influences the self-
assemblies on a fine scale. Diverse patterns may be produced
this way.

5. Concluding remarks

This paper develops a continuous phase field model to account
for the self-assembly behaviour of a ternary epilayer. The main
ingredients for ordering a stable, ordered phase pattern include
phase separation, phase coarsening and phase refining. These
actions are incorporated into our model:
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(1) a three-well free energy drives phase separation;
(2) the phase boundary energy drives phase coarsening.; and
(3) the concentration-dependent surface stress drives phase

refining.

A set of nonlinear diffusion equations is obtained, which
couple the two concentration fields in the epilayer and the
elastic field in the substrate. These equations are solved
numerically by applying the fast Fourier transform and a semi-
implicit method. Numerical simulations reveal remarkably
rich dynamics in the self-assembly of ternary epilayers and
suggest a significant degree of experimental control in the
growth of nanoscale superlattices.
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