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CHAPTER ONE

INTRODUCTION
1.1 Background

This report describes a procedure-oriented language developed at the

Logic of Computers Group for the IBM 1800. The language is called CESSL
(CEllular Space Simulation Language) for historical reasons. One of the
authors (RFB) developed a simulation system for cellular spaces for which
a new language with special constructs was required. The other author (DRF)
helped finish the work and extended the language to the point where it now
stands as an entity independent of the simulation system. RFB's Ph., D. thesis
(1) describes the simulation system and language as of December, 1969. This
manual is a considerably expanded description of CESSL and its extensions
since then. A separate report (3) describes the simulation system in its

present form.

In the two years it has been under development and in use, CESSL has
grown and changed considerably. Most of this change has been in adapting it
to be a good tool in the operating system in which it is used rather than an
elegant, machine-independent language. It is fairly straightforward and standard
in its capabilities with the exception of its data structuring facilities
which are simple but effective. There are no general string manipulation capa-
bilities, but ad hoc features allow some operations (I/O, assignments, and
comparisons) to be performed nicely. CESSL is best described as a very handy
procedural language which includes a few good ideas that might be of use elsewhere.

In the great family of languages it is closest to MAD/7090 (9) from

which it draws inspiration and to which it owes a great debt. Comparing it to
FORTRAN and ALGOL/58, it is closer to FORTRAN by not having a block structure,

1



2  Introduction

but it approaches ALGOL in its conditional and loop structures.

1.2 Use

This report is basically a reference manual for CESSL, not a tutorial
in programming--the authors assume that readers are familiar with at least
one other procedural language. In addition, users should be familiar with
the operating system for the IBM 1800.

Chapter Two contains the complete description of the externals of the lan-
guage. Chapter Three contains the mechanics of using the compiler in TSX. Chap-
ter Four describes the code produced by the compiler and is included for the
Benefit of those users who are wont to perform debugging at the machine language
level. Chapter Five covers a few special topics which refused to be included

elsewhere.

1.3 Facilities

The following is a brief introduction to the hardware and software
referred to throughout this manual. Complete information can be found else-
where on these topics--this is meant only to lessen initial reader confusion.

The computing facilities at the Logic of Computers Group (LOCG) consists

of two small computers (an IBM 1800 and a DEC PDP-7), each with its own
peripherals, connected by a locally designed interface which has the capability
of performing core-to-core transfers. See Figure 1.1

The operating system for the 1800 is TSX, supplied by IBM (6,7,8).
Part of the system is the '"Nonprocess Monitor" which is a batch monitor which
reads control and data cards form the card reader, directs the storage of
compilod or assembled programs, and starts the execution of user programs.

The Logical File System on the 1800 is a subsystem (actually a collection
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of subroutines) which can create and maintain sequential character (or files

on the 1810 disks (2).

The "copy port'" is a logical path between the 1800 and the PDP7 through
which characters (;.e. 8 bit bytes) can be passed back and forth between the
two machines by means of system software at either end. A common use is for
an 1800 program to send a stream of characters via the copy port to a cooper-

ating program in the PDP7 which will then display them on the CRT (338 Display),

thereby achieving rapid, albeit volatile, readout.

1.4 Acknowledgments

The authors wish to thank those member of the Logic of Computers Group
who have suffered through the development of the compiler and this documentation--
which were often contradictory. Indeed, they can truthfully say--as few others
in this world can--"But it worked yesterday and I didn't change a thing". Their
courage in the use of CESSL is to be praised, although their wisdom may be
doubted; their criticisms and suggestions have often been useful.

Special thanks are due to Dennis P. Geller who did much of the support
programming for the I/0 Statements and Hal A. Rosenblit for the DATA statement.
Finally, thanks to Jan McDougall for typing numerous drafts on our way
to increasing the clarity of the presentation, and to Monna Whipp for the final

draft.
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CHAPTER TWO

PROCEDURAL ASPECTS OF CESSL

The source statements of the language are read from the input medium
(card reader, file storage, etc.) in free format. End of record indications
(end of card, carriage return, etc.) are treated the same as a 'space"
character so that statements may extend over more than one physical record
(or "line"). Informally, the basic unit recognized by the compiler is a con-
struction which is a string of characters (syntax given later) followed by
a semicolon. More than one construction may occur on a given line.

The compiler recognizes statements which are a sequence of one or more
constructions of a particular type. A program is a sequence of statements.

In describing the ianguage we shall use the following conventions and
notations. Example sections of source coding will be on separate lines with
double indenting to keep them distinguished from the describing text. Source
words are always in capital letters and this is also a useful cue. Syntactic
descriptions of the language grammar will use a variation of the more common
BNF notation.

Syntax will be described in its production (rather than reduction) form,
e.g.,

<A> > B <C>
which may be read '"the non-terminal symbol <A> may be replaced by the symbol
B followed by the non-terminal <C>'". Tall square brackets will be used to
designate several mutually exclusive possibilities, of which one must be pre-

sent. Thus,
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<A> > <C>

may be considered a shorthand for the two productions:
<A> > X <L> <C>
<A> > B <C>
The latter will often be simplified by not repeating the left side, as in:
<A> > X <L> <C>
»> B <C>
Curly brackets will be used to indicate a sequence that may be repeated an
arbitrary (possibly null) number of times. If sub- and superscripts follow
the right bracket, they are interpreted as minimum and maximum number of repe-
titions, respectively. "Thus
<A> » X {Y}
describes the same collection of terminal strings as
<A> > <A> Y
+ X
and
<A> ~» {X}f Z
is shorthand for
<A> > XZ
> XXZ
> XXXZ
We will not be concerned here with the subtleties of the differing parsing
trees that might result from alternatt interpretations of these shorthands.
We distinguish between a description grammar which is used to convey the lan-

guage to users, and an implementation grammar which is used explicitly for
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syntax directed parsing. Since we are primarily concerned with describing
a language, the above conventions are both a convenience and in some cases
more intuitively meaningful than a comparable BNF expression.

We admit that this dichotomy of grammars leaves ample opportunity for
conflict and inconsistency between the description and the implementation.
But since the compiler currently implemented used syntax directed methods
only at the level of expressions and assignment statements, there is no
formal implementation grammar for many aspects of the system. Accordingly,
we will not be too embarrassed to occasionally use a suggestive non-terminal
symbol such as <integer constant > without anywhere giving a syntactic definition
of the symbol. The intention will be clear, and will accurately convey much

semantic information about what is actually required by the compiler.
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2.1 Lexical Format
The following table specifies the characters and names for sets of

characters recognized by the compiler.

Alphabetics ABCDEFGHIJKLMNOPQRSTUVWXYZS$'

Numerics 0123456789.

Quote "

Space (), carriage return, and tab

Special Characters +-*/ (=170

Alphanumerics Alphabetics and Numerics
Non-alphanumerics Quote and space and special characters

The other graphics from the input medium may be recognized only in TEXT

% . Note espec-

constants; these are: tab, carriage return, ¢, |, §,=, #,
ially that $ and ' are élphabetic characters and period is a numeric.
The basic lexical unit is the atom. Basically, an atom is defined by
one of the following three cases:
1) Any of the Special Characters (e.g., +,!).
2) Any string of Alphanumerics delimited by Non-alphanumerics, (e.g.,
ABC, D12, 156, 12.4E5). See below for the special cases REAL con-
stants and hexadecimal INTEGER constants.
3) Any string of characters enclosed in quotes - a quote character may
be included in such a string by two quotes in succession (e.g.,
"AB-1'"", "A""'B").
Note that "space" itself is not an atom. 'Carriage return'" and '"tab" char-
acters are equivalent to space except when they occur in a TEXT constant.

Space may always, and must sometimes, be used as a delimiter between atoms.

For example, 123 is one atom, while 1 2 3 is three atoms.
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Lexically, a construction is any sequence of atoms (except semicolon)
ended by a semicolon. Note that the semicolon is considered part of the
construction. Thus, the following construction consists of 14 atoms:
AX = A(5) + B(1, P$T);
Note here that $ is an alphabetic character and does not separate atoms.
Thus
ABC$NE$3
is one atom, not three. The same comment applies to prime (').
A statement consists of a given number of constructions concatenated
together and satisfying certain constraints. The statements of the.language
will be developed in detail below.
A numeric atom is one of the following:
1) An atom conéisting only of numeric characters and no
period, treated as a decimal INTEGER constant (see Section
2.3 for definition of types and constant values).

2) A question mark (?) followed by an atom consisting only
of numeric characters or the letters A-F, and no periods,
treated as a hexadecimal integer constant. Note that
this is the only legal use of ? outside of TEXT constants.

3) An atom consisting of numeric characters, including

period, treated as a REAL constant.

4) A sequence of characters in what is commonly called

"E-notation'': a sequence of numeric characters followed
by E, optionally followed by + or -, followed by one
or two numerics. See Section 2.3 for examples.
An alphabetic atom is an atom of only alphabetic characters. A

keyword is a predefined alphabetic atom (see list is Figure 2.8). A A-atom
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(or just plain A) is an alphanumeric atom (beginning with an alphabetic)
which is not a numeric atom and not a keyword. X-atoms may be used as var-
iable names or labels, defined as entry points, etc.

If the first atom of a construction is a A-atom and the second a
colon, then the A-atom is implicitly defined as a constant of type LABEL.
(See 2.2). Labels may appear only on executable statements.

Numeric atoms may contain a maximum of 15 characters; A-atoms and TEXT

atoms may contain a maximum of 62 characters.
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2.2 Attributes

All atoms have attributes associated with them which enable the compiler
to interpret statements in the correct manner. Some atoms have predefined
attributes, as, for example, +, which has the attribute of "dyadic operator",
and "precedence 30", among others. The atom ABC has the attribute ""A-atom"
by the definitions above. As a notational convenience, if an atom has an
attribute, we say that that atom "is'" an attribute, or is in that attribute
class. For example, ABC "is" a A-atom, or it is in the class of \-atoms.

Atoms which are A-atoms may have other attributes as well. These attri-
butes are assigned implicitly or explicitly by the statements of the language.
The following is a brief summary of the possible attributes of A-atoms. A
further explanation of eaph attriuute will be found in the following sections.

A-atoms may have ét most one of the attributes: data type name, entry
point name, and variable. An example of the predefined data type names is
INTEGER. An entry point name is the name of a subroutine entry point, expli-
citly declared by the user.

Variable A-atoms (also called "variables'") are the usual variables and
labels of normal programming languages; that is, they are names that have or
may be assigned values for later use. Variable atoms may have other attributes,
including any or all of the following: a data type, FUNCTION, formal par-
ameter, and LIBF.

In general, the language allows only one use for an atom; that is, only
one set of attributes may be assigned to an atom, and that set applies at
every occurrence of the atom. For example, no atom could be both a defined
data type name and a label even though the correct use could almost certainly

be inferred from the context. However, the dual use of '"-" as both a monadic
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(one operand) and dyadic (two operand) operator is so pervasive in other pro-

gramming languages that is has been explicitly accomodated here.
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2.3 Data Types
Programs operate on data to achieve the desired results. The description
of the data is called the data type or mode, and every variable or constant
must have as an attribute some data type.
There are five predefined data types, called primitive data types:
INTEGER
REAL
BOOLEAN
LABEL
TEXT
Each of the above atoms is a keyword whose use in the language is re-
served for describing data (see Section 2.4, Declarations). In general,
variables and constan;s of the language may be of any of the above types.
In this iﬁplementation, the above descriptions imply the following.
An INTEGER is a whole-valued number in the range (-32,768,+32,767). A REAL
is a fractional-valued number with an approximate range of (10-39, 10+38),
and a precision of about seven decimal places (i.e., numbers which differ in
the eighth place are identical to the program). A BOOLEAN is a variable which
may take on one of two values called TRUE and FALSE (internally one and zero,
respectively, in this implementation). A LABEL takes the value of a position
in the program; that is, its value is the 'address'" of a statement of the
language. A TEXT variable contains two EBCDIC (Extended Binary Coded Decimal
Interchange Code) characters.
REAL variables take two words of storage, while all other primitive
variables take one word of storage. (This is a restriction of the IBM 1800.)
Constants (i.e., fixed values) of the above types are recognized by

their lexical properties as follows:
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1) An INTEGER constant is a numeric atom without a period (e.g. 1524,
71A4).

2) A REAL constant is a numeric atom with exactly one period, or an atom
in "E-format" (e.g., 121.3, 110E4, 123.4E-15).

3) BOOLEAN constants are the atoms TRUE and FALSE.

4) A LABEL constant is any A-atom that occurs in the label field of an
executable statement (i.e., it is the first atom, and the second atom
is a colon).

5) A TEXT constant is a string of characters enclosed in quotes. Note
that a text constant may contain more than two characters, while a
text variable has only two. (In this implementation, text constants
are stored two characters per word, with a trailing binary zero in-
serted to fillout an odd count. Exactly as many words are used for
the constant as are needed. E.g., "ABCD" is a constant of two words,
and '"NOW IS THE TIME" has eight words.)

Other data types may be defined by the user (See Section 2.4.1.2, DEFINE).

It is perhaps appropriate at this point to say a few words about type TEXT

and its role in CESSL. The compiler does not directly provide full scale
string manipulation facilities (e.g. there is no free storage area for variable
length strings, no concatenation or substring selection operators). However,
a few conveniences are available. The user may define a data type (Section
2.4.1.2) describing an array of items, each of type TEXT, by a statement of
the form:

DEFINE textn ARRAY TEXT SIZE n;
For each n (an integer) there is a separate data type of this sort definable--

any type from this class is called TEXTARRAY (this is used as a meta-type
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word--it describes a class of types or a type from the class). A variable
which is declared to be a TEXTARRAY has special properties: it acts almost as
if it were of type TEXT. It may appear in I/0 statements, causing many words
to be transferred in or out of memory (instead of the usual one), and it may
appear in assignment and comparison statements with TEXT constants longer than
two characters, thus effecting a multiple word data movement or comparison.
These capabilities (described in the appropriate places), plus the ability

to refer to individual items in the array make it possible to perform many

useful string manipulations.
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2.4 Program Statements

The statements of the program are of three types: Declarations, Exe-
cutable, and Comments. The declarations (Figure 2.2) assign attributes to
atoms or give instructions to the compiler or operating system, and the
executable statements (Figure 2.3) specify operations to be performed. Com-
ments are statements which are ignored by the compiler, their sole purpose
being to provide documentation. A comment is a statement which begins with

an asterisk (*) and ends with a semicolon(;),

2.4.1 Declarations

There are several declaration statements: DECLARE..., DEFINE...,
NORMALMODE, SUBSTITUTE, DATA, INCLUDE, INTERNALFUNCTION, ENTRY, ENDFUNCTION,
and ENDPROG. 1In addition, there are several forms of DECLARE and DEFINE.
INTERNALFUNCTION, ENTRY, and ENDFUNCTION relate directly to subprogram seg-
ments and are discussed in Sections 2.4.3 and 2.4.4. In general, declarations
may appear anywhere in a program, the only restrictions being on sequence
dependencies in DECLARE and DEFINE, and placement of DATA, ENTRY, and INTER-

NALFUNCTION as noted in the appropriate sections.
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2.4.1.1 DECLARE
The first form of DECLARE assigns the attribute of a particular data

type to each of a series of \-atoms:

DECLARE <type>: <\-list>;
The <type> must be a A-atom which is from the primitive data type list above
(Section 2.3), or which has previously been defined as a type by the user
(below, Section 2.4.1.2 --that section also contains an alternate method
of assigning types). For example:

DECLARE REAL: A,B,C;

DECLARE INTEGER: X,Y,GEQRGE;

DECLARE I10: LONG;
would establish A, B, and C as real-valued variables, X, Y, and GEORGE as
integer-valued variabies, and LONG as a variable of type 110, which must have
been already defined by the user.

The second form of DECLARE assigns the attribute FUNCTION to each of a

series of A-atoms:

DECLARE FUNCTION: <A-list>;
For example:

DECLARE FUNCTION: RUNGE, CUBE;
FUNCTION attribute is used when it is necessary to pass the name of a sub-
routine in a subroutine parameter list rather than the value of an invok-
ation of that subroutine. Thus any X-atoms which are external names must
conform to the naming conventions of the operating system--in particular,
they may have at most five characters in their name. Formal parameters and
internal functions, of course, are not external. See Section 2.4.2.1, Assign-

ment statement, for examples.
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The third form of DECLARE assigns the attribute LIBF to each of a series

of A-atoms:

DECLARE LIBF: <A-list>;
For example,

DECLARE LIBF: DISKN, FADD;
LIBF attribute must be assigned to external subroutine names which are entered
by a TSX "LIBF" call. User-compiled subroutines are not usually so entered--
most LIBF routines are TSX system subroutines. It is not possible to com-

pile such a routine in CESSL.

The fourth form of DECLARE assigns a name to the program and states that
this is a "main" program, i.e., not a subroutine:
DECLARE X NAME;
For example,
DECLARE NOMEN NAME;
The name is used for reference by the operating system so that it must conform
to the operating system's naming conventions. In addition, the name must occur
as a label on some executable statement. The statement so labeled will be

the first statement of the program executed.
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2.4.1.2 DEFINE

DEFINE is used primarily to define new data types and secondarily to
assign the newly defined types to variables. Two types of composition oper-
ations are available to generate data structures more complex than the prim-
itives. The simpler of these is the fixed length array:

DEFINE A ARRAY <type> SIZE <integer constant>;
The interpretation is that )\ is defined as a data type name which identifies
a data structure consisting of a fixed number (given by the <integer constants)
of elements, all of which are of type given by the <type>. Thus, to declare
A a variable having the structure of an array of five REALs and B a variable
having the structure of a square array of seven by seven INTEGERs, the fol-
lowing declarations suffice.

DEFINE REALé ARRAY REAL SIZE 5;

DECLARE REALS: A;

DEFINE INT7 ARRAY INTEGER SIZE 7;

DEFINE SQINT7 ARRAY INT7 SIZE 7;

DECLARE SQINT7: B;

The second composition operation provides for the definition of a
block of contiguous data whose elements may be of diverse types. Blocks
are also called component structures or structured variables. The form of
the statement is:

DEFINE A BLOCK < <type list> >;
For example:

DEFINE QQSV BLOCK <REAL, INTEGER, INTEGER>;
specifies that QQSV is a type name referring to a block consisting of a
real number followed by two integers.

Either DEFINE operation may be composed with itself or with the other,

thereby allowing complex data structures to be constructed in a hierarchical

fashion. By convention, the same structure may not be given more than one
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name.

Components of a complex data type may be identified by a subscript-
list (which is a parenthesized expression list--See Figure 2.4) following the
variable name. Subscripts are interpreted from left to right as identifying
a lower data type in the hierarchical description of the data structure.
Figure 2.1(a) presents a somewhat involved example.

Items in a subscript list may be expressions of type INTEGER or REAL
only. If REAL, the value is converted to INTEGER by truncation. All subscript
items must have a positive value--there is no zeroth item in an array--and
the value may not exceed the number of elements in the array or block defined.

In general, a subscript choosing an element from a BLOCK must be a
constant; otherwise the data type selected is unknown and the proper code
cannot be produced by the compiler. The SUBSTITUTE statement (Section 2.4.1.5)
provides a means of using mnemonic names which '"stand for'" constants, allowing
meaningful subscripts. A variable subscript may be used if the user inter-
venes to tell the compiler what the resulting type will be by use of the "@"
compile-time operator (Section 2.4.2.1).

In order to refer conveniently to primitive elements of a variable's
data structure, we shall sometimes speak of the lexigraphical ordering of
the fields of a data structure. A field is a substructure which has a
primitive type. Field f1 precedes field f2 if in the subscript notation for

referring to the respective fields, the subscript designating f. is numerically

1
less than the subscript designating f2 in the first position in which they
differ, reading from left to right. In Figure 2.1(a), ABC (1,1) precedes ABC

(1,2,3) which precedes ABC (2,1), etc. Since this clearly gives a linear

ordering, we shall speak of the first field, second field, etc. One may
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DEFINE INT4 ARRAY INTEGER SIZE 4;

DEFINE QQSV BLOCK <REAL, INT4>;
DEFINE VSQQ ARRAY QQSV SIZE 3;

DECLARE VSQQ: ABC;

ABC is of type VSQQ

ABC (2) QQsV

ABC (2,1) REAL

ABC (1,2) INT4

ABC (3,2,1) INTEGER
ABC (1,2,7) undefined

2.1(a)
VSQQ

QQsv

REAL AINT4

INTEGER
Field 1 2 3 45 67 8 9 10 11 12 1314 15
Word 0 2 3 45 68 9 1011 12 14 1516 17

2.1(b)

Figure 2.1

Example Data Structure Definition and Related Notation

21
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equivalently think of drawing the "structure tree" of a data type, and then
numbering the endpoints from left to right as illustrated in Figure 2.1(b).
The figure also shows the layout in storage of a variable of this type,
reflecting the fact that storage is contiguous and that REAL variables take
up two storage words.
As a convenience, the type just defined in the DEFINE statement may be
assigned to a list of A-atoms, as in the DECLARE statement. This is accom-
plished by replacing the terminal semicolon with a colon and appending a
list of A-atoms. I.e. the full form of the DEFINE statement is:

ARRAY <type> SIZE <integer constant>| |;

DEFINE A
BLOCK < <type-list> > t<A-list>;

For example, declaring A to be an ARRAY of five REALs might be performed as
follows:
DEFINE REALS ARRAY REAL SIZE 5: A;

Of course, it is still possible to use the DECLARE statement to assign the
type to additional variables.

WARNING! As of the publication date of this manual there is a restriction
on the structure of data types. This restriction may be lifted sometime in
the future, but until then great caTe must be taken. The reason for it is
that in the TSX system REAL variables must be "even-aligned'", that is, their

addresses in computer memory must be even. It is the user's responsibility

to ensure that REAL variables are even-aligned in structured data types.

All structured variables are assigned even addresses for their first
words by the compiler. Thus, to ensure even-alignment of REAL fields in a
structure, the user need only follow these three steps:

1) Draw the "structure tree'" for the data type of every variable,
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as in Figure 2.1(b).
2) Starting from the left-most field, label each field with the number
of words by which that field is separated from the first field.

INTEGER, BOOLEAN, TEXT, and LABEL fields occupy one word, and REAL

fields occupy two words. The first field gets zero, and each succes-
sive field to the right gets a number either one or two higher depending
on the type of the field on the left. This has already been done in
Figure 2f1(b).

3) Each REAL field must then be associated with an even number. If it
is not, the definition of the DATA type for that variable must be
altered. The alteration will usually take the form of an additional
INTEGER field or a permutation of the fields.

For eaample,

DEFINE BL BLOCK <INTEGER, REAL> ;
does not meet the test, while
DEFINE BK BLOCK <REAL, INTEGER> ;
does.
However,
DEFINE BKA ARRAY BK SIZE 5;
does not meet the requirements even though the component substructures do,
while
DEFINE BKB BLOCK <BK, BL> ;
meets the requirements although the individual components do not.

The reader should carry out the above three steps for these examples to

satisfy himself that he understands the restriction. The compiler does not

check for violations.
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2.4.1.3 NORMALMODE
The statement
NORMALMODE <TYPE>;
assigns the data type attribute <type> to all variable A-atoms which are
not explicitly assigned some type. For example:
NORMALMODE INTEGER;

assigns INTEGER type to all undeclared variables.
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2.4.1.4 DATA

The DATA statement allows variables to be preset to specific values
prior to execution of the program. Presetting does not alter the way in which
a variable may be used or changed in value. It merely supplies a value which
the variable will take on at the time the program is loaded. Variables which
do not appear in DATA statements have an indeterminate initial value. The form
is:

DATA )\ <value>;

The A-atom specifies the name of the variable to which the value is assigned.
The <value> usually specifies a constant, as described below, but may be the
name of a variable for the special uses described in Section 5.5. Such uses
require great care and are recommended only to those familiar with Chapter
Four, Generated Code and Run-time Support.

