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INTRODUCTION

At night, the visibility distance of pedestrians clad in dark clothing is less than one-third

the required stopping distance for a vehicle traveling 55 mph (88 km/h), and approximately

one-half the required stopping distance for a vehicle traveling 35 mph (56 km/h) (Leibowitz

& Owens, 1986).  The goal of increasing the detection of pedestrians at night can be

achieved, in part, through the use of retroreflective markings on pedestrian garments (vests,

shoes, dangle tags, etc.).  Previous research to improve the visibility distance of pedestrians

through the use of retroreflective markings has dealt largely with the effects of

retroreflective power, marking size, or location of the marking on the pedestrian or cyclist.

(See Luoma, Schumann, and Traube [1995] for a brief overview of previous research.)

However, more recently several studies have begun to concentrate on the effect that the color

of these materials has on visibility distance and perceived brightness.

It has been previously demonstrated in several studies that photometrically matched,

chromatic stimuli are perceived to be brighter than achromatic (white) stimuli.  Furthermore,

the brightness ratings follow the Helmholtz-Kohlrausch U-shaped function of dominant

wavelength.  The Helmholtz-Kohlrausch effect was first described in early German

literature as Farbenglut (color glow) and has also been referred to as florence (Wyszecki,

1986).  The Helmholtz-Kohlrausch effect is defined as “change in brightness of perceived

colour produced by increasing the purity of a colour stimulus while keeping its luminance

constant within the range of photopic vision” (Commission Internationale de l'Eclairage

[CIE], 1988).  The Helmholtz-Kohlrausch effect is believed to be caused by a contribution

of a chromatic component of a stimulus to its perceived lightness (Nayatani, 1997).

However, the level of contribution is different for differing hues (Nayatani, 1998).

In a study conducted by Zwahlen and Yu (1991), designed to address retroreflective

sign recognition, the task of participants was to recognize and identify retroreflective stimuli

of various shapes and colors (i.e., name the shape and name the color of the stimulus).  The

authors reported that for this recognition task, “highly saturated colors are superior

stimuli…under automobile low-beam illumination.”  However, the ability to recognize and

identify the color of a stimulus may not translate into perceived brightness or the distance at

which something can be detected.  More recently, four studies have examined the

relationships among color, perceived brightness, and detection distance of retroreflective

stimuli (Schumann, Sivak, Flannagan, Traube, Hashimoto, & Kojima, 1996; Venable &

Hale, 1996; Sayer, Mefford, Flannagan, Sivak, Traube, & Kojima, 1998; and Marsh &

Tyrell, 1998).
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Venable and Hale (1996)

Venable and Hale (1996) performed a field experiment to evaluate the effect of color on

the perceived conspicuity of retroreflective materials.  The researchers used experimentally

derived data in order to develop a dimensionless color correction factor (FC) that would

relate the perceived conspicuity of colored retroreflective markings to customary

measurements of luminance.  For each colored stimulus, the color correction factor was

calculated by dividing the luminance of a chromatic marking by the luminance of an

achromatic marking that was matched for conspicuity.  In order to develop a color

correction factor that extended to colors other than those tested, the authors hypothesized

that conspicuity would in general be related to the difference of a color from black in a

uniform color space (UCS).  They used their experimentally derived color correction factors

to investigate the predictive value of three commonly used approximations to UCS.  One of

those spaces is closely related to the formula for color correction factors that is

recommended in American Society for Testing and Materials (ASTM) standard E 1501, so

the authors also compared their experimental results to the ASTM values.  They concluded

that either the UCS itself or the closely related ASTM values gave a satisfactory account of

their conspicuity results.  They suggested that brightness may be more a function of total

color difference in a UCS than luminance difference, and that equal-conspicuity judgments

might be used to develop a new UCS that more closely approximates the true luminous

efficiency of retroreflective stimuli.  The researchers further concluded that standard

photometric measurements alone did not accurately predict the visual effectiveness of

colored retroreflective targets.

Schumann, Sivak, Flannagan, Traube, Hashimoto, and Kojima (1996)

In the field study by Schumann et al. (1996) that evaluated the effect of color on

perceived brightness of retroreflective materials, the researchers used five chromatic stimuli

and one achromatic stimulus, two levels of retroreflective power, two levels of area, and two

levels of ambient illumination.  Magnitude estimation was employed to obtain subjective

assessments of perceived brightness for the colored retroreflective stimuli.  The authors

reported a significant effect of color on perceived brightness, with the chromatic stimuli (red,

orange, yellow, green, and blue) being judged significantly brighter than the achromatic

stimuli (white).

Schumann et al. investigated the linear relationship between the calculated ASTM

E 1501 color correction factors and color correction factors obtained from their

experimental results.  They reported a high r2 (0.94) between the calculated and

experimentally obtained color correction factors.  Furthermore, they used the experimental
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correction factors from the work by Venable and Hale (1996) and arrived at similar results

(i.e., there existed a reasonably good correlation between both sets of color correction

factors and the mathematically derived values using ASTM E 1501).

Schumann et al. concluded that chromatic retroreflective stimuli were perceived to be

brighter than photometrically matched achromatic stimuli, that the brightness ratings closely

followed a U-shaped function of dominant wavelength similar to that of the Helmholtz-

Kohlrausch effect, and that the calculated color correction factors were in good agreement

with the mathematically derived correction factors from ASTM E 1501.

