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SUMMARY

In this paper, we propose a model for medical costs recorded at regular time intervals, e.g. every
month, as repeated measures in the presence of a terminating event, such as death. Prior models have
related monthly medical costs to time since entry, with extra costs at the �nal observations at the
time of death. Our joint model for monthly medical costs and survival time incorporates two important
new features. First, medical cost and survival may be correlated because more ‘frail’ patients tend to
accumulate medical costs faster and die earlier. A joint random e�ects model is proposed to account for
the correlation between medical costs and survival by a shared random e�ect. Second, monthly medical
costs usually increase during the time period prior to death because of the intensive care for dying
patients. We present a method for estimating the pattern of cost prior to death, which is applicable if
the pattern can be characterized as an additive e�ect that is limited to a �xed time interval, say b units
of time before death. This ‘turn back time’ method for censored observations censors cost data b units
of time before the actual censoring time, while keeping the actual censoring time for the survival data.
Time-dependent covariates can be included. Maximum likelihood estimation and inference are carried
out through a Monte Carlo EM algorithm with a Metropolis–Hastings sampler in the E-step. An analysis
of monthly outpatient EPO medical cost data for dialysis patients is presented to illustrate the proposed
methods. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Medical cost data are collected routinely by hospitals, disease registries, and health insur-
ance companies. The statistical analysis of medical cost data has gained increasing interest
recently. For example, models for medical cost data provide estimates that can be used in
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cost-e�ectiveness analyses, which in turn inform policy makers to maximize health bene�ts
for individuals and society.
The statistical analysis of medical cost data at the patient level requires �exible models

in order to capture the complex relationship between costs and other events (such as death)
during the follow-up period. However, the analysis of medical cost and survival time is
often complicated by censoring due to incomplete follow-up where neither the survival time
nor the remaining medical cost record is observed after censoring. For example, standard
right-censored analysis methods (e.g., the Kaplan–Meier estimator) of the cumulative lifetime
medical cost are invalid because the lifetime cost is not independently censored even when
there is independent censoring of the survival time [1].
A variety of methods have been developed to analyse medical cost data solely. Lin et al.

[1] studied the non-parametric estimator for the mean total cost. They divided the study time
period into a small �xed number of intervals, then estimated the mean total cost by summing
up the sample mean of the total costs from those observed to die within each interval multi-
plied by the Kaplan–Meier estimate for death probability in that interval. Cost history data can
be used to derive the mean total cost in a similar way. Zhao and Tsiatis [2] formulated the
survival function of quality-adjusted lifetime (QAL) which, akin to medical cost, is a random
transformation of survival time. They used the inverse probability of censoring weighting tech-
nique (IPCW [3]) to obtain an unbiased non-parametric estimate of survival function of QAL.
Similarly Bang and Tsiatis [4] developed a non-parametric estimate for lifetime cost by IPCW
technique and studied its e�ciency. Their partitioned estimator was later simpli�ed by Jiang
and Zhou [5] with a bootstrap con�dence interval proposed for the mean of medical costs.
Lin [6] proposed a proportional means model for complete cost history data, but it

required that the censoring time is known or is completely random. Lin [7] also developed a
linear regression model which assumes additive covariate e�ects on the mean medical cost.
IPCW method was used to correct the bias induced by informative censoring of the medical
cost. Both papers targeted the semi-parametric modelling of marginal mean=rate of total med-
ical cost, while the relationship between survival time and cost is not speci�ed. They made
rather restrictive assumptions on the relationship between lifetime cost and covariate infor-
mation. Jain and Strawderman [8] enhanced the Hazard Regression (HARE) model [9] with
IPCW technique, resulting in a more �exible model for the lifetime cost distribution. Lin [10]
summarized the regression analysis of incomplete medical cost data. He also proposed a
pattern mixture approach which models the conditional means of cost accumulation given
speci�c survival patterns.
The joint modelling of survival and medical cost is often important, as for example, in

studies of cost-e�ectiveness. Fine and Gelber [11] proposed a joint regression analysis of sur-
vival and QAL and estimated the parameters by U-statistics. Huang [12] devised a calibration
regression model for survival time and lifetime medical cost. Both papers assume a linear
covariate e�ect on survival time and QAL=lifetime medical cost in a semi-parametric fashion
with unspeci�ed bivariate distribution for the error terms.
In this paper, we proposed a joint model for monthly medical costs and survival time that

simultaneously accounts for several features that have not been accounted for in previous mod-
els. Speci�cally, the medical costs history data are treated as repeated measures in the presence
of death and censoring. The model accounts for patterns of cost related to both time measured
since entry and to time measured relative to death. The model can include time-dependent
covariates, allowing estimates of the costs associated with transient e�ects. The model also
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accounts for potential correlation between monthly medical costs and survival time, which
could occur if more ‘frail’ patients tend to have a higher death rate as well as a larger
monthly medical cost.
The problem of joint modelling of repeated measures and time-to-event data has been