For primitive type variables, <value> is just a constant. E.g.,

DECLARE INTEGER: NUMB; DATA NUMB 213;
DECLARE REAL: X; DATA X 2.102;
DECLARE BOOLEAN: A; DATA A TRUE;
DECLARE LABEL: ABC; DATA ABC XYZ;
DECLARE TEXT: BLANK, CR; DATA BLANK " ";

DATA CR ?15;
The type of the constant should match the type of the variable, although the
compiler does not check, allowing special uses, as in the last example. For
structured variables (i.e., variables with non-primitive data types), <value>
is given by a list of constants (separated by commas) which specifies succes-
sive fields of the variable, in the lexigraphic order of Section 2.4.1.2.
It is the user's responsibility to ensure that the types of the constants

given are correct. (This is especially important in the case of REAL fields
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whose storage takes up two computer words whereas all other constants take
up only one word.) For example:
DEFINE INT3 ARRAY INTEGER SIZE 3: DEF;
DATA DEF 1,2,3;
DEFINE AMESS: BLOCK <INTEGER, BOOLEAN, REAL, LABEL, TEXT, TEXT>;
DECLARE AMESS: SLOP;
DATA SLOP 1, TRUE, 4.312, ABC, "TE", "ST";
where ABC must occur as a label in the program.

The special case of a TEXT constant longer than two characters (thereby
occupying more than one word) is accomodated automatically by the compiler
by breaking down the constant into one word (two character) groups and assign-
ing them to successive locations. For example,

DEFINE TEXT 10 ARRAY TEXT SIZE 10: ZAPPO;

DATA ZAPPO '"NOW IS THE TIME FOR";
is equivalent to the more specific:

DATA ZAPPQ "NO'", "W, "IS", ...,
As with all text constants, the case of an odd number of characters leaves
the last word with a single character in the left half (high order) part of
the word and a binary zero in the right half (low order) part. The null
TEXT constant "' provides one zero word.

The same constant may be assigned to successive fields by the use of a
multiplicative factor as in the FORTRAN DATA statement. That is, a specifi-
cation of the form n*c, where n is an integer and c is any constant, is
equivalent tonc's separated by commas. For example,

DEFINE INT100 ARRAY INTEGER SIZE 100: BIGI;

DEFINE REAL100 ARRAY REAL SIZE 100: BIGR;
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DEFINE T4 ARRAY TEXT SIZE 4: DITTO;

DATA BIGI 100*0;

DATA BIGR 25*0.0, 25*1., 25%2., 25*3.;

DATA DITTO 2*''SAME'";
results in all the elements of BIGI being initialized to zero, the first
25 elements of BIGR being set to 0.0, the next 25 to 1.0, the next 25 to
2.0, the last 25 to 3.0, the first and third elements of DITTO being set to
"SA" and the second and fourth to "ME'".

A DATA statement which does not provide enough data items to preset all
fields of a variable will result in the setting of all unspecified fields
to zero. Thus a variable may be set to zero by simply specifying, for example:

DATA BIGI;
which sets 100 words "to zero.

The DATA statement may not be used to preset a value for any variable
appearing as the left half of an EQU pair, nor for any variable which has
attributes FUNCTION or formal parameter.

The DATA statement may not appear just anywhere in the program as most
of the other declarations. In most cases, DATA should not be '"flowed into";
i.e. it must be placed at the beginning or end of the program or, if it appears
in the middle, it should be after a GOTO or RETURN statement. The compiler
will not check for violations of this restriction--crashes will usually occur
at run time. This compilation of DATA "in-line" and the use of variable names
in a data statement allow special applications of considerable flexibility,

as described in Section 5.4.
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2.4,1.5 SUBSTITUTE

The SUBSTITUTE declaration directs the compiler to substitute bne atom
for any occurence of another atom at parse time. Its primary use is to allow
mnemonic names to be used in place of integer constants (especially when used
as subscripts). This declaration is recommended to resolve the awkward
choice resulting from block data types. A numeric subscript is non-intuitive
but gives a known compile-time data types, while a heuristically chosen and
suitably valued variable does not permit a known compile-time data type. Use
of a SUBSTITUTE parameter removes the problem. The other use of SUBSTITUTE
allows the user to refer to any atom (reserved or otherwise) by another
name.

The form of the statement is

’ 1
SUBSTITUTE {( A{,}o | <integer constant>|)};
<any atom>

It consists of a series of ordered pairs. The first of the pair is replaced
by the second wherever encountered. The first must be a previously unused
A-atom; the <integer constant> may be negative. For example,

SUBSTITUTE (XYZ,12)  (ALPHA,0);

X = ABC(XYZ,ALPHA);
is equivalent to

X = ABC(12,0);

Note that the substitution becomes effective at the point of definition
and is not retroactive to previous statements. Further, the substitution is
actually performed before syntactic parsing and hence, the integer constant
is actually used by the parser. This permits the type result of a subscript

of BLOCK structure to be known at compiler time.
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Another use might be to change the external appearance of the language.
For example,
DECLARE BOOLEAN: MARY;

SUBSTITUTE (FAIRYTALE,MARY) (HAD,=) (A,NOT$) (LITTLE,FALSE) (LAMB,;)
(TELLA,WRITE) (PLEASE,;);

MARY HAD A LITTLE LAMB
TELLA FAIRYTALE PLEASE
would produce a "TRUE" on the output medium.
Note also that SUBSTITUTE atoms may be chained since the substitution
is done before parsing; e.g.,
SUBSTITUTE (A,12) (B,-A);
is allowable and assigns the value -12 to parameter B. Note that '-A' is

actually two atoms, but is interpreted correctly as a single integer constant.
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2.4.1.6 EQU

The EQU statement provides a means of declaring the equivalance of two
"addresses' at run-time. (It should not be confused with the SUBSTITUTE
statement which provides compile-time equivalence of two atoms.) As such it
is especially useful to programmers who are familiar with the Assembler for
the 1800 and the material in Chapter Four which describes the code produced
by the compiler. Others should use it with care. EQU may be used to achieve
some of the same effects as the FORTRAN EQUIVALENCE and COMMON statements.

The form of the statement is

EQU {(A{,}é <rhs> )} ;

It consists of ordered pairs where the left hand side must be a variable
and <rhs> must be an atom acceptable to the Assembler as the right hand side
of an "EQU" pseudo-op.~ To be more specific, <rhs> must be either a )-atom,
an integer constant, or a TEXT constant containing an expression with +,-, and
as the only operators, and all x-atoms in the expression consisting of only
five characters or less. The result of an expression must satisfy the Assem-
bler's relocation requirements. The pairs are inserted into the Assembler
source program produced by the compiler in the order in which their left hand
sides were first detected by the compiler. (This latter condition means that
the Assembler EQU statements produced are not necessarily in the same order
as the compiler EQU statements encountered. In the case of chained EQU state-
ments the order may be important so that it might be wise to clump them all
at the beginning of the program, even before the declarations.) All EQU
pairingsare put out at the very end of the assembly program so that all other
symbols are already defined.

After all that, some examples are in order, especially for those readers
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not familiar with assembly languages.

EQU may be used to achieve a FORTRAN-like COMMON by allowing the programmer
to assign absolute locations for variables as in the following. (COMMON is
assigned from the top of memory--highest address--down.) If there are three
INTEGER variables, I,J,K, to be shared by many CESSL programs, the following
statement should be included in each program; it will place the variables all
in "COMMON'". (The top of memory is 7FFF, not FFFF.)

EQU (I,?7FFF) (J,?7FFE) (K,?7FFD);
Then, when a program refers to any of these variables, it will refer to a
location near the top of core, not to a location within itself. REAL vari-
ables may be assigned similarly, but must be even-aligned; that is, the last
digit of the address should be even. Variables with structured data types
may also be assigned'in this manner, tut those with REAL fields in them must
be even-aligned.

A CESSL program may even share COMMON with TSX FORTRAN by assigning the
same addresses as FORTRAN does for its COMMON (which can be obtained from
a FORTRAN symbol table dump). Care should be taken in mixing with FORTRAN
arrays since they run backwards in memory.

To ensure that there is no overlap between a loaded program and COMMON,
the programmer should use the "*COMMON N' control card (Section 3.1) to inform
the loader of the length of COMMON which he is assigning from this program.

An EQUIVALENCE statement may be approximated by using the appropriate
EQU pairings. For example, a user who wishes to refer to a variable as being
of type TEXT at one time and type INTEGER at another may do one of two things.
He may assign it to have one of the types and then, at every reference in
which it is to have the other type, use the "@'" compile-time operator to perform

a type override. Alternately, he can declare two different variables, each
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of the appropriate type, equivalence the two, and use the name with the correct
type in the appropriate place. For example:
DECLARE TEXT: SCHIZO;
DECLARE INTEGER: PSYCHO;
EQU (SCHIZO, PSYCHO);
Thereafter, both names refer to the same location in the computer's memory.
As another example, it is sometimes necessary to refer to the same locations
alternately in INTEGER and REAL mode. This may be performed as follows:
DEFINE INT2 ARRAY INTEGER SIZE 2: 12;
DECLARE REAL: R;
EQU (I2,R);
Reference to I2(1) then refers to the first half of the REAL variable and
12(2) refers to the second half.
Equivalences between sections of structured variables may be performed by
using a TEXT constant as the right hand side of an EQU pair. For example:
DEFINE INT10 ARRAY INTEGER SIZE 10: 1I10;
DEFINE INTS5 ARRAY INTEGER SIZE 5: I5;
EQU (I5, "I10+5");
References to I5 will then address the last half of the I10 array. Note that
the left hand side must always be a simple variable. The right hand side
is delivered verbatim to the Assembler, stripped of the quotes, so that all
symbols in it must be legal Assembler symbols, containing five or fewer characters.
This restriction is not necessary when the right hand side is a A-symbol
since CESSL can do its normal name translation for such symbols.
A use of LEQU which bears mentioning is the following:

DEFINE CORE ARRAY INTEGER SIZE 16383: C;
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EQU (C,1);
Thereafter, reference to C(I) addresses location I in the computer's memory
(except for I equal zero). This may be especially useful for system programmers
and other fanatics.
EQU can help in changing the definition of a data type at run-time. See

Section 5.2.

2.4.1.7 INCLUDE
The form of this statement is:

INCLUDE <integer constant>;
For example:

INCLUDE 143;
This statement tells ;he compiler that the contents of the named logical
file are to be inserted at this point in the statement source stream. This
might be useful for oft-used definitions of data types and operators. Lines
from a file should not be longer than 81 characters including carriage return.
INCLUDE may appear in a file in which case the new file is opened and read.
(The INCLUDE statement in a file is treated as an end-of-file marker for the
file in which it appears.) If a real end-of-file is read, the reading of

source statements reverts to the card reader.

2.4.1.8 ENDPROG
The last statement of every program (main or subroutine) must be
ENDPROG;
If control "flows into" this statement at execution time (i.e., there is

no branch before it) an error comment will be generated (see Section 3.2.3).
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ARRAY <type> SIZE <integer constant>
<declare part>+DEFINE A
BLOCK < <type-list> >

DECLARE )\ NAME;

DECLARE <type>: <A-list>;
DECLARE LIBF: <A-list>;
DECLARE FUNCTION:  <\-list>;

1
SUBSTITUTE {( A {,}o|<integer constant>|)},
<any atom>

EQU {(A{ ,}(1)<rhs>)};

NORMALMODE <type>;

INCLUDE <integer>;

DATA XA <«alue>;

INTERNALFUNCTION Al
INTERNALFUNCTION A!(<A-1list>);
ENDFUNCTION;

ENTRY A!;

ENTRY X! (<A-1list>);

ENDPROG;

Figure 2.2, Procedural Declarations of the Language

.
’

:<type-list>;
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<executable> » IF exp>;
-+ ORIF <exp>;
~+ ELSE;
-+ ENDIF;
-+ ENDIF <any characters except ;>;
+ LOOP A= exp>; <€Xp>; <€Xp>;
- ENDLOOP;
~ ENDLOOP <«any characters except ;>;
-+ <assignment>
-+ CONTINUE;
-+ EXECUTE <exp>;
-+ GOTO <exp>;
+ RETURN;
-+ RETURN <exp>;
- FUNCTIONRETURN;
-+ FUNCTIONRETURN <exp>;
+ READ <left-designator-list>;
+ WRITE <exp-list>;
-+ WRITEFMT <left designator> ;<exp-list>;
-+ WRITEFMT <left-designator>;;
-+ INPUTDEV <device>;
-+ OUTPUTDEV <device>;

-+ PAUSE <integer-expression>;

Figure 2.3. Executable Statements of the Language
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<assignment>

<left des>

<exp list>

<exp>

<des>

<left des> = <exp> ;
<left des> @ "<type' = <exp>;
A

A (<exp list>)
<exp>

<exp list>, <exp>
<exp> 0 <exp>
¢p<des>

<des>

<left des>
(<exp>)

Al (<exp list>)

Al

(<assignment>)

Figure 2.4 Syntax of Assignment Statement
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Function
(X)
- I 1 Unary minus (X)
NEG$ R R
ABS$ I I Absolute value (X)
R R
NOT$ B B Logical complement (X)
BITNOTS$ I I Bitwise complement (X)
FIX$ R I Real-to-integer con-
version (X)
FLOATS$ I R Integer-to-real con-
version (X)
SQRT I I Square root (X)
R R
ATAN R R Arctangent (X)
SIN R R Sine (X)
Cos R R Cosine (X)
EXP R R eX
ALOG R R Natural Log (X)
TANH R R Hyperbolic tangent (X)
LINK Any None TSX LINK call
I = Integer
R = Real
B = Boolean

Figure 2.5 Monadic Operators
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Operand Types

Name Left op Right op Result Type Function
+-%/ I I I X+Y, X-Y
$P$ I R R X*Y, X/y, X7
R I R
R R R
I I I X modulo Y
$MOD$
= R I R X=Y (with conversion
I R I for real and integer
T I T X=Y (no conversion)
I T I
TA TC TA X=Y for any two
A A A similar types
$EQ$, $NE§ I R B X=Y, X#Y
$GT$, $GES R I B X>Y, X>Y
$LT$, $LE$ T I B X<Y, X<
I T B
TA TC B Comparison of TEXTARRAY
TC TA B and TEXT constant
A A B Comparison of
any similar types
$AND$, $OR$ B B B
$XOR$ X "and" Y, X "or" Y
X "exclusive or" Y
$BITANDS I I I Bitwise logical
$BITORS T I T operations
$BITXORS I T I
$LS$ I I I X"Left Shift Logical" Y
$RSS T I T X "Right Shift Logical" Y
@ A TC Type override
I = Integer
R = Real
B = Boolean
T = Text
TA = TEXTARRAY
TC = TEXT constant
A = Any type
Figure 2.6

Dyadic Operators
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$RS$ $LS$ $BITANDS
$BITOR$ $BITXOR$

$P$

* / $MoD$

$EQ$ $NE$ $GTS
$GE$ $LT$ $LES

$ANDS

$OR$ $XOR$

80

70

60

50

40

30

20

10

Figure 2.7 Precedence Values for the Dyadic

Operators
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Punctuation

v i~ e

Operators

Dyadic
$ORS$
$XOR$
$ANDS$
$EQ$
$NES
$GT$
$GE$
$LT$
$LES
@

Keywords and A-atoms

ARRAY
ATE*
BLOCK
BOOLEAN
CARDE*
CARDS
CONTINUE
DECLARE
DEFINE
ELSE
ENDFUNCTION
ENDIF
ENDLOOP

*Name of a system subroutine used for I/0.

ENDPROG
ENTRY

EQU
EXECUTE
FALSE

FILE
FGETA*
FPUTA*
FUNCTION
FUNCTIONRETURN
GOTO

IF

INCLUDE

Monadic
+ ABSg
- NEG$
* NOT$
/ BITNOT$
$MOD$ FIX$
$P$ FLOATS$
$RSS SQRT
$LS$ ATAN
$BITANDS ALOG
$BITORS SIN
$BITXORS Cos
EXP
TANH
LINK
INPUTDEV PNCHC*
INTEGER READ
INTERNALFUNCTION REAL
KBDE* RETURN
LABEL SIZE
LIBF SUBSTITUTE
LOOP TEXT
NAME TRUE
NORMALMODE TYCH*
ORIF TYPEWRITER
QUTPUTDEV T7E*
PAUSE WRITE
PDP7 WRITEFMT
$8$

May be called firectly.

Figure 2.8 Reserved Atoms - Procedural
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2.4.2 Executable Statements

The basic executable statements of the language are: assignment, uncon-
ditional branch, conditionals, iteration, input/output, subprogram return,
PAUSE, CONTINUE, and EXECUTE. The subprogram return statements are discussed

in Sections 2.4.3 and 2.4.4.

2.4.2.1 Assignment Statement
Syntax

The basic statement of the language is the assignment statement. The
most succinct way to present its acceptable forms is via the productions of
a grammar. This description is found in Figure 2.4. The following observations
are made about this syntax.

1) The symbols \,6, and ¢ are not particular terminal symbols but desig-
nators for the class of A-atoms, dyadic (two operand) operators and monadic
(one operand) operators respectively. The lexical parsing actually performs
the necessary assignment of an atom to these classes, if appropriate, prior to
parsing. (The terms monadic and dyadic are used instead of unary and binary
to avoid possible confusion with the concept of "bitwise" operators.) The
monadic and dyadic operators are listed in Figures 2.5 and 2.6 respectively.

2) In this descriptive grammar the production

<exp> - <exp> 6 <exp>
obviously introduces an ambiguity into the resulting language. In contrast
to typical applicétions, the grammar rules are not used here to establish
the relative precedence of a multitude of binary operators. In contexts
where an ambiguity exists in parsing an input string, as for example in

A+B*C
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the order of association is resolved by an extra-grammatical attribute of

all dyadic operators, its (single) precedence value. (The resulting organ-
ization has the virtue of making the grammar invariant with respect to the
number and relative precedence of dyadic operators, and accordingly new dyadic
oeprators can be introduced with absolutely no impact on the syntactic parser.)
The precedences of the dyadic operators are given in Figure 2.7. Operations
with identical precedences are performed from left to right.

3) Note that the abuse of "-'" as both a monadic and dyadic operator
has led to exception condition parsing in other languages in which —Xy(—X $P$ Y)
is parsed as —(Xy). In this language monadic operators are always invoked
first so that the parse is (-X)y. The atom NEG$ may also be used to specify
"unary minus".

4) This syntax corresponds roughly to normal FORTRAN syntax except for
point three above and the last rule which allows embedded assignment state-
ments, i.e., statements of the form:

Q= (X=(Y+3* (Z=1)));
Note carefully that the syntax requires the embedded assignment to be enclosed
in parentheses and that the parentheses are part of the assignment. Thus, the
statement

A(I=4) = 1;
is syntactically incorrect, while

A((I=4)) =1;
is correct.
Semantics

Several points of interpretation need to be made regarding expression

evaluation and value assignment.
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1) The operators (both monadic and dyadic) have well-defined meanings
only when they are applied to operands which are of the proper data types.
Figures 2.5 and 2.6 contain the mode-combinations for which the operators are
defined, and the mode of the result of applying the operators. For example,
the operator "+'" is defined for mode-combinations INTEGER/INTEGER, INTEGER/REAL,
REAL/INTEGER, and REAL/REAL producing an INTEGER result in the first case
and REAL results in the remaining cases. It is not defined for any other data
types.

2) For the purpose of this table '"=" (assignment) is considered as an
operator taking only a specific combination of operands. For the case in
which the modes on either side of the ''=" are identical (primitive or user-
defined), the operation consists merely in a movement of data to the address
given by the left haﬁﬁ side. For the combinations INTEGER/TEXT and TEXT/INTEGER,
again there is merely data movement. The cases of REAL/INTEGER and INTEGER/REAL
cause a conversion from one data type into the other before the movement is
performed. For the TEXTARRAY/TEXT constant case, as many words of the constant
are moved as can fit into the TEXTARRAY. If the TEXTARRAY is larger than the
constant, the entire constant is moved and the remainder of the TEXTARRAY is
left untouched.

3) The embedded assignment statement (see point four under syntax)
should be used carefully. The embedding is legal only for assignments to
variables of primitive types. The '"value" of such an embedded statement is

the value of the variable at the time of the assignment, not the value of

the variable. For example, if I is an integer, the statements:

I1=1;

I (I=1+2)*(I=25);
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would yield a final value for I of 15, not 25. This may be best seen by
writing the embedded assignments as separate statements and assigning temporary

locations to hold the value of the variable for future use:

I=1;
I1 =1+ 2;
TEMP1 = I,
I=25;
TEMP2 = I;

I = TEMP1 * TEMP2;
In this context it is important to note that the address for the left
hand side variable is calculated (if subscripted) before the right hand
side expression is calculated. For example, the statements:

I=2;
A(I) = (I=5);

result in A(2) and I containing the value 5.
4) The intrinsicQ(built-in) functions of CESSL are NEG$, ABS§, FIXS,

FLOAT$, SQRT, ATAN, ALOG, SIN, COS, EXP, TANH, and LINK. These are treated
as monadic operators rather than as subroutine calls in order to achieve
object code efficiency with respect to the TSX operating system and to maintain
(some small degree of) compatibility with other languages. If the user desires
to use the functions SQRT, ATAN, ALOG, SIN, COS, EXP, or TANH as external names
(see point 7, below), the function name should be preceded by an "F', e.g.,
FSQRT. (Consult the TSX Subroutine Library (7) or Figure 4.3 for more details.)
Since these functions are treated as monadic operators the user has the option
of using them in expressions as follows:

A = SQRT B;
Of course, he may also parenthesize the argument to match normal usage:

A = SQRT(B);

and he must do so if the function is to be applied to an expression involving
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dyadic operators. For example:

A = SQRT -B; 1is the same as A = SQRT(-B);
A = SQRT B+C; 1is the same as A = SQRT(B)+C;
not A = SQRT(B+C);

Those operators which have operands or results which are angles (SIN,
COS, TANH, and ATAN) expect the angles to be expressed in terms of radians.

The LINK operator takes as an operand the name of a nonprocess coreload
in the TSX fixed area of the disk. The effect is to read in and start execu-

tion of that core load. By TSX convention, a LINK call can only have effect

when included in a nonprocess coreload executed from the fixed area.

5) All arithmetic between operands of types INTEGER and REAL is per-
formed by converting the INTEGER operand to REAL mode and performing the
operation as if the mode-combination were REAL/REAL.

6) The relational operators, $EQ$, $NE$, $GT$, $GE$, $LT$, and $LE§, are
defined between operands of identical data types and produce a BOOLEAN result.
They are also defined for the combinations INTEGER/REAL and REAL/INTEGER, with
the appropriate conversion being performed. Comparison for the combinations
are made as if both types were INTEGER, and are one word comparisons. For
example, the following two expressions produce the same result:

I $GT$ 'ABCDE"
I $GT$ "AB"

Comparison of REAL types should be made with great care. Due to the
structure of the floating point arithmetic in the IBM TSX system, identical
REAL numbers may not produce the correct results using any of the operators.
In addition, REAL comparisons are performed internally by a subtraction of the
operands and comparison of the result to zero. Two numbers which differ by less

than the precision of their floating point representation may produce incorrect
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results. Also, two numbers which differ by less than the minimum value of
the floating point range may produce incorrect comparisons. For example,
the values of the following two expressions are undefined.

1.0 $LT$ 1.0 + 1.0E-8
1.01E-36 $LT$ 1.015E-36

Comparisons of identical non-primitve data types are performed as if the
types were multiple-precision integers, each word having a sign associated.
That is, the relation is first tested between the first word of each operand.
If this establishes the result, no further testing is done. If it does not,

the second words are tested, and so on. For example, given two three word

arrays of integers

A(1) = 10 B(1) = 10
A = 4 (2) = 2
A(3) = 7 B(3) = 8

the following table gives the result of all six relations, each of which

requires two comparisons to establish.

A $EQ$ B is FALSE
A $NE$ B is TRUE
A $GT$ B is TRUE
A $GE$ B is TRUE
A $LT$ B is FALSE
A $LE$ B is FALSE

Since the relations are calculated as if the components were integers, com-
parisons should not be made between variables containing REAL fields. LABEL
fields should be treated with care. TRUE is greater than FALSE in such com-
parisons.

Comparison of TEXTARRAYs and TEXT constants is performed as a multiple-word
compare where the number of words compared is the minimum of the lengths of
the two comparands. For example:

DEFINE T4 ARRAY TEXT SIZE 4: AXOLOTL;
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IF AXOLOTL $EQ$ 'HAROLD'" $OR$
AXOLOTL $EQ$ "MAXIMILIAN";
The first comparison is on three words and the second is on four. The user
should remember that odd word counts in TEXT constants yields a final word
with the last character in the high order (left hand) position, and a binary
zero in the low order position.
7) An explicit "operator', the exclamation mark, is used to designate
function (subroutine) calls. This convention is similar to that of MAD (9);
however a different atom has been chosen to avoid another usage for the period

(which is used in MAD). Note that subroutine names may be used without the

exclamation mark (deferring the call) as parameters for subroutine calls.