Sayer, Mefford, Flannagan, Sivak, Traube, and Kojima (1998)

A recent study by Sayer et al. (1998) specifically addressed the relationship between

retroreflective marking color and the visibility distance of pedestrians.  A nighttime field

experiment was conducted in which participants, seated in a stationary vehicle with its low-

beam headlamps on, indicated when a moving pedestrian, wearing colored retroreflective

markings on her legs, was just detectable.  Independent variables included color (red, yellow,

green, and white), retroreflective power, and participant age.

This experiment demonstrated that the color of a retroreflective marking does affect the

distance at which a moving pedestrian can be detected.  Specifically, all three chromatic

stimuli examined (red, yellow, and green) were detected at significantly greater distances

(ranging from 7 to 10%) than the achromatic stimulus (white).  Additional modeling

determined that for a white stimulus to be detected at the same distance as a red, yellow, or

green stimulus, it would need to be 26 to 44% higher in retroreflective power (specific

intensity per unit area [SIA]).

The results were also consistent with the Helmholtz-Kohlrausch effect, in that a linear

relationship was found to exist between the color correction factors determined in the

experiment and those predicted by ASTM E 1501.  However, the exact relationship between

the experimental results and those determined by the ASTM color correction factor

appeared to be affected by the nature of the experimental task.  Specifically, despite the fact

that similar materials were used, differences existed in the slopes of the linear relationships

between the results of Schumann et al. and Sayer et al. studies.

Marsh and Tyrell (1998)

Unlike the previous studies, a field study of perceived brightness and detectability

conducted by Marsh and Tyrell (1998) did not attempt to control for the retroreflective

power of the stimuli either physically or analytically.  The authors hypothesized that the

influence of retroreflective stimulus color on detection distance reported by Sayer et al. (i.e.,
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the Helmholtz-Kohlrausch effect) would be negated by the retroreflective power differences

that normally result from filtering performed in order to achieve varying hues.

Marsh and Tyrell reported that there were statistically significant, linear relationships

between retroreflective power on one hand, and perceived brightness and detectability on the

other hand.  Regression analyses revealed that retroreflective power accounted for 87 to

95% of the variance for the perceived brightness and detectability tasks, respectively.  As a

result, the authors suggested that under “more typical” conditions in which retroreflective

power is not controlled, large retroreflective power differences between varying hues would

dominate chromatic differences.

The Objectives of the Present Study

The present study investigates whether the color of retroreflective materials that are

controlled for retroreflective power, such as those used by Schumann et al. (1996) and

Sayer et al. (1998), affects performance in a detection task for both color normal and color

deficient participants.  The results of the present study will be used to calculate color

correction factors that will then be compared with the color correction factors reported by

Schumann et al. and Sayer et al., and the mathematically derived values from ASTM E

1501.  In addition to having the stimuli presented in the center of the field of view, as has

been the case in previous studies, the stimuli were also presented in the participants’

peripheral field of view.
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METHOD

Participants

Twenty paid participants, ten color normal and ten color deficient, took part in this

study.  All of the participants were male.  Participants were recruited from a list of

individuals maintained by UMTRI, as well as by advertisements placed in local newspapers.

The color vision of all participants was screened using pseudoisochromatic plates (Ichikawa,

Hukami, Tanabe, & Kawakami, 1978) under controlled lighting conditions (Macbeth

Examolite  D7500).  Ten participants were identified as being color deficient.  These

individuals were classified as either deutan (six participants) or protan (four participants) on

the basis of the color screening.  (The use of pseudoisochromatic plates is regarded as

sufficient only for the detection and general classification of color deficiencies, not for

assessing the degree of individual deficiencies, as would be necessary, for example, to

classify a participant as protanopic or protanomalous.)  The range of ages for the color

normal participants was 22 to 73 years (mean = 48.3 years), and for the color deficient

participants, it was 26 to 74 years (overall mean = 43.1 years, deutan mean = 43.8 years,

protan mean = 42.0 years).  For the purpose of analyzing the effect of participant age,

participants were divided into three age groups of approximately equal size: young (n  = 7,

mean age = 26.3), middle-aged (n = 7, mean age = 44.4), and older participants (n  = 6,

mean age = 69.8).

Task

Participants were asked to detect a pedestrian walking along a road, both toward and

away from them, as they were seated in a stationary vehicle.  In one condition, the pedestrian

was located in the participant’s central field of view (central stimulus).  In another condition,

participants visually fixated on a point 105 cm above the road surface, 40° to the left of their

central field of view, resulting in the pedestrian being located in the participants peripheral

field of view (peripheral stimulus).  The point at which participants visually fixated was a

single pale-blue (CIE 1931, x = 0.275, y = 0.311) light emitting diode (LED) mounted

against a matte-black background at a distance of 2.8 m from the participants (see Figure 1).

There were no other light sources present in the vicinity.  The position of this fixation point

was selected in order to simulate a driver looking either at the driver’s side rearview mirror

or out the side window (i.e., looking for a building address or street sign).  The order of

presentation of the pedestrian location was balanced across participants.  The exact wording

of the instructions to participants was as follows:
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LED

2.8 m

40°

Sight line

Figure 1.  A diagram of the experimental setup.
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Your task is to indicate when you see a pedestrian walking along the side of the
road.  A person will be walking toward the car in half of the trials and away from the
car in the other half of the trials.  The pedestrian will always be marked with
retroreflective markings on the lower extremities.  Because of this, it will probably
be the case that the retroreflective marking will be the first thing that you see as she
walks toward the car, and the last thing that you see as she walks away from the car.
Your task is to honk the car’s horn when that person appears or disappears from
view.  For example, if the person is walking toward your vehicle, she will start at a
distance far beyond your ability to see her.  When you are first able to detect the
retroreflective marking, honk the horn.  During the trials that the person is walking
away from your car, honk the horn when the retroreflective marking is no longer
visible.  Please respond as quickly as possible after you see the pedestrian in the
trials in which she is walking toward the car and equally as quickly when she walks
away from your car and disappears from view.

