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ABSTRACT

Signal detectability has been studied statistically
from various points of view. Those involving an observation
interval of fixed length are essentially equivalent, as opposed to
those which involve a sequential process. Both approaches are
discussed with a minimum of mathematics to provide a reasonably
non-technical account of the "state of the art." Definitive com-
parison of the two observation processes is not possible until
more general knowledge is available concerning the existence and
nature of optimum sequential tests. In addition, a general
mathenmatical formulation of sequential analysis is given in
which the current theoretical obstacles in applying it to signal
detectability are emphasized.
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SIGNAL DETECTABILITY: A UNIFIED DESCRIPTION OF STATISTICAL METHODS

EMPLOYING FIXED AND SEQUENTTAL OBSERVATION PROCESSES

1. INTRODUCTION

1.1 Prefacing Remarks

Signal detection in this report means the detection of certain func-
tions of time (for example, voltages) called "signals" when perturbed by the
addition of some other functions called "noise." ©No attempt will be made to
consider methods of estimation of signal parameters or in general to obtain
other information about the "signals."

A mathematically detailed report,l (hereafter referred to as Technical
Report No. 13) has been made on certain statistical approaches to signal detec-
tion; that report constitutes a unified description of the subject heretofore
unavailable. In addition, a number of specific applications of the resulting
theory have been developed (Technical Report No. 13, Part II). However, it is
felt that much of that material is inaccessible to all but a few specialists
because of its highly technical nature.

Therefore, it seemed appropriate to supplement a report on the appli-

cations of sequential analysis to signal detection with a non-technical

lPeterson, W. W., and Birdsall, T. G., Theory of Signal Detectability, Part I,
"The General Theory," Part II, "Applications with Gaussian Noise,  Technical
Report No. 13, Electronic Defense Group, Department of Electrical Engineering,
University of Michigan.
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description of the results of Technical Report No. 13. In this way a corplete
survey of the applications of statistical methods could be given in which the

text would be accessible to those with a minimum of mathematical training.

1.2 The Problem of Signal Detection Formulated for Statistical Analysis

Because a recelver is essentially a linear device, noise generated
by the receiver can usually be referred to the input. Thus the situation can be
represented schematically as a (noiseless) receiver whose inputs are derived by
adding the voltages from two sources: a "signal" generator and a "noise" genera-
tor. The totality of possible receiver inputs when the "noise" generator alone
is in operation will be called "Population N." "Population SN" is the name
given to the totality of possible receiver inputs when the "signal" gencrator
and the "noise" generator are in operation simultaneously. The individual
observing the receiver outputs is then being presented with a "sample" of one of
the two populations, but he is in ignorance as to which population was in fact
sampled, and of the probability that any particular one of them was sampled. All
he knows with certainty is that one of the two was sampled. He must then judge
which population was sampled.

In this discussion it should be kept in mind that the event of popula-
tion SN being sampled corresponds to signal and noilse being present at the
receiver input. Also the event of population N being sampled means that noise

alone was present at the receiver input.
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2. TESTS OF FINITE SAMPLES

2.1 TFinite Sampling Plans

This part of the report is concerned with a method of statistical
analysis which requiresl for raw data a finite sample; that is, a-finite sequence
of numbers Z, = (xl, ceey xn). In the present context, such a sample is thought
of as the result of n measurements made at the receiver input. The act of making
these measurements is supposed to occupy a certain interval I in time, starting
at ty) of length T. I is called the sample interval. Any particular scheme of
making n measurements at the receiver input during the sample interval I is
called a sample plan based on I.

If n were very large, a receiver which had to make the measurements
called for by a sampling plan would certainly be impractical. However, the
theory to be developed here is intended to specify an optimuum receiver and is
couched in the language of finite samples. This practical difficulty can be
avoided if it be required that the sampling plan should "throw away' no
information. This would mean that from each sample Zn it would be possible to
reconstruct completely the function of time present at the receiver input during
the sample interval. Then the specification of the optimum receiver could be
translated back to the language of receiver inputs, from that of samples.

The theory to be described below was developed on the assumption that
the populations Il and SN are "finlte dimensional." This means that they can

be constructed from some finite number of functions of time

wl(t), Wo(t), ...y wWy(t)

1The gtatistical theory itself has been carried out for infinite seamples (foot-
note 2, p. 23), but the application of it to specifying an optimum receiver for
a parvicular case has been carried out so far for finite samples only.
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by forming all possible combinations like
a wl(t) +ap Wyo(t) + ... +a, wuy(t),

where the coefficients a;, ap, ..., a,, are any chosen numbers. The significance
of this restriction will be discussed in Section 4.1, Applicability of Finite
Ratio Tests.

For the purposes of the subsequent development, any sampling plan which
throws away no information will be considered,l provided enough properties are
known of the associated sample variable Z, = (X3, Xp, ..., xn) so that certain
probabilities may be calculated. Specifically, the probability density functioné2
fy(Zyn) and fgy(Z,) of the sample variable Z, for the cases when Zp is drawn
from population N and from SN respectively must be known. The two basgic proper-
ties of density functions are

£y(Z) 2 0 Jew(z) azy = 1

and

fsn(Zq) 2 0 Jtentz,) @z, = 1

where the integration symbol represents the multiple integral taken over the
entire range of the sample variable Z,.

A large part of Technical Report No. 13 is devoted to determining some
circumstances where the derivation of the density functions can actually be

carried out and the optimum receiver specified. These are listed in Section 4.1.

lIn.Appendix B it is shown that many such sampling plans are availlable when the
populations are finite dimensional. The idea of a finite sampling plan is a
device useful in performing computations for the finite dimensional case, and in
approximating the infinite dimensional one. It is not essential to the theory
itself.

2See Appendix C for a brief discussion of probability demnsity functions, if this
term is not familiar. ,
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2.2 The Concept of a Criterion

Consider now an observer who has as available data the sample point
Zn = (X1 e+vy xn) given him by the receiver. The observer's job is to judge for
each sample point whether or not it was taken from population SN. Although it
is not possible to determine the (probably subconscious) criterion used by the
observer, it is quite possible to find an external manifestation of it. Ideally
all that is necessary is to submit each possible sample point Z, to the observer
and to record his judgment. This will yield a tabulation of those sample points
which the observer decided were drawn from population SN. If any other observer
is given this tabulation and instructed to base his decisions on it, he will
behave exactly as did the first observer. Thus the tabulation of these responses
can be used to replace the mental criterion employed by the observer. Such a
tabulation will also be called a criterion and will be denoted by the letter A,
which refers to the phraseology common in statistics of "Accepting the hypothesis
that a signal is present." The tabulation of the remaining sample points, those

which the observer concluded were drawn from population N, will be denoted by B.