This is achieved by declaring the A-atom to have attribute FUNCTION. (Imple-
mentation restriction: due to the structure of the TSX operating system,
subroutines which are built into the SKELETON and subroutines entered via
LIBF statements may not be assigned attribute FUNCTION.)

8) A special compile-time dyadic operator, atom "@'", is used for the

following purpose. The operator accepts as a left operand an argument of any
type and as right operand only a constant argument of type TEXT. Where BLOCK
data structures are used with variable subscripts the <type> of an expression
is not determinable. For example:

DEFINE ABLE BLOCK <REAL, INTEGER, INTEGER>: MARY;
X = MARY(I);

MARY (I) will be of type INTEGER if I has value 2 or 3, and type REAL if I
has value 1. However, the compiler does not support dynamic data types at
run time, and the type of every (sub-) expression must be known at compiler

time. Thus, the above assignment could not be compiled as it stands. By
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using the @ operator followed by a quoted <type> atom, such situations may
be resolved. Thus,
X = MARY(I) @ "INTEGER";
would compile and treat MARY(I) as an integer regardless of the value of I.
The operator may also be similarly used to override a known <type> in favor
of a different one.
The reader should also be aware of the SUBSTITUTE statement (Section 2.4.1.5)

as a means of providing constant, mnemonic subscripts.

The following are additional examples of legal assignment statements:

DEFINE INT3 ARRAY INTEGER SIZE 3:13,J3;

DEFINE QQSV BLOCK <REAL, INT3, BOOLEAN>:Q1,Q2;
DECLARE REAL: R,S;

DECLARE BOOLEAN A,B,C;

DECLARE INTEGER I,J;

DECLARE TEXT T1,T2;
DECLARE LABEL: L1,L2;

R = SQRT R + 1;

R = SQRT(R) + 1;

Ql(1) = R;

QD) = Ql(2,1) $8§ T;

A = B $OR$ Q1(2,2) $GT$ 4 $XOR$ L1 $EQS L2;
XYZ: B = Q1 $EQ$ Q2 $ANDS Q1(3);

L1 = XYZ;

I = BITNOT$ J $BITOR$ ("A" $RSS 8);

’I‘l = HABH

Ql = Q2;
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2.4.2.2 Unconditional Branch
The form of the unconditional transfer is
GOTO <exp>;
where <exp> is of type LABEL and may be either a constant or a variable. The

effect of the GOTO is that control passes to the statement with the designated

label. For example:

DECALRE LABEL:LVAR;
XYZ: CONTINUE;

GOTO XYZ; (1)
LVAR = XYZ;  (2)

GOTO LVAR;  (3)
If the value of LVAR is not changed between statements (2) and (3),
statements (1) and (3) have the same effect.
The <exp> may be a formal parameter to a subroutine or internal func-
tion. The result of the GOTO then is to transfer control to the statement

designated by the calling program as the corresponding actual parameter.
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2.4,2.3 Conditionals
The conditional statements are of the following forms:

I F<exp ;
ORIF <exp>;
ELSE;
ENDIF;

These are interpreted the same as the compound conditional in the 7090 MAD
language (9). In particular, note that exactly one "ENDIF;" must follow

the "IF..." to determine the scope of the sequence. The '"ORIF..." may be
used any number of times between 0 and 14, inclusive, and the "ELSE;" at
most once. If "ELSE;" appears there may be at most 13 "ORIF..." statements.
These statements delimit mutually exclusive sequences of statements of which
the first true condition will enable its corresponding body to be executed.

If no previous IF or ORIF statement yielded a true condition, the ELSE body
(if any) will be executed.

If IF, ORIF, ELSE, and ENDIF represent their respective statements
and o any valid sequence of statements, then the following defines legal
uses of the conditional branch:

<legal IF> + IF a {ORIF a}éu{ELSE a}é ENDIF
For example:

DECLARE INTEGER: A,B,D,E;
DECLARE BOOLEAN: C;
IF A $GT$ B $OR$ C;
IF D $EQ$ O;
GOTO XYZ;
ENDIF;
ORIF A $LT§ B;
IF D $NE$ O;
GOTO ZYX;
ORIF D $GT$ 5;
GOTO HOME;
ENDIF;
ELSE;
A = B;
ENDIF;
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As a convenience for "labelling'" ENDIFs, all characters between the key-
word ENDIF and the semi-colon will be ignored. Thus it is possible to write:

ENDIF ON X CONDITION;
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2.4.1.4 Loop Statement
The loop statement is of the form:
LABEL1: LOOP A = <exp>; <exp>; <exp>;

LABEL2: ENDLOOP;
LABEL3:

The interpretation of this statement is similar to that of 7090 MAD.
The left side of the assignment must be a A-atom (i.e., cannot be subscripted)
of type INTEGER or REAL, and specifies the controlled variable for the loop.
The assignment is performed and then the last expression is evaluated. If
TRUE, the loop is terminated by a transfer to the first statement after the
ENDLOOP statement; otherwise, the loop body is executed. It is possible that
the loop body may not be executed at all. The ENDLOOP statement returns
control to the loop header statement where the controlled variable is incre-
mented by the first expression and the termination test is performed again.
The body of a LOOP may be null. For example:
I=1;
LOOP I = DATA(I); DATA(I);I $EQ$ O;
DATA(I) = I-DATA(I)-1;
ENDLOOP;
is exactly equivalent to
I=1;
I = DATA(I);
GOTO T1;
T3: I = I+DATA(I);
T1: IF I $EQ$ O; GOTO T2; ENDIF;
DATA(I) = I-DATA(I)-1;

GOTO T3;
T2: CONTINUE;

Note that the equivalence is exact implies that the loop control variable
and increment may be changed in the middle of the loop, the loop control
variable retains its value when the loop is satisfied, and control may be

transferred into the body of a LOOP.
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As a convenience for '"labelling'" ENDLOOPs, all characters between the
keyword ENDLOOP and the semi-colon will be ignored. Thus it is possible to
write something like:

ENDLOOP I;
ENDLOOP ON NEIGHBORS;
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2.4.2.5 Input/Output

Input/output facilities are oriented to the special needs at LOCG: a
hands-on, real-time environment with I/O being a secondary consideration.
Input is free format, items being separated on the input medium by commas
and end-of-record indicators (end of card, carriage return, etc.). Output
is either simple (fixed format), or formatted as described below. There are
five I/0 statements: OUTPUTDEV, INPUTDEV, READ, WRITE, and WRITEFMT.
DEVICES

Input or output is performed on a particular device, which must be
designated previous to any I/0 call. For example, input may be from CARDS,

or from TYPEWRITER, or .... These devices supply a stream of EBCDIC characters

to the input . routines which interpret them. Output is a stream of EBCDIC

characters directed to the device.
The input or output device which is to be addressed is specified by the
executable statements:

INPUTDEV <«device>;
OUTPUTDEV <device>;

The specification of which device is to be addressed by the I/O routines
holds until it is changed by another device control statement. Thus, it is
possible to read or write numbers from or to different devices by changing
the device addressed between the READ or WRITE statements.

If the <device> given above is one of the keywords CARDS, TYPEWRITER, PDP7,
or FILE, the I/0 routines are automatically connected to the system version
of the routines to read or write from these devices. If <device> is none of
thesethe I/0 routines will be connected to the subroutine with the given name.
Consult Section 4.5.1 for additional information aoout the required structure

of such a routine. Idiosyncrasies of the system routines are listed below.
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Input from TYPEWRITER follows the usual TSX conventions, only briefly
mentioned here. When input is needed by the program, the carriage is returned,
the PROCEED light on the typewriter console is turned on, and the keyboard
is unlocked. Editing of an unfinished line is provided by the two keys
ER CHR and ER FLD, which delete the last character typed and the whole line,
respectively. A line is terminated by the EOF key. Output to TYPEWRITER
is straightforward except for the last character of a line. If the last
character sent to the typewriter is not a carriage return, it may wait (i.e.
be buffered) until another character is sent before being typed out.

Input from CARDS requires only that the card reader be ready. Output
to CARDS is buffered until a carriage return character is encountered or un-
til 80 columns of information . is accumulated, at which time the card is
punched and a new card image started. The card routines do not check the
cards to be punched to ensure that they are blank so that it is possible to
overpunch.

I/0 referring to the PDP7 passes through the 'copy port'", a character
oriented path between the 1800 and the PDP7. Of course, there must be
cooperating program running in the PDP7 to supply or dispose of charécters.
Characters at the 1800 end of the copy port must be EBCDIC so that PDP7 pro-
grams must take care to use a "translated" copy port read or write if they
wish to deal with ASCII characters.

FILE refers to the LOCG logical file system. A file must be opened

for input prior to any READs and opened for output prior to any WRITEs. Files
should be closed after use. Consult the approriate LOCG internal memeS and
subroutine descriptions for additional information on use of the file system
from higher level languages.

The system routines used for I/0 are KBDE, TYCH, CARDE, PNCHC, A7E,
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T7E, FGETA, and FPUTA. These names are automatically defined in all pro-
grams to have attribute FUNCTION.

INPUT

The form of the input statement is:
READ <left-designator-list>;
where a <left-designator-list> is a list of XA-atoms and/or subscripted X-atoms,
separated by commas. For example

READ ABC,I,J,QQSV(1), QQSV(2,1,J);
READ I;

All subscripted variables in the list have their addresses calculated before
any data transfer takes place with the result that variables read in are not

used until the end of the statement. For example,

I=23; .
READ I, A(I);

Values will be read into I and A(3) no matter what the value of I read in.
Except for the case of TEXTARRAY (see below), every item in the left-designator-
list must be a variable of type INTEGER, REAL, BOOLEAN, or TEXT. Since every
item has a known data type, the input routines look for the next item in the
input stream and convert it to internal form according to the known type.

Items on the input medium are separated by commas (end-of-line indicators
are treated as commas for item separation purposes). When the input routines
are reading numbers, all spaces are ignored, and all characters are treated
as numbers. Thus stray letters will foul up the reading.

Input for BOOLEAN type should be either an integer 0 or integer 1 for
FALSE or TRUE, respectively.

REAL numbers are read in any variation of "E-notation". The following

items would be read as the same real number:
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1234.0, 1234., 1234, 123400E-02, 12340.E-1, +12.34E+02,....
TEXT input may appear in the input stream in either of two ways:
enclosed in quotes (") or not. If the first non-blank character in the input
is a quote, the item consists of all characters up to a terminating quote.
(A quote may appear as part of the string by doubling it as in a text constant
(Section 2.1).) If the first non-blank character in the input is not a quote,
then the input is terminated by the first comma or end of the line encountered,
with leading and trailing blanks deleted from the string, but with internal
blanks maintained. |
If the item to be read is of type TEXT, a maximum of two characters will
be read. If more characters are given, only the left two are read, and the
remainder are ignored. If fewer than two characters are given, characters
are left-adjusted with trailing zeros (not blanks). For example, if T is of
type TEXT,
READ T;
will produce the following results for the given input strings (Cl, C2 and
40 are the hexadecimal equivalents of the EBCDIC characters A,B, and blank,

respectively and b specifies a blank):

"AB",  T=C1C2 bA, T=C100
"A", T=Cl40 bAbb, T=C100
" A", T=40C1 A, T=C100
"o T=4040 , T=0000
"A" . T=C100
me o T=0000

The only exception to the rule that the READ-list item must be primitive
is if the item in the READ-1list is in the class TEXTARRAY (Section 2.3). For
example, the following sequence is legal:

DEFINE TEXT10 ARRAY TEXT SIZE 10: STRING;
DEFINE T3BY10 ARRAY TEXT10 SIZE 3: STRARRAY;
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READ STRING, STARRAY(2);
The input routine will read up to 2*N characters (in this case, up to 20
characters), pack them two per word, and store them in the array starting from
the left (i.e., smallest subscript). Surplus characters will be ignored.
If fewer characters appear on input than there is room for, the remaining

character positions are filled with zeros (not EBCDIC blank). For example:

"AB AB AB AB" bbABCbbbDEFbABCh ,
STRING(1)=C1C2 clc2
(2)=40C1 340
(3)=C240 4040
(4)=C1C2 c4cs
(5)=40C1 C640
(6)=C200 c1c2
(7)=0000 300
(8)=0000 0000
(9)=0000 0000
(10)=0000 0000

OUTPUT

There are two kinds of output statements: simple and formatted. They
may both appear in a single program for convenience.

The simple output statement is of the form:

WRITE <exp-list>;
For example:
WRITE I,J,A(I),B(I,J*3/4)415%XP(4),"RESULT=",D,15;

All the expressions in the expression list must designate a quantity which is
one of the following types: INTEGER, REAL, BOOLEAN, TEXT, or TEXTARRAY.

Note that all expressions in a WRITE-list are evaluated before any out-
put is performed. Thus the statements:

I=23;

WRITE I, (I=4);
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will produce two four's on the output medium, not a three and a four.

INTEGER types are put out in an I6 format (i.e., in a field of width
six, right adjusted, with leading blanks). REAL numbers are put out in the
form +x,xxxxxx+yyb where b indicates a blank. BOOLEAN items are put out as
either of the two character strings: TRUE, or FALS. (The "E" is left off
"FALS" so that a constant field width for BOOLEAN output can be maintained.)

TEXT constants are put out exactly as stated, without the outer quotes.
TEXT variables are put out in EBCDIC;binary zeros are ignored (not put out).
For example, if T is of type TEXT, the statements

T="AB" . Q="2";
WRITE "T 1S:", T, " .", Q;

would produce the output line:

'T IS:AB .Z'
where the primes ('s) are used here merely to delimit the extent of the out-
put.

Note that the output produced has no imposed record limits--only what is
sent by the WRITE statement appears on the output medium. To effect a line-
oriented output, the user must specifically send an end-of-record (e.g., carriage
return) character to the output device. This can be done by executing system
subsoutine CRET, which sends a carriage return character to the current output
device. It can also be accomplished by the following subterfuge:

DECLARE TEXT: CR;
DATA CR ?15;
WRITE CR;
since 1516 is the EBCDIC character for carriage return. The other special

EBCDIC characters (e.g., line feed, shift-to-red) can be used in the same way.

Also note that the high order character of CR is a binary zero; the character
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This program:

WRITE "ARRAY OF COST FACTORS:", CR, CR, "
LOOP I=1;1;I $GT$ 20;
WRITE COST(I), "¢ ';
IF I $MOD$ 5 $EQ$ O;
WRITE CR, " ';
ENDIF;

ENDLOOP;

Might produce this output:

ARRAY OF COST FACTORS;

10¢ 15¢ 17¢ 14¢
1¢ 12¢ 8¢ 100¢
9¢ 34¢ 56¢ 55¢
156¢ -212¢ 34¢ 17¢

Figure 2.9 WRITE Example

20¢
-12¢
0¢

0¢
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routines ignore such (non-)characters.

The one exception to the rule that all expressions in a WRITE list must
be primitive is for the case when an expression is a TEXTARRAY (Section 2.3),
as for the input case above. Given the definitions and declarations for that
example, the following statement would output twenty EBCDIC characters from
each of the two specified arrays:

WRITE STRING, STRARRAY(3);

Given the above definitions for CR, and array COST of integers size
20, and an integer I, the program segment in Figure 2.9 might produce the out-
put given.

FORMATTED OUTPUT

The WRITEFMT statement affords the user some of the power of formatted
output which is usually an important feature of other programming languages.
This implementation of CESSL was not designed for large scale I/0 programs
so that appropriately less effort has been expended in formatting development.
What is provided is a run-time package which interprets a "format-list"
which is compiled or put together by the user. Although this lacks the
convenience of FORTRAN in the definition of the format list, it gains the
considerable advantage of allowing run-time construction and alteration of
format specifications (cf. MAD/7090 and PL/I format variables).

The formatted output statement has the form:

WRITEFMI <left-des>; <exp-list>;

The <left-des> should specify an INTEGER array which will be interpreted
as the format list. It may be simple or subscripted, as in the following
examples:

DEFINE INT10 ARRAY INTEGER SIZE 10: LISTI1;

DEFINE INT2BY10 ARRAY INT10 SIZE 2: LIST2;
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WRITEFMT LIST1; A,B,C;

WRITEFMT LIST2(2); A,B,C;

WRITEFMT LIST1(5); A,B,C;
In the last statement, LIST1(5) actually designates an INTEGER but since
arrays are stored contiguously, it also points to the last five words of LISTI1,
so that the usage is legal and, perhaps, even meaningful.

Ordinarily, the contents of a format list are initialized via a DATA
statement; for special uses they may be changed by the user at run-time.

The form and restrictions of the <exp-list> are exactly the same as
for the WRITE statement. BOOLEAN, TEXT, and TEXTARRAY variables are sent to
the output device in exactly the same manner. INTEGER and REAL variables
are put out according to an interpretation of the format list.

Items in the <exp-list>which are of type INTEGER require a positive
number, w, in the format list. W specifies the width of the field in which
the output is to appear, right justified with leading blanks (this is equi-
valent to a FORTRAN Iw specification). Care should be taken to provide a
field width wide enough to accomodate the maximum value expected for the
integer expression, including a possible minus sign for negative quantities.
If too narrow a field is specified, the value will be put out, but in a field
of the minimum sufficient width (thereby messing up the programmer's output
spacing, but at least retaining the value). For example:

DEFINE INT10 ARRAY INTEGER SIZE 10: LIST;
DATA LIST 5, O0;

DECLARE INTEGER: I}

I =43,

WRITEFMT LIST; I;
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produces

bbb4 3
where b indicates a blank in the output.

| The output for items in the <exp-list> which are of type REAL can take

two forms. The first is the same as for the WRITE statement, '+X.Xxxxxxx+yyb'.
This output is specified in the format list by the appearance of the positive
number '"999", as in:

DATA LIST 999,0;

WRITEFMT LIST; R;
where R has been declared REAL.

The second form of REAL output produces something like "xxx.yyyy". This
form is'specified by two successive positive integers in the format list,
respectively the totai field width (including sign and decimal point) and the
number of digits after the decimal point (This is equivalent to FORTRAN Fw.d).
The number is always right justified in the field with leading blanks. If
the field width is too narrow the number is sent out in E-format (messing up
the spacing, but at least getting it out). For example:

DATA LIST 8,4,0;

WRITEFMI' LIST; 3.45E1;
produces

b34.5000

Other entries in a format list can be used to control spacing and out-
put EBCDIC characters. A negative word in the range -1 to -299 is treated
as a request for as many spaces in the output as the number is negative.
(This is similar to the FORTRAN nX coding for spaces.) For example:

DATA LIST -4,4,0;

WRITEFMT LIST; 84;



64 Procedural Aspects of CESSL

produces
bbbbbb 84

A single EBCDIC character may be put out from the format list by encoding

it as a word in the list in the following manner. Take the decimal represen-
tation of the EBCDIC character, negate it, and add -300. For example, carriage
return is an EBCDIC character with a hexadecimal representation of 15, or a
decimal representation of 21. Thus, an integer -321 in the format list will
produce a carriage return on the output medium. Appendix A lists the EBCDIC
characters which might be of interest, their hexadecimal, decimal, and format-
list representations. An easier way of outputting the non-control EBCDIC
characters (i.e. the printing graphics) is by a sort of quoting. The special
value of -993 in a format list declares that all words up to the occurence
of the value -995 contain EBCDIC characters. The characters may be packed
one or two per word--zero characters are ignored (i.e. not put out). For
example:

DATA LIST -993, '"COST = '",-995, 5,2,0;

WRITEFMT LIST; R;
might produce the output:

COST = 43.20

The final special value which may appear in a format list is zero. It
marks the end of the format specification and resets interpretation to the
beginning of the list, if necessary.

In summary, there are three kinds of numbers which can appear in a
format list: positive, specifying a data conversion format, negative, speci-
fying the output of EBCDIC characters; and zero, specifying a reset of the
interpretation pointer to the beginning of the list.

These items in the format list interact with the WRITEFMT statement in
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the following manner. A pointer is first set to the address given by the
deft-des > If an item in the exp-list> is of type BOOLEAN, TEXT, or TEXTARRAY,
it is put out just as in the WRITE statement. INTEGER and REAL items in the
©xp-1list > require a specification from the format list. If the interpre-
tation pointer does not point to a number which can serve the purpose (i.e.,
positive), the function specified by the negative number is performed (either
spacing, or output of one or many EBCDIC characters). The pointer is then
incremented to the next word and the test is performed again. If at any time
during the pointer advancement a zero value is encountered, the pointer is

reset to the value it initially had. After the last item in the <exp-lists

has been put out, the pointer is advanced until it encounters a positive or
zero number, thus allowing the output of EBCDIC characters beyond the last
format specification.* This might be especially useful in the output of a
carriage return since record control characters must be specified by the user.
Two implications of the above explanation should be emphasized. First,

interpretation of the format 1list occurs only at two times: when an output
field specification is needed and at the end of the <exp-list>. No interpre-
tation of the list is performed before the output of an <exp-list >item of
type BOOLEAN, TEXT, or TEXTARRAY. For example:

DATA LI 3T -933. "ABC", -995, 4, 0;

WRITEFMT LIST; "DEF", 15;
would produce

DEFABCbb15
not ABCDEFbb15
Second, format lists should be ended with a zero word to ensure that the inter=
pretation at the end of the WRITEFMT statement will terminate.

There are two special forms of the WRITEFMT statement. The first has a
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null <exp-list> as in

WRITEFMI <left-des> ;;
which may be used to obtain interpretation of a format list when there are no
items to be put out. The second uses a zero for the <left-des> in the form:

WRITEFMT 0; <exp-list> ;

which specifies that the format list it be used is the one given in the last

executed WRITEFMT statement, retaining the interpretation pointer's position.
The use of the latter form is illustrated in the following program segment
which produces output almost identical to that of Figure 2.9.

SUBSTITUTE (CENT, -374) (QB, -993) (QE, -995) (ENDFMT,0) (CARET, -321);

DATA LIST QB, " ", QE, 6, CENT, -3, 6, CENT, -3, 6, CENT, -3, 6,

CENT, -3, 6, CENT, CARET, ENDFMT;
WRITEFMT LIST; "ARRAY OF COST FACTORS:", CR, CR;
LOOP I=1;1; I $GT$ 20;
WRITEFMT 0; COST(I);

ENDLOOQP ;
This segment also shows the utility of the SUBSTITUTE statement in providing
mnemonics for the special values used in a format list. Once a mnemonic is

defined, it can be used in several format lists.
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2.4,2.6 Miscellaneous: PAUSE, CONTINUE, EXECUTE
The form of the PAUSE statement is:
PAUSE <exp>;
where the exPression must be of type INTEGER. The effect is that the computer
goes into WAIT state (all processing stopped), with the expression displayed
in the A register. Pressing the START button continues executing at the
next statement. Examples:
PAUSE 1;
PAUSE N;
PAUSE X+Z(Y);
The form of the CONTINUE statement is, simply:
CONTINUE;
which serves as a convenient place to introduce a label. Nothing else happens.
The form of the EXECUTE statement is:
EXECUTE <exp>;
which allows direct subroutine calls. For example:
EXECUTE ABC! (1,3*SQRT(R));
EXECUTE XYZ!;
EXECUTE (Z=X+Y);
EXECUTE X+Y;
Note that the fourth example adds X and Y, but doesn't do anything with the

result. The third is equivalent to the assignment statement

Z=X+Y;
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2.4.3 Subroutines

Subroutines (also called external functions) are independently compiled
programs which may be '"called" from other programs (perhaps with parameters)
to produce a result--either a returned, explicit value, or "side-effects"

on the parameters.

2.4.3.1 Subroutine Definition
A program is a subroutine if it contains an ENTRY statement. Thus, no
program can contain both an ENTRY statement and a DECLARE...NAME statement.

The form of a subroutine is:

ENTRY -;
RETURN;

éNDPROG;
where there may be more than one ENTRY and more than one RETURN statement.

In CESSL, the '"name'" of a subroutine is its ENTRY point, i.e., the point
at which the subroutine begins executing; it is this name which is " e&ternal"
for loading purposes. A program which is a subroutine may have many entry
points (but not more than fourteen in the TSX system), each with its own formal
parameter list. The first such named entry point is the "program name" given
to TSX.