For the peripheral stimulus condition, the following additional instructions were read:

During this part of the experiment, we ask you to look directly at the blue light,
which is positioned to your left.  The pedestrian will continue to walk in the same
manner as before.  Your task is the same, namely to indicate by honking the horn
whenever the retroreflective marking on the pedestrian appears or disappears from
view.  Do not look directly at the pedestrian during this section of the experiment,
rather continue to look at the blue light.

Experimental site and materials

The experiment was conducted at the entrance drive to a local golf course, where the

road was straight and relatively flat, with very little traffic and no fixed lighting in the

vicinity.  Participants sat in the driver’s seat of a late-model, mid-sized sedan with its low-

beam headlamps on.  The headlamps were properly aimed, and four jacks were placed under

the car to insure that the vertical aim remained constant across participants.  Neutral density

filters (0.6 ND, 25% transmission) were placed over the vehicle’s headlamps in order to

reduce the length of road that was strongly illuminated.  This was done to accommodate the

range of stimuli to be examined and to permit the use of a moderate length of roadway (just

over 200 m).  The experiment was only conducted at nighttime with dry pavement.  There

were no light sources present in the immediate vicinity other than the test vehicle’s

headlamps (that is, no other vehicles or fixed street lighting).  The illuminance at the

retroreflective samples, as provided by the low-beam headlamps with neutral density filters,

was approximately as follows:  1.08 lux at 50 m, 0.36 lux at 75 m, 0.20 lux at 100 m, and

0.10 lux at 150 m.  The vehicle’s windshield and headlamps were cleaned at the beginning

of each evening.

Retroreflective stimuli were mounted on the lower legs of a pedestrian so that the center

of each stimulus was approximately 25 cm above the ground.  The stimuli were located on

the front of the pedestrian’s right leg for trials in which the pedestrian walked towards the
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test vehicle, and on the back of the left leg for trials in which the pedestrian walked away

from the test vehicle.  The stimuli were mounted at approximately 10° from perpendicular to

the pedestrian’s path of travel (or toward the right-hand edge of the roadway from the

participant’s perspective).  This was done in an attempt to prevent the participants from

seeing reflections from the front surfaces of the retroreflective materials.  Such reflections

would have interfered with the measurement of the effects of color, because the reflected

light would not have been selectively filtered by the colored layers of the stimuli.

Three experimenters were involved in collecting the data.  One experimenter sat in the

car with the participant in order to read instructions, ensure the participants followed the

instructions, and communicate via CB radio with the second experimenter, who acted as the

pedestrian.  The third experimenter assisted the pedestrian in changing the retroreflective

stimuli and recorded the data.

Stimuli

A total of eight stimuli were presented by combining four levels of color (green, yellow,

red, and white) with two levels of retroreflective power (low and high).  The retroreflective

stimuli measured 35 mm horizontally x 23 mm vertically (slightly larger than a reflector that

might be found on the heel of a running shoe).  At a viewing distance of 100 m, the vertical

subtended visual angle of the targets was 0.8 minutes of arc.  Table 1 displays the measured

retroreflective power of the stimuli in terms of their SIA.  The stimuli were measured at an

entrance angle ß = -4˚ and an observation angle  = 0.2˚.  Table 2 displays the CIE 1931

chromaticity coordinates of the stimuli.  Both pedestrian location and SIA were blocked

with the order of presentation of the blocks balanced across participants.  Each block lasted

approximately 10 minutes.

Table 1
Retroreflective power (SIA) for the stimuli.

COLOR LOW SIA
(cd/lux/m2)

HIGH SIA
(cd/lux/m2)

Green 31 115

Yellow 47 182

Red 51 130

White 40 154
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Table 2
CIE 1931 chromaticity coordinates (x,y) of the stimuli.

LOW SIA HIGH SIA

COLOR x y x y

Green .252 .589 .251 .601

Yellow .578 .423 .512 .421

Red .684 .312 .686 .310

White .457 .410 .462 .417

Procedure

After completing a color vision screening, participants were driven to the test site, which

was approximately 5 minutes from UMTRI.  Upon arrival, participants sat in the stationary

vehicle, parked in the right lane of the roadway.  While participants were dark adapting (for

approximately 10 minutes), instructions were read to them, and an experimenter answered

questions.

Each trial began with a darkly dressed pedestrian (dark shoes, socks, pants, and long-

sleeved shirt), starting at a distance that was far beyond the participant’s ability to see either

the pedestrian or the retroreflective stimuli.  The pedestrian then began walking toward the

participant with a retroreflective stimulus located on the front of her right leg.  The

pedestrian continued walking toward the participant until the participant honked the car horn

to indicate he had detected the pedestrian.  The pedestrian immediately noted her distance

from the participant, to the nearest meter, using markings positioned along the edge of the

roadway.  The pedestrian then walked 10 m closer to the participant, so that the

retroreflective stimulus was well within view.  The pedestrian then turned and began to walk

away from the participant, now with an identical stimulus visible on the back of her left leg.

The pedestrian continued walking until the participant honked the car horn to indicate that

neither the pedestrian nor the retroreflective stimulus was visible.  Again, the pedestrian

noted her distance from the participant to the nearest meter.  The pedestrian always walked

approximately 1.3 m from the right-hand shoulder, within the lane of the roadway,

regardless of the direction of travel.  This procedure was followed for both the central and

peripheral presentations of the stimuli.
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RESULTS

Analyses were performed separately for the central and peripheral stimulus conditions.