2.3 Probabilities Associated with Criteria

There are of course as many different criteria as there are observers.
Among all possible criteria it is necessary to select those that are best for
various purposes. To do so, certain numerical quantities must be associated
with each criterion. It will be necessary to know the probability that a sample
from one of the populations will be listed in a particular criterion A. According

to the standard definitions, thesec probabilities are given by

f fon(Z) 42,  and

Pgy(A)

f Iy (Zn) aZy
>

Py(a)
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where the multiple integral is taken over all sample points listed in the
criterion A.

For example, a vparticular sample plan might have a density function
of the form f (X7, Xp, -.., xn) =K exp—(x12 + x22 + oeee + xne). A possible
criterion would consist of those sample points 7, = (%15 Xny eeey xn) which lie
outside a sphere of radius one centered at the origin. Then the integral would
be taken over the exterior of this sphere.

These probabilities have a special significance. PN(A) is the condi-
tional probability that a sample from population N will be listed in criterion A,
that is, will be judged as a sample from population SN. Thus PN(A) = F 1s the
conditional false alarm probability. Also, PSN(A) is the conditional probability
of a certain kind of correct response called a hit (that of judging correctly
that a sample is from population SN). The conditional probability of judging
falsely that a sample is from population SN is therefore given by 1 - PSN(A) = M,
the conditional probability of a miss. The only errors which can occur are
false alarms and misses; their conditional probabilities, F and M, are called
briefly the error probabilities.

A reader familiar with the formal content of probability theory should
note that these quantities are true conditional probabilities: the first is
conditional on the sample being drawn from population SN; the second is condi-
tional on it being drawn from N. This is to distinguish them from a priori
probabilities (‘the probabilities that a certain population will be sarmpled, for

exemple) which are not as yet assumed known.

2.L Tikelihood Ratio and the Ratio Criteria

It is convenient to introduce a new function called the likelihood

io, £(Z,), defincd as th fon (o) le poi

ratio, £(Z,), defined as the ratio T or sample points Zy = (X3, ..., x,)-
n

6
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.Z(Zn) represents the likelihood that the sample point Z was drawn from SN
relative to the likelihood it was drawn from N. Hence, if ml(Zn) is sufficiently
large, it would be reasonable to conclude that Zn was in fact drawn from popula-
tion SN, i.e., that Z should be listed in the desired "best" criterion. Thus
for each nunber B 2 0, a certain criterion A(B) will be selected; A(B) is chosen
by listing each sample point ;n for which JKZn) 2 B. The problem then reduces
to that of making a wise choice of f; that is, to determine how large "suffi-
ciently large" is. Criteria of the form A(B) will be called ratio criteria.

A number of writers have presented varying definitions of a criterion
being "optimum." It turns out that each of these optimum criteria can be
expressed as a ratio criterion, so that a receiver designed to yield likelihood

ratio as output could be used with any of them.

2.5 Weighted Combination Criteria

Suppose it is possible to assign a certain number B as a weighting
factor representing the importance of a false alarm relative to a hit. Since
PSHCA) is the probability of a hit and PN(A) the probability of a false alarm,
it would then be reasonable to find a criterion A which maximizes the quantity

PSN(A) = ﬁPN(A)

But this quantity can be written as

[ [£an@) - ey(z)] ez,

where the integration is taken over the sample points Z, listed in A. To
maximize this integral, one would list in A every sample point Z, for which the
integrand was not negative. Solving that inequality for B, one sees that A

should contain those sample points Z,, for which

7
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Ty (Zn)

tea) = gy 2P

Thus the desired criterion A is simply A(8), and so it is a ratio criterion.

2.6 Neyman-Pearson Criteria

If it is critically important to keep the probability of a false
alarm PH(A) below a certain level k, then it would be reasonable to choose,
from among such criteria, that one which maximizes the probability of a hit.
Thus Neyman and Pearson proposed as a type of optimum criterion any criterion Ak
for which

(1) PN(Ak) £k , and

(2) Pgy(Ax) is a meximum for all the criteria A with the property

PN(A) < k.

The Ak type criterion can also be expressed as a ratio criterion. This
can be made plausible as follows. To begin with, it is necessary to consider
only those criteria A for which PN(A) = k, because A will be taken as large as
possible in order to meet condition (2). Now consider the curve given para-

metrically by the equations

"

x(p)

™
I

Py (A(B)) and

vy =y(B)

Peyy (A(B)) .

This curve will be called the Receiver Operating Characteristic (briefly, ROC)
curve, for a receiver whose output is likelihood ratio and with which ratio
criteria are being used.

The ROC curve passes through the points (0, 0) and (1, 1), the first

at p =, the second at B = 0. At p =0, £(2 )2 p =0 for all Z,, so A(0)
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consists of all possible sample points. Thus the observer will report that

every sample is drawn from SN, so he will be certain to make a false alarm and

to make a hit. (This assumes that the sample points will not be drawn exclusively
from one of the populations.) This can be verified, using the basic property of
the density functions expressed by the following equations:

J fon(a) 20

1 and

]
1]

Py (4(0))

1}

[}
—
-

y (2(0) = [ty(za) oz

when the integration is taken over all possible sample points Z,. These equa-
tions mean that x(0) = y(0) = 1. Moreover, x(®0) = y(c®) = 0, because for
B = there are no sample points Z, with L(Zn)z o ; i.e., A(m) contains no
sample points at all and the operator will never report a signal is present.
Therefore the operator cannot possibly make & false alarm nor can he make a hit.
Thus Pgy(A(@)) = 0 and By (A()) = o.

These considerations, together with those of the next section, show

that the ROC curve can be sketched somewhat as in Fig. 1.

|
(x,y)=Q
&
=
o
Q
>
K————
0 .
° x(B)=R,(A(B) '

FIG.I. TYPICAL ROC CURVE.

9
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To determine the desired Ay, recall that all probabilities lie between
zero and one, so that PN(Ak) = k is between zero and one. Then there is a point Q
of the ROC curve which lies vertically above the point (k, 0). The coordinates
(¥, ¥y) of Q are x = PN(A(B)) =kand y= PSN(A(B)), for some B, which will be
written Bx. Now A(Bx) is a possible candidate for Ay since PN(A(BK)> = k.
Let A be any criterion with Py(A) = k; it will be shown that Pgy(A) < Pgy (A (Bk)),
so that A(Bk) meets the requirements of the Neyman-Pearson criterion.

From the discussion of the weighted combination criterion, it is clear

that T = PSN(A(BK))- Bk-PN(A(Bk)) 2 Py(A) - B,:Py(A) = T*. Thus
PSN(A(Bk)) = T+k and
Pgy(A) = TH*+k .