addressed by several authors, e.g., References [13–18]. In our paper a shared random e�ect is
incorporated in the model to induce the correlation among costs in di�erent months for each
patient in addition to that between costs and survival time.
Another feature in our model allows an additive component in medical costs to be present

during a known �xed time interval before death. Such patterns have often been observed in
medical practice but are typically not fully studied in published statistical papers. For example,
Lin et al. [1] and Bang and Tsiatis [4] both considered a death cost but the extra cost was
limited to the �nal year or month (which could overlap two intervals) prior to death.
Faucett et al. [19] and Pauler and Finkelstein [20] also considered a change point in the

joint modelling of repeated measures and time-to-event data, both in the Bayesian setting.
They assumed a parametric distribution for the change point measured as time from entry.
However, the patterns of medical costs often appear to be more closely linked to the death
time than to the entry time. Descriptively, our model accounts for the pattern of the cost
change in time measured retrospectively from death rather than prospectively from entry.
In the next section, we present the joint random e�ects model. In Section 3, we develop

corresponding estimation methods with an EM algorithm. A method is proposed that links
costs to both time since entry and time prior to death. We then assess the operating charac-
teristics of the proposed inference procedures by simulations in Section 4. In Section 5, we
apply our method to medical cost data of kidney patients on dialysis. Concluding remarks are
given in Section 6.

2. MODEL

Let Ci and Di be the independent censoring and death times for subject i (i=1; 2; : : : ; n),
respectively. Write Xi= min(Ci; Di) as the follow-up time and �i= I(Di6Ci), where I(·)
is the indicator function. Let Yi(t)= I(Xi¿t) be the at-risk indicator. Denote by NDi (t)=
I(Xi6t;�i=1); 0¡t¡∞, the counting process for the death process. The death hazard at
time t is �(t). Denote by Ui(j) the incremental medical cost (possibly transformed, e.g. log
transformation) accumulated during the jth month, where j=1; 2; : : : ; ni, with ni= �Xi� being
the integer month death time for subject i, where � � is the �oor function. We ignore the
medical cost for the �nal partial month by taking the �oor of Xi for convenience. De�ne
by constant b the known time ahead of death when the medical cost changes. Let �i be
the random e�ect with a parametric distribution which a�ects both the medical cost and
the survival rate. De�ne by Zi(t) the covariate vector (possible external time-dependent) at
time t. We assume both Zi(·) and Ui(·) change only at discrete time point 1; 2; : : : ; ni, thus
Zi(t)=Zi(j) for t ∈ [j − 1; j). Assume censoring is independent of death time. The joint
model of medical cost and death for subject i is written as

Ui(j) = �j + �TZi(j) + �i + f(j; Di; �; b) + eij (1)

�i(t) = �0(t) exp(�TZi(t) + ��i) (2)
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where �; �, � and � are unknown parameters, respectively. �j is the unknown baseline monthly
medical cost, which can be used to model medical cost pattern after entry. For simplicity
f(j; Di; �; b) is assumed to be a known function and depends on j and Di only through
Di− j, which is the time axis relative to death. As an example, for step rise with jump size �,
f(j; Di; �; b)= �I(0¡Di − j¡b) for the medical cost after change point and f(j; Di; �; b)=0
if Di − j¿b. It may also involve random e�ects, as shown in the application. Write Ui=
{Ui(1); Ui(2); : : : ; Ui(ni)} as the observed medical cost history vector up to month ni. Assume
eij

iid∼N (0; �2e) are independent of (�i; Ci; Di). The ‘likelihood’ for the data Oi ≡ {Ui; Xi;�i}
given random e�ect �i is

L(Ui; Xi;�i|�i) =
ni∏
j=1

L(Ui(j)|Xi;�i ; �i)L(Xi;�i|�i)

=
1

(
√
2	�e)ni

exp

[
− 1
2�2e

ni∑
j=1
e2ij

]
[�0(xi) exp(�TZi(xi) + ��i)]�i

× exp
[
−
∫ xi

0
exp(�TZi(t) + ��i) d�0(t)

]
(3)

where xi is the realization of Xi and

eij=Ui(j)− �j − �i − �TZi(j)− f(j; Di; �; b)
Note that some of eij’s are not known because Di is unobserved for the censored subjects.