Because the SIA values of the stimuli used in the study were not matched across colors, the

first step was to model detection distances for the retroreflective markings as a function of

SIA.  Interpolation was used to determine, for a single SIA value, the distances at which

stimuli of different colors would be detected.  The second step was to perform an analysis

of variance (ANOVA) on these interpolated detection distances.  The final procedure was to

calculate color correction factors based on the results of this study and compare them with

previous results, as well as with mathematically derived color correction factors from the

ASTM E 1501 standard.

Interpolation of detection distances

For each participant, mean detection distance was computed for each combination of

stimulus color and SIA.  Then, individually for each participant, mean detection distance was

regressed on SIA for each combination of stimulus color and SIA.  This process was

performed separately for the central and peripheral stimulus conditions.  An ANOVA on the

slope parameters from the regression analyses revealed no significant differences among the

slopes associated with participant detection distances for stimulus color in the centrally

located stimulus condition.  Consequently, it was decided that one slope, across the four

levels of stimulus color, could be imposed on the lines fit independently for each participant

for this condition.  The mean SIA, across all colors, was then calculated (93.6 cd/lux/m2)

and used to interpolate detection distances corresponding to that single SIA value for each

color.  This was done independently for each participant.  See Figure 2 for example data.

The use of linear interpolation for results such as those in Figure 2 is a significant

simplification.  The actual function relating detection distance to SIA presumably involves

several relatively complex components, including changes in illumination from the

headlamps on the retroreflective materials due to the inverse square law; changes in the

observation angle defined by the locations of the headlamp, the retroreflective material, and

the participant's eyes; and changes in the effective intensity of the headlamps due to the

changing angular location of the retroreflective material within the beam pattern of the

headlamps.  Some empirical data suggest that detection distance is approximately linear with

the log of SIA (Olson, 1988).  We also performed the interpolations described above using

log SIA, and found that the results were not substantially different from those reported here.

The ANOVA on the slope parameters for the peripherally located stimulus condition,

however, determined that the differences among slopes for this condition were significantly
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different.  Grouping the data according to color vision capability (color normal vs. color

deficient) produced significantly different slopes for the data resulting from color normal

participants, but no significant difference in slopes for the data from color deficient

participants.  As a result, the equal-slopes model could not be used for the color normal

participants in the peripheral condition.
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Figure 2.  Example data.  A linear regression of mean detection distance on SIA was used to
generate lines for each color for each participant, with the constraint that for each participant
all four colors had the same slope.  Note that because of the equal-slopes constraint, the
model lines do not exactly overlie the actual data points.  The mean SIA across all levels of
color (indicated by the vertical dashed line) was then calculated and used to interpolate
detection distances for each color (indicated by the horizontal dashed lines), independently
for each participant.
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Central stimuli

An ANOVA was performed on the detection distances that were derived by

interpolation.  The analysis incorporated one within-subject variable (retroreflective color)

and two between-subjects variables (participant age and color vision capability).  The

ANOVA produced no statistically significant main effects and only one significant

interaction, color x color vision capability, F (6,33) = 5.768, p = .0009.  That interaction can

be seen in Figure 3.  The form of the interaction seems qualitatively consistent with

predictions based on the spectral sensitivity functions for people with normal or deficient

color vision (Hsia & Graham, 1957).  The main difference among those sensitivity

functions is that protans are less sensitive than normals or deutans to longer wavelengths

(such as were present in the red stimuli used here).  As might therefore be expected, Figure

3 indicates that the only case in which a group of participants detected a colored stimulus

(green, yellow, or red) at a shorter distance than the achromatic (white) stimulus was the

protan group with the red stimulus.  That is the only comparison between colored and white

stimuli that is not qualitatively consistent with the Helmholtz-Kohlrausch effect.  (Figure 3

also suggests that the three groups differed in overall detection distance.  For example,

averaged over all colors, the deutan group saw further than the normal group—a result that

would not normally be expected.  However, the differences among groups were not

statistically significant and therefore may well be due to chance.)

Figure 3.  A comparison of interpolated detection distances by stimulus color and color
vision capability (central stimuli).  
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Additional analysis was performed in order to determine if the trends from color normal

participants in the present study were consistent with a previous investigation (Sayer et al.,

1998).  The analysis incorporated one within-subject variable (retroreflective color) and one

between-subjects variable (participant age).  The result was a main effect of retroreflective

color for the color normal participants, F (3,21) = 4.033, p = .02, such that chromatic stimuli

(green, yellow, and red) were detected 3 to 6% farther away than a photometrically matched

achromatic stimulus (white).  This result is similar to the findings of the previous study, in

which chromatic stimuli were detected 7 to 10% farther away than the achromatic stimulus

(Figure 4).  In both instances, for color normal participants, the findings are qualitatively in

agreement with the Helmholtz-Kohlrausch effect.

Figure 4.  A comparison of interpolated detection distances by stimulus color from Sayer et
al. (1998) and the present study (color normal participants and central stimuli only).
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Peripheral stimuli

For peripheral stimuli and color normal participants, there were significant differences

among the slopes of the lines produced by regressing mean detection distance on SIA.

Consequently, equal slopes could not be assumed for the color normal participants, and the

linear regression model was only applied to the data for the color deficient participants.  An

ANOVA was performed on the detection distances that were derived by interpolation.  The

analysis incorporated one within-subject variable (retroreflective color) and two between-

subjects variables (participant age and type of color deficiency).  The results of the ANOVA

produced no statistically significant main effects or interactions for the peripheral stimulus

condition.