The known inequality between the T's yields the desired inequality by subtracting
the last equation from the one above it.
Therefore, A, should be chosen to be this particular A(By); whence the

optimum criterion proposed by Neyman and Pearson reduces to a ratio criterion.

2.7 ROC Curve

It will be desirable to digress for a moment to study the ROC curve
more closely. Its value lies in the fact that if the type of criterion chosen
for a particular application is a ratio criterion, A(B), then a complete descrip-
tion of the detection system's performance can be read off the ROC curve. By
the very definition of the ROC curve, the x coordinate is the conditional
probability, F, of false alarm, and the y coordinate is the conditional proba-
bility of a hit. Similarly (1-x) is the conditional probability of being correcct

when noise alone is present, and (l-y) = M is the conditional probability of a

10
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miss., Since most propoged kinds of criteria can be reduced to ratio criteria,

the ROC curve assumes considerable importance.

In order to determine some of its geometric properties, it will be

assunied that the parametric functions

x =x(B) = PN(A(B)) and
y=y(@) = PSN(A(B))
are differentiable functions of B. The slope m of the tangent to the ROC curve
(Z)
is given by the quotient ——gg—— . To calculate the slope at the point(x(Bo),
(%)

y(BO», notice that among all criteria A, the quantity Pgy(A) - By Py(A) is

maximized by A = A(Bo). Therefore, in particular, the function

7(8) - Box(B) = Poy(a(B)) - Bo-P(A(e))

has a maximum at B = B,, so that its derivative must vanish there. Thus differen-

tiating,
o) dx
ag - Bo * F - 0O at B =By .
Solving for Bo» one obtains
(Z)
¥l =p,
CU@, L
®/g = go

This shows that the slope of the ROC curve is given by its parameter B, and so is
always positive. Hence the curve rises steadily. In addition, this means that
y(B) can be written as a single valued function of x(B), y = y (x), which is
monotone increasing, and where y(0) = O and y(1) = 1. These remarks meke fully

warranted the sketch of the ROC curve given in Fig. 1.

1l
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2.8 Siegert's "Ideal Observer's' Criteria

Here it is necessary to know beforehand the a priori probabilities
that population SN and that population N will be sampled. This 1s an additional
assumption. These probabilities are denoted respectively by P(SN) and P(N).
Moreover, P(SN) + P(N) = 1 because at least one of the populations must be
sampled. The criterion associated with Siegert's Ideal Observer is usually
defined as a criterion for which the a priori probability of error is minimized,
(or, equivalently, the a priori probability of a correct response is maximized).
‘Frequently the only case considered is that where P(SN) and P(N) are equal,
but this restriction is not necessary.

Since the conditional probability F of a false alarm is known as well
as the (a priori) probability of the event (that population N was sampled) upon
which F is conditional, then the probability of a false alarm is given by the
product

P(N)F .
In the same way the probability of a miss is given by
P(SN)M .
Because an error E can occur in exactly these two ways, the probability of error
is the sum of these quantities
P(E) = P()F + P(SN)M

It has already been pointed out that F = Py (A) and M = 1 - PSN(A).

If these are substituted into the expression for P(E) a simple algebraic mani-

pulation gives

P(E) = P(SN) - B(SN) [Pgy(a) - %(%%) . Py(a) ]

12
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It is desired to minimize P(E). But from the last equation this is

equivalent to meximizing the quantity

Psy(A) - 5-(%) ‘Py(a) .

And, of course, this will yield a weighted combination criterion with B = %%g%),
N

which is known to be simply A(B), a ratio criterion.

2.9 The Finite Ratio Test

Once populations N and SN have been chosen, "a finite test" of these
populations means a particular choice of finite sampling method and of criterion,
where the requirements made by Section 2.1 are met. If the criteria are restric-
ted to ratio criteria, then a finite test is determined by the choice of the
following parameters:

t Starting time of sample interval

T Length of sample interval

B Parameter of the ROC curve, from which the two conditional error

probabilities and the two correct response conditional probabili-
ties can be read off.
Such a test will be called & finite ratio test. Note especially that the ROC

curve is independent of the particular sampling plan chosen.

3. SEQUENTIAL TESTS

3.1 Infinite Samples

Among the verious methods of statistical analysis which have been
developed, some are designed to make use of infinite samples. This does not

mean that infinitely many measurements must be made in an actual application; it

13
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involves only the theoretical possibility of doing so. If such a theoretical
eventuality is allowed, one finds that in actual applications only a finite
number of samples are ever needed. In fact this number may even be smaller
than the number needed by a comparable standard test. These remarks will be
amplified later; at the moment they should suffice to justify consideration of
infinite samples.

A plan for taking an infinite sample does not necessarily entail an
infinitely long interval of time. The "time base" of such a plan can be in-
finite--for example, by having one measurement made every second. On the other

hand, a plan could call for making one measurement at each of the instants
1l
t = l"ﬁ F) n = l, 2’ ) .

These instants all lie in the time interval from zero to one, and thus such a
plan would involve only one unit of time at most.

Only those sampling plans for which certain statistical information is
known can be used in a test. If the sampling plan has becn carried out to the
point where n measurements, (xl, Xy +++5; %) have been made, the variable
Z, = (xl, Xp; +e+y X,) is called an "n-th stage sample variable." For each
stage n, the two density functions fN(Zn) and fSN(Zn) of the n-th stage sample
variable Z, must be known, where the first is the density function applicable
when population N is being sampled and the second applies when population SN is
sampled. The density functions at different stages may very well differ, so
that actually they should be written an(zn), and fSNn(Zn). However, the n
appearing in the argument Zn should always meke the situation clear, so that the

superscript n on the functions themselves will be dropped.

1k
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3.2 Sequential Tests

A sequential test will consist of two things:
1) An (infinite) sampling plan with density functions fN(Zn) and
Ton(Zn)

2) An assignment of certain criteria to each stage of the sampling

plan.

The idea of a sequential test is as follows. First, make one measure-
ment, x;; if the evidence Xy is sufficiently persuading, draw a conclusion as to
whether or not a signal is present. If the evidence is not so strong, make a
second measurement Xpe Then, considering the evidence (xl, x2), repeat the
above process, and continue in a similar mamner.

A particular scheme for making these decisions consists of the assign-
ment of three criteria to each stage of the sampling process. The three criteria
represent the three possible conclusions:

1) A sipnal is present, or

2) A signal is not present, or

3) Another measurement should be made.

At the first stage, any (real) number at all could theoretically result
from the first measurement. This means that the first stage sample variable
Zy = (xl) ranges through the entire number system, which will be written S; to
stand for the first stage sample space. Suppose the three first-stage criteria
Ay, By, end C;, have been chosen. If the sample Z; is listed in A;, the conclu-
sion that a signal is present is drawn and the test terminated. If it is listed
in By, the conclusion is that noise alone is present, and again the test is
terminated. If Z; should be listed in Cj, another measurement will be made, and

the test moves on to the second stage instead of terminating.