The form of the ENTRY statement is:

ENTRY Al ( <> 1list>);
The statement declares this physical point in the programto be the entry

point for the given Xatom. The )}atom must obey the TSX naming conventions
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since it is to be declared external. The <\-list> specifies the formal
parameters for the call. If there are no formal parameters, no list need be
given. For example:

ENTRY SUB! (A,B,C);
ENTRY XYZ!;

If the formal parameters are to be used in the body of the subroutine,
their types must be declared, and, of course, should match the types of the
actual parameters used in any calls on the subroutine. The types of parameters
may be any primitive type or any type defined by the user. (Formal parameters
should not appear as the left half of an EQU-statement pair unless the user
is thoroughly familiar with material in Chapter Four.)

The advantage of having several entry points to a subroutine is that
code, variables, and actual parameters may be shared even across separate
call . For example:

DECLARE REAL: X,Y,Z,FACT;

DECLARE INTEGER: I;

ENTRY COSIN! (X);

Y=X+3.141592/2;

GOTO COM;

ENTRY SINE! (X);

Y=X;

COM: Z=0;

LOOP I=1;2;I $GT$ 10;
Z=7Z+Y §P$ I/FACT!(I);
ENDLOOP;

RETURN Z;

ENDPROG;

Note that the equivalence between formal and actual parameters is made at the
ENTRY statement when the subroutine is invoked. Successive entries to a

program may use formal parameters established by a previous entry. For example:

ENTRY ABC!(A,B,);
DECLARE INTEGER: A,B;
REUTRN ;

ENTRY XYZ!;

RETURN A*B;

ENDPROG;



70 Procedural Aspects of CESSL

If ABC is called first and then XYZ is called, the value returned by XYZ

is the integer product of the two parameters established by the entry to ABC.
If, however, XYZ is called before ABC has ever been called, the value returned
will be undefined.

Control may not '"flow into" an ENTRY statement; i.e. there should be
a GOTO or RETURN before it. A run time error occurs if this happens (see
Section 3.2.2).

Subroutines usually return to their callers and, in so doing, may or
may not return a value to be used as the direct result of the call. If no
value is to be returned, the return statement is simply:

RETURN;
If the subroutine is to return a value, the statement has the form:
RETURN <exp>;
The <exp> may be of any type and should match the type expected by the calling
program.

RETURN is an executable statement, and there may be more than one RETURN
in a program. RETURN is not associated with a particular entry point so that
the execution of any RETURN statement produces the same result. In the case
of RETURN with a value in a subroutine with many entry points, it is the
user's responsibility to ensure that the value returned is of the type expected
by the entry point actually invoked.

It is possible to return to a point in the calling program other than
whence the call was made. This is achieved by declaring one of the formal
parameters to have type LABEL and passing a LABEL constant or variable as the
appropriate actual parameter. A GOTO the formal parameter then transfers
control to the address passed. Of course, it is not possible to return a value

by this method.
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2.4.3.2 Subroutine Calls

In CESSL, the subroutine structure is not recursive; in particular,
a subroutine may not '"call" another entry point in the same program.

In a call on a subroutine, the matching between actual and formal para-
meters takes place on a '"call-by-reference" basis; that is, the information
passed is an address. This is essentially equivalent to call-by-name for
actual parameters which are variables, and call-by-value for actual parameters
which are expressions. For example,

X=SUB! (A,B*3+D,C(2*E));
is a call-by-value for "B*3+D", and call-by-name for "A" and "C(2*E)".
Call-by-name allows for "side-effects", i.e., a variable in the parameter
list in the calling program may be changed by the subroutine.

CESSL-compiled programs may call subroutines prepared by other language
processors, and may be called as subroutines by such programs. Care must
be taken in the other programs to match the calling sequence protocol eXpected
by CESSL programs (See Section 4.6.1). In general, parameters are compiled
as a list of addresses after the CALL statement; this is compatible with TSX
FORTRAN. TSX FORTRAN arrays, however, run backwards in storage, while CESSL
arrays run forward, so that care must be exercised in this respect. It is
-not possible to include FORTRAN EXTERNAL references or CESSL FUNCTION references
in parameter lists of subroutine calls from one language processor to another
(See Section 4.6.2 for an explanation and an exception). In addition, FORTRAN

compiled calls expect--and subroutines may return--only INTEGER or REAL values.
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2.4.4 Internal Functions
Internal functions are strictly local subroutines included in a larger
program. They are very similar to the construction of the same name in MAD/7090
and are similar to ALGOL/60 procedures. As subroutines they may take formal
parameters and may or may not return a value. They may have many return points,
but unlike external functions, they may have ohly one entry point. The advantage
they have over external functions is that they may reference variables in the
containing program as well as the parameters of the particular invocation.
The form of an internal function is
INTERNALFUNCTION )!(<\-list>);
<code>
ENDFUNCTION;
The A-list is the formal parameter list (in the case that there are formal
parameters). The A-atoms so declared may be used only for formal paramefers
of internal functions - they may not be used for any other purpose. These
parameters must be declared as having some type. If the function returns a
value, the function name must be declared to be of the appropriate type.
The return statement is:
FUNCTIONRETURN <expression>;
where the expression need not appear if no value is to be returned. The
returned expression must be of the same type as the function name. Statements
not legal in the scope of an internal function definition are INTERNALFUNCTION,
ENTRY, and ENDPROG.
Internal functions are invoked exactly as external functions. Internal
function names are implicitly declared to have attribute FUNCTION so that they
may appear in subroutine parameter lists as FUNCTION names without further

declaration.
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The user must insure that branches do not occur into or out of the
scope of the definition (this implies that IFs and LOOPs must be closed in
the definition). The internal function may occur anywhere in the physical
layout of the program, with the restriction that control may not "flow into"
the entry point of the function; a run-time error will occur if this happens.
Similarly, control may not '"flow into" the ENDFUNCTION statement. There may
be no more than 64 internal functions in any one program.

Example:

INTERNALFUNCTION NORMAL! (X);

DECLARE REAL:NORMAL,X;

FUNCTIONRETURN . EXP (- (X*X));
- ENDFUNCTION;

VALUE=NORMAL! (2*ABCISSA)+1.0;
Another example:

INTERNALFUNCTION XYZ!(P1,P2,P3);
DECLARE INTEGER:P1,P2;
DECLARE BOOLEAN:P3,XYZ;
IF P3;

FUNCTIONRETURN P1 $GT$ P2;
ELSE;

FUNCTIONRETURN P1 $LT$ P2;
ENDIF;
ENDFUNCTION;

And another:

INTERNALFUNCTION CALC!;
DECLARE REAL:CALC;

FUNCTIONRETURN A*EXP (-X*Y)+SIN(Y);
ENDFUNCTION;
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2.5 Program Formaf

A program is a sequence of statements eﬁded by ENDPROG. The compiler
reads source lines from the card reader immediately after the compiler con-
trol cards (see Section 3.1). Use of the INCLUDE statement will direct the
compiler to take source lines from a logical f;le. No more input is read
after the ENDPROG statement is encountered. The next card in the card reader
should be a TSX control card, e.g. "fSTORE", "// XEQ", etc.

A program may be either "main'" or "subroutine" (the latter includes
what FORTRAN calls subprograms and functions), specified by the inclusion
of statements "DECLARE...NAME" or "ENTRY ...'", respectively. Both may not
appear, although up to fourteen ENTRY statements may be included in one sub-
routine. The symboi in the "DECLARE...NAME" statement must appear as a label
somewhere in the program to specify where execution of the main program should
begin.

Main programs which are in non-process coreloads normally return control
to the system by an

EXECUTE EXIT!;
statement. They may also end by transferrring control to another coreload
by use of the LINK operator as in:
EXECUTE LINK OTHER;

Subroutines normally terminate by RETURNing to their callers although'
they may also call EXIT or LINK.

CESSL programs may be included in TSX Process and Interrupt coreloads,
from which the appropriate exits must be taken, calls on TSX subroutines
VIAQ and INTEX, respectively.

Figure 2.10(a) shows a complete program deck and Figure 2.10(b) shows

the output produced from a compilation and run of the program.
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// JOB  111102222030333
// XEQ CESSL  FX
*COMPILE BASIC

* GRADING PROGRAM,

THIS PROGRAM READS CARDS WITH THE FOLLOWING FORMAT
NAME, SCORE1l,SCORE2,SCORE3,SCOREL, SCORES
WHERE THE NAME IS AT MOST 20 CHARACTERS LONG AND THE SCOREN ARE
INTEGERS FROM 0 TO 100, AT MOST 100 AND AT LEAST 2 CARDS CAN BE
READ. THE END OF THE LIST IS INDICATED BY A BLANK CARD,

TWO LISTS ARE PRODUCED IN THE OUTPUT. THE FIRST IS AN ALPHABETIC
LISTING OF ALL THE NAMES WITH THE MEAN OF THE ASSOCIATED SCORES.
THE SECOND IS A RANKING OF THE MEANS, ALSO PRINTED IS THE MEAN
AND MEDIAN OF ALL THE INDIVIDUAL MEANS. ;

DECLARE -GRADE NAME;
« [EACH STUDENT 1S KEPT IN A BLOCK CONSISTING OF HIS NAME AND HIS MEAN;

DEFINE T10 ARRAY TEXT SIZE 10;
DEFINE STDT BLOCK <T10, INTEGER>: TEMPSTDT;
SUBSTITUTE (NAM, 1) (MEAN,2);

* STUDENTS IS THE ARRAY WHERE ALL STUDENTS NAMES AND MEANS ARE KEPT
AND RANK 1S AN ARRAY WHERE JUST THE MEANS ARE KEPT. WE USE RANK AS
A SEPARATE ARRAY TO EASE SORTING AND PRINTOUT;

DEFINE STDTS ARRAY STDT SIZE 100: STUDENTS;
DEFINE 1100 ARRAY INTEGER SIZE 100: RANK;

DECLARE INTEGER: NSTDT, I, J, ACCUM, T, SCORE;
DECLARE TEXT: CR;

GRADE: INPUTDEV CARDS;
‘ OUTPUTDEV TYPEWRITER;

CR=?15; -
NSTDT=1; *START AT THE BEGINNING;

Sample Program: Source Cards

Figure 2.10(a)
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READNAM: READ STUDENTS(NSTDT,NAM); v
IF STUDENTS(NSTDT,NAM,1) $EQ$ 0; *|F ZERO, CARD WAS BLANK;

-NSTDT=NSTDT-1; *S0 ADJUST COUNT; -
GOTO ENDREAD; *AND TERMINATE READING;
ENDIF;

* THE INPUT HAS BEEN TRIMMED OF TRAILING BLANKS AND HAS ZEROS IN
THE UNUSED PART.: WE WANT TO PRINT IT OUT IN CONSTANT FIELD
WIDTH, SO WE MUST PAD WITH BLANKS;

LOOP 1=10;-1;1 $EQ$ O;
IF STUDENTS(NSTDT,NAM, 1) $EQ$ 0; =*IF WHOLE WORD IS 0;
< STUDENTS(NSTDT,NAM, 1)=""; *MAKE IT 2 BLANKS;
ORIF STUDENTS(NSTDT,NAM, 1) $BITAND$ ?FF $EQ$ O;
*|F RIGHT HALF 1S ZERO;
STUDENTS(NSTDT,NAM, 1)=STUDENTS(NSTDT,NAM, 1) $BITORS ?40;
*PUT IN A BLANK;
ENDIF;
ENDLOOP;

ACCUM=0;
LOOP 1=1;1;1 $GT$ 5; *READ IN FIVE SCORES;
READ SCORE;

ACCUM=ACCUM+SCORE; *TOTAL ALL SCORES;
ENDLOOP;

* CALCULATE MEAN AND ASSIGN TO STUDENT AND RANKING ARRAYS., DO
THE ARITHMETIC IN FLOATING POINT TO KEEP PRECISION AND THEN
ROUND OFF TO INTEGER SCORE;

RANK(NSTDT)=(STUDENTS(NSTDT, MEAN)=ACCUM/5.+0.5);
NSTDT=NSTDT+1;
GOTO READNAM;

* ALPHABETIZE NAMES BY SIMPLE SORT., ALSO RANK THE SCORES;

ENDREAD: LOOP I=1;1;1 $EQ$ NSTDT;
LOOP J=1+1;1;J $GT$ NSTDT;
IF STUDENTS(I,NAM) $GT$ STUDENTS(J,NAM);
TEMPSTDT=STUDENTS(1);
STUDENTS(1)=STUDENTS(J);

STUDENTS(J)=TEMPSTDT;

ENDIF;

IF RANK(I) $GT$ RANK(J):
T=RANK(1);
RANK( 1) =RANK(J);
RANK(J) =T;

ENDIF;

ENDLOOP;
ENDLOOP;

Sample Program: Source Cards

Figure 2.10(a)
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* NOW OUTPUT THE ALPHABETIZED LIST WITH MEANS AND THE RANKING;

WRITE “NAME OF STUDENT AVE RANKED SCORES",
CR,CR;
ACCUM=0;
LOOP 1=1;1;1 $GT$ NSTDT;
WRITE STUDENTS(I,NAM),STUDENTS(I,MEAN)," ",
RANK(1),CR;
ACCUM=ACCUM+RANK(1);
ENDLOOP;

WRITE CR,CR,'"MEAN SCORE: ",FIX$(FLOAT$ ACCUM/NSTDT+0.5),
CR,"MEDIAN SCORE:"; o

* CALCULATION OF MEDIAN DEPENDS ON WHETHER THERE ARE AN 0DD
OR AN EVEN NUMBER ITEMS;

IF NSTDT $MOD$ 2 $EQ$ 0;
WRITE (RANK(NSTDT/2)+RANK(NSTDT/2+1))/2;

ELSE;
WRITE RANK(NSTDT/2+1);

ENDIF;

WRITE CR,CR;

EXECUTE EXIT!;

ENDPROG;
// XEQ GRADE
*CCEND
WASHINGTON GEORGE,50,25,75,0,100
BURR AARON, 90,91,92,93,94
NEWMAN ALFRED E.,0,1,2,3,4
STASSEN HAROLD,44,55,66,77,88
ARNOLD BENEDICT, 39,43,47,48,53
EGGS BENEDICT, 71,35,64,58,79
EGGS HAMMOND, 47,58,69,36,25
ATLAS CHARLES, 99,69,79,59,89
ATLAS HAMMOND, 88,68,78,98,58
GRANGER STEWART, 57,70,13,2,47
MACMILLAN HAROLD, 43,43,41,43,42
FRODO THE HOBBIT, 100,99,98,100,98
MERLIN THE MAGE, 52,78,46,79,82
FLOWER THE SKUNK, 12,15,17,56,32
THAT MAN FROM RIO, 72,76,74,78,83
DICKENS CHARLES, 14,95,47,62,58
BROWN CHARLIE, 0,0,0,0,0 )
EINSTEIN ALBERT, 100,100,100,100,100

// END

Sample Program: Source Cards
Figure 2.10(a)
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// JOB  111102222030333

// XEW CESSL  FX
*COMPILE BASIC

*x*x END OF PROGRAM %=

SINGLE OCCURRENCE SYMBOLS:

STDT
STDTS
1100

0965
0A3L
16:24, 08/09/71

NO ERRORS IN ABOVE ASSEMBLY.

GRADE

DUP FUNCTION COMPLETED
// XEQ GRADE

*CCEND

CLB, BUILD GRADE

ROC CARDN 0011 LEV.O

CLB, GRADE LD XQ

NAME OF STUDENT AVE
ARNOLD BENEDICT Lo
ATLAS CHARLES 79
ATLAS HAMMOND 78
BROWN CHARLIE 0
BURR AARON 92
DICKENS CHARLES 55
EGGS BENEDICT 61
EGGS HAMMOND L7
EINSTEIN ALBERT 100
FLOWER THE SKUNK 26
FRODO THE HOBBIT 99
GRANGER STEWART 38
MACMILLAN HAROLD 42
MERLIN THE MAGE 67
NEWMAN ALFRED E. 2
STASSEN HAROLD 66
THAT MAN FROM RIO 17
WASHINGTON GEORGE 50
MEAN SCORE: 57

MEDIAN SCORE: 58

// END Sample Program:

RANKED SCORES

U
2
26
38
42
L6
47
50
55
61
66
67
77
78
79
92
99
100

Output
Figure 2.10(b)



CHAPTER THREE

OPERATING PROCEDURES

3.1 Control Cards for the Compiler
The compiler is a program stored in the fixed area of the disk in
the TSX system. It is called by the Nonprocess Monitor control card

1 4 8 16
// XEQ CESSL FX

CESSL starts reading source cards from the card reader. The user may
direct the compiler to start reading card images from a logical file by use of
the INCLUDE statement (c.f., section 2.4.1.7). Source text is read until an
ENDPROG statement is recognized.

The direct output from the compiler is Assembler source text. After
it has produced this Assembler source, CESSL automatically calls in the (LOCG
modified) TSX Assembler (4) to finish the process of producing a relocatable
object program. After the whole process has been completed, the object program
resides on the disk in the temporary area, and can be called for execution
with a nonprocess monitor // XEQ control card, loaded to the user or fixed
area with a DUP *STORE or *STORECI operation, or punched as a binary deck with
a DUP *DUMP control card operation.

Note, however, that CESSL allows names with greater than five characters,
while the Assembler restricts names to five characters or less. CESSL produces
legal Assembler source text, so that it must map long names into legal short
names. It does this by assigning a name of the form "@XXXX" to names of greater
than five characters, where XXXX is a hexadecimal number. This number is printed
with the name when the *LIST SYMBOL TABLE option is chosen, so that the Assem-
bler listing and symbol table print can then be interpreted in terms of the

original source program.
79
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Before the start of compilation, the user can specify certain options
by means of control cards which must immediately follow the // XEQ CESSL FX
control card and precede the source program. The control cards may be in
any order, except for *COMPILE BASIC or *COMPILE CELL SPACE, only one of
which may appear, and which signal the beginning of the source program.

Control cards are in standard TSX control card format, i.e., an asterisk
in column one, and the option specified in columns 2-72. Spaces on control
cards are ignored.

As far as possible, CESSL uses control cards which are identical to FOR-
TRAN and Assembler control cards for the same options. In particular, the
Assembler control cards used actually control the action of the assembly
phase. Any unrecognizable control cards will cause an error message to be
printed and will then be ignored.

The control cards and their meanings follow.

*IST SOURCE PROGRAM
The source program is listed as it is read in from cards or from a

logical file.
*LIST SYMBOL TABLE bN

After the ENDPROG card has been read, the compiler's knowledge
about the symbols in the user's program is listed. Such a listing is
probably useful only to .those performing machine level debugging. This
listing alone does not provide the relative addresses of these symbols
in the object program. That information is prepared by the Assembler
and may be obtained by use of the *PRINT SYMBOL TABLE control card.

"b" indicates at least one space. N, if it appears, must be an integer
‘constant (decimal or hex); it controls the type of information dumped.
Four kinds of information may be listed, separately or in combination.

The categories and numbers associated are:
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Variables 1
Data Types 2
INTEGER, REAL, and TEXT constants 4
LABEL constants 8

Combinations may be obtained by summing the associated mumbers. For
example, "*LIST SYMBOL TABLE 1" would yield just the variables, '*LIST
SYMBOL TABLE 9" would yield variables and LABEL constants, and "*LIST
SYMBOL TABLE 15" or "*LIST SYMBOL TABLE ?F" would get everything. If no
number is given, the default is 11;,, i.e. data types, LABEL constants,
and variables are dumped.

Each symbol dumped occurs on a separate line of the listing. For
most symbols, the first item on the line is the "@-equivalent" for that
symbol (see above and Section 4.1). Then comes the symbol itself, followed
by information about it, depending on its category.

The category "variable" includes two sub-categories, lambda-symbols
and substitute symbols. If the lambda-symbols have any special attributes,
they are indicated by single letters:

E The symbol is an entry point. It either appeared in an "ENTRY"

statement or it is one of the CELLSPACE "entry points'.

P The symbol is a formal parameter. It appeared in the formal

parameter list of an "ENTRY'" or "INTERNALFUNCTION" statement.

F The symbol has FUNCTION attribute. It appeared in a "DECLARE

FUNCTION:'","ENTRY", or '"INTERNALFUNCTION" statement.

I The symbol is the name of an internal function.

After any of these letters, the type of the symbol, if any, is printed.
Finally, if the symbol is defined by an EQU, the characters "EQU:'" are

printed followed by the defining atom. This latter printout is useful
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in determining the order in which EQU symbols are given to the Assembler
since symbols are listed in the table in the order in which they will be
defined. SUBSTITUTE atoms appear merely as the atom, an equal sign, and
the substitution atom.

The category 'data type' is also made up of two sub-categories,
arrays and blocks. For both, two numbers are printed, respectively the
number of components in the data type and the total number of words required
for a variable of this type. For arrays, the next symbol printed is the
name of the component type. For blocks, the next symbols given are the
names, in order, of the component types.

For the categories of constants, just the name of the constant is
given. All LABEL constants appear in the program. Note that not all of the
other constants are necessarily used in the program, but if they are,
the @-equivalences for them are givén by these table entries. In addition,
INTEGER constants appear as literals, so their @-equivalences do not appear
in the assembly source program produced.

If the number 16 (hex 10) appears on the control card, the entire
symbol table will Be dumped, uninterpreted, largely as hex constants.

This is mainly for the benefit of the compiler writer, and is mentioned
here only as a warning to inaccurate keypunchers who will receive much
more information than they ever wished to see.

Figure 3.1 contains the symbol tables produced by CESSL and the
Assembler for the sample program of Figure 2.10. Figure 4.1 also contains
a CESSL symbol table.

_ If output is directed to the typewriter, "Z'" tabs should be set.
*PRINT SYMBOL TABLE

The symbol table produced by the Assembler is listed. This table gives
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the relative locations of the symbols in the object program. Symbols
with absolute values are preceded by the letter A. See Figure 3.1.
*LIST
The Assembler listing is printed. Note, however, that CESSL puts
out a LIST OFF pseudo-op at the beginning of the generated code, and a
LIST ON pseudo-op at the end of the code, so that the active program
code will not be listed. Only the data type, variable, and constant
allocation statements and the Transition Control Block (if this is a Cell
Space compilation) will be listed in Assembler format. Note that when
Assembler output is printed on the typewriter, "Z'" tabs must be set
(see LOCG internal memo).
*LIST OVERRIDE
The entire Assembler listing will be printed, i.e., the LIST OFF
pseudo-op will be ignored.
*COMMON bN
N = the length of COMMON in words. '"b" indicates at least one
space. This allows the use of CESSL programs which assign COMMON them-
selves or the linking of FORTRAN and CESSL programs where the FORTRAN
programs use COMMON. (Note that the main program of a core load must
specify the length of COMMON.) The length may be given in decimal or
hexadecimal, as in:

“*COMMON 523
*COMMON ?20B

*SWITCHES
This is mainly a debugging aid for the compiler-writer, although

some options may be of interest to others. This control card directs
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the compiler to read the data switches on the computer console and to
perform special actions according to the setting of the switches. The
particular actions and their associated switches may be found in the
documentation for the internals of the compiler.
*COMPILE BASIC
This control card specifies that only the basic compiler is wanted,
with none of the special checks and definitions for the simulation language.
It also signals the end of the control cards; i.e., the next card reader
is the start of the source program.
*COMPILE CELL SPACE |
This control card specifies that this compilation should use the
special definitions and make the special checks for the CELL SPACE simu-
lation system (3). In particular, if the program is a "main'" program,
the Transition Control Block and a call to CLSPC is compiled into the
program. If the program is a subroutine, neither of the above will be
compiled into it, but it will have the special definitions available to
it. This control card also signals the end of the control cards; i.e.,

the next card from the card reader is the start of the source program.



3.2.1 Normal Messages 85

3.2 Compiler messages

Compiler messages inform the user of the progress attained in trans-
lating his program. The compiler has three distinct phases during which mes-
sages may be issued: first pass (reading the source program and parsing),
second pass (producing assembly source code), and assembly. Messages refer-
ring only to the Cellular Space Simulation System are included herein for

completeness sake.

3.2.1 Normal messages
The compiler will always print out the control cards read on the first
pass. If the source program is not listed and if no parsing errors occur
(see below), the next messsge printed is
**% END OF PROGRAM ***
indicating that the ENDPROG statement has been recognized. Additional
errors may be discovered at this time. If there are any user-defined symbols
(other than constants) which occurmed only once in the program, the compiler
types:
SINGLE OCCURRENCE SYMBOLS:
and lists them. Such occurrences are not considered fatal errors; the list
is provided merely as aﬁ aid to the programmer in detecting misspellings.
The symbol table is printed at the end of the first pass if it was
requested by the "*LIST SYMBOL TABLE" control card.
The next two lines normally printed are hexadecimal numbers which appear
for the following reason. CESSL has a limited storage space for symbol and
constant definitions and no provision for table overflow. The numbers give

the amount of memory remaining for such use in the two passes of the compiler.
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Programs will not compile if either number dips much below 10010 (see 3.2.2).
An average of about ten words are needed for each new symbol or constant
added, so that users may be able to judge the feasibility of expanding
programs.