Stimulus location

An ANOVA was performed on the interpolated detection distances for the color

deficient participants.  The analysis incorporated two within-subject variables (retroreflective

color and stimulus location) and two between-subjects variables (participant age and type of

color deficiency).  The result of the analysis was one statistically significant main effect of

stimulus location, F (1,4) = 20.02, p = .011.  Mean detection distance, across all colors, was

significantly shorter in the peripheral condition (34.6 m) than when the stimulus was located

in the center of the visual field (102.5 m).

Age

The effect of participant age was not significant in any of the analyses performed.

Color correction factors

For the central-stimulus condition the same linear model, discussed earlier, was

employed to compute color correction factors for color normal participants only.  Color

correction factors were computed by selecting an SIA of 100 cd/lux/m2 and interpolating to

find the corresponding detection distance for white.  An SIA of 100 cd/lux/m2 was selected

because it is near the mean SIA used (93.6 cd/lux/m2), and because it produced interpolated

SIAs for the colors that were near the middle of the range of SIAs actually examined in this

experiment.  Using the detection distance for white, SIAs for the chromatic stimuli (green,

yellow and red) were found by interpolation (see Figure 5).  Lastly, color correction factors

were computed by calculating the ratio of the SIA of white (100 cd/lux/m2) to the

interpolated SIAs for each color.  This process was applied individually for each participant

and the means of each color correction factor were calculated.
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Figure 5.  The same example data and regression model shown in Figure 2.  An SIA for
white of 100 cd/lux/m2 was used to find an interpolated detection distance.  This
interpolated distance for white was then used to interpolate SIAs for each color (indicated
by the vertical dashed lines).

Table 3 shows the color correction factors (FC) for each color as obtained from the

present study, the results of Sayer et al. (1998), the results of Schumann et al. (1996), and

ASTM color correction factors (ASTM E 1501, 1992).  Figure 6 shows the fit of the FC

values from the present study, Sayer et al. (1998), and Schumann et al. (1996) with the

calculated ASTM FC values.  Excellent linear relationships exist between the values of

ASTM FC and those previously reported by Sayer et al. (r2 = .99) and Schumann et al. (r2 =

.95).  However, the relationship between the values of ASTM FC and the present study is

not as strong (r2 = .72).
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Table 3
Color correction factors (FC) for retroreflective stimuli.

Color

FC

Present Study

FC

Sayer et al.
(1998)

FC

Schumann et al.
(1996)

FC

ASTM E 1501
(1992)

Green 1.12 1.37 2.17 1.77

Yellow 1.12 1.26 1.07 1.19

Red 1.22 1.44 2.56 2.28
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Figure 6.  A comparison of color correction factors (FC) from the present study (color
normal participants), Sayer et al. (1998), and Schumann et al. (1996) with those based on
ASTM E 1501.



17

DISCUSSION

What implications do these results have for the relative photometric requirements of

chromatic and achromatic retroreflective materials?  We will first discuss briefly the

implications of the effects of the two independent variables that were introduced in this

study (color vision deficits and location within the visual field), and then discuss at more

length the implications of a certain result in this study that replicated the findings of a

previous, similar study (Sayer et al., 1998).  Our overall conclusion is that the most

important finding in the present study does not involve the new variables, but rather the

replication of the previous study—specifically, that the color correction factors derived from

the detection distances in these two studies are smaller than the values prescribed in ASTM

E 1501.  The consistency of the two detection-distance studies with regard to the values of

the color correction factors suggests that the values in ASTM E 1501 may not be valid

under all the conditions that may be of interest for pedestrian markings in the real world of

traffic.  This issue is discussed more fully below.

Effects of color vision deficits and stimulus location

The effects of color vision deficits indicate that, as might be expected from luminous

efficiency functions, the Helmholtz-Kohlrausch effect does not apply equally to all

observers.  As indicated in Figure 3, for protan observers red stimuli exhibit what might be

called a negative Helmholtz-Kohlrausch effect: red stimuli are less effective (yielding

shorter detection distances) than photometrically matched achromatic stimuli.  Using a value

of FC greater than one, as indicated in ASTM E 1501, would lead to even lower performance

for protan observers with red retroreflective material.  People with protan color vision are

not extremely common; they are estimated to constitute about 2% of males, and therefore

about 1% of the general population (Wyszecki & Stiles, 1982).  Whether retroreflective

markings should be selected to accommodate protan drivers involves potentially

complicated tradeoffs, but perhaps the primary issue is whether the goal is to ensure that

markings of various colors are matched in visual effectiveness (perhaps to ensure a

balance among the conspicuities of different colored stimuli) or to ensure that markings all

meet some minimum performance level for all drivers.  In the former case it would be

impossible to provide such a match both for people with normal color vision and people

with protan color vision at the same time; it would be necessary to decide whether to

match levels for color normals or for protans.  In that case it would probably make sense

to base stimulus levels on the larger group, color normals.  However, if the goal is to
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ensure minimum performance for all, that could be accomplished by designing for the

least-able drivers, protans.  

