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ABSTRACT

NON-LINEARITIES IN GENETIC ADAPTIVE SEARCH

by

Daniel Raymond Frantz

Chairman: John H. Holland

Methods of adaptive search must contain, at least implicitly,
the ability to detect and act upon non-linearities in their environments
(i.e., in the functions to be optimized). If such knowledge can be
made expliéit, this information may be of value in constructing models
of the environment and may lead to faster and more successful
adaptation.

One method of adapéive search, based on genetics, is called the
Reproductive Plan, due to Holland. Requirements for its use are:

1) description of the environment must be in terms of a set of
parameters; 2) the quantity to be optimized (the payoff) must be a
function of these parameters; 3) there must be an initial population
of parameter sets. The parameter§ are listed as a string of values,
called a chromosome.

The environments used in this research had twenty-five parameters,
each of which could take two values. Dependent groups of up to nine
parameters were used.

In this variation of the Reproductive Plan new points to be tested
are generated by a two step process: 1) Two parents are randomly

selected from the current population with the selection biased according



to payoff. 2) The two parents are combined by operators to form an
of fspring, the new point; these operators are similar to the genetic
versions of crossover, inversion, and mutation.

The operation of the Reproductive Plan suggests two ways by which
functional dependencies in the environment may be depected. Groups
of parameters which interact non-linearly may have their frequencies
of combination different from that predicted by the individual parameter
frequencies. This is testable by a multi-dimensional chi-squared
contingency table. Another characteristic suggests that position of
parameters on the chromosame may be important in the rate of evolution
or on the equilibrium point of the population payoff. If there is
an adaptive advantage in position, a ggnetic operator such as inversion
should be able to produce chromosomes with better permutations of
parameters. Computer experiments were performed to tesg these hypotheses.

Multi-dimensional chi-squared contingency table tests showed that
most groups of parameters were statistically dependent, a by-product
of the Reproductive Plan, but non-linear payoff groups were definitely
distinguishable from linear payoff groups. Analyses were then
performed to detect the dependent groups when no prior information
existed: contingency table values for all pairs of parameters were
calculated. The pairs from non-linear groups showed higher association
indices. Thus, dependent groups are detectable since all their pairs
have much higher associations.

Studies of the equilibrium level of the population payoff average
did not show any consistent position effect, although there were some
positive results. However, investigation of the rate of evolution showed

that populations in which groups of dependent parameters are close



together significantly and consistently oﬁtperform populations in
which the groups are spread apart on the chromosome. Populations with
spread groups often did not achieve optimum or near-oﬁtimum points
in the most complex envirbnﬁents.

Experimenfs using the inversion operator were unable to demonstrate
its ability to capitalize on the position effect. The advantage due
to the position effect lasts for too short a time in the environments
used. The role of inversion is open for further study since it may

be shown effective in more complex environments with longer adaptation

times.
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CHAPTER ONE

A DIFFERENT USE FOR ADAPTIVE SEARCH

Device Composition

Many problems in adaptive search can be viewed as the creation
of an optimal device from components, each of which have several possible
instances. If either the number of components or the number of instances
for each component is large, then the size of the search space is
usually quite large, requiring the use of adaptiye algorithms rather
than enumeration to perform the job in a reasonable amount of time.
Adaptive search is made feasible by the decomposition or coordinati-
zation of the device: if the device were not made up of subunits
but was instead a monolithic whole, no regularity in the makeup of
the solution could be exploited and the only method of search would
be to enumerate each of the possible devices.

Examples of this kind of structure in an adaptive framework are
numerous. In control theory the components are continuous control
parameters (e.g., voltage levels, flow rates) and the optimum device
is one which specifies values for the parameters yielding a minimum
error in a selected subset of the dependent variables. In a pattern
recognition device the components may be the weights attached to feature
detectors, specifying the importance of that feature in picking out a
particular pattern class. The optimum is that set of weights which
discriminates perfectly. Similarly in Samuel's checker player (15),
the components are the weights attached to parameters which measure
some feature of the board. The optimum is that set of weights which

predicts the value of a board in the same manner as a minimax strategy



for the game. Other examples can be found in genetics, economic
planning, etc.

The representation of the device in terms of the particular
components chosen to describe it may be more or less adequate with
respect to the overall problem of which adaptive search is only a small
part. In economic theory, the choice of which activities to include
in a mix may be a matter of opinion, but once those activities have been
chosen, there is no doubt that the optimum obtained with respect to that
base set is a solution to the problem posed. That is, the representation
or coordination is adequate by design. The choice of activities is a
value decision which cannot be decided or explored by adaptive search.

On the other hand, if the set of detectors for the checker player

is inadequate, the optimum with respect to those parameters will still
not approach minimax. Thus, adequacy of the base set of components
for the overall task (the so-called "representation problem') is in
large part separable from the problem of adaptive search which merely
optimizes with respect to a given set of components.

Once a representation is determined the search space is well-defined.
Different representations may lead to different "shaped'" spaces for
essentially the same problem, but any one representation yields a

definite space.

Non-linearity (Dependence of Components)

Difficult optimization problems are those which are highly
non-linear with respect to the parameters or components. In its most

difficult sense, 'non-linear' means that the optimal setting for a



particular parameter (i.e., that setting yielding a global maximum)
depends on the>setting of one or more other parameters. The resulting
dependence makes it impossible to optimize the solution component by
component. Combinations of parameter values are more important than
individual values. When there are a finite number of parameter values
there are many more combinations than there are individual values and
this is where adaptive search enters. Somehow combinations must be
tried, the results remembered, and new combinations tried on the basis
of previous information.

The opposite of non-linearity (or dependence) is linearity or
independence. Two parameters are independent of each other (are
relatively linear) if the effect a value for one has on the optimum
is not influenced by the value of the other.

It is entirely possible for every component to depend on every
other component. In this case, unless there is some regularity in the
interaction, the search algorithm may have as hard a time as if it
were dealing with a non-coordinatized system: it may break down and
only be able to do an enumerative search. Most non-linear groups of
components have regularities with respect to the component values;
in functional optimization this is similar to stating that the function
is at least piece-wise continuous. So even non-linear groups provide
'"handles" for an adaptive plan. If there are groups of parameters
which are internally dependent but independent of other groups, the search
algorithm has an easier time since it can optimize the groups indepen-
dently (which at worst is an enumeration over much smaller spaces) and

sum the results of the individual optima.



For any particular adaptive search algorithm to operate well it
must take cognizance of the non-linearities of the system. A generally
applicable algorithm must be able to handle non-linearities of any
type or order. Thus any adaptive algorithm must be able to build up
within itself, at least implicitly (as part of its state or data),
information about the non-linearities of the search space. Even search

algorithms which contain little explicit memory (such as some of the

gradient methods which keep only one point in the space) can be considered

to contain or generate this implicit information. No matter how it

is achieved, selection of the next point to be tested must depend on
knowledge of the space. Ultimately, the trajectory of points through
the space may'be used as clues to the structure. As the search
progresses over more samples from the space, more complete and certain
knowledge must be gained, (Since plans operate with finite memory,

it is reasonable that knowledge about bad sections of the space may

be lost--only information affecting good points will be kept.)

Despite having this information about the non-linearity of the
space implicit within themselves, as normally formulated, optimization
or search procedures have only one result: the optimum point (or at
least a good point)., It is the intention of this thesis to show how
knowledge of dependencies resides in at least one class of search
algorithms, the Holland Reproductive Plans (9,10,11). In addition, we

intend to show that this implicit information can be made explicit in

some cases,

Hierarchical Models

Concern over the form of a procedure's method of exploiting functional



dependency arises for two reasons. The first comeé directly from the
definition of a procedure and'the nature of science. Each adaptive
algorithm has a justification of its efficacy; part of this justification
is an explanation of how the algorithm treats non-linearities. Proof

of the value of the plan must include verification of such treatment

(to eliminate chance or other factors). While previdus researches

into Holland Reproductive Plans have performed a verificiation of
efficiency with respect to other plans, this paper is the first full-scale
explicit investigations into the internal workings of the algorithm,

an intrinsically interesting topic.

The second, more significant, reason for investigation is the
importance of learning something about the spaces one is searching.
(The class of spaces we shall investigate is described in Chapter
Three.) This is direct&y related to modelling theory with respect
to the usefulness of a level of description of a system. In terms of
both human preference and,mathematical tractibility it is advantageous
to explain complex systems in terms of a small number of factors.
Interaction of components beyond a certain number or level of
non-linearity becomes incomprehensible to the human mind; the mathe-
matics of such systems is often incapable of closed solution. If at
all possible, scientists will aggregate variables or describe the
system at a level which can be handled easily. If necessary, several
levels of abstraction or aggregation may be employed to achieve a
description appropriate to a particular purpose.

This process is called model building via hierarchy. Dependent
groups of coordinates or variables are identified and then treated as

a single, well-understood quantity on a higher level. In the ideal



case, aggregation may eventually lead to a linear system, which both
humans and mathematics can treat most easily. TIn other cases, assuming
the reduction preserves the structure of the system, a hierarchical
model still has great intuitive explanatory powers.

Thus, determining the dependencies among components in a particular
environment is an aid to model building. Extracting information from
an adaptive algorithm regarding non-linearities may be no more of an
aid than merely pointing out that some components are dependent without
giving specific information as to what the dependence is. However,
if that knowledge reduces the number of parameters from a hundred to
six, the reduction of the mbdelling problem is one of several orders

of magnitude.

The Representation Problem

The modelling procedure is one aspect of the representation problem
previously mentioned. The '"problem" resides in the uncertainty of
which information in the environment is relevant to the task at hand.
Ordinarily in artificial intelligence work there is such an abundance
of data available that some reduction (or selection) must be made
(by a human intermediary) before the programmed learning can occur.

Although we do not wish to stress this issue, being able to detect
dependencies may eventually be of use in the solution of this problem.
By feeding all of the potentially useful information into an adaptive
program we may obtain information not only about good points in the search
space but also about the dependencies. Most likely the oversupply of

parameters, some of which may be irrelevant or redundant, will make for



slow adaptation--i.e., the representation is not the most useful.

But by means of the dependency knowledge gained on this first attempt

it may be possible to obtain a better representation, leading to faster
adaptation and so forth. Thus, not only is the creation of hierarchical
models useful for human understanding but, practically, it may also

lead to the increased adaptive efficiency of the man-machine system.