After the second pass of the compiler, the LOCG Assembler is called.
It types the date and time, (optionally) the assembly listing and symbol
table, and terminates (hopefully) with the message

NO ERRORS IN ABOVE ASSEMBLY

The Assembler transfers control to the TSX Disk Utility Program to store the

compiled program in the temporary area on the disk.



// JOB  111102222030333

// XEQ CESSL  FX
*LIST SYMBOL TABLE
*PRINT SYMBOL TABLE

*COMPILE BASIC

**x%x END OF PROGRAM %«

SINGLE OCCURRENCE SYMBOLS:

STDT
STDTS
1100

VARIABLES:
@3A01 TEMPSTDT
@39C8 STUDENTS
@39B4 RANK
@39AA NSTDT
@39A2 |

@399A J

@3990 ACCUM
@3988 T

@397E SCORE -
@3975 CR

43887 EXIT

SUBSTITUTE ATOMS:

NAM=1
MEAN=2

STDT
STDTS
1100
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
TEXT

DATA TYPE DEFINITIONS:

ARRAYS:
@3A1A TI10
@39D4  STDTS
@39BE 1100

BLOCKS:
@3A10 STDT

LABEL CONSTANTS:
@3A23 GRADE
@3961 READNAM
@3955 ENDREAD

0911
0A3L

10 10 TEXT
100 1100 STDT

100 100 [INTEGER

2 11 Tio,

Symbol Table: Compiler

Figure 3.1(a)

INTEGER
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12:03, 08/13/71

SYMBOL TABLE
ACCUM 024bL CR 0247 A FALSE 0000 GRADE 0000 | 0242
1100 0746 J 0243 LABEL 0739 L#001 0754 L#002 0755
L#003 0756 L#004 0757 L#005 0758 L#006 0759 L#007 075A
L#008 0758B L#009 075C L#010 075D L#011 075E L#012 075F
L#013 0760 NSTDT 0241 RANK 0694 REAL 0736 SCORE 0246

STDT 073E STDTS 0743 T 0245 TEXT 0738 A TRUE 0001
T10 0738 #DE01 074C #RETR 07LA #TEM 0754 #00A0 0235

#00A1 0224 #00A2 0235 #0010 0030 #0011 0030 #0020 003C
#0021 0036 #0022 0083 #0030 0081 #0031 005E #0032 0081
#0040 0092 #0041 008C #0042 00A8 #0050 00D2 #0051 00CC
#0052 016E #0060 00EC #0061 00EG #0062 016C #0070 013B
#0071 0138 #0080 016A #0081 01b6A #0090 0189 #0091 0183
#0092 U1CA d3A01 ObF8 @3B25 073A @3B45 0737 @3B5A 0735
@38A5 0727 @3886 0721 @38C8 0708 @38FB 0706 @3896 072E
@39C8 0248 @3904 0704 @3934 0703 @3955 00C6 @3961 0010
NO ERRORS IN ABOVE ASSEMBLY,

GRADE '

DUP FUNCTION COMPLETED

// END

Symbol Table: Assembler
Figure 3.1(b)
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3.2.2 Compiler error messages

Any messages'but the above report error conditions. A program which
contains an error will not assemble correctly (at least one line of the Assem-
bler source produced will have an "ILLG" pseudo-op which will be printed as
an error line) and will not be sent to the disk.

Error messages are of five. types: problems with the compiler itself,

pass one errors (syntax),  pass two errors (semantics), Assembler and Loader.

3.2.2.1 Compiler failure
As stated above there is a limited amount of memory for the compilation
process. If at any time there is overflow of the table space, CESSL types
CORE FULL - TERMINATE
and pauses. This is an immediately fatal error; compilation cannot be contin-
ued. After the user presses CONSOLE INTERRUPT control is returned to the non-
process monitor to start the next job.
Another internal problem may result in the message
DISK ERROR - COMPILATION TERMINATED
This appears at the end of the first pass and is fatal (the second pass is
not performed). Errors of this type should be reported immediately to the
staff, for it indicates an internal failure.

The message
105 //BLANK CARD
RESTART
is not a CESSL message; it comes from the TSX Non-process Mnitor, and
causes immediate termination of the job. It may occur on the first pass of

the compiler and is caused by the reading of a TSX monitor control card
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(slashes in the first two columns and blank in column three). This in turn
is usually caused by the absence of ENDPROG as the last statement of the pro-

gram.

'3.2.2.2 Syntax Errors

There are a lot of ways the user can go wrong--more ways, in fact,
than he can go right. The following errror messages detail the wrong ways
that the compiler will detect. WheanESSL detects an error, it will print
the source line currently being processed (if it has not yet been listed),

and one of the two forms:

LA MESSAGE»
%%k MESSAGE: ATOM
where ATOM refers to the particular atom which is misplaced, in error, or
at which the error was detected. The error itself may be on the line listed
or on the previous one. Quite often, the occurrence of one error will gener-
ate others, sometimes mysteriously, so that clearing up one condition may
solve a whole series of error comments.

The user is reminded that one of the two most common errors is neglecting
to end statements with semicolons, leading to the incorrect parsing of two
statements. The other is forgetting to separate two atoms with a special
character or space--especially atoms with §, which is an alphabetic, not spe-
cial, character.

Unless otherwise noted, errors are fatal (i.e., the program cannot be
stored on the disk or executed).

Procedural -- during pass one

LEXICAL ERROR-ATOM TOO LONG: ATOM
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The atom printed is the first 62 characters of an atom which
is too long. This error is not fatal in itself--the remainder
of the atom is ignored--but it may lead to ﬁarsing errors.

ILLG CHARACTER IN #: ATOM
ATOM is a numeric constant which contaiﬁs an illegal character,
i.e. it is a decimal integer with a character other than 0-9,
a hexadecimal integer with a character other than 0-9, A-F,
or a real number with a character other than 0-9, . (period),
or "E".

STACK UNDERFLOW
Compiler error; see a staff member.

STACK OVERFLOW
The expression being parsed is too complicated for the compiler;
it must be broken down into less complex parts.

PARSING ERROR DETECTED AT ATOM: ATOM
A parsing failure was detected at ATOM or at the immediately
preceding atom.

STATEMENT MUST END WITH ; NOT: ATOM
The parsing of a statement was complete up to ATOM, and the
compiler didn't expect any more. It wants a semi-colon.

NOT LAMBDA ATOM: ATOM
ATOM must be a lambda atom; however, it has already been defined
as something else, e.g., operator, data type, etc.

NOT INTEGER CONSTANT OR NOT OF ACCEPTABLE MAGNITUDE: ATOM
ATOM should have been an integer constant, or is out of bounds

for the current context (mainly Cell Space).
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( NEEDED FOR GROUPING NOT: ATOM
) NEEDED FOR GROUPING NOT: ATOM

A SUBSTITUTE statement is ill-formed.
NOT DEFINE KEYWORD: ATOM
In a statement of the form "DEFINE ... ATOM ...;"
ATOM is not a legal keyword.
NOT DECLARE KEYWORD: ATOM
In a statement of the form "DECLARE ... ATOM ...;"

ATOM is not a legal keyword.
SHOULD BE "SIZE": ATOM

The "DEFINE ... ARRAY ..." statement is ill-formed.
BLOCK DEF MUST START WITH < NOT: ATOM
> MISSING

The "DEFINE ... BLOCK ..." statement is ill-formed.

NOT A TYPE: ATOM
The syntax requires that ATOM have the attribute type, and it

does not.
INELIGIBLE ATOM: ATOM

1) A DECLARE or DEFINE statement attempted to assign an
attribute to ATOM; ATOM has either had that attribute
already assigned, or may not have that attribute assigned
to it. 2) The atom in a DATA statement is not X or has
already occurred in a DATA statement. 3) The right hand
side of a SUBSTITUTE statement is of the form -\ where A
is not an INTEGER or REAL constant.

ILLEGAL REPEAT COUNT

The DATA statement is ill-formed.
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EXTERNAL NAME TOO LONG: ATOM
In the TSX operating system, external names (subroutine
entry points and main program names) must be five or fewer

characters.

ENTRY POINT NAME NOT LAMBDA SYMBOL: ATOM
In an "ENTRY ATOM!" or '"INTERNALFUNCTION ATOM!" statement,
ATOM must be a lambda symbol.

ENTRY SYNTAX ERROR AT: ATOM
An ENTRY or INTERNALFUNCTION statement is ill-formed.

TOO MANY ENTRY POINTS (14 MAX)
A maximum of fourteen entry points are allowed for subroutines
compiled in the TSX system.

KEYWORD IN RESTRICTED CODE: ATOM
INTERNALFUNCTION definitions may not contain certain keywords.
See Section 2.4.4.

MAY OCCUR ONLY IN FUNCTION DEF: ATOM
The statements FUNCTIONRETURN and ENDFUNCTION may occur only
in an internal function definition.

ALREADY ASSIGNED: ATOM
There are two ''DECLARE ATOM...;" statements.

LABEL ILLEGAL, IGNORED
The statement just processed was not an executable statement
so that the label it contained was meaningless or dangerous.
This is not a fatal error in itself, but does result in the
label not being defined, which may cause problems in a GOTO

statement later on.
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ITERATION VARIABLE NOT SIMPLE
Iteration variables must be unsubscripted.
ENDLOOP WITHOUT LOOP
An ENDLOOP occurred when no LOOP statement was outstanding.

This may be the result of an error in a previous LOOP statement.

ORIF, ELSE, OR ENDIF WITHOUT IF
One of the named statements occurred when no IF statement was
outstanding. This may be the result of a syntax error in a
previous IF statement, causing it to be ignored.

TOO MANY IF BLOCKS
Only 14 ORIF and ELSE statements are allowed.

IF STARTING IN LOOP SCOPE MUST END IN SCOPE
IF-ENDIF groupings may not straddle an ENDLOOP statement;
i.e., a "Legal IF" statement starting in a LOOP must end in
that loop.

IF/LOOP NESTING DEPTH EXCEEDED
The combined nesting level maximum (about 30) for IFs and LOOPs

has been exceeded. The program should be reorganized.
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Procedural-end of pass one

ENDLOOP MISSING
ENDIF MISSING

A LOOP or IF statement was not closed by an ENDLOOP or ENDIF
statement. As many such messages will appear as there are
statements left unclosed. The messages will appear in the
inverse order in which the associated header appeared. E.g.,
if both ENDLOOP MISSING and ENDIF MISSING appear, in that order,
then the IF statement left unclosed occurs earlier in the
program than the LOOP statement left unclosed.
INTERNALFUNCTION DEFINITION NOT CLOSED
The ENDFUNCTION statement was left off some internal function.
ONLY ONE OF NAME & ENTRY ALLOWED
A program is either main (NAME) or a subroutine (ENTRY).
It may not be both.
LABEL NOT DEFINED: ATOM
ATOM was declared in a "DECLARE ATOM ...;" statement and must

be a label in the program but has not appéared as such.

Simulation--during pass one

COORDINATE MUST START WITH <, NOT: ATOM
COORDINATE MUST END WITH >, NOT: ATOM
NEED COMMA, NOT: ATOM

A coordinate in a DEFINESIZE or DEFINEBHD statement is ill-
formed.

TOO FEW COORDINATES
At least three coordinates are needed to define the space

in the DEFINESIZE statement.
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TOO MANY COORDINATES

At most fourteen coordinates may occur in the DEFINESIZE
statement.

MUST BE CELL: ATOM
The proper. form of the statement is "DEFINE CELL SAMEAS ...;".

No other atom but CELL may be used in this manner.

Simulation--end of pass one

ATOM "CELL" NOT DEFINED AS DATA TYPE
The user must define "CELL" as a data type by a bEFINE ces
CELL ... statement.

ONLY ONE OF INITIALVALUE AND INTIALENTRY ALLOWED
The initial state of a cell may be calculated by an initial

entry point or be given a value from an array, but not both.

STATEMENT NOT ALLOWED IN SIM SUB: ATOM

The program has been defined as a subroutine (i.e. ENTRY

appeared) thereby making illegal the use of the keyword ATOM.
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3.2.2.3 Semantic Errors
Pass two errérs are those which are discovered when the compiler must
produce code corresponding to the source statements. Except as stated, all
second pass errors are fatal.
The first such error which can be discovered is
ERROR: PROGRAM WITHOUT A NAME
Which signifies that’neither a "DECLARE...NAME;" nor an "ENTRY" statement
occurred in the program: At least one of the two must appear.
Whenever any otherierror message in the second pass appears, it is
immediately precéd_ed byithe identification:
AT STATEMENT XXXXX+NNNN
Where XXXX is the last label (i.e. label constant, intefnal function, DATA
statement, or entry point) defined, or '"(BEGIN)" in case no label has occurred,
and NNNN is the number (hexadecimal) of statements beyond the label.
The compiler may run out of space during the second pass, at which time
it will print
MACRO EXPANSION OVERFLOW
and terminate processing of the current statement. The compiler will con-
tinue to process the remaining statements in order to provide as much de-
‘bugging aid as possible.
Another compiler error which can occur is:
STATEMENT TOO LONG
Signifying that the statement being processed is too long for the compiler.
It should be broken down.

The remaining semantic errors are:
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ILLEGAL SUBSCRIPTION OF PRIMITIVE TYPE
The statement attempts to subscript a variable which is of
primitive type. L
ILLEGAL SUBSCRIPT TYPE
The only legal subscript types are INTEGER and REAL. Variables
or expressions of any other types will produce this error.
DATA VARIABLE HAS NO TYPE: NAﬂE
The variable in a DATA statement has not been DECLAREd to
have a data type.
ILLEGAL DATA VARIABLE : NAME
The A-atom in a DATA statement must be a true variable. It
may not have any of the attributes: entry point name, internal
function name, function, or- formal parameter; nor may it appear
as the left hand side of an EQU pair.
TOO MUCH DATA (HEX): N
Too many data items were specified for the variable in a DATA
statement. This is a non-fatal error, mereiy informing the
user of a potential problem and storage waste. N is the (hex-

adecimal) overflow.

ITEM HAS NO TYPE
In a READ, WRITE, or WRITEFMT list, either a variable has not
been declared or a subscription has left a result of undefined

type.

I/0 VARIABLES MUST BE PRIMITIVE
I/0 VARIABLES MAY NOT BE LABEL

With the exception of TEXTARRAYs, all input/output variables
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must be of primitive type, except LABEL.
CAN'T READ INTO CONSTANTS
A cénstant may not aépear in a READ statement.
CONS ON LEFT OF =
A constant appeared on the left of the = (equal sign).
TEXT IS NOT A TYPE NAME
In an expression of the form ABCE@"DEF", DEF is not a type name.
TOO MANY INTERNAL FUNCTIONS
See Section 2.4.4.
ILLEGAL OPERATOR-DATA TYPE COMBINATION: OP TYPEA TYPEB
An expression or statement involving the operator or keyword
OP . occurs in the context of the two types TYPEA and TYPEB.
Either type may be '"(NULL)", indicating that the operator is
monadic, or that the lambda atom has no type attribute assoc-
iated. Consult Figures 2.5 and 2.6 for the legal operator-
type combinations. If a dyadic operator has a (NULL) type
as an operand, either a variable has not been DECLARE'd or
a subscription was incorrect (e.g. too many subscripts, out
of bdunds, or variable subscription a BLOCK type).
For example,
+ INTEGER BOOLEAN
The addition of INTEGER and BOOLEAN types is not defined.
SQRT LABEL (NULL) |
The square root of a LABEL is not defined.

GOTO INTEGER (NULL)

The keyword GOTO requires a LABEL as an operand.
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GOTO (NULL) (NULL)
The atom in a GOTO statement must be of type LABEL. It has
not been defined as such, probably because the label has been
forgotten.
(NULL) INTEGER
The first operand has no type associated. It has probably
not been DECLARE'd, or a subscription operation resulted in

an undefined result type.

#1FF TYPEA (NULL)
#IFT TYPEA (NULL)

These monadic '"operators" are generated by the compiler for
IF and LOOP statements, respectively, to control the conditions
therein. They require a BOOLEAN operand--anything else is an
error.

The $LE$ and $LT$ operators will never appear in this context--

they are changed by the compiler into $GE$ and $CT$, respectively,

with the order of the two operands switched.

3.2.2.4 Assembler Errors

Errors reported by the Assembler in the final reduction of the program
to relocatable binary form are of two types: errors}which are a result of
errors already reported, and others.

After any compiler-reported error it is imperative to ensure that the
resulting program does not get transferred to the disk for permanent storage.
This is accomplished by inserting a line of the form

| ILLG

into the Assembler source program. The Assembler of course will cough, print
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an error message, and make the appropriate magic signals to TSX to halt such
a transfer.

It is possible that additional Assembler errors resulting from compiler-
reported errors will appear. These should be ignored until all the error
conditions are cleared up.

An error that the Assembler will report and which has not been previously
noted by the compiler concerns the format of REAL constants. This message is
printed as a line of the form:

XXXX 00000000 0 S @YYYY DEC NNNNNNNN
as, for example
01A4 00000000 0 S @3124 DEC 4.5,.3E+2
In this case, there are too many decimal points in the REAL constant.

An error associated with the DATA statement results in the printing of

the following message form:

XXXX 0000 0 Uu DC NNNNN
This usually results from using the lambda symbol NNNNN as an item in a DATA
list when NNNNN has the attribute FUNCTION. While such a specification would

be nice, it can't be done in TSX.

The other error detected only by the Assembler is on a user defined
EQU statement. Possible violations include: incorrect order of EQU state-
ments, illegal operators in the right hand side (only +, -, and * are allowed),
and the inclusion on the right hand side (if defined by a’TEXT constant) of
symbols longer than five characters.

If after clearing up all the compiler-reported errors, REAL constant
errors, DATA/FUNCTION errors, and EQU-definition errors, there are still
Assembler errors, consult a staff member-.there is probably a problem with

the compiler.
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When output from the Assembler is directed to the typewriter "Z'" tabs
must be set for Assembler error messages to print properly. (See internal LOCG

memo. )

3.2.2.5 Loader Error
The only way the compiler can contribute to a loading error is if the

user has used an external name (i.e. subroutine, main program, or core load)
longer than five letters. CESSL translates such names to an '@-symbol", i.e.
a symbol of the form "eXXXX", where XXXX is a hexadecimal number. The "e-
symbol" will be given to the loader, not the original name (which the loader
couldn't use anyway). It is unlikely that the loader will find a subroutine
with such a name (although possible by the system naming conventions). The
usual error message would be

RO3 @XXXX LEV.2

resulting in an abort of the Core Load Builder and the JOB.
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3.2.3 Run-time Messages
The following are run-time errors directly connected with CESSL pro-
grams. Additional, TSX, errors are possible, of course.
These errors are handled by calls to the LOCG error handling program,
LOCER. The form of an error message is:
MESSAGE N1 N2 N3 N4 N5
where NZ2...N5 are four digit hexadecimal numbers giving additional information

about the error. The entire message is.typed in red.
SUBSCRIPT OUT OF BOUNDS 0003 N2 N3 N4 N5

A subscript was negative, zero, too large, or a subscription
of a primitive type. N2 gives the address of the call on the
subscription subroutine. N3 is the base address of the variable
being subséripted. N4 is the position in the subscript list
of the offending subscript (e.g., the first or fifth subscript).
N5 is the value of the offending subscript.

It is most often N5 which gives the most information
about the error. For example, in the case of a loop stepping
through an array and not stopping in time, the first subscript
error usually has a value one more than the size of the array.

A subscript error is not fatal--execution will continue.

The address used in case of error is the address which would

have resulted if the value in error had been one (1). For example,
if in the expression ABC(1,5,3), the value 3 is in error, the
address (element) returned as the result of the subscription

is ABC(1,5,1). If the error had been in the 5, the address

used would be ABC(1,1), which will be equivalent to ABC(1,1,1).

ILLEGAL FLOW IN CESSL PROGRAM 0001 N2 N3 N4 N5

The program "flowed" into a statement illegally, i.e.,
there was no branch instruction where there should have been.
Programs may not flow into ENDPROG , ENTRY, INTERNALFUNCTION,
or ENDFUNCTION statements. The error is fatal, and is immedi-
ately followed by aﬁ op-code error, thus allowing the TSX
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CALL

system to take over the error handling and do what it wants.
N2 is the address of the statement 'flowed into:.
N3, N4, N5 ay be ignored.

ON DEV. INDEP. I/0 WITHOUT SETUP 0002 N2 N3 N4 N5

The program called on the device independent I/O routines
without having set up an input or output device. N3 always
contains the address from which the call was made. If N2

is one (0001) the call was on the input routines; N4 and N5

are then the addresses from which SEFIN and SETIN, respectively,
were last called, probably zero. If N2 is two (0002), the call
was on the output routines; N5 contains the address which last
called subroutine CRET--if non-zero, this is the culprit.

The error is fatal and an op-code error immediately follows,

allowing the TSX error handling routines to take over the kick-

off and clean up process.



CHAPTER FOUR

THE GENERATED CODE AND RUN-TIME SUPPORT

It is a matter of fact that the language described in this manual will
be used on a small computer, in a "hands-on" manner. In sﬁch an envirpnment
it is only natural that a great deal of the debugging procedure inherent
in the programming process will be done on-line; that is, it will be done by
sitting at the conséle, establishing bfeak-points in the program, looking
at special locations during the running of the program, and all those other
magic things that programmers are wont to do.

To aid this process, Chapter Four attempts to explain the type of code
CESSL generates for the IBM 1800 computer, and in particular, for the IBM
TSX operating system. In order to make use of this chapter, at the very least,
the reader should be familiar with the IBM 1800 order code (5) and the IBM
TSX Assembler(4). 

Decisions in implementation were often strongly influenced by the limita-
tions of the operating system, Insofar as possible, these decisions will be
marked as such in what follows for two reasons: to enable other instéllations
to pick out the essential ideas of implementation for adaptation; and to absolve
the authors from the horrendous implications of decisions forced on them.

| This chapter is not meant to be (and in fact, is far from being) encyclo-

pedic, but is meant rather as a guide, Since the language is still under
development it is possible that some of the techniques discussed in this chapter
will be changed somewhat, although the overall framework will probably remain

undistu;bed.
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4,1 The Intermediate Assembly Program

As has already been stated, the direct output from CESSL is IBM TSX
Assembler source code, After production of this code, the Assembler completes
the task of reducing the source to relocatable binary form on the disk. In real-
ity, the Assembler used is a version of the TSX Assembler thch has been
modified by members of the Logic of Computers Group Computing Staff (see internal
memo). These modifications are, in the main, the addition of‘a literal proces-
sor and extended mnomonics similar toﬁfhose for the IBM 1800 MPX Assembler,
The nature of the changes should be obVious in themselves.

Since the full Assembler is available, users have the ability to
select Assembler optioné: PRINT SYMBOL TABLE, LIST, LIST OVERRIDE, and COMMON.
By using LIST OVERRiDE, the user can obtain a full assembly listing of the
program generated by CESSL. In order to make use of that listing, however,
additional information is needed.

Symbols and Constants

CESSL allows symbols to be of‘any length up to 62 characters.. The assem-
bler, howeﬁer, requires symbols to be of length 5 or less. CESSL creates a
five character synonym for every symbol which is longer than five characters.
This synonym is then used in the creation of Assembler source text. Symbols
of 5 characters or fewer are used in the generated program as ié, for the conven-
.ience of the u er in reading the code. The user ﬁay obtain a2 1listing of all
synonyms in the symbol table produced at the end of the compiler (selected by
the option "LIST SYMBOL TABLE"). Synonomé have the form "@XXXX" where XXXX

is a hexadecimal number unique for that symbol during a particular compilation.

Synonyms for symbols may differ .in different compilatioms.

References to TEXTand REAL constants in the Assembler source text are

. also of the form "@XXXX", where the equivalences may be found in the compiler
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symbol tables.

Symbols which the compiler must create for internal use have either pound-
sign (#) or at-sign (@) as their first character. These symbols fall into
three classes: transfer labels, subreutine call labels and speeial symbols.
Special symbols ere those which the compiler builds into every program for
internal use such as #TEM, an array of temporary locations used in evaluating
expressions. Transfer labels are of the form #XXXY, where XXXY is a hexadecimal
number, and are used in loop and conditional statements, as explained in Section
4,4, Subroutine call labels are of the form "@OXXX" where XXX is a hexadecimal
number;.they are used as labels on a subroutine call, as explained in Section
4,6.