15
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When the first stage criteria have been chosen, a limitation is
placed on S,, the space through which the second stage sample variable
Zo = (xl, x2) ranges. The only way the test can proceed to the second stage is
for Z; = (x7) to be listed in C;. Therefore, S, does not contain all possible
second stage samples Z, = (X7, Xp) but only those for which (x;) is listed in
Cy. Three second-stage criteria, A2, Bp, and C,, must now be chosen from those
samples Zn listed In Sp. They mustvbe chosen in such a way that there are no
duplications in the listings and no sample in S, is omitted. These criteria
carry exactly the same significance as those chosen in the first stage. That is,
the three conclusions that a signal is or is not present, or that the test should
be continued, are drawn when the sample 22 is listed in Ap, By, or C, respec-
tively.

The selection of criteria proceeds in the same way. If n-th stage
criteria Ap, By» and Cn have been chosen, then the next stage's sample space
Sn+l consists of those samples Zn+l = (xl, Xpy veey X, xn+l) for which
Zn = (X1y Xpy ...y X,) Was listed in C,. Then from Sp,; are drawn the three
(n+l) stage criteria A ,, By, and C ;.

When an entire sequence

(A1> B1s C1)

(Asy Bp, Co) ,

(An> By Cq) s

of criteria is selected, a '"sequential test" has been determined. This does not

mean of course that the test will necessarily be particularly useful. However,

16
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among all the possible ways of selecting a sequence of criteria and hence a

sequential test, there may be particular ones which are very useful.

3.3 Probabilities Agsociated with a Sequential Test

If Q, is any n-th stage criterion, then the quantitiesl

P (%) = f £(2 ) az, and
U
Pey(Qy) = f Ton(Zy) 2y

i

represent the (N or SN) conditional probabilities that an n-th stage sample Zn
will be listed in the criterion Qn. Some examples of the use of this notation
are:

1) The n-th stage conditional error probabilities:

If population N is sampled, then the probability that the sample variable Z, will
be listed in A, is Py(A;). This is the N-conditional probability of a false
alarm.

If population SN is sampled, then the probability that the sample
variable Z, will be listed in B, is PSN(Bn). This is the SN-conditional proba-
bility of a miss.

2) The conditional error probabilities of the entire test:

(¢0)
F o= 3y PN(An) the N-conditional probability of a false

n=1

alarm, and

LThe notation Jf indicates that the integration is to be carried out over all
Q

sample points listed in Q.

17
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@
M= 3 PSN(Bn) the conditional probability of a miss,

n=1
are merely the sums of the same error probabilities over all stages.

3) The conditional probabilities of terminating at stage n are

Il
Ty Py () + Py(By)

Tan Pgy(An) + Pgy(By)

These formulas can be justified by a simple argument. The only ways
the test can terminate at stage n is for the sample variable Zn to be listed in
either A, or B,. The probability of this event is the sum of the probabilities
of the component events which are mutually exclusive since Z, can be listed in

at most one of A and By.

k) The conditional probabilities that the entire test will terminate

are
s n
TN = Z TN
n=1
@ n
Tsw = ¥ Tay .
n=1

3.4 Average Sample Numbers

There are two other quantities which must be introduced. One feature
of the sequential test is that it affords an opportunity of arriving at a decision
early in the sampling process when the date happens to be unusually convincing.
Thus one might expect that, on the average, the stage of termination of a well-
constructed sequential test would be lower than could be achieved by an other-

wise equal, good standard test. It is therefore important to obtain expressions

18
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for the average or expected value of the stage of termination. As with other
probabilities, there will be two of these quantities: one conditional on popula-
tion N being sampled; the other conditional on population SN being sampled. They

are given by
(40)

n
EN = 2: n TN and
n=1
$ nm
ESN=ZnSN .
n=1

The letter E is used to refer to the term "expected value." The quantities EN
and ESN are called the average sample numbers. The form these formulas take can
be justified (somewhat freely) on the grounds that each value, n, which the
variable "stage of termination" may take on must be weighted by the (conditional)
probability that the variable will in fact take on that value.

It should be heavily emphasized that the average sample numbers are
strictly average figures. In actual runs of a sequential test, the stages of
termination will sometimes be less than the average sample numbers but will also
be upon occasion much larger. Any sequential test whose average sample numbers
are not finite would be useless for applications. Therefore the only ones to be
considered are those with finite average sample numbers. Under this assumption,
it can be shownl that TN = TSN = 1, so that the test is certain to terminate
(in the sense of probability). On the other hand, if it is known that
Ty = Tgy = 1, it does not always follow that the average sample numbers are

finite. Such a situation would mean only that if a sequence of runs of the test

lSee Appendix A. This particular result should be intuitively evident.
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were made, each run would probably terminate, but the average stage of termina-

tion would become arbitrarily large as more runs were made.

3.5, Sequential Ratio Tests

In studying tests using finite samples it was found that the best
criterion could always be expressed in terms of likelihood ratio. Therefore, it
may be useful to introduce likelihood ratios at each stage of an infinite sample

plan. The n-th stage likelihood ratio function _K(Zn) is defined as the

N,

ratio ?QEZZT— . Optimum criteria in the finite sample tests turned out to be
criteria listing all samples Z for which £(Z) is greater than or equal to a
certain number. It should be possible to choose sequential criteria (A, By, C,)
in the same way. For each stage two numbers a, and bp with bn < a could be
chosen. Then the criteria (An, Bys Cp) determined by the numbers a, and by
would be

Ay lists all samples Z, of the sample space S, for which £(Zy) 2 ay

B, lists all samples Z, of the sample space S for which £(z,) < v,

C, lists all samples Zn of the sample space Sn for which bn<:.l(Zn)<zﬁf
If criteria selected in this way meet the requirements that the average sample

numbers be finite, then the resulting sequential test is called a "sequential

ratio test."

3.6 Optimum Sequential Tests

Because the task of computing the various parameters (error probabili-
ties and average sample numbers) of a sequential test is considerably more
difficult than the corresponding task for the standard test, certain sirplifi-

cations have been introduced. For example, each systematic study of sequential
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tests has been restricted to those of the ratio type introduced in the last
paragraph.

Tor these tests there are two ways of defining an optimum which would
probably occur to onc immediately. The first would say that among all ratio
tests with conditional false alarm probability F, that one for which M, EN, and
Egyr are minimum will be called optimum. The complexities of such an extremum
problem are enormous and there are no answers known as yet. The second natural
possibility is to try to find, among all ratio tests with fixed error probabili-
ties F and M, that one for which the average sample numbers Ly and Eqy are
minimum. This is the usual sense in which the word optimum is used concerning
sequential tests.