The overall effect of stimulus location in this study was that stimuli near the center of

vision were detected at considerably greater distances than the same stimuli when located in

the periphery of the visual field.  This is not a novel or surprising finding, but it serves as a

reminder that peripheral target detection may often be more critical than central target

detection simply because when targets are first detected in the periphery of the visual field

there will usually be minimal time to respond.  The results for the peripheral stimuli, unlike

those for the central stimuli, did not show a statistically significant effect of color.  This

outcome should not be given too much weight because it is a null result, and therefore

subject to the usual cautions about accepting null hypotheses.  The lack of an effect of color

in the peripheral condition at least puts an upper bound on the possible importance of color

in the detection task used here.  Further study could more accurately quantify the effects of

color at various peripheral angles.  However, as highlighted in the following section, in the

present experiment the effect of color was not strong even in the central condition.  If

further work is done on peripheral locations, it should probably examine circumstances in

which at least the central condition produces a stronger effect.  What those circumstances

may be is discussed in the following section.

Replication of previous detection-distance results

The central concern in this study was the relative visual effectiveness of retroreflective

materials of different colors, which we have expressed in terms of the kind of color

correction factors used in ASTM E 1501, FC.  Table 3 and Figure 6 of the present report

summarize how well each of a set of studies—including the present one—agrees with the

specific values of FC prescribed in ASTM E 1501.  The fact that the linear fits shown in

Figure 6 range from moderately good to excellent indicates that there is considerable

agreement about the general form of the color effect.  Furthermore, the fact that the fit for

Schumann et al. yields a slope reasonably close to 1 suggests that the values of FC from

ASTM E 1501 also characterize the magnitude of the color effect pretty well.  However, the

slopes of the lines fit to the present results and to the results of Sayer et al. (1998)—which

are reasonably close to each other—are both considerably smaller than 1.  This indicates

that both of these studies, although they support the relative magnitudes of the ASTM

values for different colors, suggest that the ASTM values are generally too high.  The

disagreements are not minor.  They are especially pronounced in the results from the

present study.  For example, the ASTM correction factors in Table 3 indicate that to be

equally effective, a green retroreflective marking should have photometric values lower than
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a white marking by a factor of 1.77 (i.e., the green value would be 56% of the white value).

In contrast, the results of the present study suggest that the ratio should be only 1.12 (i.e.,

the green value would be 89% of the white value).  

In discussing our earlier results (Sayer et al., 1998), we speculated that the discrepancy

with ASTM E 1501 might be caused by differences between our detection task and the

tasks used in studies that yielded results more closely in agreement with the ASTM values

(Schumann et al., 1996; Venable & Hale, 1996).  Given the essential replication of that

discrepancy by the current results (the new data actually show a somewhat greater

discrepancy), it seems appropriate to consider that possibility more seriously.  The ASTM

values are supported by subjective judgments about the relative conspicuity of stimuli that

were clearly above detection threshold (Venable & Hale, 1996).  The ASTM numbers are

also supported, at least approximately, by the results of Schumann et al. (1996), which

involved a task that should perhaps be considered very similar to that of Venable and Hale:

subjective brightness ratings of above-threshold stimuli.  In contrast, the task involved in

both the present study and Sayer et al. (1998) was to indicate the detection threshold, in

terms of distance, for a retroreflective marking on a pedestrian.  

Thus, of these four studies that explicitly investigated the effect of color on the relative

visual effectiveness of retroreflective markings, two employed subjective judgments about

above-threshold stimuli and found relatively high color correction factors (Schumann et al.,

1996, and Venable & Hale, 1996), and two employed relatively objective measurements of

detection thresholds and found relatively low color correction factors (Sayer et al., 1998, and

the present study).  At least three aspects of experimental method are consistently different

across these pairs of studies, and thus might account for the differing outcomes: (1) the

tasks involved either subjective ratings or objective performance, (2) stimuli were either at

detection threshold or well above, and (3) because of a combination of differences in

viewing distance and stimulus size, the visual angles subtended by the stimuli in the

detection-distance studies were considerably smaller than in the other two studies.  The

Schumann et al. (1996) study involved one fixed viewing distance and two stimulus sizes,

yielding subtended solid angles of 4.25 and 17.0 min2.  The Venable and Hale (1996) study

involved one stimulus size and two fixed viewing distances.  The angular sizes of the stimuli

are somewhat difficult to define because each stimulus consisted of two horizontal stripes

rather than a continuous area (devised to resemble the striped retroreflective markings that

might be used on a jacket).  If the dimensions of a rectangle just enclosing the stimuli are

used to compute the subtended solid angles, the values are 89 and 22 min2.  (If only the

combined areas of the two stripes are considered, the values are 49 and 12 min2.)  In the

present study, at the average detection distance for the central viewing condition (102.5 m),
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the stimuli subtended a solid angle of 0.90 min2.  The visual angles of the stimuli in the

Sayer et al. (1998) study were similarly small.

How might those differences be expected to influence the relative visual effectiveness of

colored and achromatic stimuli?  At least a tentative set of conclusions can be drawn from

the above studies, supplemented by one additional study that was designed to evaluate

retroreflective signing materials of various colors (Olson, 1988), and by a number of studies

that did not address retroreflective materials specifically, but which provide relevant

information about the effects of color on basic visual performance.

The study by Olson (1988) was not intended to quantify the effects of color

comprehensively, but it did provide some information about the effects of color on detection

distances for retroreflective signs.  Signs of different colors were placed at various positions

along public roads; the participants in the study indicated when they detected them; and the

distances at which the signs were detected were recorded.  The signs were square, 30 inches

(76 cm) on a side.  They had no legends, and thus appeared as blank patches of color (red,

orange, yellow, green, blue, or white).  The signs were placed at a number of locations within

three general sections of road that were chosen to provide different levels of background

complexity, including high (a busy, four-lane thoroughfare lined with many lighted

buildings and commercial signs), medium, and low (a rural, two-lane road with no fixed

lighting and only a few homes, set well back from the road).  Signs varied in SIA,

although—because color was not a major focus of the study—the numbers and ranges of

SIA levels were not the same for all colors.  Yellow was presented at the most levels (5); red

and green were each presented at two levels; and blue, orange, and white were each

presented at only one level.  Yellow was by far the color most often encountered by

participants as they traveled along the test course, and yellow and green were the only colors

presented against all three background complexities.  