Assembler Preg;am Format

The program produced by CESSL has the following format:

HEAD
LIST OFF
code
LIST ON

variable allocation
data type definitions
REAL & TEXT constants
special symbols
temporary allocation
EQU-defined symbols
LTORG

END

HEAD is a MAIN statement or the ENT statements for the program (for
main programs and subroutine, respectively). The LIST OFF-LIST ON pair is
provided so that users may obtain a listing of only the variable and constant

allocations if they so desire (by choosing the option "LIST'").
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The '"code" is explained in the rest of this chapter., Labels within the

code section are assigned by an EQU statement, For example,

ABC EQU *

Variable allocation is a series of BSS pseudo-ops which reserve locations

for the variables of the program. If, however, a variable has appeared in
a DATA statement, the values are outputted by DC or DEC statements at the
point in the program at which the DATA statement occured, All the single word
variables are allocated first, then all the variables requiring an even number
of words, and finally, all the remaining variables. Variables which are formal
parameters are allocated last, one word each. For all variables except those of
modes INTEGER, TEXT, LABEL, and BOOLEAN, the allocation is to an even location.
For example:

DEFINE INT3 ARRAY INTEGER SIZE 3: 13,J3;

DECLARE INTEGER: 1I,J;

DECLARE REAL: R,S;

DECLARE LABEL: G;
produces the following assembler statements,
BSS
BSS
BSS
BSS
BSS

3 BSS
3 BSS

G- N S
NN NN

tr Tt o

Data type definitions consist of the information to be used by the run-
time subscription routine, Each type name (including primitives) appears as
a label on a list of DC statements, The structure of this list is explained
in Section 4.3 and Figure 4,5,

Constant allocation is performed in two parts, All TEXT and REAL constants
are referred to by their "@" equivalences throughout the program; for example,

when the compiler must output a reference in the code to the TEXT constant
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"ABC", it may put out the name "@3456". The first part of the constant allo-
cation is performed by CESSL by putting out a series of @-labels and the
constants associated, For example,

@3456 - DC /C1C2 TEXT constant "ABC"

DC /C300
@347A DEC 1.E-6 REAL constant 1,E-6
@348D DEC 5.1 REAL constant 5,1

The second part of the constant allocation is essentially performéd by the
Assembler. In the '"code", constants:of modes INTEGER, BOOLEAN, aﬁd LABEL are
referenced as Assembler literals of the form ='q', where q is the constant;
for example,

LD L="1" The INTEGER constant, 1

LD L ='ABC' The LABEL constant, ABC
LD L ='TRUE The BOOLEAN constant, TRUE

CESSL puts out a '"LTORG" statement at the end of the program so that the
Assembler will dump the literals. Literals are changed by the Assembler's
preprocessor to be symbols of the form L#XXX, so that this changed form is
what is printed as a result of the "*LIST OVERRIDE" control card;
The special symbols defined by the compiler are
TRUE ~ EQU 1 Constant definition
FALSE EQU 0 Constant definition
#RETR DEC Return linkage (Section 4.6)
#DEOL DEC 1 For BOOLEAN expression evaluation (Sectlon 4,2.3)
Temporary allocation consists of an array of. locations which are used
in the evaluation of expressions (See Section 4.2),
The allocation is made as follows:
BSS E /XXXX
#TEM BSS E 0
-where XXXX is a hexadecimal number big enough to provide the maximum

number of temporaries needed for any expression. Thus, for example, ''Temporary

one" is addressed at location
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#TEM-/0001

A1l symbols which appeared in EQU statements are put out at the very
end so that they may refer to any of the previously defined symbols.

Figure 4.1 gives a short CESSL program and the assembly program produced
by the compiler, in which the various sections are annotated.

The Assembler source program produced by CESSL may be listed by use of
the "*SWITCHES" control card and by putting Data Switch 12 up. This listing
shows exactly what is sent to the Assembler, without the literal-interpretation.

Index register allocation

In the TSX system, there is a creature known as a 'short subroutine call",
named LIBF. The call is '"short" because it only takes one word of storage,
instead of the two words needed for regular calls (using CALL statements). The
only subroutines which are callable in this fashion are system routines which
are likely to be called from many places in a program, such as the floating
point arithmetic subroutines. Thus the one word call may effect a storage
savings., However, in order to perform one word calls, it is necessary to have
reference to an index register so that a base register/displacement type addres-
sing structure may be used. In TSX, XR3 is used for this task, and both the
assembler and the loader assume that XR3 contains the proper value, the address
of a "transfer vector'". CESSL-compiled programs always maintain XR3 as a pointer
to a transfer vector, so that subroutines called by CESSL programs can
assume that it is correct,

Index register one is used for subscript calculation and index register two

is used for strictly local code sequences,

CESSL subroutines do not save index registers.



111

// JOB  111102222030333

// XEQ CESSL  FX

xL1ST SYMBOL TABLE ?F

*SWITCHES

*COMPILE BASIC |

x MUNPAK" UNPACKS BYTES FROM ARRAY "FROM" TO ARRAY "TO",
MPACK" PACKS BYTES FROM ARRAY "FROM" TO ARRAY "TO"

THE LONGER ARRAY 1S EXPECTED TO BE 80 LONG AND THE SHORTER L0 LONG,
THE TWO ARRAYS MAY BE THE SAME ON ANY CALL, 1,E, THE PACKING OR
UNPACKING MAY BE DONE "IN PLACE"; -

DEFINE 180 ARRAY INTEGER SIZE 80: FROM,TO;
DECLARE INTEGER: |;

ENTRY UNPAK! (FROM,TO);
LOOP 1=40;-1;1 $EQ$ 0;
TO(2%1) = FROM(I) $BITAND$ ?FF;
TO(2*1-1) = FROM(1) $RS$ 8,
ENDLOOP;
RETURN;

ENTRY PACK! (FROM,TO0);
LOOP I=1;1;1 $GT$ 40;
TO(1) = FROM(2*1=-1) $LS$ 8+T0(2*1);
ENDLOOP; .
RETURN;
ENDPROG;
// END

Compiler Output Example: CESSL Source
Figure 4.1(a)
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// JOB 111102222030333
// XEQ CESSL FX
*[ | ST SYMBOL TABLE ?F
*SWITCHES
*COMPILE BASIC

xx% END OF PROGRAM *xx

SINGLE OCCURREMCE SYMBOLS:

180

VARIABLES:

@3A1A  FROM P 180
@3A11 TO P 180
@3A09 | INTEGER
@39FF UNPAK EF

(@39AF PACK EF

DATA TYPE DEFINITIONS:

ARRAYS:
@3A24 130 L) 80 INTEGER

LABEL CONSTANTS:

CONSTANTS:
@43A2D 0
@39E8 40
@39DE -1
@39D4 2
Q39CB /FF
@39C3 1
@398 8

0A33
0C06

Compiler Output Example: Assembler Source
Figure 4.1(b)



113

ENT UWPAK
ENT PACK
LIST OFF

#x% AT STATEMENT (BEGIN) +000b4
CALL SFLOW
UNPAK EQU *
NOP
STX L1 #RETR
LDX 11 UNPAK
LD 1 /0000
STO L FROM
LD 1 /0001
STO L TO
MDX 1 1+/0001
STX L1 #RETR+1
x*%x AT STATEMENT UNPAK+0001
Lb L ='40'
STO L |
B L #0010
xx% AT STATEMENT UNPAK+0001
#0011 EQU *
Lb L |
A L ='-1"
STO L |
*x% AT STATEMENT UNPAK+0001
#0010 EQU *
LDX L2 #DEoO1
b L |
SKP +-
MDX 2 1
LD 2
BNZ #0012
w#*x% AT STATEMENT UNPAK+0002
Lb L ='2
M L 1
XCH
STO L #TEM-/0001
LIBF $UBSC

DC 180
DC TO+/8000
DC #TEM-/0001+/8000

STX L1 #TEM-/0002
LIBF $SUBSC

DC 180

DC FROM+/8000
DC 1+/8000

LD 1

AND L ='/FF'

STO | #TEM-/0002

Compiler Output Example: Assembler Source
Figure 4.1(b) '
(Continued)
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*xx AT STATEMENT UNPAK+0003

LD L ='2¢

M L |

XCH

S L ='1'

STO L #TEM-/0001

LIBF SUBSC

DC 180

be TO+/8000

DC #TEM-/0001+/8000

STX L1 #TEM-/0002
LIBF $UBSC

LC 180

bC FROM+/8000
bC 1+/8000

LD 1

SRA 3

STO I #TEM-/0002

**x% AT STATEMENT UNPAK+0004
B L #0011

#0012 EQU *
*x%x AT STATEMENT UNPAK+0005
B | #RETR+1

x%%x AT STATEMENT UNPAK+0006
CALL $FLOW

PACK EQU *

HOP

STX L1 #RETR
LDX 11 PACK
LD 1 /0000
STO L FROM
LD 1 /0001
STO L ToO '

MDX 1 1+/0001
STX L1 #RETR+1
xxx AT STATEMENT PACK+0001
tb L ='1'
STO L |1
B L #0020
%% AT STATEMENT PACK+0001
#0021 EQU *
LD L |
A L ='1'
STO L |
xx%x AT STATEMENT PACK+0001
#0020 EQU *
LDX L2 #DEO1
Lb L |
cp L =
MoxX 21
NOP
LD 2
BNZ #0022

luol

Compiler Output Example: Assembler Source
Figure 4.1(b) (Continucd)
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~xxx AT STATEMENT PACK+0002
LIBF $UBSC

bC 180

be TO+/8000
DC 1+/8000

Lb L ='2'

i L |

XCH

S L ='1'

STO L #TEM-/0001
STX L1 #TEM-/0002
LIBF $UBSC

DC 180

DC FROM+/8000
nec #TEM-/0001+/8000
LD 1

SLA 8

STO L #TEM-/0003
b L ='2!

I L 1

XCH

STO L #TEM-/0004
LIBF $UBSC

DC 180
bC TO+/8000

DC #TEM-/0004+/8000
LD L #TEM-/0003

A 1 |

STO | #TEM-/0002

x%%x AT STATEMENT PACK+0003
B - L #0021

#0022 EQU *
xx%x AT STATEMENT PACK+000L
B | #RETR+1

k% AT STATEMENT PACK+0005
CALL $FLOW

Compiler Output Example: Assembler Sourcé
Figure 4.1(b) (Continued)
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LIST  ON
| BSS /0001
FROM  BSS /0001
TO BSS /0001
@3B5A NC /0000
REAL NC /0000
@3B45 NC /0000
TEXT NC /0000
LABEL DC /0000
a3B25 NC /0000
180 NC /0050

ne /8000+@3B5A

ne /0001
TRUE  EQU 1
FALSE EQU 0
#RETR DEC
#DEO1 DEC 1

BSS E /0005
#TEM BSS E 0

LTORG

END

15:42, 08/13/71

NO ERRORS IN ABOVE AOLSEMBLY.
UNPAK PACK
DUP FUNCTION COMPLETED
// EHRD

Compiler Output Example: Assembler Source
Figure 4.1(b) (Concluded)
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4,2 Expression Evaluation

The contortions necessary to evaluate an expression are fairly easy to
understand once the reader‘has a general idea of how subscripts and formal
parameters are handled. For a complete understanding of these topics, refer
to sections 4.3 and 4.6, respectively. For the purposes here, the following
explanation may suffiée.

If A is a formal parameter, after the entry sequence has been executed
the location with the name A will contain the address of the actual parameter
to the call, Thus, all references to the formal parameter are done on an in-
direct basis,

Subscript calculations are handled via subroutine call; on return from
the subroutine, index regisfer one (XR1) has the address of the subscripted
item, For example, if A is an array of integers, the subscript calculation
for A(4) would return the address A+3 in XR1, Thus, references to that item
are through XRl. Now, if XR1 is needed for some other reason (e.g., another
subscription or a subroutine call intervenes), the current contents of XR1
must be saved in a temporary location. Thereafter, references to that item
are performed indirectly through the temporary.

CESSL does not perform optimization of expression evaluation to any
great extent, There is no attempt to detect common subexpressions (even for
subscripted variables) nor is there any larger program analysis done,
""Peep-hole" optimization is performed to the extent of register allocation
and temporary use. It is therefore very easy to follow the code produced by
CESSL for strictlyAérithmetic operations, - For example, in the completely
integer expression:

I = J+4-L

the code produced is:
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LD
A
S
STO

|l S Y o
-

Note that all direct references to variables and constants are long; that
is, there is no attempt to set up a base register and displacement scheme.
It just isn't practical for a compiler on the IBM 1800, The displacement
address space is not lafge enough nor are there enough index registers to make
it practical, Temporary locations are not reused within one statement for the

sake of simplicity.

4,2.1 Arithmetic

INTEGER and BOOLEAN arithmetic is straightforward and requires no explan-
ations. 'See Figure 4,2 for examples. Mixed mode (REAL and INTEGER) operations
proceed by first converting INTEGER to REAL,

A1l REAL operations are performed using the TSX standard precision

floating point subroutines (cf, IBM 1800 TSX System Subroutine Library (7)).
These routines are called via LIBF statements and may take a parameter which
is the address of a REAL number. For example,

LIBF FADD
DC - A

will add the REAL number at location A to the floating accumulator (FAC).
Since these routines were designed for use with FORTRAN, there are alter-
nate entries to most of them allowing the routines to help in subscription.
Such entries have names which end in X. The effect is that the contents of
index register one is added to the parameter address following the call, with
the resulting sum being used as the actual address. It is not entirely
fortuitous that in CESSL the subscript calculator returns the address in XRl;

for then the call may be made on the X'ed routine with a parameter of zero.
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The floating point routine will add the zero to XR1 and get the address
to use, For example,
(subscript call)
LIBF FADDX
DC 0
will result in the floating addition of the REAL number given by the address
contained in XRl. Calls to the floating point routines are made in such a

manner as to try to optimize the code for the subscripts calculated. See

Section 4.6 for additional information about parameters to subroutine calls.

4.2.1 Intrinsic Functions
The intrinsic functions (ABS$, FIX$, FLOATS, SQRT,'ATAN, ALOG, SIN, COS,
EXP, TANH, LINK) are treated in CESSL as monadic (one operand) operatofs in order to
provide local optimization with respect to the calls on the TSX subroutines
to calculate thésé functions. For example, there are three subroutines which
may be called to calculate the absolute ﬁalue of a number, depending on its
mode (INTEGER of REAL) and its location (in memory or. in the FAC).

Examples of intrinsic function calls may be found in Figure 4.3,

4.2.3 Relational Operators

The relationalboperators are $EQY, .$NE$, ‘$GE$, $GT$, $LE$, AND $LTS.
The mixed mode case of REAL and INTEGER is handled by first converting
the INTEGER to REAL, and then doing the comparison as in the REAL case. Tﬁe
other primitive/primitive cases are handled as if they were integers.

The result of a relation is a BOOLEAN result, i.e., either a zero or
a qne.-- In order to optimize this process (which is a little on the gruesome
side) the compiler automatically defines in every program the symbol #DE01

as follows
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#DEO1  DEC 1
which assembles as two words, the first of whiﬁh (at address #DEO1) is a
zero and the second of which (at address #DE01+1) is a one, Before a com-
parison is made, XR2 is set to the address of #DE01, i.e., it points at the
zero, The comparison is then made and if the relation is TRUE, XR2 is bumped
by one to point to the one, After the comparison, a load via XR2 is performed,
obtaining either zero or one in the Accumulator for further use.

The cases of $LT$ and $LE§ are haﬁ&ied exactly as $GT§ and $GE$ respec-
tively, with operands reversed.

INTEGER comparisons are performed using the "CMP" machine instruction
and selecting the appropriate case. For examples, See Figure 4.4,

REAL. comparisons are performed by floating-point subtraction of the two
operands and comparison of the result to zero. This algorithm uses the TSX
library routine LDFAC (LIBF call). LDFAC returns the high order bits of the
mantissa (which is in twos complement form)., Since all floating point numbers
are normalized, this part of the mantissa is sufficient to give the less-than-
zero, zero, and greater-than-zero conditions which are needed for the comparisons.

Comparison of similar, nonprimitive types and of the combinations TEXT/
TEXTARRAY and TEXTARRAY/TEXT is performed by a call on a closed subroutine.
There are three parameters to the subroutine, given in the indek registers,
XR1 contains the address of the left hand operand, XR2 contains the address
of the right hand operand, and XR3 contains the length (in words) of the vari-
dbles. (In the T/TA and TA/T cases this length is the minimum of the lengths
of the two.) On return from the routine, the accumulator is either zero or
one, and XR3 has been restored to the address of the transfer vector. The
subroutines are named, reasonably enough, $EQ$, $NE$, $GT$, and $GE$. The

relations $LT$ and $LE$ are computed by calls on the subroutines $GT$ and
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$GE$ ,respectively, with the operands reversed,

4,2.4 Assignments

Assignment stétements for similar primitive types are trivial. The
ekpression (right hand side) is brought into the appropriate register (AC or
FAC) and the result is stored from that register., REAL types are handled by
the floating point routines and the other primitive types are handled as if
they were integers. |

Conversion code is generated when an integer expreSsidn is assigned to
a REAL variable and vice-versé. The only other legal, primitive, mixed
mode assignment is'TEXT/INTEGER and INTEGER/TEXT, which is treated as if both
types were INTEGERs,

The assignment of an expression of nonprimitive type to a similar type
or of TEXT to TEXTARRAY is performed by the subroutine $MV21, which takes three
arguments in the index registers., XRl is the address of the left hand side,
XR2 is the address of the right hand side, and XR3 is the length (in words) of
the variables. On return from $MV21, the data movement has been performed and
XR3 has been restored to the address of the transfer vector.

Embedded assignment statemeﬁts are assignment statements within expressions;
for example, |

I=(J=4);

The embedded assignment is legal only for primitive data types., The assign-
ment is made but the result of that parenthized expression is fixed with regard
to its participation in the remainder of the current statement, In other
words,. the value of that embedded assignment is not the value of the variable
of the assignment, if is the value of the expression of the assignment.

Operationally, this may require that an extra temporary be assigned to hold
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the value of the expression. For example, the above statement translates into

LD L 14!

STO L J
STO L L
but for more complicated expressions we have

I=(J=4)* (K+M);

LD L =14

STO L J

STO L  #TEM-/0001

ID L K

A L M

M L  #TEM-/0001 .... Note use of temporary, not J.
XCH

STO L I



DECLARE INTEGER:

L,J,K;

DECLARE REAL: R,S;

DECLARE BOOLEAN:
DEFINE INT3 ARRAY INTEGER SIZE 3:
DEFINE REAL2 ARRAY REAL SIZE 2:

A,B,C;

INTEGER Arithmetic

I = J+K;
LD
A
STO

I = 13(J)
LIBF
C
DC
DC
LD
STO

= e
—_— G

$UBSC
INT3
I3
J+/8000
10
L I

Mixed Mode Arithmetic

R = S+I;
LD
LIBF
LIBF
C
LIBF
DC

L 1
FLOAT
FADD
S
FSTO
R

REAL Arithmetic

R = R:'S;
LIBF
DC
LIBF
DC
LIBF
DC

FLD
FSUB

FSTO

Figure 4.2 Arithmetic

13,J3
R2,S2;

.
’

I = (J+4)*(K-3);

LD
A
STO
LD
S

M
XCH
STO

I = K*I3(J);

LIBF
DC
DC
DC
LD
M
XCH
STO

I = R*I;
LD
LIBF
LIBF
DC
LIBF
STO

R = S2(I);
LIBF
DC
DC
DC
LIBF

LIBF
DC

| ol o o o o ol

L

L

L

L

L

J

=14
#TEM-/0001
K

=131
#TEM-/0001

I

$UBSC
INT3
13
J+/800

FLOAT
FMPY

IFIX

$UBSC
REAL2
S2
1+/8000
FLDX

0

FSTO

R

123
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REAL Arithmetic (continued)

R = (S+1.0)/4.; R = S/(R+4.);

LIBF FLD LIBF FLD
DC S DC R
LIBF FADD LIBF FADD
DC @xXXXx1
DC @xxx2
LIBF FDIV LIBF FDVR
PC @XXXx2 DC g
. LIBF FSTO
@XXX1 DEC 1.0 DC R
@XXX2 DEC 4,
BOOLEAN Arithmetic
A = B $ANDS$ C; A = (B $OR$ C) $AND§ (C $XOR$ A);
ID L B LD L B
AND L C OR L C
STO L A STO L #TEM-/0001
LD L C
A = NOT§ B; EOR L A
LD L B AND L #TEM-/0001
EOR L ='1' STO L A
STO L A
Non-primitive Assignment
13 = J3; R2 = S2;
LDX L1 I3 LDX L1 R2
LDX L2 J3 LDX L2 S2
LDX L3 0 LDX L3 0
ORG *-1 ORG *-1
DC /0003 DC /0004
CALL $MV21 CALL $MV21

Figure 4.2 Arithmetic (concluded)



DECLARE INTEGER:

DECLARE REAL:

R

SIN(S);
CALL
DC
LIBF
DC

SIN(S+T);

LIBF
DC
LIBF
DC

CALL
LIBF -

DC

EXP(S);
LIBF
DC
LIBF
DC

EXP (S+T) ;

LIBF
DC
LIBF
DC
CALL
LIBF
DC

SQRT(J);
D L
CALL
STO L

ABS$ S;
CALL
DC
LIBF
DC

ABS$ (J);
CALL
DC
STO L

R,S

FSIN
S
FSTO
R

FLD

FADD

FSINE
ESTO

FEXP
S
FSTO
R

FLD

FADD

FXPN
FSTO

J
XSQR
I

FABS

FSTO

IABS
J
I

I,J,K;
T3
R = COS(S);
CALL FCOS
DC S
LIBF FSTO
DC R
R = COS(S+T);
LIBF FLD
DC S
LIBF FADD
DC T
CALL FCOSN
LIBF FSTO
DC R
R = ALOG(S);
CALL FALOG
DC F
LIBF FSTO
DC R
R = ALOG(S+T);
LIBF FLD
DC S
LIBF FADD
DC T
CALL FLN
LIBF FSTO
DC R
R = SQRT(S);
CALL FSQRT
DC S
LIBF FSTO
DC R
R = ABS§(S+T);
LIBF FLD
DC S
LIBF FADD
DC T
CALL FAVL
LIBF FSTO
DC R
Figure 4.3 Intrinsic Functions
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R = TANH(S);
CALL FTANH
DC S
LIBF FSTO
DC R

R = TANH(S+T);
LIBF FLD
DC S
LIBF FADD
DC T
CALL FTNH
LIBF FSTO
DC R

R = ATAN(S);
CALL FATAN
DC S
LIBF FSTO
DC R

R = ATAN(S+T);
LIBF FLD
DC S
LIBF FADD
DC T
CALL FATN
LIBF FSTO
DC R

R = SQRT(S+T)+S;
LIBF FLD
DC S
LIBF FADD
DC T
CALL FSQR
LIBF FADD
DC S
LIBF FSTO
DC R

I = SQRT(J+1)+4;
ID L J
A L ___ll'
CALL XSQR
A L ..__.!4!
STOL I
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DECLARE INTEGER: I,J,K; DECLARE REAL: R,S;

INTEGER (and other non-REAL primitive types)

I $EQ$ J
LDX L2
LD L
CMP L
NOP
B
MDX 2
D 2

I $GE$ J

LDX L2
LD L
CMP L
B

B

MDX 2
LD 2

I $GT$ O
LDX L2
LD L
SKP
MDX 2
LD 2

REAL

R $EQ$ S
LIBF
DC
LIBF
DC
LIBF
DX L2
SKP
MDX 2
D 2

R $NE$ S
LIBF
DC
LIBF
DC
LIBF
BZ
LD L

#DEO1
I
J

*41
1
0

#DEO1

FLD

R
FSUB
S
LDFAC
#DEO1
+-

1

0

FLD

R
FSUB
S
LDFAC
*+2

=]

I $NE§ J
LDX
LD
CMP
NOP
MDX
LD

I $GT$ J
LDX
LD
CMP
MDX
NOP
LD

[l i

2

I $GT$ (J+K)

LD
A
LDX
CMP
B
MDX
LD

R $GT$ S
LIBF
DC
LIBF
DC
LIBF
LDX
SKP
MDX
LD

R $GE$ S
LIBF
DC
LIBF
DC
LIBF
LDX
SKP
MDX
LD

Figure 4.4 Relation Evaluation

L
L
L2
L

2
2

L2

L2

2
2

#DEO1

#DEO1

*+1

FLD
FSUB

LDFAC
#DEO1
Y/

FLD

R
FSUB
S
LDFAC
#DEO1

1
0
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4,3 Subscription
Run time subscription requires reference to the data type of the subscripted
variable. All data types have their description available at run time in the
form of "dope.vectors“. That is, each named type is a label (in the program)
on a list of words describing that type. Figure 4.5 gives the form of the dope
vectors.
Subscripts are calculated by a call on subroutine $UBSC (LIBF type call).
Threr are 2+n parameters to the call, where n is the number of subscripts. The
first parameter is the address of the dope vector for the subscripted variable.
The second parameter is the base address of the variable, If bit zero of this
word is set, the word is actually a pointer to a location containing the base
address of the variable (this is a convenience for formal parameters in a sub-
routine). The remaining n parameters are addresses of the subscript values.
The last parameter has bit zero set, Thus the form of the call is
LIBF  $UBSC
DC ADDRESS OF TYPE DESCRIP TION
DC BASE ADDRESS

DC ADDRESS OF SUBSCRIPT 1
DC ADDRESS OF SUBSCRIPT 2

DC ADDRESS OF LAST SUBSCRIPT +/8000

Consider Figure 2.1 in which the declarations are:
DEFINE INT4 ARRAY INTEGER SIZE 4;
DEFINE QQSV BLOCK  REAL, <INT4>;
DEFINE VSQQ ARRAY QQSV SIZE 3;
DECLARE VSQQ: ABC;

Then A(J,2,3) is of type INTEGER and is at A+4. The call would be:
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For PRIMITIVE TYPES:

word 1: zero (0)

For ARRAYs:

word 1: Number of components in the ARRAY (i.e., SIZE).

word 2: Address of dope vector for components + /8000 (i.e., bit zero set).
word 3: Number of words for each component.