Wald has proposed a particular test as an optimum ratio test, which will
will be known as the Wald test in this report. A ratio test is a Wald test if
each of the sequences {bn} and'{an}'are constant, that is, if bl = b, and
a; = ay for all n. Moreover, walal proved under very restrictive conditions that
his test is optimum. Unfortunately, his conditions are never satisfied in the
case of applications to signal detectability, as is shown in Section A.L of
Appendix A. However, the absence of theoretical knowledge concerning the optimum
nature of the Wald test should not be construed to ban the use of the test, but
merely to tenper its use with caution.

No examples of ROC curves are given for the Wald test in various cascs
becausc of the heavy computational difficulties involved. Numerical comparison

of the Wald test with a finite ratio test is given in the next section.

14, Wald, Sequential Analysis, John Wiley and Sons, 1947.
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4. CONCLUSIONS

4.1 Applicability of Finite Ratio Tests

From a theory of signal detection one would hope to obtain two basic
results:

1) The ROC curve, i.e., performance of an optimum receiver, and

2) Specification of an optimum receiver.

When population N is taken as finite dimensional with a white Gaussian
density function, actual specification of an optimum receiver has been carried
outt for certain particular SN populations. These cases are tabulated as
follows. In the table S denotes the signal population before being perturbed by

the noise.

TABLE I

S Application

Signal Known Exactly Coherent radar with a target of
known range and character

Signal Known Except for Ordinary pulse radar with no inte-
Phase gration and with a target of known
range and character.

Signal a Sample of White | Detection of noise-like signals;
Gaussian Noise detection of speech sounds in
Gaussian noise.

Output’ of the Detector Detecting a pulse of known start-
of a Broad Bend Receiver | ing time (such as a pulse from a
radar beacon) with a crystal-video
or other type broad band receiver.

A Radar Case (A train of | Ordinary pulse radar with inte-
pulses with incoherent gration and with a target of known
phase) range and character.

lpechnical Report No. 13, Part IT.
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TABLE I (cont.)

Application

6]

Signal One of M Orthogo- | Coherent radar where the target is
nal Signals at one of a finite number of non-
overlapping positions.

Signal One of M Orthogo- Ordinary pulse radar with no inte-
nal Signals Known Except gration and with a target which

for Phase may appear at one of a finite
nunber of non-overlapping posi-
tions.

In all these cases, either population SN is finite dimensional, or a
special method is used to reduce the problem to an equivalent finite dimensional
one. Once such a reduction is achieved, a sampling plan which throws away no
information can be found,l and the solution of the problem then consists of
deriving an expression for likelihood ratio and specifying a receiver whose
output will be that likelihood ratio.

However, this restriction to finite dimensionality is not at all essen-
tial. The theory concerning the existence of an optimum criterion depends only
on the presence of a function to play the part of the likelihood ratio function.2
For the purposes of initial investigation and of exposition the restriction of
finite dimensionality is very convenient, for then the calculations necessary
can be formulated in terms of carefully chosen sampling plans, and the expression
for likelihood ratio takes a closed form. With likelihood ratio in a closed form

it is not difficult to specify the optimum receiver (i.e., the receiver which has

lSee Appendix B.

2Grenander, U., "Stochastic Processes and Statistical Inference," Arkiv Fér
Metematik, Vol. 2, 195 (1950). —
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likelihood ratio as its output) in certain cases such as those tabulated above.
Moreover, when the general form of the theory is used, actual calculations would
be carried out by using finite dimensional approximations. It appears that the
results already obtained concerning the optimum receiver will not be changed
materially when the more general theory 1s used. Although to date actual ROC
curves and optimum receivers have not been determined for cases susceptible to
only the general theory, there is no essential obstacle to doing so.

In the absence of experimental verification of the accuracy of the ROC
curve in predicting the performance of the optimum receiver, there is one
remaining fact which could be interpreted as casting doubt on the reliability of
the theory so far developed. Under the restrictions 1) that populations N and SN
are finite dimensional and 2) that the functions of time in these populations be
(reel) analytic, it is possible to prcvel that sampling plans utilizing arbi-
trarily small sample intervals can be found, all of which yield the same error
probabilities or ROC curves.

One way to explain this anomaly is as follows:

There can be little doubt that observations restricted successively
to arbitrarily small intervals camnmot be equally effective in detecting a signal.
At the same time there can be little doubt that extremely precise measurements
cannot be made of arbitrarily small intervals. It is not at all uncommon that
the assumption that errorless measurements are possible should lead to physi-
cally ridiculous conclusions. The apparent anomaly cited above can certainly

be thought of as a case in point.

1see Appendix B.
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4.2 Applicability of Sequential Ratio Tests

The current status of the theory of sequential ratio tests is marred
by two essential cdefects so far as its possible applications to signal detection
are concerned.

1) The Wald test is known to be optimum only relative to a very
restricted class of sequential ratio tests.l

2) Even if the Wald test were known to be optimum in general, condi-
tions under which its average sample numbers are finite remain unknown.

However, there are some strong reasons to believe that sequential ratio
tests would be very useful if the points cited above were cleared up. The first
is the point made in Section 4.1 concerning the desirability of having a prac-
tical theory which is not restricted to finite dimensional populations. Sequen-
tial anelysis might be the needed key for such a-theory formulated in terms of
infinite sampling plans. Moreover, whether or not the Wald test is optimum,
there are many instances where it compares very favorably with the finite ratio
test.

For example, suppose that both populations N and SN are finite dimen-
sional with white Gaussian density functions. In this event, successive measure-
ments of the amplitude of the receiver input will be independent and Wald's
approximation formulas for the average sample numbers of the Wald test can be
used. First a particular sample interval I was chosen. Then a large number W
was selected, and the functions of time present in the two populations were
determined by taking all such functions which have a Fourier expansion on the
interval I and deleting all terms in the expansion of frequency greater than W.

This meant that the two populations were of dimension n = 2WT, where T is the

lSee Appendix A for a technical discussion of this matter.
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length of the sample interval. In this case the sampling plan, which consists of
making n measurements equally spaced in the interval I ,l will have the property
that it throws away no information.

In order to secure as fair a comparison as possible, an infinite
sampling plan was chosen for the Wald test which involved meking measurements at
evenly spaced intervals of length 5.%? . Thus for the first n measurements this
sampling plan coincides with the finite sampling plan chosen above. A particular
point (F, M) was chosen on the ROC curve of the finite ratio tests, and the
average sample numbers of the Wald test whose error probabilities are (F, M)
were calculated. These calculations were performed for various ratios of signal
energy to noise energy and in all cases the average sample numbers came out

appreciably less than the dimension n = 2W+t of the finite ratio test. Thus in

this case the Wald test would terminate on the average before the entire sample

interval for the finite ratio test had elapsed. The quantitative results are

tabulated below.

