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INTRODUCTION 

This report examines the increased safety risk to pedestrians in darkness by analyzing 

the distribution of fatal crashes across the annual Daylight Saving Time (DST) 

transitions, a technique described in a previous report (Sullivan & Flannagan, 1999).  In 

brief, the technique examines the change in the distribution of fatal crashes during 

periods just before and just after DST changeovers at times of day that transition from 

darkness to daylight and vice versa.  In comparing crash data from a one-hour clock 

window across the DST transition, we assume that levels of many factors known to play a 

role in fatal crashes remain relatively constant, leaving ambient light level as a quasi-

independent variable.  Thus, for example, in the Detroit area the one-hour period between 

19:30 h and 20:30 h is entirely dark before the spring changeover to DST, and entirely 

light afterwards.  Our key assumption is that traffic conditions are the same in the weeks 

immediately before and after the changeover to DST, as traffic is principally governed by 

clock time rather than by the position of the sun in the sky.  Observed differences in crash 

levels between these two periods are likely related to the difference in ambient light level, 

and therefore can be used to quantify the effect of light in fatal crashes.  

In this report, we examined different types of pedestrian crashes to discover which 

characteristics of those crashes produced increased risk.  In particular, we looked at 

roadway function and posted speed limit, because we expected that in high-speed 

environments, the risk to pedestrians in darkness may be especially high.  In darkness, the 

driver’s forward view is constrained by the reach of the vehicle’s headlamps.  Because 

this distance is the same regardless of vehicle speed, the faster the vehicle is moving, the 

smaller the time interval between detecting an object in the vehicle’s path and potentially 

colliding with that object. With progressively smaller amounts of time to react, we should 

expect to see more failure to avoid pedestrians.   

The risk analysis was then coupled with annual counts of fatalities in darkness using 

the same crash types to identify the overall magnitude of the problem. This magnitude 

was used to make projections of the potential number of lives saved if darkness could be 

turned into daylight.  By combining the risk estimate and the annual fatality level, we can 

obtain some guidance about where light is most needed on the roadway.  In addition, we 
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extended the analysis of the relationship between darkness and alcohol that was begun by 

Owens and Sivak (1993).  In that report, they examined alcohol use by drivers and found 

that it did not seem to contribute to fatal pedestrian crashes.  In this study we investigated 

the consequences of alcohol use by pedestrians as well as drivers.  



 

 3  

METHOD 

Crash data from the Fatality Analysis Reporting System (FARS) of the National 

Highway Traffic Safety Administration (NHTSA) were selected from the 11-year period 

from 1987 to 1997.  Cases selected for analysis straddled the daylight saving time 

changeover periods in time windows that abruptly changed from dark to light (or light to 

dark) across the time change.  

To explain this selection method, we first note that twice a year, in most of the United 

States, clocks are reset:  In the spring, clocks are adjusted one hour ahead, making sunrise 

and sunset one hour later than in standard time.  In the fall, clocks are adjusted back to 

standard time, effectively making sunrise and sunset earlier.  To perform the DST 

analysis, the exact start and end of civil twilight was computed for the dates of the spring 

and fall adjustments for DST.  The start and end of civil twilight are the points at which 

the sun is 6 degrees below the horizon in the morning and evening, respectively.  The 

ambient light at this time is generally insufficient to read by, but the sky is light enough 

to distinguish the horizon.  For our purposes, we considered the hour before the start of 

civil twilight (in the morning) and the hour after the end of civil twilight (in the evening) 

as dark.  The computation was done for each of the 11 years (1987-1997) covered in this 

analysis and for each county in the United States, excluding those in Arizona, Hawaii, 

and Puerto Rico because they do not observe DST.  Indiana was excluded from the 

analysis because 77 of its 95 counties do not observe DST.  Finally, Alaska was excluded 

because at its extreme northern latitudes the solar cycle substantially deviates from that 

found in the lower 48 states.  