3. ESTIMATION AND INFERENCE

The estimation of parameters in (3) is complicated because some of the factors cannot be
evaluated due to the unknown Di for censored subjects. Integrating Di out of (3) is alge-
braically complicated and does not have a closed form. Furthermore, the empirical survival
function cannot be integrated when the last death event is censored and the death hazard is
unde�ned after that time without further parametric assumption on the baseline hazard �0(t).
To handle this dilemma, we propose a simple ‘turn back time’ or ‘re-censoring’ method for the
medical cost of censored observations, which excludes the unknown factors in the likelihood.
We can move back the censoring time for medical cost by b months so we only use

the cost history {Ui(j); Ci − j¿b} for censored subjects. From (3), we exclude factors for
{Ui(j); Ci − j6b} for censored subjects, which involve the unobserved value of f(j; Di; �; b).
Note we keep the censoring time for the survival model (2) unchanged. Write n∗

i =�ini +
(1 −�i)(�Xi� − b) as the new number of follow-up months for medical cost. Similarly, we
write the new censored medical cost vector as U ∗

i . Then we can obtain the joint log-likelihood
for the new observed data O∗

i ≡ {U ∗
i ; Xi;�i} and �i as

l∗ ≡ log L(U ∗
i ; Xi;�i ; �i)

=
n∗
i∑

j=1
[log L(Ui(j)|Xi;�i ; �i) + log L(Xi;�i|�i) + logp(�i)] (4)
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where p(�i) is the density function of �i. The detailed form can be obtained by replacing ni
by n∗

i in the corresponding terms of (3).
Next we will show that the estimating equation for the likelihood (4) is unbiased despite

the exclusion of part of the medical cost data. We only consider the parameters in cost model
since the survival data remain the same for the parameter estimates in (3) with the usual
de�nition of independent censoring. As an example, the score equation for � in (4) given �
can be written as

@l∗

@�
=

n∑
i=1

@l∗i
@�
=
1
�2e

n∑
i=1

n∗
i∑

j=1
eijZi(j) (5)

To demonstrate that the conditional expectation of (5) is 0, we have

E
(
@l∗i
@�

∣∣∣∣ �i
)
=
1
�2e
EX;�E

[
n∗
i∑

j=1
eijZi(j)|Xi;�i ; �i

]

=
1
�2e
EX;�

n∗
i∑

j=1
E[eijZi(j)|Xi;�i ; �i]

= 0

The result follows since �i; �i= I(Di6Ci) and �Xi�, thereby n∗
i , are all independent of eij.

The unbiasedness of other parameters in the cost model can be justi�ed similarly.
We assume that �i

iid∼N(0; �2�). Since �i’s are unobserved, it is natural to use EM algorithm
to obtain the MLE for parameters 
≡ {�; �; �; �; �j; �2e ; �2�}. In the M-step we can easily take
the �rst and second derivatives of l∗ with respect to 
. For completeness, we report all score
components and second partial derivatives in Appendix A.
Since there is no closed form for the density of f(�i|O∗

i ) in the E-step, Metropolis–Hastings
(M–H) algorithm (Appendix B) can be used to generate M random numbers �(m)i (m=1; : : : ; M)
for the estimation of the expectation of the su�cient statistics involving frailties. Examples
are Ê(�i|O∗

i )= (1=M)
∑M

m=1�
(m)
i and Ê(exp(��i)|O∗

i )= (1=M)
∑M

m=1 exp(��
(m)
i ).

We use Louis’ formula [21] to obtain the information matrix for observed data likelihood.
The observed information matrix I(
̂) is

I(
̂)=−Ê
{
@2l∗

@
 @
′

∣∣∣∣O∗; 
̂
}

− Ê
{
@l∗

@

@l∗

@
′

∣∣∣∣O∗; 
̂
}
+ Ê

{
@l∗

@


∣∣∣∣O∗; 
̂
}
Ê
{
@l∗

@
′

∣∣∣∣O∗; 
̂
}

All three terms are evaluated at the last iteration of the EM algorithm, when the last term
becomes zero for the MLE 
̂. The �rst two expectations can be calculated by averaging over
the corresponding terms involving M–H values.
Ad hoc measures of ‘information loss’ due to the turn back time method are de�ned for

both � and �. It is de�ned for � by the percent of months turned back (PML�, percentage
months loss for �), i.e.

PML�=
∑n

i=1(1−�i)min(b; �Ci�)∑n
i=1�Xi�

× 100 per cent
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The month lost for � results from the number of months turned back after the change point
for censored subjects among the total months observed after the change point, i.e.