Olson did not quantify his results in terms of color correction factors such as those in

ASTM E 1501, but it is possible to get some information about the effect of color by

making selected comparisons of detection distance for a few samples that had different

colors but the same SIA, and which were presented under similar road conditions.  In

general, the results suggest that color had a strong influence on detection distance, in a

pattern consistent with the Helmholtz-Kohlrausch effect.  For example, in the medium

complexity section of road, red, orange, and yellow signs were all presented at the same SIA

level (40).  Average detection distances for red, orange, and yellow were 811, 824, and 600

feet (247, 251, and 183 m).  The detection distance ratio for red/yellow was thus 1.35.

(Although this involves a comparison between two colors, rather than between a color and

an achromatic stimulus, it is consistent with the Helmholtz-Kohlrausch effect because the
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advantage for colors over achromatic stimuli is lower for yellows than for other colors.)  In

the current study, the mean interpolated detection distances for red and yellow by color

normals (see Figure 3) were 109 and 106 m, yielding a considerably smaller red/yellow

ratio of 1.028.  

The effect of color seemed to occur with all three background complexities in the Olson

study, including low complexity.  For example, in the low-complexity condition a green sign

of SIA 15 was detected at an average of 1039 feet (317 m), while a yellow sign of SIA 16

was detected at an average of 675 feet (206 m).  This fact is interesting because Olson's

low-complexity condition seems to be reasonably similar to the conditions of the present

experiment, but (in contrast to the present results) there seems to have been a reasonably

strong Helmholtz-Kohlrausch effect.  In his high complexity condition, signs were detected

at relatively short distances, and it may be that the participants' task effectively became

picking out above-threshold signs from clutter.  In the low complexity condition it seems

clear that the task was simply to respond to the signs when they reached the threshold of

detection.  Thus, if Olson's results had shown a strong Helmholtz-Kohlrausch effect in the

high complexity condition but not in the low complexity condition, they could have been

interpreted as favoring the suggestion that the critical circumstance determining whether the

Helmholtz-Kohlrausch effect is observed is whether the stimuli are above threshold at the

point they first evoke a response.  Instead, because the Helmholtz-Kohlrausch effect seems

to occur both at and above threshold, some other factor—such as visual angle—is a more

likely explanation for the differences among the four studies of retroreflective pedestrian

markings.

Olson's results seem to favor the visual angle explanation over the other two.  His

results suggest that the Helmholtz-Kohlrausch effect can occur for an objective, detection

distance task very similar to the one used in the present experiment.  That is inconsistent

with both the suggestion that the critical difference is between subjective and objective

methods, and the suggestion that it is between threshold and above-threshold stimuli.  The

third possibility—that the critical difference is visual angle—is still viable because the

stimuli in Olson's experiment were relatively large in terms of visual angle even when they

were first detected.  (Visual threshold is determined by both visual angle and luminance.

The combinations of those factors at which stimuli reached threshold in the two studies

were different primarily because of the difference in the actual sizes of the stimuli.  The area

of each of Olson's sign stimuli was over 700 times the area of each of the pedestrian

markings used here.  Although the luminances of the stimuli at detection were not directly

measured in either study, they were presumably much lower in Olson's study because the

stimuli were much further from the headlamps when detected.  That would be consistent



22

with the visual angles being greater in Olson's study.  The larger angles presumably

compensated for lower luminances in enabling the stimuli to reach threshold.)  The

detection distances that Olson observed were longest in the low-complexity condition,

averaging about 300 m.  At that distance each dimension of his sign stimuli would subtend

8.7 min of arc, corresponding to a solid angle of 76 min2.  This is reasonably close to the

larger of the two visual angles involved in the Venable and Hale (1996) study (89 min2), and

is over 80 times the angular size of the stimuli in the present study at the average detection

distance.  (In the medium and high complexity conditions of the Olson study the detection

distances were shorter, and the signs would therefore subtend even larger solid angles when

first detected.)

Interestingly, Venable and Hale (1996) found consistently lower color correction factors

at the longer distance that they used (165 m, with a solid angle of 22 min2) than at the

shorter distance (82 m, with a solid angle of 89 min2).  At the longer distance the geometric

mean of the empirical correction factors that they obtained for seven different colors was

1.35, while the geometric mean of the corresponding ASTM E 1501 factors was

considerably larger, 1.74.  Venable and Hale also found that their empirical correction

factors were the same whether the stimuli were presented in the dark or with a nearby glare

source (an automobile headlamp 1 m from the stimuli).  Although they do not quantify the

amount of glare provided by the headlamp, it was presumably strong enough to produce

substantial changes in visual adaptation and ambient light levels (and therefore in the

closeness of the stimuli to visual threshold).  Thus, taken together, these findings from the

Venable and Hale study can be interpreted as favoring the idea that visual angle is more

critical in determining the magnitude of the color correction factors than how close stimuli

are to visual threshold.  The authors do not themselves argue for that interpretation, but they

mention lack of visual resolution at the longer distance as one possible explanation for the

lower correction factors that they observed in that condition, and they suggest that it might

be of interest to extend their work to "bright 'point reflectors,' which subtend too small a

solid angle to resolve" (p. 309).  