Summazz

When faced with a complex search space two kinds of information
are importantf the optimum achie?able‘in the space and the ''shape"
or dependencies in the space. Knowledge of dependencies is important
for the building of hierarchical models of the space. Rather than do
a completely independent analysis of the space for the model building
it would be advantageous to be able to use the adaptive search procedure
to determine dependencies also. Since the adaptive program must build
up within'itself some knowledge of the space in order to find the optimum
it is reasonable to try to make this knowledge explicit. Even if it
cannot be made explicit in every case, it is valuable to verify that
the adaptive search procedure contains the information in the manner

expected so that it builds models implicitly.



CHAPTER TWO

THE REPRODUCTIVE PLAN

Reproductive Plans are a class of adaptive algorithms based on
genetics. Holland has given theoretical justifications for the use
of such plans in terms of their efficiency (11). Previous simulation
work (Bagley, Cavicchio, Hollstien, Bosworth (1,3,122)) has shbwn
the actual superiority of such algorithms over other search procedures.
Since much ﬂas been written on the basis of Reproductive Plans (see
the above references), we will include here only a summary of its

salient points.

Definition of the Genetic Algorithm

Problem solving with the Reproductive Plans reqﬁires an environment
(i.e., the problem area to be solved) with two properties:
1. There must be a device decomposition as discussed in Chapter One.
The solution must be expressed in terms of a list of parameters
with admissible substitutions for each parameter completely defining
the search space. We shall thus refer to a device alternately
as a string or an individual. (No order to the parameters is
implied by use of the word "string'; some order must be chosen for
convenience).
2. There must be a "payoff'" (or goodness, fitness, utility) associated
with each device described by the parameters, and this payoff is

the quantity to be maximized.



Briefly, then,'the main features of a reproductive plan are the following:
1. A "population" of devices forms the memory of the system at any
point in time.
2. A new population is formed from the old population by the following
two-step process:
a) An intermediate population is formed by reproducing each
member of the old population a number of times proportional
to its payoff. For example, if two devices (strings of
parameters) S1 and S2 have payoffs 3 and 7, respectively,
then 3 copies of S1 and 7 copies of 82 will enter the
intermediate population.
b) The new population is then formed by randomly choosing members
of the intermediate population‘and modifying them by '"operators".
These operators are strictly string operators and are largely

independent of the environment.

The most important feature of a Reproductive Plan is 2a: emphasizing
strings in proportion to their payoff. Thus, the proportion of better
strings increases exponentially with respect fo the average of the
popﬁlation.

The choice of operators (2b) is critical. Previous work by Friedberg
(8) and Fogel () failed precisely because they did not appreciate
the importance of analyzing what the operators did, so that they destroyed
the advantages of proportional reproduction. Choice of operators
determines the exact form of the adaptive algorithm within the class
of Reproductive Plans.

Since many of the ideas embodied in the rest of this report are

~taken from genetics we will summarize the applicable genetic vocabulary



10

in terms of the ideas already presented:

A gene is a functional unit--it corresponds to our notion of
parameter. An allele is a particular instance of a gene: a value for
the parameter. A chromosome is a string of genes (a ohe-dimensional
list). A locus is a position on a chromosome (e.g., the first position
from the left hand end).

All the genetic operators are probabilistic in their effects;
that is, there is a certain probability associated with their application
in forming members of the new population. Although there are many
string operators possible and although there are many operators recognized
by biochemical geneticists, we shall investigate only the operators
mutation, crossover, and inversion. Mutation changes an allele into
another allele with some (small) probability. Its main function is
to supply variability to the population by maintaining ét least a small
proportion of eéch allele.

Crossover takes two chromosomes from the old population (parents)
and interchanges parts of them, producing two new individuals. For
example, for chromosomes of length seven, crossover might operate

by exchanging exactly one portion in the following manner:

AbcDEFg AbcDefg
L ee—
abCDefg abCDEFg

It thus serves two functions. First, it preserves a large measure
of association between the alleles in the parent chromosomes. In
the example, the combinations in the first four and last three positions
were preserved. If there were any interactions among these genes

(i.e., any advantage in being together in those combiﬁations), that



11

interaction or advantage is preserved. Since application of the
operator is probabilistic it may cross over at other points also,
allowing other interacting gene combinations to be preserved. Secondly,
by interchanging portions of the chromosomes, crossover generates
tests of entirely new combinations of genes. In fact, crossover is
recognized by geneticists as the most important search factor in natural
adaptation.

The inversion operator randomly inverts a section of a chromosome,
thereby changing the distance between genes. For example,

AbcdeFG AedcbFG

Since inversion does not change alleles but rather associations between
genes it cannot directly affect the paYoff of an individual as can
crossover and mutation. The role of inversion is explored below

under '""Position Effect'.

The exact form of the Reproductive Plan used and variations on

the operators are given in Chapter Three.

Implications of Reproductive Plan for Dependencies

The above brief analysis is a justification for the use of the
crossover and inversion operators. As such it is a claim as to how the
Reproductive Plan (with these operators) takes advantage of non-linearities.
Let us investigate these two statements: 1) Combinations of genes
which contribute to high payoff are increased in the population;

2) When inversion is used dependent genes tend to congregate together

on the chromosome.



12

Frequency of Gene Combinations

In the basic reproductive step (2a) increasing the frequency of
an above average string in the population according to its relative
payoff increases the frequency of all the substrings contained in that
string. If combinations are not too greatly disturbed by the operators
in changing from the intermediate population to a new population (2b),
then the frequency of above average combinations tends to increase
in the population. Holland suggests that the change is more rapid
than might be predicted on an individual gene basis. Let us consider

a set of dependent genes, S, and a set of instances, SO’SI""’Sn’

0

increased at the expense of the other combinations, but the others

in which S  has the above average payoff. The combination S0 is

are still present. Since S0 is increased, it may also be that the
frequency of the alleles of the individual genes in the combination
are also increased. We can then ask whether the combination increases
faster than the individual alleles.

Consider the following simple model: A chromosome is made up
of two genes, a and b, each with alleles 0 and 1. Let there be N

strings in the population divided evenly among the four combinations

00, 01, 10, and 11. Let the payoffs be according to the following

table
string Baxoff
00 1
01 1
10 1
11 1+S

where S is the selection coefficient, a quantity greater than zero.
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Let
fa = frequency of 1 alleles for gene a = %
fb = frequency of 1 alleles for gene b = %
fij = frequency of the combination ij (i = 0,1; j = 0,1).
=1
4

Thus, in the initial population fOO = (l-fa)(l-fb), f11 = fafb’ etc.;
‘that is, the individual gene frequencies perfectly predict the
combinations.

Now, carrying out only the reproductive step of the genetic algorithm

we obtain the following population.

type munber

00 (NEG) (1) =

01 (NEg (1) =

10 (NE ) () =

11 vy ) (avs) = 2

With the total number of individuals in the intermediate population
being

N' = 3(4+5)

Recalculating the frequencies of combination and of individual

genes in the new population we obtain:

e op oo 2 N4 N4 _ 1
00 = for T f10 T N T IN/4)(4+S)  4+S

(N/4)(1+S) _ 1+S

- -
£1 = /@Sy © @5
v o . _ 24§
fa=flo * f11 * 73

£1 = 2+S

b 4+S
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But now attempting to predict fil from f;fé we obtain

2
1+S
U =1 - - {1
féfb (4+S> i 4+S f11

To 'find the difference we calculate that

S

>0
(4+5)°

- fafy =

i.e., fil > f;fé
which says that the frequency of combination cannot be accurately
predicted by the individual gene frequencies: they underpredict.

Other factors enter into this calculation in more general cases.
The non-linearity we have given is not the only type possible; however,
we are hampered by not having a well-developed theory of non-linearity
for reference. In addition, different initial conditions and more
genes leads us ;nto a morass of analytic difficulties. "~ Population
geneticists treat this problem under the heading of 'linkage
disequilibrium". Finally, operators (mutation and cfossover)
depress the effect and further complicate the analysis. In any case,
the same simple calculation shows that a linear (additive) payoff
leads to overprediction of the combination, i.e., fil < f;fé.

The statistical concept of contingency tables uses the chi-square
criterion for determining dependencies of factors. As such it maybe
useful for determining that a population has evolved under the influence
of non-linearities. It is well known as a post hoc analytic aid in
genetics; Crow and Kimura include the chi-square analysis as an appendix
to their introductory textbook An Introduction to Population Genetics
Theory ( 4). But even such basic knowledge has not been heretofore

used for the purposes we intend.
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The important point to note is that the reproductive plan inherently
produces this effect as a means of dealing with the environment.
Chapter Five contains descriptions of experiments designed to verify
the effect and to make the knowledge contained in the population

explicit to the experimenter.

Position Effect

Fisher (5) first argued that chromosomes on which dependent
genes are close together have an adaptive advantage at equilibrium
over chromosomes on which the genes are farther apart. Again under
the banner of linkage disequilibrium, the population geneticists have
proposed models to deal with this conjecture. It seems fairly well
proved for most two-gene models, but there is room for ‘doubt in three
(or more) gené models. Turner (16) provides a general discussion of
diploid models of this sort. At any rate, most models discuss only
the equilibrium conditions and not conditions of changing populations.
For example, an equilibrium level might be low due to a particular
distance, but that gene distance may have caused faster evolution.

The intuitive explanation to support the hypothesis is that
proximate genes are less likely to be separated by crossover. If the
crossover separates genes which are independent, no harm results since
the payoff associated with a gene is independent of the value of the
other genes. On the other hand, if the genes involved are dependent
on each other, a good combination broken up results in more of a loss.

The important point to note is that position does not contribute

~ directly to the payoff of a single chromosome--the payoff depends
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strictly on the alleles present. However, position does enter into

the ability of an individual to pass its good combinations to its
descendants, and thus into the ability to produce good descendants.
Chromosomes with good permutations of genes are more likely to have
descendantg iﬁ.future generations than chromosomes with bad permutations.
This constitutes an adaptive advantage.

Chapter Four describes computer experiments performed to determine
whether the position effect actually exists in some class of environments
and whether it can be detected. Briefly, there are two ways of
approaching this problem: with populations in equilibrium and with
evolving populations. Populations in equilibrium (under the normal
artificial conditions used) have the rather difficult property that
they tend towards homogeneity (i.e., all members tend to be alike).

This presents a problem (as described in Chapter Fopr) ;o that we
introduce methods of increasing population variance at equilibrium

to help bring out the position effect. Using evolving populations we
study the rate at which populations evolve as a function of position.