PML�=
∑n

i=1(1−�i){�Ci� −max(�Di� − b; 0)}∑n
i=1(1−�i){�Ci� −max(�Di� − b; 0)}+�imin(b; �Di�) × 100 per cent

4. SIMULATION

In this section, we conduct simulations under two settings to evaluate the performance of
the proposed estimation procedures. In both settings, we consider a single binary covariate Z
which takes value 0 or 1 each with probability 1

2 . The sample size n=200. The regression
coe�cients are �=1 and �=(�0; �1)T = (0; 1)T. �j=�× j with �=0:2. � takes value 0 and
1 in setting I and II, respectively. Both �i’s and eij’s are generated from independent normal
distribution with mean 0 and variance 1 (�2� =�

2
e =1). The baseline intensity function for

death is taken to be exponential with constant 0.05. We assume there is a step rise of monthly
medical costs 3 months (b=3) before death, i.e. f(j; Di; �; b)= �I(0¡Di − j¡b). The value
of � is taken to be 1. Since death time is not in integer month, we ignore the medical cost
for the last partial month, e.g. if a subject dies at 8.5 month, the medical cost will jump at
the beginning of the �fth month. We assume a random censoring time C=6+U(0; 6) for all
subjects. Six hundred replicates are generated for each setting.
In setting I (�=0), each subject has on average 5.7 monthly medical cost records. The

censoring rate is 47 per cent. Rolling back medical cost data for censored subjects a�ects
about 25 per cent months (PML�) of all observed months, which represent 12 per cent
(PML�) of the month loss for �. For setting II (�=1), subjects have 5.4 monthly medical
cost records on average and 46 per cent of subjects are censored. About 11 per cent of the
monthly medical cost records with respect to � are lost due to the re-censoring and 26 per
cent are lost for estimation of �.
We summarize the simulation results in Tables I and II, respectively. It can be seen that

the magnitudes of the empirical biases of estimates from the shared random e�ects model are

Table I. Simulation results: parameter estimates for setting I.

Shared random e�ects model Separate marginal models

Parameter Bias SE SEM CP (%) Bias SE SEM CP (%)

�0 = 0 0.003 0.132 0.131 94.2 0.003 0.132 0.130 94.3
�1 = 1:0 −0.009 0.184 0.181 93.3 −0.010 0.176 0.174 94.5
�=0:2 −0.001 0.021 0.022 96.8 −0.001 0.020 0.021 94.6
�=1:0 0.004 0.144 0.145 95.3 0.003 0.122 0.119 93.8
�=1:0 0.019 0.222 0.210 93.2 0.010 0.219 0.209 93.0
�=0 −0.001 0.152 0.155 96.3
�2e =1:0 0.004 0.056 0.055 95.0 0.004 0.056 0.055 95.0
�2� =1:0 0.002 0.135 0.135 95.3 −0.007 0.135 0.133 94.0

Bias is the mean of the parameter estimates (based on 600 replicates) minus the true value; SE is the standard
error of the parameter estimates; SEM is the sampling mean of the standard error estimate; CP is the coverage
probability of the corresponding 95 per cent con�dence interval.
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Table II. Simulation results: parameter estimates for setting II.

Shared random e�ects model Separate marginal models

Parameter Bias SE SEM CP (%) Bias SE SEM CP (%)

�0 = 0 −0.001 0.131 0.138 95.8 −0.102 0.125 0.120 85.8
�1 = 1:0 −0.018 0.172 0.184 95.2 −0.238 0.151 0.154 64.7
�=0:2 −0.002 0.021 0.023 96.2 −0.041 0.020 0.021 48.2
�=1:0 0.023 0.140 0.153 96.7 0.478 0.127 0.123 4.0
�=1:0 0.015 0.291 0.286 96.0 −0.239 0.204 0.201 75.3
�=1:0 0.010 0.233 0.235 96.3
�2e =1:0 0.005 0.057 0.057 96.5 0.023 0.058 0.058 95.2
�2� =1:0 −0.016 0.173 0.185 94.2 −0.297 0.106 0.109 27.8

very small in both settings. The coverage probabilities are close to the nominal level 0.95.
We also observe only minor biases for variance estimates.
For comparison, we use separate marginal models for estimation assuming that medical

cost and death hazard share no random e�ect, i.e. �=0. We �t the medical cost data by the
conventional linear mixed model and survival data by a standard proportional hazards model
separately. The results are shown in the right side of each table. The separate marginal models
are correctly speci�ed in setting I but incorrectly in setting II when the dependence between
medical costs and terminal event through the shared random e�ect is present. As seen from
the tables, the separate marginal model parameter estimates in setting I are unbiased, but they
are severely biased in setting II. The coverage probabilities are very poor, especially for � in
setting II. It is clear that ignoring the dependence can result in signi�cant biases, as in the
joint modelling of repeated measures and informative drop-out [16, 17].
We also compare the results of the shared random e�ects model and the separate marginal