Once each county’s times for the start and end of civil twilight were determined (in 

standard time), crash-record clock times were tagged to indicate if the crash occurred in 

the one-hour interval just after the end of civil twilight, in the evening.  As shown in 

Figure 1, in the spring, this interval is dark before DST and light (or twilight) after the 

DST changeover.  In the fall, the interval is light before the DST changeover, and dark 

following it.  For the present analysis, crashes were taken from three weeks before and 

three weeks after the transitions in both the spring and fall, and tagged as falling into 

either a light or a dark period.  Although transitions also occur in the morning time 
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periods (see Figure 1), they are not included in this analysis because the three-week time 

window before and after DST transitions is neither uniformly dark nor uniformly light 

throughout the period.  As illustrated in Figure 1, during the three-week period before the 

spring transition in the morning, light levels are nearly dark at the beginning and lighten 

as the DST transition is approached.  After the transition, the light level changes from 

dark to light.  Inclusion of these morning crash data over the three weeks before and after 

the DST transition would reduce the light level difference between the dark/light 

conditions.  It should also be noted that the time period before the end of formally 

defined civil twilight actually contains about 30 minutes of what might informally be 

described as twilight, and 30 minutes of daylight, for the latitudes considered here.  Thus, 

for this manipulation, the nominally light condition is actually somewhat darker than 

conventional daylight, especially near the day of the changeover. 
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Figure 1.  Daylight saving time changeover characteristics for spring and fall.  The solid 
line is the clock time of the start (top) and end (bottom) of civil twilight throughout the 
year for the Ann Arbor/Detroit area (1997).  
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To establish confidence intervals on the magnitude of the distribution, the following 

logic was applied.  A given crash record within the six-week time windows straddling 

each DST changeover period can either fall within a dark period or a light period, much 

like a coin toss might produce either a heads or tails outcome.  If there was no difference 

between crash incidence during the dark and light periods, a given crash would have an 

even chance of falling within a dark or light period.  That is, the ratio of dark to light 

crashes should be 1; approximately 50% of the crashes should occur in the dark and 50% 

should occur in the light.  (The test is similar to testing whether a coin is biased by 

tallying the number of heads and tails after a series of tosses.)  A confidence interval on 

the observed proportion of crashes can be established by estimating the standard error of 

the mean: 

 
1−

=
N
PQ

Mσ  

where:  P is the observed proportion of crashes in darkness, 

  Q is (1-P), and 

  N is the number of cases. 

 

The 95% confidence interval on the observed proportion is given by: 

P −1.96σ M ≤ p ≤ P + 1.96σ M  

where:  p is the true population proportion and 

  1.96 standard errors is the 95% confidence limit on p. 
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RESULTS 

Harmful events and the magnitude of effect of darkness 

 
In FARS, all crashes are categorized by their first harmful event—the first damage-

producing event in a motor vehicle crash that may involve many more harmful events.  

The first harmful event is considered at least temporally proximate to the cause of the 

fatal crash and likely related to the root cause of the crash.  This first analysis examined 

all harmful events for effects of darkness to establish a more complete context in which 

to view pedestrian vulnerability in darkness.  In our previous report (Sullivan & 

Flannagan, 1999), the safety risk to pedestrians was estimated to be between four and 

seven times greater in darkness than in light.  We compared this with single vehicle road 

departures, which showed little or nor effect of darkness.  By examining all harmful 

events, we obtain a broader picture of the possible mechanisms underlying the role of 

light in fatal crashes.  This risk profile was supplemented by crash frequencies for the 

same types of crashes in darkness for 1999 so that the magnitude of potential benefit of 

reducing the risk associated with darkness could be determined.  This projection assumes 

an admittedly simple model of how light influences crashes.  It generalizes the dark 

effects found during the DST transition period throughout the night and throughout the 

year without consideration of how other factors might interact with darkness.  

Nevertheless, it provides a coarse gauge of the potential safety improvement that might 

be realized with improved lighting.  