Figure 2.1 summarizes the types of experiments run to test the

effects of dependencies in the environments and to try to discover

these dependencies.
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CHAPTER THREE

THE EXPERIMENTAL BASIS

The Environment

The problem of deciding which environments to use in proving our
point is both difficult and simple. We wish to test the reproductive
plan on environments which have both linear and non-linear components,
trying to separate the two effects. The difficulty is that '"linear"
is well-defined while '"non-linear'" is defined by the statement: 'every-
thing else". 1In all of computability theory there is little attempt
to formalize or classify types of non-linearity. In functional
optimization work, again, linearity is considered trivigl and
non-linearity is so complicated that only a few examples of non-linear
environments are mentioned, mainly as benchmarks for the testing of
new optimization techniques. These environments are either complicated
analytic functions of a few arguments, or simple quadratic functions
of many arguments. Bagley's (1) work on the '"Meta-Environment" is
one of the few developments directed to this area - and it was done
for much the same reason we need it.

Thus, the simple part of choosing environments to search is that we
have almost a free hand to select the definition of noﬁ-linearity we

like, a freedom we shall definitely exercise.

Non-linearity

Although it is certainly not our intention to create a theory of

18
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non-linearity, a few prefatory remarks are in order. (Much of the
following development is similar to Bagley.)

A linear function of several arguments is one in which the value
of the function is obtained by summing functions each of which is of,
at most, one argument, for example:

f(x,y,2) = g(x)+h(y)+e(z).
Other ways of stating linearity are to say that the arguments are
orthogonal or independent (relative to the function f).

One interesting property of linear functions is that they are
unimodal if the component functions are unimodal, -that is, they have
only one maximum, no false maxima. This suggests the following procedure
for maximizing linear functions, as described in Bagley (p. 43):

1) Choose an argument and select arbitrary values»for all the

other argument;.

2) Vary the~va1ues of the chosen argument to obtain the relative

maximum.

3) Hold the chosen argument at the value which achieved that

maximum and choose another argument which has not been

previously chosen.

4) Go to Step 2 and repeat the process until all arguments have

been.assigned values.

The resulting argument values will then maximize the function. Even
if component functions are multi-modal, this procedure will still find
a (non-unique) optimum.

Non-linear functions are all those functions which are not linear,
i.e., not able to be expressed as sums of functions of only one

argument. Such functions may be
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unimodal, as are some linear functions; for example,

FxLy) = ()2 0 g x

IA

10, 0 <y < 10,

has its only maximum at (x = 10, y = 10). On the other hand,

1738

gx,y) = (x-y)2 0sxs10, 0syc<10,
has maxima at (x = 10, y = 0) and (x = 0, y = 10).

In summary, unimodal functions may be either linear or non-linear;
but a multi-modal function must be non-linear or linear with mulfi—modal
components. In this research arguments may take on only two values
(see below). Consequently, when the total function is multi-modal
it must then be non-linear.

In the case of unimodal, non-linear functions, it is possible to
use the same search algorithm as for 1inear functions. Unimodality
is all that is required for its success. These kinds of functions are

very similar to linear functions because of unimodality. Consider the

two functions:

f(x,y) = (x+y)2 x=1,2 glx,y) =x+y x=1,8
y=1:2 . )’:1,8
x_y £(x,y) X y gx,y)
T 1 4 T 1 2
1 2 9 1 8 9
21 9 8 1 9
2 216 8 816

Both functions have only one maximum, are very close in their range of
values, and yet one is linear and the other non-linear. Although we
are certainly not claiming that a linear function can be found to match
any unimodal, non-linear function as closely as in this case, unimodal,
non-linear functions may be difficult in general to separate in their
effects from linear functions.

For this reason, most of the non-linear environments we will study
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will be multimodal; if we cannot detect unimodal non-linearity we will
not consider it too great a loss since such environments do have simple
optimization procedures (e.g., gradient or the above). We consider it
sufficient to specify environments of inte— % merely as non-linear,

multimodal for the purpose of this research.

Discreteness

The environments we shall use are discrete; that is, arguments
to the function will have a finite number of substitution instances
(alleles); in our case this finite number is two, and the values taken
by the arguments may be 0 or 1. This is done strictly for convenience'
sage in this research (which is designed to prove‘a point, not show
all possible implementations of reproductive plans). Reporting gene
frequencies is much easier with just two alleles (only one number specifies
both frequencies), table look-up and compilation of tables is easier,
and solution times are shorter than for cases in which more alleles are
used.

This is no restriction on the kinds of environments which can be
used in real problems. Hollstien (12) implemented the concept of polygene
to use binary alleles in the representation of many-valued arguments.
Eight genes, each having two alleles, were used to specify a Real (as
compared to Integer) argument in the range 0-100, with an accuracy of
+0.5. These genes took part in the genetics of his system independently
of each other, but at payoff calculation time they were interpreted
jointly as a single number to plug into the function evaluation. The

alternative to this'coding is to use a single gene with 200 alleles,



22

all of which are adaptively significant. With this large number of
alleles, adaptation is driven largely by mutation rather than by
recombination, so that the advantages of search by recombination

are lost.

Since we are using discreet functions we must define what is meant
by "local maximum'" since we intend it slightly different than in the
continuous cése.
If f is a function of n (discrete) arguments, then m = f(al,az,...,an)
is a local maximum if
m > f(ai,az,...,an) and

m > f(al,a&,...,an), and

m > f(al.vazy--hva;l)
where

a Fal e, 8 Fa, (aj-a,) sufficiently small.

In coding theory this might be stated as: if m is calculated from
f by the argument list A, then m is a local maximum if m > f£(A') for
every A' which is separated from A by a Hamming distance of one. It is
a reasonable definition since it states that m is a local maximum if
it is greater than every value that can be reached by making the smallest
possible chénge in the argument list.
A global maximum (or just plain maximum) is a local maximum which
is at least as great as every other local maximum. Local maxima are
also called peaks, and a false peak is a local maximum which is not a

global maximum.

Thus far we have specified that the functions we shall search will
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have binary arguments. We shall study functions with up to 25 such
arguments;.therefore the size of the space we must search is about
33,000,000 points. While not overly large, the space is large enough
to provide a variety of possible functions and to show the power of

the plan.

Functional Form

In specifying the payoff function, a table look-up procedure will
be used. This has one very strong advantage: any function of the arguments
may be specified without trying to find an expression for it. An
analytic form is not particularly useful since all we are interested
in is non-linearity. In addifion, table look-up is fast. Obviously,
we do not plan to use a thirty-three million place table.
We define two types of functional forms. In the first, we will
divide the érguments into four groups of six, six, six, and seven
‘arguments apiece, providing table look-ups for each group; the result
of the function will be the sum of the four subfunctions. That is,

for the argument list CERERFLOTY

£(aj,.eerayg) = gl(al,az,as,a4,a5,aé)

+

8,(37,84,3,3 9,311,819

+

85(3)3,314531523)603172315)

+

84 (219:320°221 7222722373247 %25"

Obviously, this restricts the non-linearity of the system to at most
a function of seven.arguments, a (sub-) space of 128 points. Below,
we.describe functional forms of eight and nine arguments, spaces of

512 points. Once again, this should be sufficient for our needs; it
seems to be a reasonable compromise between experimental and design

contingencies.



24

Note that the table for a group need not be non-linear in its effects;
may tabulate a 1inearbfunction, a function which is non-linear in four
genes and linear in two, etc. In addition, there is the element of
linearity built into the final composition of f, the sum of four
(possibly) non-linear functions.

In the experimental work later on, we will wish to describe the space
being searched. Since all environments will be sums of groups, we
need only specify the groups. A group which is strictly linear in its

effects is specified, for example, by

Lol w78 80 Q.10 (10, 11 11 12 12y
B hlWVgsVy3VgaVysVgsVysVg 2V 2V Yy »¥9 0V

where v. is the contribution due to a zero value for an argument and

0

v, is that due to a one value. For example,

1
g2:L(3,4;3,4;5,6;3,4;5,6;3,4)
specifies that group two is linear and that zero-valued arguments for
genes 7,8,10, and 12 contributé three and one-valued arguments contribute
four; for genes 9 and 11 the values are 5 and 6. Group four, of course,
requires seven argument values.
Non-linear groups will be exactly specified by a table as in
Figure 3.2; in shorthand we will specify
gI:NL(A)
where A is a table of argument combinations and associated function
values. We will summarize the table for convenience by
~ A:(comb:value,comb:value,...)
where the "comb:value" pairs describe the argument combination which
forms a local maximum for the function and the value of the function
at that point. For example:
B:(110110:24,001001:13)

summarizes a table with two local maxima, one at 110110 with a function
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value of 24 and the other at 001001 with a function value of 13.

Since these two points are local maxima, there is a trough between
them. The depth and slope of the trough is of lesser intexrgst that

the number of peaks, although some experimentation may be done on those
variables also.

Thus a complete specification of the environment may appear as

ENV 3:

glzNL(A)‘

gZ:L(2,4;6,6;0,0;2,7;7,1;9,0)

g3:L(0,1;1,0;1,0;0,0;1,0;0,1)

g4:NL(B).
Group one is specified by table A and group four by table B. Groups two
and three are linear with the contribution due to argument values as
given. Note that arguménts 8,9 and 16 (the second and.third arguments
in group two and the fourth in group three) make no distinction between
their possible values. In genetic terms, these arguments are selectively
neutral; it makes no difference which value they take on.

The second functional form for specifying payoff is similar to the
first with the exception that there are only three additive groups,
containing 8, 8, and 9 genes each. This form allows for more complex
interactions between genes and makes it more unlikely that the optimum
for a group will appear in an initial population by chance. We shall
call these three groups g 8g» apd g7 Figure 3.9a is an example of

this functional form.



26

The Payoff Function

Given the specification of the environment, then, it is easy to
state the goal of a reproductive plan facing it: members of the
population will attempt to specify argument values corresponding to the
peaks of the environment. The payoff will be the actual environmental
function value resulting from the arguments contained in an individual

chromosome.,

Environments Used

Following is a list of the environments used in the rest of this
research. As stated above, we are 1imited by not having a theory
of non-linearity for reference so that we cannot claim universality
for the environments chosen. Those used range from coépletely linear
to one with a simple five-gene non-linear group to one with a very
complex nine-gene group. The differences among the environments are

discussed in the chapters on the experimental work.
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ENV 1:

gl:L(O,l;0,1;0,1;0,1;0,1;0,0)
gZ:L(O,O;O,O;O,O;O,O;O,0;0,0)
gs:L(0,0;0,0;0,0;0,0;0,0;0,0)

g,:L(0,050,030,030,050,0;0,030,0)

Figure 3.1: Environment 1.