models in setting I. The biases in both model are very close and the shared random e�ects
model has little increase in variance. In conclusion, these two models have the same accuracy
and precision in the special case of �=0.
In both settings, the distributions for the parameter estimates are approximately symmetric

and normal (histograms not shown). Figure 1 gives the estimates of cumulative baseline
death hazard functions for months 1; 2; : : : ; 10. We draw the true cumulative baseline hazard
functions �0(t)=0:05t for comparison. It can be seen that �̂0(t) in both settings is virtually
unbiased. We also plot the estimates of �0(t) in the marginal model. As expected, �̂0(t)
in setting I obtained by the separate model is unbiased. The bias in �̂0(t) in setting II
(Figure 1(d)) arises from the fact that the separate survival model estimates the marginal
baseline death hazard rather than the hazard conditional on random e�ect.

5. APPLICATION

We apply the proposed method to medical cost data extracted from the Medicare outpatient
dialysis claims. Erythropoietin (EPO) was prescribed by doctors during most dialysis sessions
to improve regulation of patients’ red blood cell production. Medicare paid about $1:4 billion
in 2002 for outpatient EPO usage [22]. The average outpatient EPO cost per session in each
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Figure 1. The estimates and 95 per cent con�dence intervals for baseline cumulative hazard �0(t):
(a) shared random e�ects model at �=0; (b) shared random e�ects model at �=1; (c) separate marginal
model at �=0; and (d) separate marginal model at �=1. Means of the hazard functions at each
time point are denoted by dot; pointwise 95 per cent empirical con�dence interval for the estimated

cumulative baseline hazards are obtained from 600 replicates.

month paid by Medicare is of interest in this study. We suspect that patients with poor
health received more EPO prescription per dialysis session, thus incurring more costs. We
are interested in joint modelling of monthly outpatient EPO costs and survival (measured
continuously in monthly units), taking account of covariate information.
A preliminary study, using a linear regression model, analysed the outpatient EPO payment

per session (Erik Roys, personal communication). It showed an increasing pattern in monthly
outpatient EPO costs starting from 6 months prior to death. It also exhibited a monthly
outpatient EPO cost jump initially since entry time, followed by a linear drop.
In order to have a moderate sample size and to reduce the computational burden, we

arbitrarily chose the �rst 300 patients whose initial dialysis started in July 2000. The follow-up
for outpatient EPO cost and survival ended on 31 December 2002. Among them there are
159 males (53 per cent), 216 white (72 per cent), and 133 (44 per cent) patients with diabetes
as the primary cause of kidney diseases. The average and median ages at registration are
74 and 75, respectively, and 193 (64 per cent) died during follow-up. Others were censored
either before or at the end of study. The mean weight at baseline is 72 kg. The average
follow-up is 17.9 months. As before, we ignore the outpatient EPO cost of the last partial
month for convenience.
Figure 2 shows the �nal 8 month trajectories of monthly outpatient EPO costs for

15 randomly selected dead subjects (with follow-up time greater than 16 months to avoid the
high-cost initiation period). Many show an increasing pattern which starts around
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Figure 2. Monthly EPO costs for 15 randomly selected subjects with terminal event.

4–6 months before death. We thus set the change point time as 6 months before death (b=6)
and re-censored the outpatient EPO cost data for the originally censored patients 6 months
prior to their original censoring time. This reduces the average follow-up time to 15.8 months.
A covariate ‘End’ measured time prior to death for this linear pattern (up to and including
6 months). We also created a variable ‘Start’ to capture the outpatient EPO cost pattern since
entry: an initial cost increase in the second month, then a linear decreasing pattern through the
eighth month after entry. Months 2–7 were coded numerically, while months 1 and 8; : : : ; 30
were coded with value 8. Other early costs such as high cost accrued after diagnosis as in
the treatment of heart disease or cancer, can be similarly incorporated in our model.
From preliminary analysis, we only included Age (in years) and Gender (1=male,

0= female) as predictors for the death hazard. Race, Gender, and Diabetes are not signif-
icant for outpatient EPO cost in this sample.
We also noticed from Figure 2 the variation in the slopes of the outpatient EPO cost increase

before death. A random slope ! was included in the model to account for this variation. We
assume !i

iid∼N(0; �2!) is independent of both �i and eij for i=1; 2; : : : ; n. The �nal model is

Ui(j) = �0 + �1 Age + �2 Weight + �3 Start + �i + (�+!i) End + eij

�i(t) = exp(�1 Age + �2 Gender + ��i)�0(t)
(6)

As summarized in Table III, we �nd that Age and Weight are signi�cant for outpatient
EPO cost. There is a signi�cant linear increasing pattern in monthly outpatient EPO cost
before death (�̂=1:65; p¡0:0001). A linear decreasing pattern for the outpatient EPO cost
starting from the second month to eighth month after entry is also highly signi�cant
(�̂3 =−1:50; p¡0:0001). Age is signi�cant for survival. Each 1 year increase in age
elevates the death hazard by 2.7 per cent. The estimate of �, which models the correla-
tion between monthly outpatient EPO cost and survival, is 0.0099, which is highly signi�cant
(p=0:0008), suggesting that death hazard is higher for patients with larger random e�ect
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Table III. Analysis of EPO cost data for kidney patients.