FARS classifies each fatal motor vehicle crash into one of 48 categories, based on the 

first circumstance that resulted in a harmful outcome.  The FARS harmful event 

categories vary in precision.  As shown in Table 1, harmful event categories distinguish 

between several types of single-vehicle crashes (e.g., overturns, collisions with trees, 

guardrails, embankments), while grouping most crashes involving other vehicles into the 

category motor vehicle in transport.  Crash circumstances in this latter category are 

typically further resolved using additional coding fields associated with the harmful 

event.  For example, the field Manner of Collision elaborates the form of a two-vehicle 

collision into rear-end, head-on, rear-to-rear, sideswipes, etc.  As shown in the fatality 
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counts in Table 1, the highest number of annual fatalities occurs as collisions with 

another motor vehicle in transport (42%) followed by collisions with pedestrians (11%) 

and vehicle overturn (10%).  Table 1 also identifies the number of these fatalities that 

occurred during darkness.  These numbers alone, however, are insufficient to determine 

the relative risk in darkness because differences in exposure can account for some of this 

variation.  For example, vehicle miles traveled in the daytime are about four times those 

traveled at night (NPTS, 1995).  Based purely on exposure differences, we might expect 

to observe four times the number of fatalities during the daytime as at night.  But, as 

Table 1 shows, there are only about 1.2 times as many fatalities in the daytime as at night, 

suggesting nighttime vehicle miles traveled are riskier than daytime miles.  Table 1 

serves to establish the general size and pattern of annual fatalities, but it does not provide 

a clear picture of how ambient light directly affects safety. 



 

 8  

Table 1 
1999 fatalities by first harmful event, sorted by frequency. 

 

Harmful Events – (Collision with) Total 
Fatalities 

Percent 
of Total 

 
Fatalities 

in 
Darkness 

Percent 
in 

Darkness 
Motor Vehicle in Transport 17,411 41.9%  5,436 31.2% 
Pedestrian 4,668 11.2%  3,077 65.9% 
Overturn 4,311 10.4%  1,993 46.2% 
Tree 3,302 7.9%  1,842 55.8% 
Guardrail 1,185 2.8%  616 52.0% 
Utility Pole 1,070 2.6%  648 60.6% 
Ditch 880 2.1%  486 55.2% 
Pedalcycle 763 1.8%  258 33.8% 
Curb 745 1.8%  298 40.0% 
Motor Vehicle in Transport in Other Roadway 642 1.5%  396 61.7% 
Culvert 601 1.4%  349 58.1% 
Embankment – Earth 587 1.4%  316 53.8% 
Embankment - Material Type Unknown 548 1.3%  291 53.1% 
Fence 512 1.2%  308 60.2% 
Other Fixed Object 508 1.2%  271 53.3% 
Parked Motor Vehicle 479 1.2%  227 47.4% 
Highway/Traffic Sign Post 401 1.0%  234 58.4% 
Other Post, Other Pole, or Other Support 352 0.8%  190 54.0% 
Railway Train 314 0.8%  92 29.3% 
Concrete Traffic Barrier 280 0.7%  150 53.6% 
Fell from Vehicle 231 0.6%  106 45.9% 
Bridge Pier or Abutment 190 0.5%  107 56.3% 
Animal 168 0.4%  90 53.6% 
Other Object (not fixed) 152 0.4%  106 69.7% 
Bridge Rail 145 0.3%  68 46.9% 
Other Non-Collision 133 0.3%  63 47.4% 
Luminary/Light Support 125 0.3%  82 65.6% 
Embankment - Rock, Stone, or Concrete 114 0.3%  39 34.2% 
Wall 111 0.3%  67 60.4% 
Immersion 91 0.2%  51 56.0% 
Other Type Non-Motorist 81 0.2%  42 51.9% 
Boulder 76 0.2%  37 48.7% 
Building 64 0.2%  19 29.7% 
Bridge Parapet End 51 0.1%  24 47.1% 
Overhead Sign Support 46 0.1%  16 34.8% 
Fire Hydrant 39 0.1%  4 10.3% 
Shrubbery 34 0.1%  12 35.3% 
Transport Device Used as Equipment 32 0.1%  20 62.5% 
Traffic Signal Support 27 0.1%  20 74.1% 
Collision With Snow Bank 24 0.1%  15 62.5% 
Unknown 21 0.1%  13 61.9% 
Fire/Explosion 20 0.0%  10 50.0% 
Injured in Vehicle 18 0.0%  3 16.7% 
Thrown or Falling Object 13 0.0%  6 46.2% 
Impact Attenuator/Crash Cushion 10 0.0%  5 50.0% 
Other Longitudinal Barrier Type 9 0.0%  3 33.3% 
Pavement Surface Irregularity 8 0.0%  0 0.0% 
Vehicle Occupant Struck or Run Over by Own Vehicle 5 0.0%  1 20.0% 
Total 41,597 100%  18,507 44.5% 
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To determine the increased safety risk in darkness, we looked at all fatalities 