Payoff group A:

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
061011
001100
001101
001110
001111

ENV 2:

010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111

L bt e 2 = = PO N e ORI NN W W

PO R = bt b et b e e e e = DO N
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100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111

NNHHD—'HHHHV‘“HHNNN

110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111

Summary: A:(00000:3, 11111:3)
(Note that the sixth gene is neutral)

Figure 3.2(a):

glzNL(A)

Payoff Group A.

gZ:L(O,O;O,O;O,O;O,O;O,O;O,O)

84:1(0,0;0,0;0,0;0,0;0,0;0,0)

g4:L(O,O;O,O;O,O;O,0;0,0;0,0;0,0)

Figure 3.2(b):

Environment 2.

WLWMNRRNRNON = =N e e e e



Payoff group B

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111

ENV 3:

29

3 010000 5 100000 5
6 010001 3 100001 3
6 010010 3 100010 3
8 010011 6 100011 6
$ 010100 7 100100 7
3 010101 5 100101 5
3 010110 5 100110 5
6 010111 3 100111 3
6 011000 3 101000 3
8 011001 6 101001 &
8 011010 6 101010 6
10 011011 8 101011 8
3 (011100 5 101100 5
6 011101 3 101101 3
6 011110 3 101110 3
8 011111 6 101111 6

110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111

Summary: B:(001011:10, 110100:9)

Figure 3.3(a): Payoff Group B.

glzNL(B)
g,:L(0,1;0,1;0,1;0,1;0,1;0,1)
g3:L(0,1;0,1;0,1;0,1;0,1;0,1)

g4:L(O,1;0,1;0,1;0,1;0,1;0,1;0,

Figure 3.3(b): Environment 3.

1)

LVUVMygoouvwvuLuwnWVnauawtvvLngy
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ENV 4:
gl:L(9,10;9,10;9,10;9,10;9,10;0,0)
gz:L(0,0;0,0;0,0;0,0;0,0;0,0)
g3:L(O,O;Q,O;O,O;O,O;O,O;O,O)

g4:L(O,O;O,O;O,O;O,O;0,0;0,0;0,0)

Figure 3.4: Environment 4.



Payoff group C:

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111

ENV 5:

OO NN NN JOOXD

Summary: C:(00000:8, 11111:

Figure 3.5(a):

010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111l

1:NL(C)

Figure 3.5(b):

SIS < 23 - N> a0 - a0 - S~ Al - R < A« A < A - A =l B
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100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110

101111

w~wooooococrcororroO0OroNd

110000

110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100

111101

111110
111111

8)

Payoff Group C.

g2:L(O,0;0,0;0,0;0,0;0,0;0,0)
g3=L(0,0;0.0;0,0;0.0;0.0;0.0)

g4:L(O,O;O,0;0,0;0,0;0,0;0,0;0,0)

Environment 5.

O N~NO OO0 O OO



Payoff group D:

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111

Summary :

ENV 6:

13
16
16
18
15
13
13
16
16
18
18
20
13
16
16
18

010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111

32

15
13
13
16
17
15
15
13
13
16
16
18
15
13
13
16

Figure 3.6(a):

g,NL(D)

g,:L(0,1;0,1;0,1;0,1;0,1;0,1)

gS:L(O,l;0,1;0,1;0,1;0,1;0,1)

100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111

Payoff Group D.

15
13
13
16
17
15
15
13
13
16
16
18
15
13
13
16

110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111

D:(001011:20, 110100:19)

g4:L(O,1;O,1;0,1;0,1;0,1;0,1;0,1)

Figure 3.6(b):

Environment 6.

17
15
15
13
19
17
17
15
15
13
13
16
17
15
15
13
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Payoff group E:

000000 9 010000 10 100000 11! 110000 10
000001 12 010001 7 100001 8 110001 7
000010 7 010010 @8 100010 9 110010 8
000011 6 010011 7 100011 & 110011 7
000100 7 010100 8 100100 9 110100 8
00010F 6 010101 7 100101 8 110101 "7
000110 6 010110 7 100110 8 110110 7
000111 8 010111 10 100111 10 110111 9
001000 10 011000 11 101000 10 111000 9
001001 7 011001 & 101001 7 111001
001010 8 011010 9 101010 8 111010 7
001011 7 0111011 8 101011 7 111011 13
001100 & 011100 9 101100 8 111100 7
001101 7 011101 8 101101 7 111101 6
001110 7 011110 13 101110 7 111110 &
001111 9 011111 10 101111 9 111111 8

Summary: E:(000001:12, 011110:13, 111011:13,
011000:11, 100000:11, 011000:11)

Group E is made up of the two non-linear subgroups

El: E2:
000 3 000 6
001 4 001 3
010 4 010 4
011 5 011 3
100 -5 100 4
101 4 101 3
110 4 110 3
111 3 111 5
El: (011:5, 100:5) E2: (000:6, 111:5)

which add linearly except for the points

000001 12
011110 13
111011 13

Figure 3.7(a): Payoff Group E.



Payoff Group F:

Made up of the two non-linear subgroups Fl
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which add linearly.

F1: 000
001
010
011
100
101
110
111

Fl: (000:

[T T = Y B AN ?2 =)

6,111:5)

Figure 3.7 (b):

ENV 7:

F2:

0000
0001
0010
0011
0100
0101
0110
0111

B SN2 BT, o T, I~y |

1000
1001
1010
1011
1100
1101
1110
1111

and F2,

(T2 0 < = T B N ¥ s T2 I

F2:(0100:6,1011:6)

Payoff Group F,

glzNL(B)
g,:NL(A)
gs:NL(E)

g4:NL(F)

Figure 3.7(c):

Environment 7.
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ENV 8:
glzNL(B)
gZ:NL(B)
gS:NL(B)

g4:L(0,1;0,1;0,1;0,1;0,1;0,1;0,1)

Figure 3.8: Environment 8.



Payoff group G.

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101

mHESsSrvvinuduvndsunodSLrVidSSSS PV OIS PN VSD S

01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110

© 01010111

01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101

Mo viuumsSsnsSSviSsSVUIOoOVMSA VIOV VOSTDOCOOS VSO &SSO MS

Figure 3.9(a):
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10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101

Payoff Group G.
(Cont'd)

nHvmprviosrnVIooocdVIAVISITMMNNIOMPVIIOCOSOCONSSSRESSrVTIVISESE SISO

11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
111011090
11101101

SV LIV VOO VS VIVMVVVMAVVISEVIVIOUVSSOWVMVIMUIVLVUMIS S S VS
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00101110 S 01101110 5 10101110 &4 11101110 ¢4
00101111 4 01101111 4 10101111 S 11101111 &8
00110000 7 01110000 6 10110000 8 11110000 7
00110001 6 01110001 & 10110001 7 11110001 6
00110010 6 01110010 6 10110010 7 11110010 o
00110011 5 01110011 4 10110011 6 11110011 4
00110100 6 01110100 6 10110100 7 11110100 6
00110101 4 01110101 & 10110101 6 11110101 &
00110110 & 01110110 5 10110110 6 11110110 ¢4
00110111 4 01110111 5 10110111 S 11110111 &8
00111000 6 01111000 6 10111000 7 11111000 6
00111001 S5 01111001 S5 10111001 6 11111001 4
00111010 5 01111010 5 10111010 6 11111010 5
00111011 S 01111011 4 10111011 S 11111011 &8
00111100 S 01111100 S5 10111100 6 11111100 4
00111101 S 01111101 S5 10111101 4 11111101 &
00111110 S5 01111110 4 10111110 S 11111110 8
00111111 4 01111111 & 10111111 & 11111111 9
Summary: G:(11111111:9, 10110000:8, 01001100:8)
Neighbors of the first peak pay 8. Neighbors of the
second peak pay 7 and their neighbors pay 6. Neighbors

of the third peak pay 6. All other points pay 4 or 5

randomly.

Figure 3.9(a): Payoff Group G.

ENV 9: gS:NL(G)
g6:L(O,1;0,1;0,1;0,1;0,1;0,1;0,1;0,1)

g,:L(0,1;0,1;0,1;0,1;0,1;0,1;0,150,1;0,1)

Figure 3.9(b): Environment 9.



Payoff group H:

000000000
000000001
000000010
000000011
000000100
000000101
000000110
000000111
000001000
000001001
000001010
000001011
000001100
000001101
000001110
000001111
000010000
000010001
000010010
000010011
000010100
000010101
000010110
000010111
000011000
000011001
000011010
000011011
000011100
000011101
000011110
000011111

VMIMWLOUMWMAaAWLILEVLVSEIPIVWO MNP L MO ULESEESOO®

010000000
010000001
010000010
010000011
010000100
010000101
010000110
010000111
010001000
010001001
010001010
010001011
010001100
010001101
010001110
010001111
010010000
010010001
010010010
010010011
010010100
010010101
010010110
010010111
010011000
010011001
010011010
010011011
010011100
010011101

010011110 .

010011111

Figure 3.10(a):
(Cont'd)
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100000000
100000001
100000010
100000011
100000100
100000101
100000110
100000111
100001000
100001001
100001010
100001011
100001100
100001101
100001110
100001111
100010000
100010001
100010010
100010011
100010100
100010101
100010110
100010111
100011000
100011001
100011010
100011011
100011100
100011101
100011110
100011111

Payoff Group H.