Findings in the more basic color vision literature also seem to favor the suggestion that

stimulus size, in terms of visual angle, is the critical variable.  There is evidence that the

Helmholtz-Kohlrausch effect is stronger with larger stimuli.  Booker (1981) measured the

amount of white light required to match chromatic stimuli of various sizes and colors, and

found that the amount was higher (corresponding to a stronger Helmholtz-Kohlrausch

effect) for larger stimuli.  He used circular stimuli with diameters of 1 degree, 20 min, and 6

min (corresponding to subtended solid angles of 2827, 314, and 28 min2).  Also, for stimuli

that are effectively point sources visual response to both chromatic and achromatic stimuli
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seems to be well described by the CIE luminous efficiency function, indicating that there is

no Helmholtz-Kohlrausch effect under those conditions (CIE, 1978; Ikeda & Nakano,

1986).  Ikeda and Nakano suggest that the contributions of opponent chromatic channels to

brightness, which may be responsible for the Helmholtz-Kohlrausch effect (Guth, Donley,

& Marrocco, 1969), are small when a stimulus approaches being a point source.  It is not

always clear when a stimulus should be considered a point source, but if the stimuli used in

the present experiment can be considered nearly (but not quite) point sources, then the fact

that they showed a diminished (but not eliminated) Helmholtz-Kohlrausch effect is just

what would be predicted from these findings.  

Other findings in the literature suggest that the explanation based on threshold versus

above-threshold conditions is not likely to account for the discrepancies among the studies

of retroreflective materials.  Even at threshold, there seem to be differences in the visual

effectiveness of pure wavelengths relative to mixtures of wavelengths that correspond to the

Helmholtz-Kohlrausch effect (Guth et al., 1969).  There is evidence that the Helmholtz-

Kohlrausch effect for colored objects diminishes when illumination is lower (Ikeda &

Ashizawa, 1991), but that effect seems to depend on a reduction in overall adaptation level.

When stimulus luminance is reduced and adaptation level is held constant the Helmholtz-

Kohlrausch effect actually seems to increase (Stalmeier & de Weert, 1994), and that

scenario seems to correspond more closely to the lighting conditions of the present

experiment, in which participants were probably always adapted to the luminance of the

roadway immediately in front of them.

Thus, it seems possible that differences in visual angle may account for the apparently

discrepant results in the studies of retroreflective materials that have been reviewed here.

Although this should probably be considered a speculative explanation at this point, it is

worth considering what practical implications this would have for the color correction

factors prescribed in ASTM E 1501.  Whether or not such factors should be applied, or

what their magnitudes should be, would depend on what assumptions can be made about the

visual angles of the retroreflective markings at the point at which they first must be detected

or recognized.  Relatively large correction factors would be applied—reflecting the

expectation of a relatively large Helmholtz-Kohlrausch effect—when the stimuli could be

expected to be reasonably large in terms of visual angle, in the range of the stimuli used by

Venable and Hale (1996) and Schumann et al. (1996).  When the critical visual angles are

smaller, in the range used in the present study and by Sayer et al. (1998), smaller color

correction factors would be used.  If the tentative conclusions reached here are correct with

regard to the subjective versus objective nature of the visual task and with regard to whether

or not stimuli are near threshold—that is, that those factors do not matter for determining
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the strength of the Helmholtz-Kohlrausch effect—then the results of the Venable and Hale

study and of the Schumann et al. study should generalize to other tasks, including distance

detection, provided that the critical stimuli meet the visual angle criterion.  However, given

the speculative nature of this discussion, further research on the effects of retroreflective

area, SIA, and color in realistic highway situations should be done before accepting any of

these arguments as definitive.
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CONCLUSIONS

The results of this study indicate that visual color deficiency does have a measurable,

although limited, influence on the effect of color on detection distance.  Consistent with the

literature on color deficiency, protan individuals detected red retroreflective stimuli at

distances that were short relative to their abilities to detect other colors.  In order to adjust

color correction factors for color deficient individuals, the most important change would be

to increase the relative value of red.  This would result in red stimuli being stronger than

would otherwise be required for most drivers, but in terms of visual performance that is not

likely to be a significant problem for those drivers, and might even be of some additional

benefit.  Further research on this issue should address the strength and importance of

differences in the Helmholtz-Kohlrausch effect that are due to color deficiency in

comparison to the differences in the effect that exist among people who are considered to

have normal color vision (e.g., Ikeda & Ashizawa, 1991).  It may be that variability among

people with so-called normal vision is as important or more important than the differences

that can be attributed to color deficiencies.

The results with regard to central versus peripheral locations were not conclusive.  Any

further study of this issue should probably be done under conditions that produce a

stronger effect of color in central vision than was the case here.

This study, as well as a similar previous study (Sayer et al., 1998) indicated that color

influences detection distance for retroreflective stimuli, but to a lesser extent than suggested

by the color correction factors prescribed in ASTM E 1501.  Tentatively, the discrepancy

seems to be accounted for by the size of the retroreflective markings, in terms of visual

angle, at the point at which drivers first detect or recognize them.  The ASTM correction

factors may be appropriate for larger visual angles, but smaller correction factors may be

more appropriate if retroreflective markings can be expected to have very small visual angles

(approaching point sources) at critical distances.  However, the influence of color and its

interaction with visual angle has not been fully characterized by this study or by the

previous studies of retroreflective stimuli, and further research on the effects of color, SIA,

and size is needed.  
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