occurring during the three-week periods before and after the two annual transitions to and 

from DST and standard time, during one-hour times of day that change from being dark 

(light) before the changeover to being light (dark) after the changeover.  Grouping 

fatalities as occurring in either the dark interval or light interval, we calculated the 

dark/light ratio and 95% confidence intervals for these ratios.  Ratios greater than 1 

suggest a higher risk during darkness; ratios less than 1 suggest a higher risk during 

daylight.  This means that given the observed ratio, there is a 5% chance that the actual 

ratio might fall outside the confidence interval.  Confidence intervals that do not include 

the dark/light ratio of 1 suggest that there are reliable differences between the number of 

fatalities observed in darkness and daylight. 

Table 2 lists harmful events by fatality frequency, identifying harmful events that 

exclude the 50% null hypothesis (dark/light ratio equal to 1) with 95% confidence.  

Figure 2 shows selected dark/light ratios and their 95% confidence intervals for harmful 

events that show a strong dark/light effect.  Among the harmful events, collisions with 

animals seemingly show the largest dark/light effect (4.6 times the cases in the dark 

versus light), however it is unlikely that animal activity patterns follow clock time as is 

assumed in this comparison.  The activity patterns of many animals increase after sunset.  

Consequently, both their increased numbers in darkness as well as low visibility likely 

contribute to the high dark/light fatality ratio.  For them, the risk associated with ambient 

light level is ambiguous.   

Collisions with pedestrians show the next largest dark/light effect: there are 4.1 times 

as many fatalities in darkness as in daylight.  Here one might also argue that the activity 

pattern of pedestrians could be influenced by darkness—that is, a person might be less 

inclined to walk in darkness.  (However, if this is true, then the size of the pedestrian risk 

is somewhat underestimated in this analysis.)  The estimate here is comparable to other 

reported reductions in pedestrian fatalities with daylight saving time and in environments 

with fixed lighting (Ferguson, Preusser, Lund, Zador, & Ulmer, 1995; Tanner & Harris, 

1956). 

The dark/light ratio of collisions between motor vehicles in transport is also 

significantly greater than one (1.3 times higher in darkness).  Note that the large number 
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of these accidents allows more precision in estimating this ratio (the confidence interval 

is narrow).  Although the ratio is smaller than estimates of pedestrian risk, the narrow 

confidence limits exclude a ratio of 1.  That is, darkness seems to heighten risk in these 

crashes, but to a smaller extent.  Dark effects were also found for collisions with parked 

motor vehicles and collisions with railway trains, suggesting low light levels play a role 

in these crashes as well. 

Finally, we found that vehicle overturns appear to occur more frequently in daylight 

than in darkness (dark/light ratio = 0.7).  The reason for this is unclear.  Perhaps the better 

visibility of obstacles in the roadway prompts drivers to more frequently engage in 

avoidance maneuvers at high speed, resulting in overturns.  At night, the same obstacles 

might otherwise be struck.  In any case, the effect appears to be small. 
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Table 2 
The number of fatalities that occurred during intervals of darkness and light three weeks 
before and after the DST changeover, sorted by frequency.  Highlighted entries indicate 

significantly greater (dark shading) or less (light shading) than 50% of the crashes 
occurred in darkness. Data were compiled from evening DST transition periods three 

weeks before and after spring and fall changeovers, over an 11-year period (1987-1997). 
 