LvLwdHIUvsLsUVVMVLLVVILULIVISVLLILTSAUVILISE VIS SVL SO

110000000
110000001
110000010
110000011
110000100
110000101
110000110
110000111
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110001110
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110010000
110010001
110010010
110010011
110010100
110010101
110010110
110010111
110011000
110011001
110011010
110011011
110011100
110011101
110011110
110011111
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000100000
000100001
000100010
000100011
000100100
000100101
000100110
000100111
000101000
000101001
000101010
000101011
000101100
000101101
000101110
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000110000
000110001
000110010
000110011
000110100
000110101
000110110
000110111
000111000
000111001
000111010
000111011
000111100
000111101
000111110
000111111
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001000001
001000010
001000011
001000100
001000101
001000110
001000111
001001000
001001001
001001010
001001011
001001100
001001101
001001110
001001111
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010100000
010100001
010100010
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011000101
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+ 011001110
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111000001
111000010
111000011
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111001111
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001010000
001010001
0C1010010
001010011
001010100
001010101
001010110
001010111
001011000
001011001
001011010
001011011

001011100
001011101
001011110
001011111
001100000
001100001
001100010
001100011
0C1100100
001100101
001100110
001100111
001101000
001101001
001101010
001101011
0011011CO
001101101
001101110
001101111
001110000
001110001
001110010
001110011
001110100
001110101
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001110111
001111000
001111001
001111010
001111011
001111100
001111101
001111110
001111111
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011010000
011010001
011010010
011010011
011010100
011010101
011010110
011010111
011011000
011011001
011011010
011011011

011011100
011011101
011011110
011011111
011100000
011100001
011100010
011100011
011100100
011100101

- 011100110

011100111
011101000
011101001
011101010
011101011
011101100
011101101
011101110
011101111
011110000
011110001
011110010
011110011
011110100
011110101
011110110
011110111
011111000
011111001
011111010
011111011
011111100
011111101
011111110
011111111
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101010000
101010001
101010010
101010011
101010100
101010101
101010110
101010111
101011000
101011001
101011010
101011011

101011100
101011101
101011110
101011111
101100000
101100001
101100010
101100011
101100100
101100101
101100110
101100111
101101000
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101101010
101101011
101101100
101101101
101101110
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101110000
101110001
101110010
101110011
101110100
101110101
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101110111
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101111010
101111011
101111100
101111101
101111110
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111010000
111010001
111010010
111010011
111010100
111010101
111010110
111010111
111011000
111011001
111011010
111011011

111011100
111011101
111011110
111011111
111100000
111100001
111100010
111100011
111100100
111100101
111100110
111100111
111101000
111101001
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111101011
111101100
111101101
111101110
111101111
111110000
111110001
111110010
111110011
111110100
111110101
111110110
111110111
111111000
111111001
111111010
111111011
111111100
111111101
111111110
111111111
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Summary: H:(111111111:9, 000000000:8, 001101100:8)
Neighbors of the second and third peaks pay 6. Only
four neighbors of the first peak pay 8:110111111,

111011111, 111110111, and 111111011. All other points

pay 3,4, or 5 randomly.

Figure 3.10(a): Payoff Group H.

ENV 10:  gc:NL(G) -
' g¢:NL(6)

g7:NL(H)

Figure 3.10(b): Environment 10.
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The Adaptive Program

Every researcher who uses the reproductive algorithm has many
choices to make, among them:
1) What are the ''genes"? How many are there in a chromosome?
How many alleles should there be?
2) What operators should be used? With what parameter
settings?
3) What size should the population be?
One choice he does not have is that of selection, at least if he is
going to use Holland's (11).theory in its exact form to attain the
efficiency it guarantees: selection of parents for the next generation

must be according to payoff.

Genes, Alleles, and Chromosomes

A researcher's decision on genes and alleles depends on his knowledge
of the environment and on the level at which he wishes to model 1it.
In general this may be a very difficult question as discussed in
Chapter Two, but for our purposes it is much easier. We are facing
an artificial environment in which there may be as many as 25 parameters
which affect the payoff; each parameter may take on one of two values.
(We do not wish to minimize the difficulty involved in complex gene
encodings such as used by others (3 and 12). It's just that once
an encoding is determined it induces a function and it is the induced
function that we wish to investigate.)

Thus, each of 25 genes will correspond to one argument in the

environment and will have two possible alleles, 0 and 1. Our goal is
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then to match every gene to the argument value in the environment which
maximizes the environmental function value. Because a gene may occupy
any position on a chromosome, it is ''tagged'; every position on the
chromosome has two numbers associated: the number of the gene occupying
that position and the allele of that gene represented. A chromosome
might be represented as the following:
(13,1)(2,1)(22,0),...

At the leftmost of 25 positions is gene 13, represented by allele 1.
At the second position is gene 2 with allele 1; the fact that gene 2
occupies posifion 2 is purely accidental. Every gene is represented
exactly once in the chromdsome.

The individuals in our population are haploid chromosomes; that is,
an individual is specified by a single string of 25 genes. (We will
use the terms individual, member of the populatiqn, stfing, and chromosome
interchangéably.) Facing other environments we might have chosen
chromosomes to be diploid (composed of two strings of genes), as are
the chromosomes of most of the "higher" animals and plants. Diploidy
and the associated concept of dominance seem to be optimal for living
organisms because of their requirements in adapting to very complex,
changing environments. In artificial systems of the sort we are dealing
with the environment is stationary so that the population need not change
after it has reached the stable optimum. Hollstien (12) has achieved
some success in diploidy and modifiable dominance facing a cyclically
changing environment. (In populations made up of diploid individuals,
a single string of genes is called a gamete. In our case, then, we have

one gamete chromosomes.)
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Population Size

Cavicchio (3) and Hollstien (12) did not use the
strict form of selection required by Holland's theory. Their small
populations made it mandatory to use breeding plans to keep a high level
of performance, once achieved, and to make special efforts to maintain
the variability of the population. The.disadvantages of their modifi-
cations are large: loss of the efficiency guaranteed by the theory and
excessive programming of tricks and special cases with consequent loss
of the easy attribution of credit for success. The advantages lie in
the small number of payoff evaluations per generation, reduced computer
running time, and less storage required to run their programs.

We are not interested in minimizihg payoff evaluations since we
are taking as a premise that the Holland Reproductive Plan is efficient
and we do not need to compare it to anything else to justify its use.
Cavicchio and Hollstien have done that. Besides, it is not clear that
small populations actually reduce the evaluations needed in very
complex environments. Small populations are much more likely to be
subject to genetic drift and get hung up on a false peak. While the
reproductive plan's stochastic operators provide a method for getting
off such peaks, it is likely to take quite a while to do so. The
inherently larger variability of large populations make it less likely
that this will happen. Finally, in this sort of artificial systen,
there is much force in the argument that it is not a good population
that we want, but a single, good individual from the population;
and the fastest way to search the space is to have a large

number of individuals with a lot of mixing.
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One of Cavicchio's biggest problems was maintaining population
variance. Because of his small populations, good alleles were often
lost before their effects could make themselves known. He ultimately
tried three or four kinds of mutation operators and special selection
techniques strictly to maintain variance. In population genetics this
problem goes by the name of genetic drift: the variance in frequency
of occurrence of alleles due to stochastic effects. If the mutation
rate is small enough, an allele might be fixed randomly. In a simple
one gene, two allele model of a haploid population in which the rates
of mutation from one allele to the other are identical, and in which
there is no advantage in either allele, "if the mutation rates are half
the reciprocal of the population size ;he gene frequency is equally
likely to have any value between 0 and 1" (P.A.P. Moran, p. 125).
Thus, we can keep the mutation rate down to a reasonabié size, say
.005 (which means that mutation is doing»its proper job of just providing
variability - not searching the space) and still get by with a population
of 100. Actually we do not require as much variability as Moran suggests
we will get with this size population and mutation. All that is required
is that some alleles of every sort will normally be available in the
population, not that we will have a lot. However, since we will be
performing selection and since our model includes more than one gene,
we will use this approximation (100 members and mutation rate of .005)

as a starting point in our investigation.

Mating and the Genetic Operators

A new population is generated from the old, one individual at a

time, by means of 'genetic' operators. First, two parents are selected
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from the old population. (Selection is discussed‘in the next section.)

The operators are then applied to these two chromosomes to produce a

new individual. During the course of this research several versions of

mating schemes and the operators are used; the descfiption of an exper-

iment will indicate which methods were used. Some of the methods

were suggested by experience after experimentation but all are described
here for completeness' sake. Many are artificial--not genetic.

The exact order of operator application is dependent on the methods
being used to handle the homology/inversion problem. The problem is
that when two chromosomes are non-homologous (the order of genes on the
chromosome is not identical), crossover between them may produce
individuals with a surplus of some genes and a lack of others. Four
mating methods may be used to avoid such aberrant offspring:
strict-homology, viability, any-pattern, and best-pattern.

The strict-homology mating rule requires the two parents to be
strictly homologous for them even to be considered for crossover. If
they are not, no offspring is produced and two more parents are chosen.
The viability mating allows crossover to take place between any two
parents, but only those offspring containing exactly one of each gene
will be allowed to join the new population. To illustrate the difference
between these two methods, consider the two eight-gene chromosomes

C1 and CZ’ under consideration as possible parents:

Position 12345678
C1 ABCDEFGH
C2 AEDCBFGH

where the capital letters A-H indicate the gene function, not alleles.

These chromosomes are not homologous (the genes in positions 2-5 do not
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match exactly) and so would be rejected as parents by the strict-homology
mating rule. Under the viability rule, crossover would first take place
and the resulting chromosome examined. If crossover takes place between
positions 2-3, 3-4, or 4-5, the resultant chromosomes will be inviable;
that is they will be deficient in one or more genes. For example,
crossover between p&sitioqs 2 and 3 results in the chromosomes
ABDCBFGH
AECDEFGH

the first lacking gene E and the second lacking gene B. If, however,
crossover takes place between positions 6 and 7 (among other possibilities),
the two resulting chromosomes are viable; that is, they each have one
of the eighf genes. (The term inviable is a reflection of the genetic
situation in which a gene usually specifies enzymes needed to carry out
a particular cellular function. If the enzymes are missing, the cell
does not have the capability to maintain its own existence long enough
to reproduce. In our case, a missing gene means that not all arguments
of the environment are being specified, a situation in which the payoff
function is not well defined.)

The best-pattern mating rule (2) handles non-homologies by choosing
the pattern of the resultant chromosome to be the pattern of that
parent with the highest payoff. (If the payoffs are equal, one is
chosen at random.) The rationale for this method is that if the pattern
of genes on the chromosome contributes at all to the value of the chrom-v
osome, then on the average, better chromosomes are better because of the
pattern, and that pattern should be rewarded. In the above example, if

the particular alleles present in C2 yielded a higher payoff than the



48

alleles of Cl’ then the pattern of the result would be that of C2.
(This point will be discussed further in Chapter Four.) This method
does not correspond to anything in genetics but is an attempt to reward
patterns directly. Every pair of parents can yiéld offsfring under
this method.
As an example, suppose that we have the two chromosomes
C3 (1,0)(3,0)(2,1) (4,0)(5,1)(6,1)
¢, (1,1)(2,0)(6,0)(5,1)(4,1)(3,0),
that C3 has a higher payoff than C4, and that crossover is to take place
between positions 3 and 4. Then the pattern of genes to be used is the
pattern of C3 (i.e., 1,3,2,4,5,6). One possible crossover result would
then take the alleles for genes 1,3, and 2 from C3,and the alleles for
4,5, and 6 from C4, yielding:
(1,0)(3,0)(2,1)(4,1)(5,1)(6,0)
and the other possible result is
(1,1)(3,0)(2,0)(4,0)(5,1)(6,1).
Any-pattern mating is similar to best-pattern with the exception

that the parent from which to take the pattern is chosen randomly.