TABLE II
Average Dimension of the
Power Retio Sample Numbers Finite Ratio Test
s/ Egy By
.368 80 15 100
.9804 828 195 1,000
.02911 8754 2015 10,000
.00902 83221 20154 100,000

T

1rhe spacing would be ot
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Although little use can be made at present of sequential analysis in
signal detection, it appears that if all possibilities of obtaining the practical
theory desired without the finite dimensionel restriction are to be explored,

then the gaps mentioned in the theory of sequential analysis should certainly

receive more attention in the future.
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APPENDIX A

THE MATHEMATICAL THEORY OF SEQUENTIAL TESTS

A.1 Introduction

The discussion of sequential tests given in the body of this report is
somewhat novel compared to the current literature of the subject. The novelty
stems primarily from a special orientation and notation. Previous work on
sequential tests has been done with the chief emphasis on its application to the
case of finite populations where the distribution of the n-th measurement is the
same as that of the first measurement, i.e., where successive measurements are
independent. Finite populations have been of special interest because of the use
of sequential tests in quality control, where the assumption of independence is
rarely a significant restriction. Moreover, this assumption made it possible to
establish a number of formulas which are of great value in computing the various
parameters of a sequential test. However, in the field of signal detection it is
easy to find quite simple cases where successive measurements are not independent.
Therefore, the use of sequential tests in this direction will depend on the exten-
sion of the general theory in the absence of the hypothesis of independence. The
material of this appendix has been written with the purpose of outlining the kind
of theory needed and to point out certain theoretical questions which will have to
be answered before sequential analysis can be applied to signal detection. As a

result, the orientation of this discussion differs from that of Wald,l for example;

lThroughout the appendix, the source for references to Wald's work is A. Wald,
Sequential Analysis, John Wiley and Sons, 1947.
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this change in orientation also requires a new notation, which has already been

introduced above.

A.2 Sequential Tests

A sequential test is a particular combination of two basic kinds of
mathematical objects, which will be called hypothesee; and criteria. Let ED
denote the n-dimensional Euclidean space and i Lebesgue measure on ER,

A hypothesis 1s a family {fn: En-—vEl}, n=1,2, ..., of non-

negative functions subject to the conditions that, for each n,
Io f =
fn ap 1 and
ER

II. If A is any set in E® for which ffn dp exists, then
A

ffnd/"'= flfn+ld,u'
A AXE
IT is called the "cylindrical" property, because A X EL can be thought of as a

cylinder erected on the base A, Note that if g is a real function of one variable

such that ‘/]: g du = 1, then a hypothesis may be constructed from g by defining
E
n
Iy (xl, Xy +oey Xn) to be the product 1T g(xi). Such a hypothesis is called
i=1
independent.

A criterion is a collection {An, ) Cn}, n=1, 2, ..., of sets subject

to the conditions

III. An, By, and C, are pairwise disjoint.

IV. AUBUC; = Eland A UBUC, = C, X E' ifn> L.

Finally, a sequential test (of two hypotheses) consists of two hypo-

1
theses {fn: E'—»E } and {gn: En—»El} together with a criterion {An, B, Cn}
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for which

V. The integrals of £ and g, over the sets An, B,s» and Cp exist.
VI. 2 ffn dp and 2 fg,n dp converge.
Cn Cn

The chief notational difference here from that used by Wald is in the
criterion. Wald supposes that, for each n, E® has been partitioned into three
mutually disjoint sets RIJI_, 3121, and R?. Then he distinguishes between "effective"
and "ineffective" samples (i.e., points of E®) but does not assign a symbol to
the "effective" samples, that is, the set Cp-1 X E'. Because it will be necessary
to compute probabilities that "effective" samples belong to, say, Rxll, it is
desirable to have a symbol for such a set. In the notation of this report, for
example, A, = R?ﬂ (Cp1 X El).

It will be shown in & moment that the quantities appearing in VI are
nerely the average sample numbers diminished by one. Wald employs as an axion
the condition that the two conditional probabilities of terminating be unity, and
shows that if the hypotheses are independent, then this axiom holds. However, it
is doubtful that sequential tests for which the average sample numbers are infi-
nite will ever be of real interest. Moreover, VI implies that Wald's axiom holds,
and that the conditional error probabilities converge. Because VI is actually
stronger than both these conditions, VI appears to be a natural and useful axiom.

Associated with the hypotheses are families {Fn} and { Gn} of measures

defined by
Fa@ = [ fyau  end
Q
6@ = [ emap .
Q
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Fn(Q) is interpreted as the conditional probability that a point x of E is a
point of Q, where the "condition" is that hypothesis {fn: En-—>El} actually does
describe the statistical properties of the sample x. A similar interpretation

is made for G, (Q).

Lerma, Al

1

n .
Pl - '[An+lU Bn+lucn+l] U [iL_)I(AiUBi)x En+l'l}

Proof: The first statement is merely IV. The second can be proved by induction.
Let Qn represent the right hand side of the second equality.

Then

1 1l
Q (Cle>U<AlUleE) by IV
£ oy 1
Factoring E—,

(CLUA UB)) x EL = ElxEl = 2

Ql'
Thus the lemma is true when n = 1. Suppose the lemma is true for some particular
number; i.e., suppose that ED = Qtn-l' This will now be shown to imply that

ol o Qs which will complete the inductive argument. Using the inductive

hypothesis, one obtains

n . n
U (auBy) x B o gy I:AnUBnU(H(AiUBi) X En'i>]
1=1 =

E'x (Q_; - Cp)

1

E*x (ER - Cp)
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Therefore,

Q, [Cn X El]U[Elx (E® - cn)]

(c, x EY) u @) - gl x ¢ - 27

which was to be proved.

An immediate corollary of this lemma and II is

Theorem Al

I
(]

n
iZ_l (Fi(Ai) + Fi(Bi)> + F(Cy)

|
[

n
'21 (Gi(Ai) + Gi(Bi)> + Gy (Cp)
1=

At this point it should be noted that F; (Ag) + Fi(Bi) and Gi(Ai) + Gi(Bi) are
the (conditional) probebilities that a sample (X15 X, +..5 X4) be a point of

A;UB;, vhich is equivelent to the assertion that the test will terminate at

exactly the i-th stage. Thus

Theorem A2

® @®
iZ=l <Fi(Ai) + Fi(Bi)> = 121 (Gi(Ai) + Gi(Bi)> = 1

means that the (conditional) probabilities of termination are unity. This

theorem is proved by applying Theorem Al and the fact that Lim Fy (Ci) =
i—-

Lim G;(Cy) = O, which is a necessary condition that VI hold.

i—®
If the hypotheses { fn} and {gn} are denoted by H, and Hl respectively,

then the quantities
(s0}

2 Fi(Ag) and
i=1

Q
n

®
2 G4(B;)

i=1

pos]
I
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are the conditional probabilities of a type I or type II errorl respectively.