Event Dark Light Total  Dark/Light 
Ratio 

% Crashes 
in Darkness 

Motor Vehicle in Transport 1454 1091 2545  1.33 57.1% 
Pedestrian 1147 277 1424  4.14 80.5% 
Overturn 174 239 413  0.73 42.1% 
Tree 168 170 338  0.99 49.7% 
Pedalcycle 77 86 163  0.90 47.2% 
Utility Pole 45 58 103  0.78 43.7% 
Ditch 43 51 94  0.84 45.7% 
Guardrail 46 44 90  1.05 51.1% 
Motor Vehicle in Transport in Other Roadway 36 40 76  0.90 47.4% 
Culvert 27 37 64  0.73 42.2% 
Curb 25 34 59  0.74 42.4% 
Embankment - Material Type Unknown 26 32 58  0.81 44.8% 
Parked Motor Vehicle 38 18 56  2.11 67.9% 
Other Fixed Object 30 25 55  1.20 54.5% 
Railway Train 35 18 53  1.94 66.0% 
Embankment – Earth 23 22 45  1.05 51.1% 
Highway/Traffic Sign Post 19 22 41  0.86 46.3% 
Fence 20 20 40  1.00 50.0% 
Fell from Vehicle 14 20 34  0.70 41.2% 
Other Post, Other Pole, or Other Support 13 18 31  0.72 41.9% 
Concrete Traffic Barrier 16 14 30  1.14 53.3% 
Animal 23 5 28  4.60 82.1% 
Bridge Pier or Abutment 11 11 22  1.00 50.0% 
Bridge Rail 9 11 20  0.82 45.0% 
Wall 7 11 18  0.64 38.9% 
Other Non-Collision 5 12 17  0.42 29.4% 
Other Type Non-Motorist 8 7 15  1.14 53.3% 
Embankment - Rock, Stone, or Concrete 6 7 13  0.86 46.2% 
Other Object(not fixed) 5 6 11  0.83 45.5% 
Boulder 5 4 9  1.25 55.6% 
Building 3 4 7  0.75 42.9% 
Bridge Parapet End 2 4 6  0.50 33.3% 
Fire Hydrant 1 3 4  0.33 25.0% 
Immersion 2 2 4  1.00 50.0% 
Pavement Surface Irregularity (1993 only) 1 3 4  0.33 25.0% 
Luminary/Light Support  3 3  - - 
Other Longitudinal Barrier Type  3 3  - - 
Shrubbery 1 2 3  - - 
Impact Attenuator/Crash Cushion 1 1 2  - - 
Thrown or Falling Object 2  2  - - 
Transport Device Used as Equipment (Since 1993) 2  2  - - 
Unknown  2 2  - - 
Injured in Vehicle  1 1  - - 
Grand Total 1454 1091 6008  1.46 59.4% 
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Figure 2.  Dark/Light ratios of those first harmful events not equal to 1.  The bracketing 
lines surrounding each point identify the 95% confidence interval around the ratio.  The 
horizontal line indicates no difference between the daylight and night crash levels.  Data 
were compiled from evening DST transition periods 3 weeks before and after spring and 
fall changeovers, over an 11-year period (1987-1997). 

 
To estimate the magnitudes of potential safety improvements, we tallied the number 

of fatalities for 1999 that occurred in darkness (dark and dark but lighted) for the harmful 

event categories showing an effect of darkness.  This was divided by the dark/light 

fatality ratio to estimate the number of comparable crashes during daylight, and then 

subtracted from the number of fatalities in darkness to provide an estimate of the 

potential number of lives saved.  The results are shown in Table 3.  If darkness were 

turned into daylight, pedestrians would show the greatest benefit, measured as the 

potential number of lives saved.  Not only is the comparative risk of a pedestrian crash 

much higher in darkness than in daylight (by a factor of 4.14), but the annual number of 

pedestrian crashes in darkness is sufficiently large to suggest that lighting 

countermeasures targeted toward pedestrian visibility would save nearly twice as many 

lives as would be saved in collisions with other motor vehicles.   
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Table 3 
Estimation of lives per year potentially saved by eliminating the safety hazard associated 

with darkness. 
 