Inversion

We shall use two ways of choosing inversion points: linear and
linear+end. In the linear inversion method, two positions are chosen
randomly (i.e., each position has an equally likely probability
of being chosen) and all genes between and including these positions
are inverted. For example, if the chromosome

ABCDEFGH

is to be inverted between positions 2 and 5, the resulting individual
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is:
AEDCBFGH.

Since inversions are attempts to change the adjacencies of genes
we would hope that an inversion rule would produce all adjacencies
with equal probability to facilitate testing. One way to approach this
goal (which is desirable, not necessary) is to ask that every position
in the string be equally likely to be included in an inversion. However,
using the linear algorithm described above, this is not the case.
Positions close to the center of the string have a much greater chance
to be moved by an inversion (i.e., be in an inverted segment) than
positions near the end. The exact form is a quadratic in m, the position
in the string. If N is the number of positions on the string, then the
probability of any position being inverted is:

@2/N%) m(v+1)-n-1),
or for N = 25,

(2/625) (26m-n°-1)
In this case the central position is almost seven times more likely to
be included in an inversion than either of the two ends, making it
difficult for any gene starting out in the end position to be tested
close to a gene on the other end.

The linear+end inversion method was designed to alleviate this
problem. In choosing positions, it does the same choice as the linear
method three-quarters of the time; with probability onereighth it does
an inversion between position one and a position randomly chosen between
two and thirteen; also with probability one-eighth it does an inversion
between .position twenty-five and a position randomly chosen between

thirteen and twenty-four. The probabilities then for a position to be
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included in an inverted segment are much more nearly equal, with all but
positions 1,2,24, and 25 having nearly identical probabilities and those
positions differing by a factor of less than one-half. Since our goal
was only to attain reasonable mixing, no further refinément will be
attempted.

Inversions may be introduced into the population in the following
two manners. In the continuous inversion method, as every individual
is created it has a probability of undergoing inversion. Two positions
are selected (as above) and the genes between the two points are inverted.
Every chromosome undergoing inversion has a probability of having differen
sections inverted. For example, if a population has only one pattern,
and if six new individuals undergo inversion, it is highly likely that
there are six new, different patterns in the new population. This
certainly present a problem in homology and we would exbect this method
to work well only with the viability, any-pattern, or best-pattern
mating rules. Combining it with the strict-homology rule yields the
same kind Qf system as Bagley used and the same kinds of problems: any
chromosome which has undergone inversion has a very small probability
of finding another chromosome with the same pattern.

The mass inversion method was designed to overcome the problems
of the strict-homology mating rule, but may easily be used with either
- of the other three rules. No inversion is performed until an entire
new population has been generated. At that time, with a given probability
exactly half of the population undergoes exactly the same inversion.
(The half chosen is the odd-numbered individuals. No bias is introduced
because all individuals are generated independently.) For example,

. if an inversion is to be performed on an entirely homologous population of
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100 individuals, then there would result two patterns in the population,
each represented by 50 individuals. There is then a fairly high proba-

bility (1/2) that any two members chosen to be parents will be homologous.

Crossover

In the course of this research two different methods of selecting
recombination points are used. The first, one-crossover, chooses
exactly one point on the chromosome at which to perform crossover.
This was used for most of the experiments except those in which
we decided that slightly more mixing was desired. It operated as
follows. One of the 24 points of conngction was chosen randomly, each
point being equiprobable. All the genes to the left of this point
on one of the parent chromosomes became the left hand éart of the new
chromosome and all the genes to the right of this point on the other
parent became the right hand side of the new chromosome. (It does not
matter which of the parents contributes to the right or left since
they are selected independently of each other.) Problems involving
non-homology are handled by the mating rules. Oné alteration to this
scheme is necessary under best-pattern mating, as described above.

Multiple-crossover is used where slightly more mixing of the two
parents is desired. The leftmost gene of a new individual is supplied
by one of the parents, say Cl' There is then a probability, Pcross’
that the second position on the new chromosome will be filled from the
other parent, C2. Correspondingly, with probability l-Pcross the next

gene will come from the second position of Cl' Once a switch has been

- made to supplying genes from CZ’ there is then the probability pcross
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that the next position will come from Cl’ and so on. This corresponds
to a random walk down the two parents with probability PCross of

shifting to the other parent. There is a finite probability,

)24, that no crossover will take place as a result of this

(1-P

method. If this is the case, the individual is regenerated via the

Cross

one-crossover method.

Mutation

Mutation is a simple operator. After a new individual is generated,
every allele is changed (from 0 to 1 or from 1 to 0) with probability

P_ . Ordinarily Pmu will be very small.

mut t

Migration

In genetics, migration is the actual physical movement of organisms
from outside an otherwise closed population (a deme) into that deme.
In the usual sense of the word it is applied to situations in which
the deme under question is adapted to its environment and the migrating
individuals, while members of the same species and containing many
of the same genes, are adapted to another environment. The migrating
individuals thus contain different alleles or, at least, their frequency
of allelic occurrences are different. The effect of migration on a deme
(if continuous) is to increase the variability of the population and to
keep it from becoming too specialized. The use of migration is further
explained and justified in Chapter Four, "Variance by Migration'.

The migration rate per generation is determined as a variable

~ of the experiment: Nmig individuals enter the population as immigrants.
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The genetic constitution of an immigrant must be similar to that of the
deme to ensure that it is sufficiently adapted to

contribute to the next generation. To this end, an immigrant

will be created as follows: A chromosome is selected in the same

manner as parents are selected (i.e., according to relative payoff).

The same gene pattern is used for the immigrant but one-third of the
alleles in the "parent" are mutated. If the inversion time is continuous,
the new individual undergoes inversion with the given probability.

The immigrant then enters the population differing from some member

of the parent population by an average of eight alleles and possibly

an inversion.

Selection

Selection of parents randomly with sampling probability in
proportion to relative payoff is the method by which Holland's theory
guarantees efficiency. This research will follow the theory exactly.
Since the previous work in this area has ngt done so, it is worth while
considering the Monte Carlo algorithm actually used.

The members of the parent population are denoted by Ci’ i=1,...,100.
PAYi is the payoff for individual i; all payoffs are integer (i.e., whole

valued) numbers. We form the array CUMi (i=1,...,100) as follows:

i
CUM. = I PAY,.
1 J=1 J
CUM is similar to the concept of cumulative probability distribution,
except that it is not normalized to 1.0.

To select a parent we first generate a uniformly distributed random

- integer in the range (O’CUMIOO); call it RN. The index of the parent
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selected is then the least i such that CUM, > RN.
In ALGOL terms this might appear as:
for i: 1 step 1 until 100 do
1f CUM[i] > RN then goto done;
The probability that individual i is selected is then

PAY,
i

00
L PAY,
j=1 J

as required by the theory.

Monte Carlo Methods

The random numbers mentioned here‘are, of course, members of a
pseudo-random nﬁmber Qequence, generated algorithmically. The
particular generator used in this work is

U= u(214-3)Mod 228
a multiplicative congruential method as described in CACM, January 1967,
p. 40, Algorithm #294. The subroutine RAND! called with an integer
parameter, N, uses this method to return a number in the range (0,N-1),
such that each number in the range has probability 1/N of being selected.
Without discussing the well-known problems introduced by subtle biases
in such pseudo-random sequences, we shall accept this generator as
sufficiently random for our purposes. There is a definite advantage
in the technique of being able to start the random number sequence
at exactly the same place at the beginning of an experiment for debugging

purposes. Suitable randomization of initial conditions must be used

~ to avoid biases.
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Many of the experimental variables used are probabilities. These
are usually expressed as positive integers in the program, the
interpretation being that the fraction represented is 1/1000 that of
the integer. Testing whether an event occurs (for example, mutation)
is merely a matter of asking whether RAND!(1000) is less than pmut‘
The reason for using integer representations for probabilities is that
REAL (i.e., fractional) arithmetic on the computer employed in these
experiments takes significantly longer than integer arithmetic. No
loss in '"randomness'" is experienced; the only loss is in a restriction
of resolving power to one part in a thousand.

Each complete specification of the adaptive program parameters
is dignified with a separate number (called the case number) for
identification purposes. Each case runs for a given number of generationms.
To try to separate randém fluctuations from the effects of the program
parameters we can reinitialize the adaptive system with the same population
but with the random number generator starting at a different point.
Each start with the same population and parameters is called a run of
the case. Typically we will use from 5 to 10 runs for every experiment
and use some statistical measure based on these runs. A series of cases

will sometimes be identified by a letter and number (as Al) for convenience.

Program Description

Now that all the pieces have been presented, we can give a general
description of the whole process. The language used in the program is
CESSL (7), a procedure oriented language similar to ALGOL and FORTRAN;

it was developed locally for other purposes but lends itself admirably
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to our needs. Since it is available only at this one research install-
ation we shall not include any of the actual programs used, but only
algorithms, given in flow charts or by a sort of ALGOL notation.

At the start of an experiment the entire population receives the
same pattern of genes on the chromosome; each allele is set randomly
to 0 or 1. The payoff PAYi is then calculated for each member and the
CUM array formed from PAY.

Creation of a new popuiation procedes as follows. Two parents are
selected from the old population, as described above. A new individual
is formed by crossover using one of the three mating methods. (If there
is a homology or viability problem, two new parents are first selected.)
If the inversion time is 'continuous", the new individual undergoes
inversion with a certain probability. Every gene then is mutated accordiny
to the given probability. The individual thus formed egters the new
population, and the next individual is started. If there is migration,
this continues until 100 less the number of migrating individuals are
formed; the remaining slots in the population are then filled by migration
If the inversion time is "mass'", then, with a given probability, exactly
half the population undergoes an inversion. The calculation for one

generation is given in somewhat more detail in Figure 3.11.
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CHAPTER FOUR

POSITION EFFECTS

This chapter discusses a series of experiments which investigate
the effect of position on populations evolving under the reproductive
plan.
Recalling the argument in Chapter Two concerning the nearness
hypothesis, we note that clumping does not contribute to the payoff
of an individual chromosome--the payoff depends strictly on the alleles
present. We expect to find, however, that clumping does contribute
to the ability of a chromosome to pass good combinations of alleles
to its descendants. There are two ways in which we (and the reproductive
plan through use of the inversion operator) may reasonably gain information
based on this expectation: 1) from populations which are already
adapted to their environment (i.e., there is no significant evolution
or improvement in performance going on); 2) from populations which
are still evolving. Experiments based on these possibilities require
quite different designs and yield quite a different class of results.
Working with populations in equilibrium has the advantage that
time or speed of evolution does not need to be considered; any effects
are presumed to be a property of the equilibrium state no matter how
rapidly or slowly it was reached. On the other hand, it may well be
argued that the important of position is in aiding the spged of evolution,
so that studies of evolving populations may be of more interest albeit
possibly more.difficult. The remainder of this chapter is divided
into three parts, corresponding to these two sources of information

and on experiments using this information.
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Equilibrium Populations

In this chapter we shall call a population in equilibrium (or
in steady state) when it has reached a level of adaptation such that
no significant further evolution (of the population as a whole) will
take place. This does not necessarily describe a population in which
all the genes are fixed; mutation or other mechanisms may contribute
to variability. Equilibrium can only be defined in terms of
averages--not only individuals but also populations will fluctuate
about the equilibrium point due to stocﬂastic effects. Individuals
may be produced which are much better than the average but the population
has pressures (mutation, etc.) which keep the average down.