Thus, word 1 times word 3 gives the number of words allocated for this array.

For BLOCKs:

word 1: Number of components in the BLOCK = N.

word 2: Address of dope vector for the first component.
word 3: Displacement to the first component in the block.

Words 2 and 3 are repeated N times, once for each component in the block.

Figure 4,5

"Format of Dope Vectors (Run Time Type Descriptors)
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LIBF  $UBSC

DC VSQQ

DC ABC

DC J

DC =12

DC =13'/8000

And the tables would be:

vsQqQ DC 3 Three components
DC  QQSv+/8000 Array of type QQSV
DC 6 Each component is 6 long
SV DC 2 Two components
DC  REAL BLOCK, 1st component of type REAL
DC 0 DISP of comp 1 = 0
DC  INT4 2nd component of type INT4
DC 2 Disp of comp 2 = 2
INT4 DC 4 Four components
DC  #INTG+/8000 Array of type INTEGER
DC 1 Each component 1 word long
#INTG DC O INTEGER
#REAL DC O

The value returned by $UBSC (in.index register one) is the address which is
the result of the subscription. Thus, in the above example, if I ié an integer,
the statement
I = ABC(J,2,3);
would compile intb the above call and be followed by

LD 1
STO . I

Errors may occur at any point in the data structure if a subscript is out of
bounds (i.e;, less than one, or greater than the number of components in that
structure). In this case an error message is printed (see Section 3.3),

and the value returned in XR1 is the address which would have resulted if the
subscript in error and all following subscripts had been one (1). For example,
theiaddfess returned for ABC(1,2,7) would be ABC+2,

Since the subscripts are parameters to the subroutine call, and since
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they may be expressions or formal parameters in the containing program,
they reader should consult Section 4,6.2 (subroutine calling éequences)

for all special problems concerned with fixing up parameter lists.
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4.4 Loops and Conditionals

Both LOOP and IF (along with the associated statements ENDLOOP, ORIF,
ELSE, and ENDIF) require the generation of special labels for Handling the
branches and chditional branches implicit in the statements, These labels
are of the form "#XXXY" where XXX and Y are hexadecimal numbers. The numbers
XXX are assigned in sequence - from 000 to 7FF - to LOOP and IF groups as
they appear in the program; i.e,, the first such statement is assigned
sequence 000, the second 001, efc. Thus there may be a maximum of 2048 LOOP
and IF statements in a single program. The number Y is used to specify parts
of the construction as explained below.

LOOP and ENDLOOP

Upon detection of a legal LOOP statement the next unique sequence number,
XXX, is assigned for all references to this loop construction. The loop state-
ment is of the form
LOOP «wariable> = <expl>; <exp2>; <exp3>;
The code produced is specified exactly as follows;
<variable> = <expl>;
GOTO #XXXO0;
#XXX1: <variable> = <variable> + <exp2>;
#XXX0: If <exp3>; GOTO #XXX2; ENDIF;
The code for the loop body is then compiled, and upon detection of the ENDLOOP

statement matching the above LOOP statement, the following code is emitted.

GOTO #XXX1;
#XXX2: CONTINUE;

For example, consider the following program segment.
LOOP X=1; A+B; X $GT$ 5;
<stuffing>
ENDLOOP;
Let X,A, and B be declared as INTEGER mode, and let the current sequence

number be "01A", Ignoring the stuffing, the assembly code produced is (See
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Section 4,2,3 for explanation of relational operator code expansion):

LD

L ='1

STO L X

B, L #01A0
#01A1 LD L A

A L B

A L X

STO L X
#01A0  LDX 12  #DEO1

LD L X

CMP L ='5!

MDX 2 1

NOP

LD 2 0

BNZ #01A2

<stuffing>

B L #01A1

#01A2 EQU *
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IF, ORIF, ELSE, and ENDIF

Upon detection of an IF statement (just the IF part) the next unique
sequence number, XXX, is assigned for all references to this IF construction.
The label #XXXO0 is‘assigned as the location to which to transfer to "get out"
or terminate the IF construction; that is, all code sections which may be
conditionally executed end with a GOTO #XXXO statement. Each ORIF, the ELSE
(if it appears), and the ENDIF statement are then assigﬁed a label of the form
#XXXY where Y is the serial appearancé>number of that statement, with Y=1
for the first ORIF statement. If the BOOLEAN expression in the IF or ORIF state-
ment is FALSE, and if the current serial number Y is n, a branch to serial
n+l is pefformed. »Thus it is possible to compile each statement és it appears
without knowing what kind of statements follow.

Specifically, the statements are compiled individually as follows.

The IF statement is of the form:
IF <€Xp> ;
and generates something like

(calculate <«xp>, bring into AC)
BZ  #XXX1

ORIF is of a form similar to IF and generates (e.g., if n-4)
B L #XXX0
#XXX4 EQU *
(calculate <exp>, bring into AC)
BZ L #XXX5
ELSE generates

B L #XXXO0
#XXXn EQU o

ENDIF generates

#XXXn EQU
#XXX0 EQU  *

Thus, the program seément:
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IF A; <stuffing 1>;

ORIF B $OR$ C; <stuffing 2>;
ELSE; <stuffing 3>;

ENDIF;

translates into (assuming the next unique label number is 444):

LD L A

BZ #4441

<stuffing 1>

B L #4440
#4441 EQU *

LD L B

OR L C

BZ #4442

<stuffing 2>

B L #4440

#4442 EQU N
<stuffing 3>

#4443 EQU *

#4440 EQU *
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4.5 Input/Output

I/0 in CESSL is fairly straightforward since there are no implicit or
explicit loops allowed in the I/0 statements. For the simple statements, READ
and WRITE, exactly one subroutine is called for each element in the list. For
WRITEFMT the action is only slightly mofe complex.

Device independence is achieved through the support subroutines. The calls

produced by CESSL are oblivious to the type of device being used.

4.5.1 INPUTDEV and OUTPUTDEV

The setup for an I/0 device is performed by calling one of the special
system routines SFOUT or SEFIN, for 6utput and input respectively, with a para-
meter specifying a particular subroutine which will handle the transfer.‘ If
the user chooses one of the keywords TYPEWRITER, CARDS, PDP7, or FILE

for the standard device handling, CESSL will choose the appropriate routine

as follows:
Subroutine
Device hput Output
TYPEWRITER  KBDE TYCH
CARDS CARDE  PNCHC
PDP7 A7E T7E
FILE FGETA  FPUTA

For example, the statements
INPUTDEV CARDS;  OUTPUTDEV TYPEWRITER;
will translate into:

CALL SEFIN CALL SFOUT
CALL CARDE . CALL TYCH

If the user does not select one of the standard device handling‘routines,
the, setup statement assumes that thename given is a subroutine name and
passes information to SFOUT, SEFIN, STOUT, or SETIN accordingly. Which of

these routines is called depends on the attributes associated with the name

used. See Section 4.7 for a fuller explanation of subroutine calls using
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external names as parameters.
For example, if CANDY has been defined as an internal function and
FUDGE is mefely an external name,
INPUTDEV FUDGE; OUTPUTDEV CANDY;
translatesvinto

CALL SEFIN CALL SFOUT
CALL FUDGE BSI L CANDY

It is also possible to use a formal parameter declared as a FUNCTION,
as in:
INPUTDEV PARA; - OUTPUTDEV PAR;

" in which case the translations are:

LD L PARA ID L PAR

~ STO %42 STO %42
CALL  SETIN CALL STOUT
DC DC |

The routines STOUT and SETIN are similar to SFOUT and SEFIN,‘but are used for
just this purpose.

It is possible to set up the devices directly by calling SETIN and
STOUT (rather than using the CESSL statements INPUTDEV and OUTPUTDEV).

For example, using the above defined FUDGE, CANDY, and PARA:

EXECUTE SETIN! (PARA);
LD L PARA

STO *+2
CALL SETIN
DC
EXECUTE SETIN! (FUDGE):

B . %42
CALL FUDGE
LD *.2

STO *+2
CALL SETIN
DC

EXECUTE STOUT! (CANDY);

CALL STOUT
DC CANDY



4.5.2 READ 137

Runtime

A call on one of the routines STOUT or SFOUT must be made (directly or
by OUTPUTDEV) before executing a WRITE or WRITEFMT statement. Similarly, a
call on SETIN or SEFIN must be made before executing a READ statement. T hese
setup routines establish the subroutine which is to be ﬁsed for the transfer
of characters into or out of the data conversion routines. The data conversion
routines are: CTXTL, RDINT, RDFLT, PINTG, PREAL, PINTC,'PFLTC, PBOOL, and PTXTW.

The output routines all call suﬁ?outine PRNTE to send characters to
the current output device. PRNTE useé the last "device" set up by SFOUT or
STOUT as a subroutine to call to handle a character. Obviously, if none has
been set up, there is an error condition, for which conSﬁlt Section 3.3. The
subroutine called/by PRNTE may expect a single EBCDIC character in the Accumulator,
right adjusted, with high order bits zero.- It is up to fhe routine to do
something with the character (buffer it or translete and send on, or something)
and then return.

The input routines all call CHARE, requesting it to return a single
character from the input "device" last set up by SEFIN or SETIN. If none
has been set up, there is an error condition. The subroutine CHARE calls
is expected to réfUrn a single EBCDIC character in the Accumulator, right
adjusted, with leading zeros.

The routines called by PRNTE and CHARE need not be "real" I/0 routines--
they may do anything they wish to the characters they receive, or may get the

characters they send from anywhere, even an internal buffer.

4.5.2 _READ
The elements of a READ list must be <left-designator>s which means that

they must be variable names (i.e., lambda atoms) or they must be subscripted
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variable names. The allowed modes of the elements are: INTEGER, BOOLEAN,
REAL, TEXT, or an ARRAY of type TEXT.

The READ statement (aside from the subscription calculation needed) com-
piles into a series of subroutine calls, one call for each item on the list.
(Consult Section 4.6.2 for some of the vagaries of subroutine calls with
parameters.) Three subroutines handle all the input: RDINT (for reading
INTEGER ana:BOOLEAN numbers), RDFLT (fox,reading REAL numbers), and CTXTL
(for reading TEXT and TEXTARRAY). RDINT and RDFLT each take one parameter,
the address of the variable which is to receive the input. CTXTL takes two
parameters.. The first is the address of the TEXT variable or the start of
the TEXTARRAY. The second is the maximum number of words which may be filled
from the input stream. CTXTLwill read characters into the variable,
packing them two per word up to the maximum. Surplus characters from the input
will be ignored. If not enough characters appear in the input stream, the
characters which appear will be left-adjusted and the remaining character
positions will be filled with zeros.

for exémple,

DEFINE TXTRY ARRAY TEXT SIZE 4: TXT4;
DECLARE INTEGER: 1I,J;
DECLARE REAL: R;

DECLARE BOOLEAN: B;
DECLARE TEXT: T;

READ I,B,R,T,TXT4;

produces:
CALL  RDINT
DC I
CALL RDINT
DC B
CALL RDFLT
DC R
CALL CTXTL

DC T
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DC  ='1'
CALL CTXTL
DC  TXT4
DC ='4"

Subscription for the whole list takes place before any of the calls are
issued (See Section 4.3). For example, using the above declarations, the
following:

DEFINE INT4 ARRAY INTEGER SIZE 4: ZAP;

READ ZAP(I), ZAP(J),TXT4(I);

produces this code:

LIBF $UBSC

DC INT4

DC ZAP

DC 1+/8000
STX L1 #TEM-/0001
LIBF $UBSC

DC  INT4

DC ZAP

DC J+/8000
STX L1 #TEM-/0002
LIBE  $UBSC

DC TXTRY

DC TXT4

DC  I+/8000

LD L #TEM-/0001
STO *42

CALL RDINT

DC

LD L #TEM-/0002
STO %42

CALL RDINT

DC

STX 1 *+2

CALL CTXTL

DC

DC o=

Thus the address of any element in a list is the address calculated before
any reading is performed. The statements:

I=4; ‘
READ I, A(I);

will result in reading values for I and A(4),no matter what the value for
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I read in. This is no restriction since the input is stream-oriented rather
than line-oriented, i.e., it is not the case that a new line on the input

medium is obtained for every READ statement.

4.5.3 WRITE and WRITEFMT

The elements of a WRITE list must be expressions of type INTEGER, REAL,
BOOLEAN, TEXT, or TEXT ARRAY. A1l expregsion evaluation is performed before
the values are written out. The outpuf is a series of subroutine calls, one
for each element on the list.

The subroutines are PINTG‘(for INTEGER mode), PREAL (for REAL mode),
PBOOL (for BOOLEAN mode), and PTXTW (for TEXT and TEXTARRAY variables and
constants). PINTG, PBOOL, and PREAL each take one parameter, the address of
the value to be written out. PTXTW takes two parameters: the first is the
address of the text variable; the second is the address of a word containing
the numbers of words in the variable.

The example, using the same declarations as in the previous section,

WRITE "RESULT", I,B,R,T;

CALL PTXTW
DC @XXXX Address of TEXT constant '"‘RESULT"
DC =13
CALL PINTG
DC I
CALL  PBOOL
DC B
CALL PREAL
DC R
CALL PTXTW
DC T

DC =]

WRITEFMT is similar to WRITE in the output list, with the difference
being in a call to set up the format list and in different subroutines called
for the output.

The format list is set up by a call on subroutine WRITC with a single

parameter, the address of the format list to be used on this Statement.
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Thereafter, there is one call per element in the write list. BOOLEAN,
TEXT, and TEXTARRAYs are handled exactly as in the WRITE statement, calling
the same routines. The routine PINTC is used for expressions of mode INTEGER;
routine PFLTC is used for expressions of mode REAL. After all such calls
there is one addifional subroutine called, SPECR, with no parameters. This
is done so that trailing items in the format list will be interpreted and out-
putted. For example,

WRITEFMT LIST; "RESULT", I,B,R,T;

CALL WRITC
DC LIST
CALL PTXTW
DC @XXXX
DC =13
CALL PINTC
DC . I
CALL PBOOL
DC B
CALL = PFLTC
DC R
CALL PTXTW
DC T

DC . =|ll
CALL -  SPECR

The special case of a zero for the format list designator is handled

by not making the call on WRITC.
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4.6 Subroutines

The basic calling sequence assumed by CESSL for subroutine that it
compiles and calls that it makes is as follows. Subroutines are entered via
"BSI'" statements (the loader normally produces a BSI Long instruction for
the "CALL" pseudo-op), and parametérs to the call (if any) are specified
by a list of addresses immediately following the BSI statement. For example,

EXECUTE SUB!(A,B,C);

CALL  SUB

DC A

DC B
D C

A subroutine may return values to its caller either by '"side-effects"
on the parameters or by an explicitly specified value. Primitive values are
expected to be found in the appropriate general register (AC for INTEGER,
BOOLEAN, TEXT, and LABEL, FAC for REAL). Non-primitive returns are handled
differently. The calling program sets index register one (XR1) to the address
of a temporary block of storage (in the calling program) which is large enough
to hold the expected return, i.e., it is a block of storage of the data type
of the retufned value. The called subroutine saves XR1 when it is entered,
and moves the value to the block in the calling program before it returns.
Because of the requirements of REAL data types, the temporary block assigned
by the calling program should be even-aligned when a REAL is part of the data

type of the returned value.

4,6.1 CESSL Compiled Subrqutines

A CESSL program with an ENTRY statement is a subroutine. All entry
names are collected into a list of Assembler pseudo-op "ENT" statements
at the begiﬁning of the program, in the order in which they appeared. The

first such name is the TSX '"program'" name. -
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The code generated for an ENTRY statement must take into account the
fact that there may be many ENTRY and RETURN statements in the same program,
and that RETURN has no reference to a specific ENTRY. For this reason, a
subroutine, at whatever point it ié entered, establishes the internal variable
"#RETR+1" as the address through which a RETURN will branch to return to
the calling program. This is done as follows for an entry point name SID:

SID EQU * |
NOP
LDX 1I1 SID
STX L1 #RETR+1
This code picks up the contents of SID, the entry point actually involved
(which is the address after the BSI instruction in the calling program), and
stores it in "#RETR+1". The RETURN statement may then simply emit the code
B I #RETR+l1

Index Register One is saved in location #RETR in case the return state-

ment specifies a non-primitive value as the result of the subroutine:
STX L1 #RETR
The actual parameter addresses are obtained and stored in internal

locations which have the name of the formal parameter, as in the following:

ENTRY SUB! (A,B,C);

SUB  EQU *
NOP
STX L1 #RETR
LDX I1 SUB
ID 1 /0000
STO L A
D 1 /0001
STO L B
ID 1 /0002
STO L C

MDX 1 1+/0002
STX L1 #RETR+1

(Note that #RETR+1 ends up with the return address, i.e., the address

after the parameter list.) Thus, formal parameters in subroutines are

locations which contain the addresses of the actual parameters to the subroutine.
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All references to the formal parameters are performed on an indirect basis.
For example, if the above parameters had been declared to have integer type,
A=B+C;

would compile into

LD I B
A I C
STO I A

referring in each case to the actual address in the main program, a call-by-
name matching of parameters.
Note that in the case of a LABEL parameter the pick up is
LD I1 /XXXX
since the actual parameter is the address of an address. For example, if ABC
is a LABEL constant:
EXECUTE SUB! (ABC);
CALL SUB
DC ='ABC'
Since it is a run-time error to "flow into" an ENTRY statement, the
following call is compiled into the program before the ENTRY code:
CALL $FLOW

$FLOW is an LOCG system subroutine which will print an error message of the

appropriate type (See Section 3.3).

4.6.2 Subroutine Calls

This section describes the code produced by CESSL for normal subroutine
calls, i.e., subroutines which expect a parameter list of the sort described
in 4.6.1.

All parameters to a call are calculated before any calling sequence
adjustments are performed, in order from left to right, with temporary loca-

tions assigned for the results of any expressions or subscriptions.



4,.6.2 Subroutine Calls 145

There are several conditions under which the calling sequence needs

adjustment:

1) The subroutine called is a formal parameter (i.e., it was passed
to the current program as a parameter with attribute FUNCTION).

In this situation a "BSI Indirect" through the formal parameter
name is compiled instead of a "CALL" on that nanme.

2) A parameter to the call is a gubscripted variable. The problem is
that the address which has been calculated by the subscripting
routine is in XR1 or in a temporary location. This address must
be moved from either of these two locations to its proper position
in the address list after the CALL statement, i.e., it must be
stored "in-1line". Whenever this is the case, a new symbol of the
form ""@OXXX" is created, where 0XXX is a hexadecimal number, and
assigned as a label to the call statement.

References to positions in the parameter list can then be made
by using the address '"'@O0XXX+1+n'" where n is the position in the list;
e.g., for the first parameter n is 1, Example:

EXECUTE SUB!(1,A,B(I));

LIBF  $UBSC
DC TYPEB
DC. B

DC 1+/8000

STX 1 @0012+1+3
@0012 EQU *

CALL SUB
DC =1
DC A
DC

In this case, the subscript calculation left the variable address
in XR1, from which it was stored in-line as the third parameter.
Sometimes XR1 must be reused before its value can be stored in-line

(all parameters are calculated before any of the subroutine call setup
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3)

is performed). In this case, the address is stored in a temporary
location, from which it must be stored in-line.

EXECUTE SUB! (1,A(I),B(J);

LIBF $UBSC
DC TYPEA
DC A
DC I+/8000
STX L1  #TEM-/0001
LIBF $UBSC
DC TYPEB
DC B
DC J+/8000
D L #TEM-/0001
STO @0013+1+2
- STX 1  @0013+1+3
@0013 EQU *
. CALL SUB
DC =11
DC
DC

A parameter to the call is a formal parameter in the calling program.
For example,

ENTRY SUBA!(A,B);
EXECUTE SUBB! (A);

As stated in Section 4.6.1, formal parameters in a subroutine are
implemented as iocations containing the addresses of the actual
parameters to that subroutine. Thus, in order to pass the actual
address to the next subroutine, the CESSL program picks it up
from the formal parameter name location and stores it "in-line"
to the call.

The same created symbol technique as in 2) is used

for addressing the parameter list. For the above example,

LD L A

STO @0014+1+1
@0014 EQU *

CALL SUBB

DC 0

4) A parameter to the call has the FUNCTION attribute.

There is a

distinctly distasteful problem here caused by the structure of the
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TSX operating system--in particular, the loader. The only way

a program may signal to the TSX loader that it wishes to refer

to an external symbol is by use of a CALL statement (LIBF state-

ments are essentially the same). A CALL statement assembles into

"BSI L", a two word instruction. Parameters, however, are supposed

to be one word addresses. Thus the following type of code is generated.

DECLARE FUNCTION: YECH;
EXECUTE BARF! (A,YECH);

B *42

CALL YECH

LD *.2

STO @0015+1+2
@0015 CALL BARF

DC A

DC

This succeeds in picking up the second word of the CALL statement
(which at run-time is the address of the routine as filled in by
the loader), and storing it in-line to the call. Note that the
technique for addressing the parameter list is that explained in
case 2 above. This code is not very efficient in terms of space
if it must be repeated many times, but since the authors do not expect
that FUNCTION attribute will enjoy much use, little effort was
expended to improve this method. The real culprit is TSX.

Of course, if the parameter is a formal parameter in the calling
program, it will be handled as in case 3. If the parameter is
an internal function, its address may be included in the address
list directly, without the shenanigans.

The reason that CESSL FUNCTION names and FORTRAN EXTERNAL names
may not normally be mixed is the different ways these two language
processofs handle the irksome TSX restriction. FORTRAN actually

compiles a CALL to the external subroutine as part of the parameter
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list. For example above, FORTRAN would compile

CALL BARF
DC A
CALL YECH

The FORTRAN subroutine receiving an EXTERNAL name in its parameter
list knows that there are two words defining this parameter. It
is possible for CESSL programs to receive calls from FORTRAN programs
which have EXTERNAL parameters by inserting a dummy parameter into
the ENTRY formal parameter list in the position just before the
EXTERNAL parameter appears. In this case, the CESSL program will
pick up the second word of the FORTRAN compiled CALL XXX statement
and use it as the address of thc subroutine. The case of CESSL to
FORTRAN will not work (since  FORTRAN wants to pick up two words).
The reason for the implementation restriction which disallows
TSX SKELETON routine names to be passed as FUNCTION names is another
TSX baddy. If XXX is the name of a subroutine embedded in the
skeleton, a "CALL XXX" statement is fixed by the loader to be '"BSI
I XXX", i.e., an indirect reference rather than a long reference.
Thus the second word of the call is not the address of the subroutine
as expected by the techniques described avove.
If the subroutine called is expected to return a non-primitive value,
the calling program allocates a block of temporary storage and loads XR1

with the address of that block before performing the call.
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4.7 Internal Functions

Internal functiohs are local subroutines and, as such, the handling for
pérameters and returned values is exactly the same as for subroutines, as
described in Section 4.6, so that this section will describe only the differ-
ences.