Harmful Event (Collision) Dark/Light 
Ratio 

Fatalities in 
Darkness (1999) 

Lives 
Potentially 

Saved (Lost) 

Motor Vehicle in Transport 1.33 5,436 1,357 

Pedestrian 4.14 3,077 2,334 

Overturn 0.73 1,993 (744) 

Parked Motor Vehicle 2.11 227 119 

Railway Train 1.94 92 45 

 

Pedestrian collisions and speed 

 
Using the above procedure, we next examined characteristics of the roadway 

environment in pedestrian collisions to see whether those characteristics affect the 

magnitude of the lighting effect.  We might, for example, expect to find a strong lighting 

effect with vehicle speed.  In darkness, a driver’s seeing distance is limited by the reach 

of the headlamps; in daylight, although seeing distance might occasionally be limited by 

physical obstructions, no such general limit on seeing distance exists.  Nighttime seeing 

distance is fixed by the reach of the headlamps regardless of vehicle speed.  Estimates of 

low-beam seeing distance are approximately 50 m.  Driver reaction time is typically 

estimated to be 1.5 seconds (Johansson & Rumar, 1968).  On a dark roadway, with 

illumination exclusively supplied by low-beam headlamps, the stopping distance of a 

vehicle exceeds forward seeing distance at about 58 km/h (National Highway Traffic 

Safety Administration, 1996).  Above this speed, the time to react becomes too short to 

successfully avoid an obstacle in the path of the vehicle.  For example, at 110 km/h, 

before the brake is even applied, the vehicle would travel 46 m. 

Given these estimates, high-speed roadways should be especially dangerous for 

pedestrians in the dark.  Note that driver expectation might also play a role, such that 

recognition of a pedestrian in an unexpected place is delayed, increasing driver reaction 

time (e.g., Roper & Howard, 1938).  Limited access roadways are usually free of 
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pedestrians, so that the appearance of one would normally be quite unexpected, 

increasing a driver’s reaction time to brake.  Similarly, pedestrians are more common on 

urban than rural roadways, reducing likely reaction times.  The additional perception time 

that is probably needed to react to pedestrians on limited access and other high speed 

roads, coupled with the shorter overall time available to take evasive action at high 

speeds, may multiply a pedestrian’s risk on those roads. 

Pedestrian fatalities before and after the DST changeover were first sorted by broad 

road function.  For this analysis, we combined data into three categories based on road 

function: limited access roadways (rural principal arterial-interstate, urban principal 

arterial-interstate, urban principal arterial-freeways or expressways), arterials (rural and 

urban principal and minor arterials), and local and collectors (rural, and urban collector 

and local streets).  The resulting dark/light ratios are given in Figure 3.  Lifesaving 

potential was also estimated based on the annual pedestrian crash counts for each 

roadway function for 1999. 
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Figure 3.  Ratio of pedestrian crash fatalities in the dark and light periods three weeks 
before and after DST changeovers, along with potential lives saved.  Error bars are 95% 
confidence limits on the observed ratios.   
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Figure 3 shows that pedestrian risk is especially high, as expected, on dark limited-

access roadways (6.75 times daylight risk).  This is consistent with the earlier suggestion 

that higher vehicle speeds limit a driver’s ability to successfully perform an avoidance 

maneuver within the preview time offered by headlamps.  However, arterial roadways 

show the greatest potential for reducing pedestrian fatalities, probably because of higher 

pedestrian density around arterials, especially urban arterials.  The risk associated with 

arterial speeds, coupled with the greater density of pedestrians, suggests that as many as 

1,333 lives per year might potentially be saved with lighting countermeasures.  Although 

vehicle speed is implicated in pedestrian nighttime risk, the potential benefit of better 

lighting is also related to the level of pedestrian exposure, which is small on limited 

access roadways.   