It is in this sense of equilibriuﬁ that we hope to detect differences
in the "equilibrium population average' due to positioﬂ effects.
Specifically, we expect that populations in which dependent genes are
clumped (are close together) will have higher steady state points
(higher population averages) than those in which the genes are a long
way apart. If this is indeed the case, then it is possible for the
reproductive plan itself to detect these differences and capitalize on
them, favoring small distances in the affected geneé. But, first we

must convince ourselves that there really is a position effect.

Experimental Procedure

In order to detect differences in the equilibrium point we will
perform experiments along the following general lines. There is a set
of genes which we wish to investigate with respect to position. We

" shall collect data from several cases (specifications of experimental
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paramcters) differing only in the positions of the distinguished genes
on the chromosomes. For each case we run the experiment many times
from an initial random population. A run of many generations without
inversion allows any position effects to be expressed in the fitness
of the descendants. These differences in the equilibrium point will
ordinarily be small and the variance over runs large so that we will be
forced to employ statistiéal techniques., We restate the hypothesis
as follows: the average payoff achieved by a population depends on the
distance between the distinguished genes. Distance is a controlled
factor and payoff a random factor. We shall undertake two lines of
analysis. In the first we will attempt to fit a straight line to the
data produced (by linear regression) and expect to find a negative
slope (smaller payoff for large distances).

Using standard techniques, we can test for significance by an
upper one-sided Student's t-test with n-2 degrees of freedom (where
n is the number of points), under the null hypothesis that the slope
is zero, hoping to reject the hypothesis in favor of a negative slope.
The t-test requires normal distribution and equal variance over the range
of the distance, although it is quite robust to departureé from these
requirements, especially when the number of points is fairly large.
We will usually have on fhe order of 50-70 points (5-7 different distances
with 10 samples at each distance) so that we feel confident of any
results. Difficulties will be discussed in the appropriate experiments.
Our normal acceptance level is 95%; we will usually state a P-value
if much larger thaﬁ 95%.

The second analysis measures only the best and worst cases: when

the genes in a dependent group are clumped and when they are completely
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spread out. For this type of experiment we will obtain twenty different
sample points for each of the two gene permutations. Each run starts

with a different initial population. The statistical analysis is the
Student's t-test for difference between means. We shall perform two-sided
tests.

Analysis for a negative slope is performed in the hope that distance
effects are fairly smooth. The distance is well defined for environments
which have only one set of non-linear genes; more than one set makes
it difficult to determine what shall be called distance for this purpose.
Best/worst testing is well defined in all environments (genes from a
group are either adjacent or they are not). In addition, the increased
number of sample points taken in this test sharpens the power of our
statistical tools. (We might mention that these experiments take a
considerable amount of computer time so that it is infeasible to obtain

large numbers of sample points for all possible experimental parameters.)

A Simple Adaptive System

We start with an experiment involving a simple environment and
a simple adaptive system. The environment is ENV 1 (Figure 3.1).

The only functional genes in ENV 1 are 1-5, linearly combined
such that zero alleles are worth nothing and one alleles are worth
one. The remaining genes contribute nothing to payoff. If the concept
of clumping is correct for dependent (non-linear) genes, among other
independent (linear) genes, then we may find it to be true also of
functional genes (linear or non-linear) among non-functional genes.

~ In any case, this environment should serve as a control on later ones.
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We try this kind of environment first because this reduces (to zero)
the '"noise" from the remaining 20 genes, an advantage in a first step.

The adaptive system used has no inversion and no migration. Since
there is no inversion and since the population starts out completely
homologous (i.e., all individuals have the same gene pattern), no
special mating rule is needed. Single crossover isvused (i.e., exactly
one crossover point genmerates a new individuals from two parents).

The probability of mutation and the pattern of genes on the chromosomes
are the only variables of interest.

Experiment Al consists of five cases (1-5), in which the initial
population and all parameters are identical (Pmut = .005), the only
difference being in the position of the five functioning genes on the
chromosomes in the five cases. These positions are given in Table 4.1.
The distance figure in the table is the distance from the leftmost
distinguished gene to the rightmost. This is the controlled value in

the linear regression.

Position of gene:

Case 1 2 3 4 5 Distance Ave pay for 10 runs
1 1 2 3 4 5 4 4.89
2 1 3 6 8 10 9 4.88
3 1 4 8 12 15 14 4.87
4 1 6 11 15 20 19 4.91
5 1 7 13 19 25 24 4.88

Table 4.1: Experiment Al. Gene Positions and Results.

Each case had ten runs of eighty generations apiece. It took
about sixty generations for the population to reach a steady state at
about 4.89. The actual runs had a variation in average population

payoff from 4.74 to 4.97; the numbers in Table 4.1 were the average
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of the ten runs for each case--they are not used in the analysis and are
included only to give an intuitive feel of the range to the reader.

The raw data consisted of 50 points, 48 degrees of freedom, requiring

a negative slope and t = 1.68 for 95% confidence. The slope obtained
from the regression was +.0003 with a t-value of t, = .30, not enabling
us to reject the hypothesis that there is no dependence of payoff on
distance.

Experiment Bl used ENV 2 which also involved 20 non-functional
and 5 functional genes, but the five functional genes were non-linear
in their effects according to Figure 3.2(a). Only genes 1-5 out of
group 1 were functional, the payoff being the highest (3) at all ones
or all zero, dropping to 2 with one allele different (four 1's and
one 0,and four 0's and one 1) and to 1 for combinations containing
three of one allele and two of the other. This experimént was Tun
under exactly the same set of conditions as experiment Al-5 cases,

80 generations, 10 runs; the patterns for each case were as given in
Table 4.1. Any problems due to the strict linearity of ENV 1 should
not affect this experiment..

Again, no significant slope was found; the population average over
all 50 runs was 2.93, the slope was +.0002, and tO = .35.

Experiment Cl used ENV 3, in which every gene is functional and group
one is non-linear according to Figure 3.3. Non-linear group B (6 genes)
has a peak of 10 at combination 001011 and 9 at the competing peak of
110100, with a trough extending to 3 between them. The maximal points
over the whole environment are at 28 and 29.

Table 4.2 contains a summary of the experimental parameters for

- the 5 cases, including the position of the distinguished genes in each
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case. The mutation rate was again .005.

Position of gene: Ave pay, 10 runs
Case 1 2 3 4 5 6 Distance at gen. 120
11 1 2 3 4 5 6 5 25.30
12 1 3 5 7 9 11 10 25.46
13 1 4 7 10 13 16 15 25.35
14 1 5 9 13 17 21 20 25.89
15 1 6 11 16 21 25 24 25.38

Table 4.2: Experiment Cl. Gene Positions and Results.

The overall average was 25.47, the slope was +0.013, and ty = .94,

Again, no significance.

The Problem of Homogeneity

The results of these three experiments force us to conclude that
there is no advantage in clumping, at least for these p;rticular sets
of experimental parameters and environments. A close look at the equil-
ibrium populations in the three experiments indicates a probable reason
for this result: most of the individuals were ''perfect'" with respect
to the genes of interest. In experiments A and B about 90% of the
individuals population had all the alleles right and in experiment C,
anywhere from 50% to 90% of the population had all the correct alleles.
Actual allelic frequencies were approximately 90-100%. Thus, the
populations are‘very homogeneous, at least with respect to the genes
of interest. When crossover occurs between two parents the distinguished
genes may be split up, but because of this homogeneity it is unlikely
that the resulting individual will have different alleles substituted
for the good combinations in the parents.

In restrospect this makes sense, for the position-induced behavior

is predicted on the basis of keeping good combinations together so that
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they will not be lost when split up. But if the good alleles are almost
universal in the population it makes no difference whether the genes

are split or not. The reproductive plan tends to lead the whole
population to the optimal point once it has been reached and the only
reason for the variance observed is mutation.

If we expect to determine dependencies using position effects in
stable populations, then, we must ensure that the steady state popu-
lations we produce are not too homogeneous. In population genetics
theory there are several reasons offered for the large variety observed
in natural populations:

1) Non-linear effects due to diploidy, e.g., overdominance and
epistasis. Obviously, this does not help haploid populations;
in addition, the extent of this effect is being questioned
by population geneticists. '

2) The population is not in equilibrium; i.e., some gene Or group
of genes is in the process of moving from one steady state
point to another due to a change in the environment or the
discovery of a new local maximum. This reason is contrary
to our assumption of equilibrium.

3) Neutralism. This theory states that most of the observed
differences are selectively neutral; the characteristics have
nothing to do with fitness or payoff. Again, this reason
does not help us for we wish to investigate the effects of
selectively important genes.

4) '"High'" mutation rates.

5) Low selection with respect to mutation rates.
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6) Migration from one deme (closed population) into another when

the two are facing different environments.

These last three reasons are the only possible sources of variation we
can use to revise the equilibrium point of a population downward to a
limited amount of homogeneity. They will be taken up one at a time.
Note that we are not using these methods to aid the reproductive
plan. On the contrary, we expect them to fight the natural tendency
of the reproductive plan to find the optimum. Our interest in this
research is not the optimum but rather dependencies in the environment
in the vicinity of the optimum. For this we need some variety in the
population when it is '"in equilibrium". We might hope that the increased
difficulty in natural or real environments would automatically lead
to a higher degree of variance which we are providing artificially.
We will first describe the experiments and results and then make

our conclusions.