Calls to internal functions are perfqrmed exactly as calls to subroutines,
the only exception being that a "BSI L" is compiled instead of a 'CALL"
statement. The naﬁe of the internal function thus contains the return
address for the function, and the FUNCTIONRETURN statement compiles a '"B I"
(branch indirect) through the name, since there may be only one entry point to
an internal function.

For functions returning a non-primitive value, index register one is
saved in the location immediately preceding the entry point to the function.

Since internal functions may be called from an expression in the main
program or from another function, they need their own set of temporary locations.
As each internal function is encountered, it is assigned a unique set of
temporaries, each of which is an array of storage locations with the name
"#TXX", where XX is an octal number between 0 and 63. All temporary references
in expression evaluation (Section 4.2) within the function refer, then, to
the local array. This local array is allocated after the ENDFUNCTION statement.

To protect against illegally "flowing into" an INTERNALFUNCTION state-
ment or past an ENDFUNCTION statement, the following call is emitted at points
where such statements occur.

CALL .~  $FLOW
$FLEOW is an LOCG system subroutine which prints an error comment of the
appropriate type (See Section 3.3 for run-time error messages) .

Figure 4.6 has an example definition and invokation of an internal function.
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Definition , - Invokation

DECLARE INTEGER: C,D; D = QQSV!(4,3) + 5
INTERNALFUNCTION QQSV! (A,B);

DECLARE INTEGER: QQSV,A,B;

C=(A+B) * (A-B);

FUNCTIONRETURN C + 4;

ENDFUNCTION; BSI L QQSV
DC =14
DC =13
) A L ='s|
CALL $FLOW STO L D
WSV EQU * .
NOP

LDX Il  QQsV .
BSS

LD 1 /0000 C 1
STO L A D BSS 1
LD 1 /0001 A BSS 1
STO L B B BSS 1
MDX 1 1+/0001
STX 1 QQsv
LD I A
A I B
STO L #T 00-/0001
LD I A
S I B
M L #T 00-/0001
XCH
STO L C
LD L C
A L =14!
B I QQsv
CALL $FLOW
BSS E /0001
#T00 BSS E 0
Figure 4.6

Example Code for Internal Functions
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4.8 Miscellaneous
The CONTINUE statement produces no code. If\Fhere was a label on the
statement it is defined ih the normal fashion.
The EXECUTE statement produces code for the expression, nothing more.
The PAUSE statement produces

LIBF PAUSE
DC PAR

with all.the problems of subroutine calls if the parameter is a subscripted
variable or formal parameter (See Section 4.6.2).
The ENDPROG’spatement produces
CALL $FLOW
which is a call to an LOCG system subroutine to produce an error message

about "illegal flow".






CHAPTER FIVE

SPECIAL TOPICS

This chapter is devoted to topics which do not fit easily elsewhere and
which will be of interest mostly to enthusiastic users (although the authors

do not admit the existence of any other type).

5.1 Efficient Coding Practices
CESSL does not produce highly optimized code. About the only optimization
performed is on the use of registers over a single statement. However, there
are a few things the user can do to increase the run-time efficiency of his
program. We will not mention the normal programming good sense which all
programmers should use because, as previously stated, this is not a tutorial
But a reference manual. The points below refer to a particular impiementation
of a particular compiler and should be used as such. |
1. The use of switches (i.e. BOOLEAN variables) is encouraged. A switch
in an IF or ORIF statement produces very fast code (relative to a com-
parison). Thus, if the same condition needs to bé checked mere. than once,
a speed advantage may be obtained by first calculating the comparison into
a BOOLEAN variable and then using the BOOLEAN variable in the conditionals.
2. Assignment of a‘value to more than one variable is the most efficiently
done by an embedded assignment statement. That is,
A= (B=C);
is more efficient than
B=C; A=B;

3. Comparisons are most efficiently performed when one of the comparands

158
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is an INTEGER zero (0).

4. The user should factor out common expressions in statements, even subscript
expressions.

5. An expression involving all constants will be completely calculated every
time it is encountered in the program so that it is advantageous for the

user to do the precalculation.

5.2 Dynamic Data Types

It is possible to change the description of a data type at run-time.
Every data type has a descriptor (dope vector) which is used at run-time by
the subscription routine. Change the dope vector and the data type has been
"changed". Naturally this capability should be used with great care, and
users should study Section 4.3 (Subscription) before attempting it. It is
easiest to do with ARRAYs--indeed it is most difficult with BLOCKS--and
most of the motivation for doing it comes from the use of ARRAYs, so that only
they will be mentioned below.

Recapitulating the important points of Section 4.3, the dope vector for
an ARRAY consists of a label for the data type name and three words, the first
of which gives the number of components in the ARRAY (i.e. the maximum sub-
script value), and the third of which gives the number of words which each
component occupies. These words can be readily accessed by use of the EQU
statement.

For example, the most common use of this technique concerns the passing
of "arrays" and "matrices" to subroutines. Often the subroutine can be written
fo be perfectly general except for the size of the array or matrix passed.

Every parameter to the subroutine must have a data type defined for it and
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then declared to be of that type. Requiring the binding time for the defin-
ition of the type to be at compile time inplies two things for arrays. First,
the maximum size of the array expected must be decided ahead of time. Second,
the subscript size checking is defeated when smaller-than-the-maximum-size
arrays are passed. For matrices, it is impossible to provide other than the
c&rrect size of the rows of the matrix. These restrictions can be defeated
by passing the SIZE of the data types associated as parameters to the sub-
routine using the technique illustrated in the following example:

ENTRY SUB! (IARRAY, IN, IMATRIX,N,M);

DEFINE TIA ARRAY INTEGER SIZE 1: TARRAY;

EQﬁ (SIZEIA,IA);

DEFINE ROW ARRAY INTEGER SIZE 1;

DEFINE MATRX ARRAY ROW SIZE 1: IMATRIX;

EQU (SIZEROW,ROW) (NUMROWS,MATRX) (SIZEMATRXROW,''MATRX+2');

DECLARE INTEGER: SIZEIA, SIZEROW, NUMROWS, SIZEMATRXROW;

SIZEIA = IN;
SIZEROW = N;
NUMROWS = M;

SIZEMATRIXROW = N;

o

o

IARRAY is a simple INTEGER array whose size is given by the parameter IN.
By(equivalencing the INTEGER variable SIZEIA with the first word of the dope

vector describing the data type of IARRAY the assignment "SIZEIA = IN;" declares
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IARRAY to be an INTE@R array of size IN. The original definition of IA
as an ARRAY SIZE 1 merely provides a name and number which can be changed
later,

A similar technique works with matrices. IMATRIX is an INTEGER matrix
declared in row major order (i.e. it is stored in memory with the second sub-
script varying fastest). Since it is an ARRAY of ARRAYs and since the size of
both arrays is variable, two dope vectors need changing as regards to the
number of components in the ARRAY. Note however, that the dope vector for
""MATRX" needs altering in the third position, which describes the number of
words taken by each component. In this case, this becomes the number of words
in a rowy; which is the same as the size of the row. The reader should under-
stand this example completely before attempting any such action.

An important point to remember is that REAL variables require two words
of storage, twice as much as INTEGER variables. Thus, if the matrix above was
made up of REAL variables, the last statement would have to be changed to

SIZEMATRIXROW = 2*N;

Although the most common use of this chicanery is for parameter type
definition it is also permissable to use the technique on data types defined
in the same program as they are used to allocate storage. For example, it
is possible to redefine a four by five INTEGER AkRAY to be a two by ten array.
The restrictions which remain are three. First, it is not possible to provide
more storage for a variable than was allocated as a result of the original
definition of the data type. For example, a four by five cannot be redefined
to be a three by eight. Second, the original hierarchical structure must
be maintéined; i.e. a two-dimensional array cannot be changed into one or

three dimensional array. (If it is desired to refer to an array alternately
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as one- and two-dimensional, two different data types should be defined,
assigned to two Qariables, and the two variables EQUivalenced (see Seétion
2.4.1.6).) Thirdly, the variable in question should not appear with a set

of subscripts which are all constants except all one's), since the address
resulting from such a subscription is calculated at compile-time from the ori-

ginal definition of the data type.

5.3 TSX Calls
The TSX system has specially defined subroutiﬁes to perform various
arcane functions. These_routines are designed to be called from FORTRAN.
Most are thus available to CESSL users directly. The one source of difficulty
arises with subroutines which require parameters with a FORTRAN EXTERNAL
specification. As explained in Sections 2.4.3.2 and 4.6.2, FORTRAN EXTERNAL
and CESSL FUNCTION parameters do not mix. The same effect can be achieved,
however, by the use of the following methods. The important point to remember
is that a FORTRAN EXTERNAL parameter is compiled as a CALL statement.
The callg
CALL CHAIN (NAME)
CALL SPECL (NAME)
can be performed from CESSL by the following statements:
EXECUTE CHAIN!; EXECUTE NAME!;
EXECUTE - SPECL!; EXECUTE NAME!;
Although NAME is the name of a coreloéd, the EXECUTE statement compiles the
code the loader expects. The two EXECUTE statements should not be separated;
that is, they should appear as successive statements in the program.
| Other TSX calls require additional parameters. For example:

CALL QUEUE(NAME, P, E)
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All these can be written in CESSL by two EXECUTE statements, the first of

which calls the desired routine and the second of which refers to the name

of the coreload or subroutine, along with the parameters, as for example:
EXECUTE QUEUE!; EXECUTE NAME! (P,E);

Calls which fall into this class are: QUEUE, QIFON, UNQ, TIMER, and COUNT.

5.4 In-line Code

The DATA statement in CESSL differs from similar statements in other
languages in two respects: the data is compiled in-line rather than apart
from the generated code; and variables as well as constants may appear in
the list of values assigned to the name. The latter results in the compilation
of the address of the variable. The two features together allow numerous
applications, of which we will name only two. Users whould be familjar with
Assembly language and the contents of Chapter Four before attempting to use

these special features.

In-1ine Code

There are some instructions in the IBM 1800 CPU which are not normally
available through CESSL: XIO (Input/Output control), STS and LDS (Status control),
"LDD and STD (Load and Store Double), etc. Programs requiring such complete
control of the machine are usually best written in Assembly language. Occa-
sionally, however, it is convenient to use such an instruction in a CESSL
program without calling an Assembly language subroutine. Since such use is
infrequent, CESSL has no special language constructs for it. The in-line DATA
statement allows the user to compile the exact instructions he needs, if he is
willing to specify them in hexadecimal.

For example, to execute the two word IOCC (Input/Output Control Command)
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at location 46 (absolute), one may write:

SUBSTITUTE (XIOL,?0CQ0);
DEFINE 12 ARRAY INTEGER SIZE2: DOIT;

bAfA DOIT XIOL,46;
The compiled code would resemble the Assembly language statement
XIO L 46
Alternately, if the variable FDL contains the IOCC to start the Framl Dakting
Lifter, one may write:
DATA DOIT XIOL,FDL;
In a similar manner, every machine instruction and series of instructions
may be compiled into a CESSL program.

In the example above, we had to define a data type, I2, and assign it
to a name, DOIT, in order to specify the code produced. Usually the name and
the data type definition is unimportant, we just need a handle. For this
reason, the special atom $$$ may be used as the name in DATA statements where
the name is immaterial and the sole purpose for the statement is to put out
some code. Rewriting the example, we have:

SUBSTITUTE (XIOL,?0C00);

DATA $$$ XIOL,46;
Since $$$ is not defined as a label in the generated code it may be reused
in many such DATA statements for the same purpose. Retention of the variable
name and type, on the other hand, allows the user to create an instruction

and store it in-line, if he happens to be addicted to von Newmann machines.

Special Parameter Lists

The second application of DATA is a special case of the first, in-line
code, but it important enough to be separately emphasized. Often, subroutines

written in Assembly language are not callable from higher level languages



160 Spectal Topics

like CESSL and FORTRAN because they use non-standard calling sequences. vi:t
One of the most frequent examples of this is in the use of a value as a para-
meter rather than the CESSL/FORTRAN standard of using the address of a variable
containing the value as a parameter. For example,

EXECUTE SUB!;
DATA $$$ 4,XYZ;

produces code equivalent to the Assembly language:

CALL  SUB
DC 4
DC XYZ

Again, use of a name in the DATA statement allows dynamic alteration of a
parameter list,

Another non-standard kind of call is the passing of parameters in the
general registers. Use of in-line instructions makes this possible. For
example, if the user were writing a subroutine which expected its only parameter
to be in the accumulator on entry, he could put the accumulator into the variable
"~ PAR as in the following: |

SUBSTITUTE (STOL, ?D400) ;
ENTRY SUBB!;
DATA $$$ STOL,PAR;
The user should be very familiar with Section 4.6.1, CESSL Compiled Subroutines,

" especially the method of picking up actual parameters, before he gets too

fancy in this regard.



Character

Tab

EOP*
Shift-to-Black
Carriage Return
Back Space
Line Feed
EQF**
Shift-to-Red
Space

¢

(period)

(logical OR)

j"'\—/ * 2= MO —Ft ~ A

(logical NOT)
- (minus)

(comma)

A ~

(underscore)

' (prime)

Hex Dec
5 5

6 6
14 20
15 21
16 22
25 37
26 38
35 53
40 64
40 74
4B 75
4C 76
4 77
4E 78
4F 79
50 80
5A 90
5B 91
5 92
5D 93
5E 94
5F 95
60 96
61 97
6B 107
6C 108
6D 109
6E 110
6F 111
7A 122
7B 123
7C 124
7D 125
7E 126
7F 127

Appendix
EBCDIC Characters

Format

-305
-306
-320
-321
-322
-337
-338
-353
-364
-374
-375
-376
-377
-378
-379
-380
-390
-391
-392
-393
-394
-395
-396
-397
-407
-408
-409
-410
-411
-422
-423
-424
-425
-426
-427

Character Hex

c1
c2
C3
ca
C5
C6
c7
c8
c9
D1
D2
' D3
D4
D5
D6
D7
D8
D9
E2
E3
E4
ES
E6
E7
ES
E9
FO
F1
F2
F3
F4
F5
F6
F7
F8
F9

CONAOAUNMTAERWVRNNFHFONXK XSO NITOIYOZEr="u~RITOoOmMmmMoOw >

*Used in LOCG system as End-of-Page character.
**Used in LOCG system as End-of-File character.

161

Dec

193
194
195
196
197
198
199
200
201

- 209

210
211
212
213
214
215
216
217
226
227
228
229
230
231
232
233
240
241
242
243
244
245
246
247
248
249

Format

-493
-494
-495
-496
-497
-498
-499
-500
-501
-509
-510
-511
-512
-513
-514
-515
-516
-517
-526
-527
-528
-529
-530
-531
-532
-533
-540
-541
-542
-543
-544
-545
-546
-547
-548
-549
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A | CESSL/FORTRAN
Compatibility 71, 147-148
Actual parameter 69, 71, 117, 143 CHAIN 157

Alphabetics 8 Characters 8, 161
Alphabetic atom 9 CHARE 137
Alphanunerics CLSPC 84
And non-... 8 Code optimization 117, 153
Angles Comma
In intrinsic fn, 45 On input medium 56
Arithmetic Comments 16
Code produced 118-119, 123-124 COMMON 31, 83
ARRAY 19 Compiler failure 89
Assembler Compiler messages 85-100
Error 100-101 " Conditional 50-51
Program 79, 106, 107-110 Constant 9, 14
Assignment 41-48, 121-122 Allocation 108-109
Embedded 42, 121 Construction 5, 9
Atom 8-10 CONTINUE 67, 151
Alphabetic 9 Control cards 79-84
Lambda 9-11 COMMON 31, 83
Length 10 COMPILE BASIC 84
Numeric 9 COMPILE CELL SPACE 84
Attribute 11-12 Error 80
Assignment 17 Format 80
At-sign LIST 83, 107
See @ LIST OVERRIDE 83, 106, 109
A7E 55, 135 LIST SOURCE PROGRAMS80 N
LIST SYMBOL TABLE 80-82, 85, 106, 112-
Order of 80
B PRINT SYMBOL TABLE 82
SWITCHES 83, 110, 112
BLOCK 19 Copy port 3, 55
Subscript 20, 28, 47-48 Core load builder 102
BNF NOTATION 5 COUNT 158
BOOLEAN 13 CRET 59
' Constant 14 CTXTL 137, 138

Input 56, 138
Qutput 59, 62, 140

Branch 49 v D
DATA 25-27
C Allocation 108
Multiplicative 26

Calling sequence 142 Position of 27
CARDE 55, 135 Variables as items 158-160
CARDS 54, 55, 135 : $$8 159-160
Carriage return 8, 54, 55, 59 Data switches 83
CELLSPACE 1, 83, 84 Data type 11, 13-15
CESSL ~ Dynamic 154-157

As a program 79 In subroutines 154-157

Override 47-48
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Run-time def1n1tion108 128
See also mode
Declarations 16-33, 34

Position of 16, 27, 70, 72, 73

DECLARE 17-18
DEFINE 19-23
DEFINE/DECLARE 22
Device 54-56, 135-137
Disk error :
In compiler 89
Dope vector
See data type def,
Dyadic operators 38, 41
Dynamic data types 154 157

E

EBCDIC CHARACTERS
In format list 64
Efficient ‘coding 153
ELSE 50, 133
Embedded assignmnt
See assignment
ENDFUNCTION 72-73
ENDIF 50, 133
ENDLOOP 52
ENDPROG 33, 74, 151
Mlss1ng 90
ENT 107, 142
ENTRY 68 71, 142, 143
Entry point 68
Entry point name 11
EQU 27, 30-33, 107, 110
Error 101
Formal parameter 69
Order of definition 81, 82
EQUIVALENCE 31
Error
Assembler 100
Compilation 89-100
Control cards 80
EQU 101 -
Illegal flow 144, 149, 151
ILLEGAL FLOW 33, 70, 73 103
Input/output 104 137
105 //BLANK CARD 89
Loader 101-102
RO3 @XXXX LEV.2 102
Run-time 103-104
Semantic 97-100

Strange 82

Subscript 98, 103, 129

Syntax 90-96

Two most common 90
Even-alignment 22, 31, 108, 142
Exclamation mark 47
Executable

Statements 35, 41-67
EXECUTE 67, 151
EXIT 74
Expression

Evaluation 117-122
External function

See subroutine
External name 17

E

Fairy tale 29
FGETA 56, 135
Field 20
FILE 54, 55, 135
First statement 18
Floating point
SEE REAL
Formal parameter 11, 27, 69, 71
GOTO/LABEL 49, 70
In code produced 143-144
Format '
Lexical 8
Source program 5
Formatted output 61-66
FORTRAN
EXTERNAL 71, 147
FPUTA 56, 135
FRODO THE HOBBIT 77-78
FUNCTION
Attribute 11, 17, 27, 72
Use 47, 71, 146
FUNCTIONRETURN 72-73, 149
Function
See internal fn
S$e¢e intrinsic fn
$ee subroutine

]

ol

CATO 49
Formal parameter 70



H

Hexadecimal 9

1

IF 50, 133-134
ILLEGAL FLOW
See error
ILLEGAL OP-DATA
COMBINATION 99
ILLG 89
INCLUDE 33, 74
Index register 110
One 129, 142, 143, 149
Initial value
SEE DATA
Input 56-58, 135-140
Error 104, 137
INPUTDEV 54, 135-137
INTEGER 13
Constant 14
Input 56, 138
OQutput 59, 62, 140
INTERNALFUNCTION 72-73, 149
INTEX 74

Intrinsic function 44-45, 119,

In-1line code 158-160
Iteration variable 53

X

KBDE 55, 135
Keywords 9, 40

L

LABEL 13
Assembly definitim 108
Constant 14
Definition 10
Formal parameter 49, 70,
Lambda atom 9-11
LDFAC 120
Lexigraphical
Ordering 20

144

125

Index 167

LIBF 11, 18, 47, 110
Lifter
For framl dakting 159
LINK 45, 74
LIST OFF/ON 83, 107
Literals
Assembler 109
Loader error 101-102
LOCER 103
Logical file 2, 55, 135
INCLUDE 33
LOOP 52-53, 131-132
LOOP/IF MAXIMUM 131
LTORG 109

|

MACRO EXPANSION
OVERFLOW 97
MAIN 107
Memory references 118
Minus (-)
As an operator 11-12, 42
Mode
Combinations 37, 38, 43
Conversion 43, 45
Mixed 118-121
Monadic operators 37, 41
Multiple word
Assignment 43, 121
Comparison 46, 120
Input 57-58, 138
Qutput 59, 61, 140
Subroutine return 70, 142

N

NAME 18

Name of program 18, 68, 74
Nonprocess exit 74
Nonprocess monitor 2, 79
NORMALMODE 24

Numeric atom 9

Numerics 8

)

Operators 37-38, 43
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Precedence 39, 42 Relocatable area
Optimized code 153 (disk user area) 79
ORIF 50, 133 Reserved atoms 40
OQutput 58-66, 135-141 RETURN 68-71, 143

Error 104, 137 Run-time error 103-104
OUTPUTDEV 54, 135-137

S
P =

- SEFIN 135-137
Parameter Semantics 42-48

In gen, registers 160 Errors 97-100

Non-standard 159-160 SETIN 135-137

See actual par SFOUT 135-137

See formal par Side effects
PAUSE 67, 151 Formal parameter 71
PBOOL 137, 140 SINGLE OCCURRENCE 85
PDP7 3, 54, 55, 135 Skeleton routines 47, 148
PFLTC 137 Source input
PINTC 137 Format 5
PINTG 137, 140 Special characters 8
PNCHC 55, 135 SPECL 157
PREAL 137, 140 SPECR 141
Precedence values Statement 5, 9

For operators 39, 42 STATEMENT TOO LONG 97
PRNTE 137 Storage 13
Program name 18, 68, 74 STOUT 135-137
PTXTW 137, 140 Structure tree 22

Subroutine 68-71
Call 47, 71, 144-148
Q CESSL ENTRY CODE 142-144
Parameter list 142, 145, 159-16f
QIFON 158 Subscript 20, 28, 47, 127-130
Question mark 9 Error 98, 103, 129
QUEUE 157-158 SUBSTITUTE 20, 28-29
Symbol
Longer than 5 char 79, 106
R Symbol table
Dump 80-83, 87
RDFLT 137, 138 Overflow 85, 89
RDINT 137, 138 Syntax 41-42
READ 56-58, 137-140 Brackets 5-6
REAL 13 Errors 90-96

Comparisons 45, 120 Of assignment 36

Constant 9, 14, 108

Format error 101

Input 56, 138 T

Output 59, 62, 63, 140 -

Precision 118 Tab 8

Relations 45, 119-121, 126 Tab setting 82, 83, 101



Temporary
Area of the disk 79
Internal function 149
In arithmetic 109
TEXT 13 _ :
Constant 14, 108-109
Constant as data 26
Input 57, 138
OQutput 59, 61, 140
TEXTARRAY 14-15
Assignment 43, 121
Comparison 46, 120
Input 57, 138
Output 61, 62, 140
TIMER 158
Transition control
Block 83
TSX 2
Assembler 79, 106
Calls 157-158
DUP 86
Interrupt 74
Loader 147
Process 74
Program name 18, 68, 74
- Skeleton routines 47, 148
TYCH 55, 135
Type ‘
See data type
See mode
TYPEWRITER 54, 55, 135
T7E 55, 135

L]

UNQ 158
User area of disk
(relocatable area) 79

v

Variable 11

Allocation 108

In data statement 158-160
VIAQ 74

Index 169

X

Wait state 67

WRITC 140

WRITE 58, 140
WRITEFMT 61-66, 140

$
$EQS

Subroutine ‘120
$FLOW 149, 151
$GES

Subroutine 120
$GT$

Subroutine 120
§MV21 121
$NE§

Subroutine 120
$UBSC 127

L

#-symbol 107, 131

#DEO1 109, 116, 119, 120
#RETR 109, 116, 143

#TEM 109-110, 116

e-symbol 79, 81, 106, 108, 145

@--as an operator 20, 47-48
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