Shared random e�ects model Separate marginal models

Estimate SE p-value Estimate SE p-value

For medical cost
Intercept 82.5 21.3 0.0001 67.6 24.0 0.005
Age −0.79 0.30 0.009 −0.45 0.25 0.07
Weight 0.60 0.19 0.001 0.41 0.15 0.006
Start −1.50 0.16 ¡0:0001 −1.55 0.16 ¡0:0001
End 1.65 0.35 ¡0:0001 1.77 0.37 ¡0:0001
�2e 587 16 541 12
�2� 787 103 1150 128
�2! 6.57 1.83 12.0 2.23

For survival
Age 0.027 0.010 0.006 0.032 0.010 0.0008
Gender 0.19 0.15 0.21 0.18 0.15 0.22

� 0.0099 0.0030 0.0008

(or higher monthly medical costs). Ignoring this correlation and �tting the data by separate
marginal models produces biased estimates, as shown in the right-hand side of Table III. For
example, the e�ects of Age and Weight in the marginal model weaken substantially. In partic-
ular, Age is only marginally signi�cant in the marginal model (coe�cient =−0:45; p=0:07),
while in the joint model it becomes signi�cant (coe�cient =−0:79; p=0:009).
A random slope is present in both the shared random e�ects and the separate marginal

models as the 95 per cent con�dence interval for �̂2! is 6:6± 3:6 in the shared random e�ects
model and 12:0 ± 4:4 in the separate marginal models. In the shared random e�ects model,
the magnitude of �̂!=2:56 relative to �̂=1:65 suggests that although the trend in pre-death
costs is increasing on average, it varies substantially from person to person. We also notice
that random variation for both � and ! is reduced in the shared random e�ects model.
One aspect of checking the adequacy of the adopted model is to evaluate the estimated

cumulative death hazard functions for various strati�cations. As an example, we divided the
subjects into two age groups: Younger (675 years) and Older (¿75 years). We �tted the
age-strati�ed models with the same adjusting variables as in (6). A plot of log �̂0(t) versus
log t is displayed in Figure 3. The parallelism of the curves suggests that the proportional
hazards model for age is a very good approximation, after adjustment for other covariates.
We also show the residual plot for age in Figure 4. There is no apparent pattern in the

residual with respect to age. Further model checking techniques such as likelihood ratio tests
to compare our model with more complex models can also be used to check the validity of
our model.
Dialysis clinicians suggested that outpatient EPO costs might be elevated in months

during which patients are hospitalized. To model this, we carried out an additional analy-
sis that included a dichotomous time-dependent indicator of hospitalization in the cost model.
The results were virtually unchanged from those reported in Table III and also showed a
higher outpatient EPO cost ($4:62; p¡0:0001) in months of hospitalization, as was suggested
by the clinicians.
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Figure 3. Model checking: cumulative baseline hazard log �0(t) for age e�ect
(—, All; · · ·, Younger; - - -, Older).
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Figure 4. Residual plot for age in EPO cost model.

6. DISCUSSION

In this paper, we propose a shared random e�ects model for monthly medical costs and
survival time. We introduce a simple ‘turn back time’ method to obtain unbiased parameter
estimates for medical cost when there is a cost component during a �xed time interval prior to
death. Our simulation shows that the separate marginal models for medical costs and survival
can yield very biased results while our models apparently yield consistent results.
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Our model is a descriptive model which simultaneously models death and serial cost
measures on two time scales: time since entry and time before death. As shown in model
(1), it allows us to incorporate cost change pattern both after diagnosis (by �j) and before
death (by the function f(·)), the latter a novel feature to model the e�ect of time before
death on medical cost. The model can also include time-dependent covariates (by Zi(j)),
yielding estimates of the costs associated with transient conditions such as hospitalization.
The resulting estimates for the joint distribution of costs and mortality will be useful for a
variety of descriptive and inference purposes. In the example shown, it brings new insight on
the relationship of medical costs and death. It can also be generalized to the joint analysis of
death and other positive scaled measures, such as dose or utilization.
Our model is not designed to give results for a single cost e�ectiveness measure. However,