Let r be the (random) variable denoting the stage of termination of

the test. Then the conditional expected values of r are

(e 0)
S nFy (AqUBL) and
=1

Eq(r)

Eo(r)

]

$ n g, (U,

n=1

The question of convergence of these series is settled by the following evalua-

tion.

Theorem A3

(¢0)
1+ 3 Fyi(Cy)
=1

Ey ()

(0 0]
i=1

Eo(r)

Proof: Since Cpx Bl = A , UBL,1UCy, , it is equally true that

1 =
(Chx E7) -Cq =

1 = Ay VB, . Therefore E)(r) =F1(A,UB;) +

®
S n(Fn (Cpp x EY) - Fy(Cy)). Using the facts that 1 - Fy(Cy) =

n=2

Fl(El) - F1(C;) = F1(AjUB;) and that Fy(Cy_y X El) = F,; (Cy_1)s (1.e., II), cne
(00}

obtains Ey(r) = 1 - F1(Cy) + X n(Fn-l (Cyp-1) - Fn(cn)) . This series
n=2

collapses and yields the desired result. A similar argument works for Eo(r).

J’I'his is the notation used by Wald; type I is a false alarm, type II is a miss.
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Thus the condition VI is seen to mean that the average sample numbers
must be finite. Moreover Theorem A3 represents the average sample numbers in
a way that greatly facilitates comparison of average sample numbers yielded by
two different criteria by comparing the sets~{Cn}. It is possible that this
particular representation will eventually lead to a general proof of the optimum

character of the Wald test.l

A.3 Sequential Ratio Tests

Now that the basic properties of a sequential test have been explored,
it is time to consider the problem of selecting a useful criterion for given
hypotheses Hy and H,. Bolstered by the success of the likelihood ratio as a
criterion-selecting device in the finite ratio test, one hopes it would be
equally efficacious here. The likelihood ratio is usually defined as the
ratio £ (x)/g,(x). That is, at each point x° in E" at which the limit

Lim £ (x)/gy(x) = T(x°) exists, one writes £(x°) = T(x°). Let S, denote
X — %0

the set of all such pointr in ER; S, is called the ratio sample space. It is,
of course, the domain of definition of 4; usually S will be all of E".

One would expect to construct a ratio criterion as follows from two
sequences L = {bn} and R = {an} with 0< b < ap. Let I = {xl b, < x < an}

and further let R, and Ly, be the rest of El to the right and left respectively

of In.2

Lsee below, Section A.k.
-1
2The notation”fn (Q) denotes all points x in S, for which _Zn(x) is in Q.

3L
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-1 -1 -1
1) Let Ay =4y "(Ry), By =4 (L), and C; = 4 "(I;).
-1
2) If As By, and Cy have been defined, let A, 4 = ('an+l(Rn+l))n

-1
(Cy x El)’ Bpi1 = (jn+l(1‘n+l)> 0 (Cnx El)’ and

Cpa1 = O X BY) = Ay = Brg

The resulting sequence of sets {An, B3 Cn} is a criterion provided that
Sp D Cpoq X El (except possibly for a set of n-measure zero). That is, the
(n+l)-th stage likelihood ratio function must be defined at least for all
points in Cn-—l X El . If the pair L, R of sequences yields a criterion which
satisfies V and VI, then it is said to be admissible, and the resulting
criterion is written [L/R] to denote its dependence on the given sequences.
Moreover, the resulting test is called a sequential ratio test. It is perhaps
moot whether there are other systematic means (of generating criteria) which
cannot be rejected immediately on the grounds that the resultant computational
difficulties would be excessive. At any rate, the only such systematic method
known as yet is that employing likelihood ratio. For that reason consideration
is usually restricted to sequential ratio tests.

When L ={bn} and R = {an} are both constant sequences, i.e.,
a) = ay and by = b, for all n, and if [L/R] is admissible, the resulting ratio

test is called a Wald test.

A.4 Optimum Tests

To each sequential ratio test there are assigned four numbers or
parameters: @, 8, Ej(r) and Ey(r). It is desirable to choose criteria [L/R]
which make these numbers as small as possible. Suppose hypotheses Hy eand H,
are given and error probabilities « and B prescribed. Then Wald defines an

optimum test (at the level of @, B) as a test
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1) Whose error probabilities are o and B,
2) Whose average sample numbers are minimum among all other tests
whose error probabilities are also o and B.
Further, Wald conjectures that when the class of tests at the (¢, 3) level
contains a Wald test, then the Wald Test is optimum. To support this conjecture
he proves that if the hypotheses H, and Hl are independent and if, in the Wald
test, by = by Ln(x) S a_ =a) for all x in C__, X E- = A UB UCy, then tho

Wald test is indeed optimmum.

The second hypotheses says that, in the Wald test's criteria,

-1 - @
AC L, (al) and BnC ‘Zn l(bl). Moreover :E]_ F(Ai) + F(B;) = 1. Hence for

some n at least,.ﬁi{dlal) has F, measure positive, énd therefore positive
Lebesgue measure; i.e., necessarily some of the point inverses of the likelihood
ratio function have positive measure. In applications to signal detectability
however, the likelihood ratio will be (real) analytic, so that all its point
inverses have measure zero.l Thus Wald's theorem is of little wvalue for such
applications. In fact, whenever the functions f, and g, are continuous (and
hence) induce measures Fn and G, which have the property of assigning the same
measure to a set as is assigned to its closure, it will follow that all point
inverses of the likelihood ratio function have probability2 zero. Therefore
even under these much less restrictive conditions Wald's hypothesis does not
hold.

This is one major gap in the theory of sequential analysis so far as

applications to signal detection are concerned. The other queétion which also

1
See Technical Report No. 13, Part I, Lemma 2, page 3k.

2Having probability zero means the F, and G, measures both are equal to zero,
Any such set will mske no contributions to %he parameters of the test.
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remains to be answered is concerned with the consequences of knowing that
Wald's test is always optimum. In this event, it would be desirable to know
when the class of all sequential tests at a given (¢, B) level includes a Wald
test. Moreover, those pairs of nypotheses H ° and Hl for which there is some
sequential test whose average sample numbers are finite should be characterized,
for these are the only hypotheses with which one would consider using a sequen-
tial test in the first place.

In connection with the question regarding the (@, B) levels at which

there is a Wald test, some information is available.
Lerma Ak, Tor every Wald test, ¢ + B< 1 .