Figure 4 details how pedestrian risk varies with detailed roadway function.  The 

magnitude of the effect of darkness on pedestrian risk is consistent with probable 

roadway speed, both in rural and urban locales.  High-speed rural roadways, which are 

most likely dark, show a more pronounced risk than high-speed urban roadways, which 

are most likely illuminated.  The difference between urban and rural roadway risk is 

smaller on the low-speed roadways.  Note that on each rural roadway type, pedestrian 

crashes predominantly occurred on dark (no street lighting) roadways—supplemental 

lighting was present in only 10 to 22% of the nighttime cases; on the urban roadways, 

supplemental lighting was available in 50 to 70% of the nighttime cases in darkness. 
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Figure 4.  Dark/light fatality ratio and lifesaving potential of light by road function type.  Dark bars indicate rural roadways; light bars 
are urban roadways.  Error bars depict 95% confident intervals on the dark/light ratio.  PA designates principal arterial. 



 

 17  

An alternative way to demonstrate the influence of speed on pedestrian risk is to 

examine risk as a function of the posted speed limit.  Although the posted speed limit 

does not necessarily correspond to actual vehicle speed at the time of the collision, it is 

reasonable to assume that they are closely related.  Figure 5 shows that pedestrian risk 

increases with posted speed limit and perhaps reaches a maximum somewhere after 45 

mph (72 km/h).  Earlier, it was estimated that the speed at which braking distance (to a 

full stop) reached low-beam seeing distance is about 58 km/h (36 mph).  At 45 mph, 

stopping distance is approximately 227 feet (69 m), 67 feet (20 m) past the estimated 

seeing distance of low-beam headlamps.  The speed of the vehicle at the likely impact 

point (50 m from the location of the driver when the pedestrian is first detected) would be 

about 50 km/h, and higher with increasing speed.  The speed of a vehicle’s impact on a 

pedestrian does not appear to be strongly related to its deadliness (Harruff, Avery, & 

Alter-Pandya, 1998).  That is, beyond some low speed, any contact with a pedestrian is 

equally likely to be lethal.  Thus, we should expect that above some level of vehicle 

speed any mitigating action by the driver will be ineffective and pedestrian risk should 

asymptote.  Consistent with this analysis, the data suggest that risk increases with vehicle 

speed, but asymptotes a little above 45 mph (73 km/h). 

As an interesting aside, the urban and rural dark effects along local roadways appear 

to be similar despite the fact that overhead illumination is far less available in rural 

settings.  This suggests that perhaps at low speed on local roads the illumination from 

low-beam headlamps is sufficient to reduce the additional advantage of lighting. 
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Figure 5.  Dark/light fatality ratio and lifesaving potential of light by posted speed limit.  Error bars depict 95% confident intervals on 
the dark/light ratio. 
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Pedestrian collisions and alcohol use 

 
We next examined whether alcohol use by either drivers or pedestrians contributes to 

the fatality risk in darkness.  To do this, we counted the pedestrians involved in each 

crash and tallied up those for which alcohol was and was not involved.  (Note that the 

drinking status of over half (715) of the pedestrian victims was identified as either 

unknown or not reported.)  A similar count was performed for drivers involved in the 

same crash data.  In a previous report (Owens & Sivak, 1993), the driver’s use of alcohol 

in pedestrian crashes was reported to show little correlation with seasonal twilight 

variation and was lower than the use of alcohol by drivers involved in other crash types.  

Given these previous results, we would expect a similar overall proportion of drinking 

drivers in this analysis, and no difference in the dark/light distribution of drinking drivers.  

The results are shown in Table 4. 

 

Table 4 
Pedestrian crashes during dark and light periods of DST changeover by pedestrian and 

driver drinking. 
 