the resulting estimates may be used for more detailed evaluations of the e�ectiveness of
medical care. In particular, the costs associated with death (or entry into care) may be useful
for evaluating the e�ectiveness of medical care given at the end of life (or at the initiation
of care). Finally, the estimate resulting from the time-dependent covariate may be useful for
evaluating the e�ectiveness of episodic treatment methods.
Although our original model speci�es a change in medical costs at some �xed known time

b, in many practical situations only an upper bound on the duration of the exceptional pattern
of cost before death is required for ‘re-censoring’. A variety of models can be used for this
pattern, including random e�ects model in our example, so long as the re-censoring exceeds
the maximal duration of the pattern. This upper bound on the change point time can be
approximated by preliminary analysis on the uncensored patients. Subject matter knowledge
may also help to �nd the bound. If the bound is chosen too small or the functional form is
incorrect, the resulting estimates will be biased. However, if the bound chosen is too large
or the functional form for f(·) is overly �exible, there will likely be e�ciency losses due to
loss of information to re-censoring or due to the large number of parameters in f(·).
In our model, we make a simple assumption that the monthly medical costs can be

transformed to have a normal distribution, most often by log transformation. Other transfor-
mations, e.g. Box–Cox transformation, may be used for a more thorough investigation. In our
application, a portion of the observations have zero cost and non-zero cost observations are
highly skewed to the right. Zhou [23] studied the inference on population means for lifetime
health care costs with such a non-normal distribution. For convenience, we assume the frailty
(e�i) distribution as log normal. Gamma frailty distribution has been adopted by many other
authors. However, Pickles and Crouchley [24] and O’Quigley and Stare [25] showed that for
estimation and testing of regression coe�cients, it is not critical on the choice of paramet-
ric frailty distribution, suggesting the robustness of frailty models. Further model assessment
and sensitivity analysis tools can be found in References [26] and [27, Chapter 31] for joint
longitudinal and drop-out data. Dobson and Henderson provided various informal graphical
diagnostic tools for preliminary model evaluation. Molenberghs and Verbeke also described
the local in�uence approach to identifying the in�uential subjects. It will be an interesting
topic to adapt these tools to our model setting.
Faucett et al. [19] used Multiple Imputation technique [28] to reduce the variation in param-

eter estimates and provide robustness to model mis-speci�cation. Multiple imputation exploits
the entire observed medical cost history but may be computationally intensive and involve
more complicated models. The ‘turn back time’ method is simpler but the information loss
on medical cost history may be high for heavily censored data. However, in the medical cost
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setting, data can be extracted easily with little expenses from large database of observational
studies (e.g. hospital records or medicare claims). The information loss may not be a big
burden for the analysis in practice.
It is straightforward to generalize our model (1) to the common mixed model form

U=�TZF + �TZR + f� + e

where ZF and ZR are covariate vectors (possible time-dependent) for �xed and random
e�ects, respectively. Similarly we can extend (2) to include interaction terms between ran-
dom e�ects and other covariates. The corresponding likelihood and estimation equations are
readily adapted with only a minor modi�cation for the (expected) functions of random
e�ects. In this paper, we assume a simple covariance structure for the error term e but
generalization to more complicated form such as AR(1) is possible, although more computa-
tionally demanding. f� may be estimated non-parametrically, e.g. by splines. More complex
joint models of repeated measures and event time data may be adapted to our setting as well.
In the estimation process, we use ML instead of REML. These two methods are asymptot-

ically equivalent and ML is relatively easy to implement in our setting. If the sample size is
small, REML is preferred to reduce the bias in the variance estimate [29].
We implicitly assume the repeated measures (medical costs) and survival are positively

correlated (�¿0). But our model works well when they have a negative association (simulation
results not shown), which might arise if the repeated measures (e.g. exercise time each week)
are protective against the terminal event.
In one analysis, we included hospitalization as a time-dependent covariate in the outpatient

EPO cost model, which demonstrates that time-dependent covariate could be analysed. Time-
dependent covariates, such as hospitalization, can be interpreted as outcome of treatment. The
model with such intermediate outcome as predictors is often useful for explaining mechanisms
that lead to variation in costs and mortality. Liu et al. [30] proposed a shared frailty model
for recurrent events (such as hospitalizations) and a terminal event. A joint model of monthly
medical costs, hospitalizations and death time may be of great interest for further study.
The random e�ect for the slope in the application suggests that the increase in monthly

medical costs, prior to the death time, varies among subjects. However, the computation was
less stable when the random slope e�ects were included. Further study on computational
algorithms may help to stabilize the estimation. Also, presence of both random e�ects of �
and w makes the computation highly demanding in memory due to the large number of draws
by M–H algorithm in the E-step. This is especially a problem in R which is the language
we used in carrying out the developmental and illustrative work on our model. It is expected
that an implementation with a computing language that used memory more e�ectively would
make it possible to implement the model in a much larger sample.