Proof : Because the given test is a Wald test, a, = a) and by = bl for all n.

From the inequalities

Py = [ f®ap@) = [ £y(x) dGnZ< min _Zn(x)>(f a6y) = o Gy (A),s
Ap An x€Ap Ay
Pa(By) = [ £ ap = [ £ (x) dGnS<mx f#(x))(fd(}n) = by-G, (B,)
Bn Bn X€ Bn Bn
one obtains
F (A))2 a) Gn(An) and

Fn(Bn) E bl Gn(Bn)

These expressions summed over all n yield

B . 2T 2 "ala) 1
=T Tt Y Toe)  °
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i1 _ B8 _ lxx-B _ . ‘e
But S ig a(l<q) >0 means that 1-p~@¢ >0 since the denominator is known

to be positive.

APPENDIX B

SAMPLE PLANS

B.l TIntroduction

The theory of the finite ratio test developed in Technical Report No.
15 depends on finding a sampling plan which throws no information away. If the
measurements are to be of the instantaneous amplitude of the receiver input,
then such a sampling plan on the sample intervel I consists first of a basis for
population II containing n linearly independent functions {xi (t )} , 1=1,2, ..., n,
and sample points{‘bi}, i=1l,2, ..., n, in I with the property that every

function w(t) in populations N and SN can be expressed as

n
v(t) = Y w(ty) xi(t)
i=1
By measuring values of the receiver input w(‘t) at the sample points {ti} one

obtains the coefficients needed to represent w(t) in terms of the known basis

8
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fu.nctions{xi(‘b)}. Such a basis together with the sample points determines an

admissable sample plan on I.

B.2 If Populations N and SN are Finite Dimensional, Then There Is an Admissible

Sample Plan
Since the populations are finite dimensional, there 1s a basis
{yi(t)}, i=1,2, ..., n, for them. It will be sufficient to construct a new
basis {xi(t)} and sample points { ti} in I which have the property that
xi(tj) = Si,j .
First it 1s necessary to show that there are sample points {ti} for
which det ( vyt .j)> # 0. This is certainly true if n = 1. Suppose it is true
when the dimension equals nj; this will imply that it is also true when the
dimension equals n + 1. The proof goes as follows:
By the inductive hypothesis there are n sample points {ti} y 1 =1,
2y ...y n, with the property that
y(t) © 0t v (ty)

det . : £ 0

] .

yn(ti) * . yn(tn)

Let
yi(ty) ¢ ¢ yp(ty) yu(t)

D(t) = det : ' .
Yo (ty) -

Tl b o (®)

Ynztn) ynzt)
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Then D(t) can be expanded by minors along the last columm, yielding
n+l

D(t) = > a; ¥;(t), where a_ , is not zero, for it is the n-by-n determinant
i=1

above. If D(t) = O for all t in the interval I, then all the a;'s must vanish
because the yi's are linearly independent on I. Hence D(t) is not identically
zero on I and therefore some tn+l can be found for which D(tn+l) £ 0.

Now, in order to construct the desired basis{xi(t)}, it is necessary
only to solve the n2 linear equations

Y ayy Tylt) = Sy
3=1

in n° unlmo-vms{aij} 5 for if they can be solved, the desired xi’s can be chosen

n

as x4(t) = 2 845 yj(t). The solubility of these equations can be determined
J=1

by examining the n? by n2 determinant formed by their coefficients. If Q is

used to denote the n X n matrix whose elements are {yj (tk)}, the determinant of

the coefficients can be written as

O

det . = (det Q)"

which has just been shown to be non zero. ZXence the equations can be solved.

B.3 Sampling in Arbitrarily Short Intervals

There are many instences where the functions of populations N and SK
can be teken to be (real) analytic, as for instance when the signal is a tone

modulated CW transmission. Such functions have the property that they never

Lo
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venish on any interval. This means that ii‘{yi(t)} ,1i=1,2, ..., n, is a
basis for the populations on the interval I, then it is also linearly indepen-
dent and therefore a basis on any sub-interval of I. Thus the proposition
proved in B.2 by induction could be applied to determining sariple points in any
sub-interval of I. The rest of the demonstration in that paragraph applies to
any collection of sample points as long as they are chosen in the interval I.

In this way an admissible sampling plan for the interval I can be chosen with
the sample points restricted to any arbitrarily small sub-interval. But for any
admissible sampling plan in the given sample interval there is an optimum
criterion, and so the ROC curves of any two admissible sampling plans for the
given interval will be identical, since each is "optimum." If this theoretical
result is interpreted literally it means that observations of the receiver input
can be restricted to any small interval without impairing the effectiveness of

the detection system (see page 24 for discussion of this matter).

L1




—  ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

APTENDIX ¢

PROBABILITY DENSIT'Y FUNCTIONS

The only technical concept used in the body of this report which is
needed in understanding the material is that of density function. The purpose
of this appendix is to give & simple accouni of the meaning of this temm.

Suppose that in a particular study only a finite number of different
events are possible, for example, the events that can result from rolling dice.
Then the classical definition of the probability of an event E is

number of ways E can occur
total number of events

P(E)

Unfortunately when the possible number of events is not finite, then the denomine-
tor of the above expression is infinite, and the quotient is zero (unless the
denominator is also infinite, which only accentuates the difficulty). An example
of such a situation can be constructed as follows.

Suppose a dart is to be thrown while aimed at the center of a target,
where the dart's point is idealized into a mathematicael point. It is (again
ideally) possible to find a probability that the thrown dart will land in a
certain circle by determining the frequency with which this occurs in a large
nunber of tries. This probability may very well depend on where the circle is
located on the board. In order to be able to compare the affinity of the thrown
dart for circles of unequal size, one would divide the probability of each

circle by the area of the circle,

L2




—  ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

P (dart landing in circle C)
area of circle C

= ()

Let P*(C) be called the normalized probability of hitting the circle.

In order to essign a number to each point x of the target in such a
way as to represent the affinity of the dart for landing near that point, one
would teke an entire sequence of circles, each centered at the point, whose
radii are decreasing to zero, designated by Cn. Then the limit of P*(Cn) as
n— 0 could be used as the number f(x) to be associated with the point x.

This number may or may not be zero, which avolds the difficulty pointed out above
when the classicel definition of probability is applied to infinitely many
events.

In addition, it can be proved that when the resulting function f(x)
is integrated over a circle C, the value of the integral is merely P(C) all over
again, This function f(x) is called the probability density function, or
more simply, the density function. Its basic property is that by integrating
it over a (geometric) figure, one obtains the originally assigned probability
that an event (events are represented by points of the target) will be & point of
the given figure. Thus the integral over the entire target, i.e., over all

points, will be unity.
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