Person Drinking Dark Light Total Ratio Dark/Light 

No 359 120 479 3.00 Pedestrian Yes 204 22 229 9.27 
No 1034 240 1274 4.30 Driver Yes 92 33 125 2.78 

 

For pedestrians, drinking in combination with darkness appears to be exceptionally 

lethal.  In our sample, 32% of the pedestrians were identified as drinking.  This is similar 

to the annual data on pedestrian alcohol involvement (National Highway Traffic Safety 

Institute, 2000)—38% of pedestrians killed in fatal crashes were using alcohol.  Of the 

drinking pedestrians, 9.27 times as many were killed in darkness as in the light (χ2 =22.4, 

df = 1, p < 0.001).  By contrast, only 9% of the drivers in our sample were identified as 

drinking.  This is a smaller percentage than the overall reported driver alcohol 

involvement in pedestrian crashes (20%), but comparable to the 11.9%, reported by 

Owens and Sivak (1993).  Drinking by drivers during the same time periods does not 
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appear to affect pedestrian risk in the same way.  In fact, the risk appears to be lower, 

although the reasons for this are unclear (χ2 =4.14, df = 1, p < 0.05).   

Initially we thought that the differences in the observed risk associated with drinking 

pedestrians might be somehow related to an exposure effect—that the incidence of 

drinking increased in darkness (independently of clock time).  However the driver data 

suggest that, if such a phenomenon occurs, it does not extend to drivers.  A more 

plausible account would be that drinking pedestrians engage in roadway behavior that 

interacts with darkness to multiply their risk.  In daylight, erratic pedestrian behavior may 

be detected by drivers and either anticipated in a way that reduces or completely avoids 

the likelihood of a collision.  In the dark, the erratic pedestrian behavior may be detected 

too late to successfully avoid a collision.  Note that it appears that daylight affords either 

the driver or pedestrian with some ability to mitigate the level of risk.  Thus perhaps even 

the danger created by unreasonable pedestrian behavior can be mitigated by 

improvements in a driver’s ability to see.  On the other hand, the intoxicated pedestrian 

may be a much poorer judge of traffic danger at night than in the daytime.  The evidence 

only suggests that light and pedestrian drinking jointly affect the level of risk, leaving 

unresolved the relative contributions of driver and pedestrian behavior. 
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CONCLUSIONS 

The risk of pedestrian deaths is substantially greater in darkness, and that 

difference appears to increase continuously with traffic speed.  A likely mechanism for 

the effect of speed is that, because the visibility distance provided by low-beam 

headlamps is fixed, the preview time that drivers have to react to the presence of 

pedestrians becomes progressively shorter with higher speeds.  This appears to be an 

important specific example of a general mismatch between conventional headlighting and 

realistic road conditions:  although conventional headlamps provide only two states of 

lighting—high and low beams—road conditions vary continuously in many ways that 

affect lighting needs, including speed, traffic density, and lateral separation between 

opposing streams of traffic.  Given the apparent effect of speed on pedestrian risk, there 

may be substantial safety benefits of innovative headlighting systems that could adjust to 

the greater visibility needs of higher speeds, such as various proposals for motorway 

lighting or midbeams (e.g., Perel, Olson, Sivak, & Medlin, 1983).   

We also note that the increased risk due to darkness appears to be somewhat 

smaller on urban arterial roadways, where pedestrian density is greatest, than on limited 

access roads.  Even so, the risk is more than three times as high as in daylight, and greater 

than that associated with lower-speed local urban roadways.  Thus, the greatest lifesaving 

opportunity for lighting countermeasures appears to be in areas such as urban arterials, 

where both speed and pedestrian density are high. 

Alcohol use by pedestrians appears to interact with ambient light level, greatly 

increasing the risk of fatality in darkness.  This suggests that as erratic, unreasonable, or 

surprising an intoxicated pedestrian’s roadway behavior might be to an approaching 

driver, ambient light level appears to lower this risk.  It is unclear whether the driver, the 

pedestrian, or both are somehow responsible for the reduction in risk. 
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