APPENDIX A

In the M-step, the score equations for {�; �; �0(·); �2e ; �2�} are

@l∗

@�
=

n∑
i=1

[
Zi(xi)�i −

∫ ∞

0
Yi(t)Zi(t) exp(�TZi(t))Ê(exp(�i�)|O∗

i ) d�0(t)
]
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@l∗

@�
=

n∑
i=1

[
�iÊ(�i|O∗

i )−
∫ ∞

0
Yi(t)Ê(�i exp(�i�)|O∗

i ) exp(�
TZi(t)) d�0(t)

]

@l∗

@�0(xi)
=

�i

�0(xi)
−

n∑
k=1
Yk(xi) exp(�TZk(xi))Ê(exp(�k�)|O∗

k )

@l∗

@�2e
=− N

2�2e
+

n∑
i=1

n∗
i∑

j=1

e∗2ij
2�4e

@l∗

@�2�
=− n

2�2�
+
∑n

i=1Ê(�
2
i |O∗

i )
2�4�

where N =
∑n

i=1

∑n∗
i
j=11 and

e∗ij=Ui(j)− �j − E(�i|O∗
i )− �TZi(j)− f(j; Di; �; b)

The Breslow-type baseline hazard estimate for �0(·) can be written as

�̂0(xi)=
�i∑

kYk(xi)Ê(exp(�i�)|O∗
k ) exp(�TZk(xi))

Denote by ḟ(j; Di; �; b) the �rst derivative with respect to �. For coe�cients �= {�; �; �j}
in model (1), de�ne xij= {Zi(j); ḟ(j; Di; �; b); ij}T as the overall ijth row of the covariate
matrix X, where ij is the indicator vector for month with the jth element to be 1 and other
elements to be 0. Then we can write the score for � as

@l∗

@�
=
1
�2e

n∑
i=1

n∗
i∑

j=1
e∗ijxij

The second derivatives for (�; �) are

@2l∗

@�2
=−

n∑
i=1

∫ ∞

0
Yi(t)Zi(t)⊗2 exp(�TZi(t))Ê(exp(�i�)|O∗

i ) d�0(t)

@2l∗

@�2
=−

n∑
i=1

∫ ∞

0
Yi(t)Ê(�2i exp(�i�)|O∗

i ) exp(�
TZi(t)) d�0(t)

and

@2l∗

@�@�
=−

n∑
i=1

∫ ∞

0
Yi(t)Zi(t)Ê(�i exp(�i�)|O∗

i ) exp(�
TZi(t)) d�0(t)

where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT.
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More components of the information matrix are given as follows:

@2l∗

@�2
=− 1

�2e
XXT

@2l∗

@(�2e)2
=
N
2�4e

−
n∑
i=1

n∗
i∑

j=1

e∗2ij
�6e

@2l∗

@(�2�)2
=

n
2�4�

−
∑n

i=1Ê(�
2
i |O∗

i )
�6�

@2l∗

@�0(xi)2
=− �i

�0(xi)2

@2l∗

@� @�0(xi)
=−S(1)(�; xi)

@2l∗

@� @�0(xi)
=−S(1)(�; xi)

with

S(1)(�; t)=
n∑
k=1
Yk(t)Ê(exp(�k�)|O∗

k )Zk(t) exp(�
TZk(t))

and

S(1)(�; t)=
n∑
k=1
Yk(t)Ê(�k exp(�k�)|O∗

k ) exp(�
TZk(t))

All other o�-diagonal terms are zero.

APPENDIX B

M–H algorithm is taken to generate the random number chain �(m)i (m=1; : : : ; M) of f(O∗
i |�i)

due to the di�culty of sampling directly from

f(�i|O∗
i )=

f(O∗
i |�i)f(�i)
f(O∗

i )
=

f(O∗
i |�i)f(�i)∫

f(O∗
i |�i)f(�i) d�i

At the kth E-step, the M–H chain starts with an initial value �(1)i . Then we can proceed
iteratively. After obtaining �(m)i , a new value �̃ is sampled from gamma frailty with variance
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(k). An independent random number u is drawn from U(0; 1). �(m+1)i is obtained as

�(m+1)i =

⎧⎪⎨
⎪⎩
�̃ if u6min

(
1;

f(O∗
i |�̃)

f(O∗
i |�(m)i )

)

�(m)i otherwise

In the above formula f(O∗
i ) is cancelled in the ratio.
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