Variance by Mutation

We expect increasing the mutation rate to shift the equilibrium
point of a population undergoing selection. Population geneticists
have worked out formulas to express the relation for only very simple
cases (e.g., one or two genes, two alleles, diploid chromosomes) .
Our environments are so much more complex that we can expect little
from this previous work except direction: higher mutation, more variance.
Our main problem may be that in order to get enough variance we may have

to increase mutation so much that it destroys the work of selection.
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In experiments Al, Bl, and Cl, the mutation levels were set at .005.
Two higher levels were tried: .025 and .100, in experiments identified
as A2, A3, B2, B3, C2, and C3. All that was observed was a lowering

of the average population payoff according to Table 4.3.

Population
Range average
Mutation in over Confidenc
Experiment  Environment rate payoff 50 runs Slope of t-test
Al 1 .005 0-5 4.89 +.0003 .62
A2 1 .025 0-5 4.45 +.0011 .68
A3 1 .100 0-5 3.54 +.0022 .75
B1 2 .005 1-3 2.93  +.0002 .64
B2 2 .025 1-3 2.65 +.0017 . 89
B3 2 .100 1-3 1.94 +.0022 . 86
Cl 3 .005 3-29 25.47 +.0133 .82
C2 3 .025 3-29 20.04 -.0052 .61
C3 3 .100 3-29 16.14 -.0043 .66

Table 4.3: Experiments in Mutation Rates.

Since there is no indication that the addition in variance gives rise

to the expected position effect, experiments along these lines were
discontinued. The highest mutation level used (.1) caused a large
degradation in performance: in experiment C3, the population average
produced was not much greater than that expected by chance

(16.14 vs. 14.72). These mutation levels are too high to permit effective
adaptation. Intermediate levels also did not produce the desired

effect.

Variance by Decreased Selection

Expressions obtained by theorists indicate that the equilibrium
~ point for one gene, two allele systems depends not only on the mutation

rates but also on the selection coefficient, that is, on the relative
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number of offspring expected due to an allele; the lower the selection,
the higher the variance expected. In our terms this corresponds to

the ratio of the direct '"payoffs' or function values of the chromosomes
involved. For example, in ENV 3 the best chromosome had a value of 29
and the worst a value of 3. Thus, the best was approximately ten times
as likely to serve as a parent as the worse.

Again, generalizing from the single gene model to a multiple gene
model leads to currently unsolvable mathematics so that direction is
the only inference we can draw. Our method of testing this as a possible
source of variance is merely to translate the payoffs of every chromosome
upward by some fixed amount. The selection coefficient (i.e., the ratio
of best to worst) is thus reduced, legding to a downward shift in the
performance level of the population due to the increased ability of
"non-optimal" genes and ‘combinations to enter into det;rmination of the
next generation.

In terms of the specification of the environment we have been
using, this is actually realized by the definition of a new environment
which has the appropriate characteristics. ENV 4 is merely ENV 1 with
each zero allele paying 9 and each one allele paying 10. Similarly,

ENV 5 is ENV 2 with each functional group of alleles shifted by 5

(so that the payoffs are 8,7,6,7,8) and ENV 6 is ENV 3 with all of
group 1 shifted by 10 (so that the payoffs for group 1 range from 13

to 20, and the payoffs for a single chromosome can range from 13 to 39).
If this technique is useful it would be a simple matter to adjust the
selection rate to a "standard" range as part of the adaptive system.

For the present, we will adjust the payoffs manually by changing the

environments.
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Using the altered environments as defined above, experiments
A4, B4, and C4 were performed, with a mutation rate of .005, yielding

the results of Table 4.4.

Population
Range average
in over Confide

Experiment  Environment  payoff 50 runs Adjusted Slope of t-te

A4 4 ("1"+45)  45-50 48.45 3.45 +.0044 .64
B4 5 ("2"+5) 6-8 7.80 2.80 +.003 .89
C4 6 ("3"+10) 13-39 34.14 24.14 +.022 .83

Table 4.4: Experiments in Reduced Selection.

The population averages are indeed depressed in comparison to the averages
of experiments Al, Bl, and Cl, which used the same mutation rates.

The results seem to be comparable to or slightly worse than experiments
A3, B3, and C3 which used a .1 mutation rate. But as before, the

results are not significant, nor even indicative (the ;lope is in the

wrong direction).

Variance by Migration

Migration is the last method by which we shall try to increase the
variance of a population at its equilibrium point. Migration is the
movement of an organism from outside a closed, interbreeding population
(deme) into that deme. If two demes are stable and face different
environments, their genotypic constitutions will be different, so that
mixing them via migration will tend to force the population away from
the optimum for either environment.

In single gene analysis theoretical population geneticists treat

migration exactly the same as mutation: introduction of alternate
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alleles ac;ording to a particular probability distribution. But in the
multiple gene case we expect differences in the effects for the following
reason. Although immigrants must be of the same species (i.e., they

are basically similar) they are different in many of their genes.

Thus the immigrant may contain many non-adapted alleles in one
chromosome. When it mates with an individual of the deme many non-adapted
alleles are transferred at once. Members of the deme which do not

breed with immigrants do not receive this high dose of new alleles and

so their offspring can maintain their adaptation. This is different

in effect from a comparable relatively high mutation rate where the
adaptation of every individual in the deme is threatened by the

mutation.

As described in Chapter Three, migration is simula;ed by creating
immigrants which differ from some individual already in-the population
by about a third of the genes in its chromosome. The actual proportion
of changed genes could have been an experimental parameter if the
experiments described below had been more positive in their results.

Table 4.5 describes the experiments which were run with migration
and the analyses performed.

Experiment AS with ENV 1 showed mixed results. Analysis of the
population average at gemeration 70 gave rise to our first significant
regression line. However, analysis of the population average at generation
80 was not significant, definitely a disappointment. Looking a bit more
closely at the population at generation 80 to perform a different analysis
of the data, we counted the number of '"perfect' chromosomes (chromosomes

whose five functional genes contained the right alleles for maximum
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Regression
Exp ENV Mut Migr Variable** Mean Slope Confidence  VEBR***
A5 1 .005  25% PA70 3.81 -.006 .99 11%
PA80 3.87 +.00002 - -
NP80 33.51  =-.27 .98 9%
A6* 1 .005  25% PA80 3.8 -.005 .98 10%
A7 1 .005  30% PA80 3.66 -.0002 - -
NP80 24,40 -.016 - -
BS 2 .005  25% PA80 2,24 -.004 .99 11%
" NP80 46,12 -.30 98 9%
C5 3 .005 5% PA120 22.53  +.026 - -
C6 3 .002 10% PA120 20.76  -.005 - -
TF120 26.26 -.011 - -
c7 3 .005  25% PA120 16.60 -.025 .995 10%
TF120 22.45 -.016 - -
*Gene positions: four together, one spread apart.
**PA = Population Average at generation ...
NP = Number Perfect chromosomes at generation ...
TF = Top Five average at generation ...

***Percent Variance Explained by Regression which is 95% significant.

Table 4.5:

Experiments in Migration
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payoff), and performed a regression on distance with respect to this
random variaﬁle. About one-third of the populations were made up of
perfect chromosomes. The regression showed significance, with the
average number of perfect chromosomes for the least distance (4) being
36.22 and for the greatest distance (24) being 30.82. The reason that
the population average did not reflect this difference is in the distri-
bution of the non-perfect chromosomes. For some reason, populations with
a lot of perfect individuals also had a lot of very bad individuals.

Experiment A6 was run with a slightly different arrangement of genes
on the chromosomes. Instead of spreading the genes evenly as for the
other experiments up to this point (described in Table 4.1), four
of the genes were clumped at one end of the string (positions 1,2,3
and 4) and the remaining gene was placed on the string at five different
distances (at positions '5,10,15,20 and 25). This conséitutes a different
test of the position effect. The results were significant.

Experiment A7 was run at a migration rate of 30% but showed no
significance of the population average at generation 80. The number of
perfect chromosomes likewise failed to achieve significance.

Experiment B5 (with ENV 3) was run at a 25% migration level on
environment 2 and produced significant position effects both in the
population average and the number of perfect chromosomes.

Experiments C5, C6, and C7 were attempts to define the effective
range of the migration operator on environment 3. Rates of 5% and 10%
were ineffective at producing the position effect, but a rate of 25%
produced a significant regression line on the population average.

An alternate analysis of experiments C6 and C7 was tried: the average

of the top five individuals in the population versus distance. This is
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a measure of how the best part of the population is doing and may be

a more reasonable choice for analysis than the number of perfect
chromosomes since perfect chromosomes are usually rare (or non-existent)
in complex environments. (In addition knowledge of the optimum is

often lacking.) In the case of ENV 3, a perfect chromosome pays 29

and the top five averages for the two experiments were 26.26 (C6) and
22.45 (C7), indicating that few really good chromoéomes were produced.
The results of this top five analysis were not significant, even in
experiment C7 in which the whole population average showed the position
effect. The interpretation is that while the increased migration

rate creates enough variance in the whole population to'show the effect,
it does not create much variance in the best part of the population
(which by definition is that part closest to the optimum and so much

more identical).

Best/Worst Tests

The results obtained thus far are not too encouraging. Only by
artificial means are we able to show a position effect. It may be that
seeking a linear relationship between distance and average payoff is
expecting too much. The relationship may not be very smooth. Testing
just the best and worst cases (i.e., genes adjacent and genes most
spread) should overcome some of this difficulty (if indeed there is a
distance effect). In addition, the experiments described in this section
obtain more sample points for each permutation than in the previous
experiments, allowing the statistical tests to be more certain. Finally,
we will test a wider range of, and much more complex, environments

via this method.
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The adaptive system used involved no migration, no inversion,
no special mating rule (since there was no inversion),’ single crossover,
and a mutation rate of .005. The results are stated in Table 4.6.

For each experiment two different permutations of geneé were used:

the best possible, where dependent genes are adjacent and the worst
possible, where all genes from dependent groups were as far away from
each other as possible. For each permutation twenty different initial
populations were run to equilibrium at some number of generations.
The population average at that point was used in a Student's t-test
for difference of means with 38 degrees of freedom. Tﬁe table
indicates which permutation.produced the best populations and whether
the difference between the populations. was significant at the 95% or
99% level for a two-sided t-test.

Environments 7,8,9, and 10 are newcomers. They are all somewhat
more complex than the previous ones encountered. We can briefly summarize
them as follows. ENV 7 contains five non-linear group;, the first of
order 6, the second of order 5, the third of order 6, the fourth of order
3, and the fifth of order 4. ENV 8 contains three non-linear groups
of order 6, each group similar to the single non-linear group of ENV 3;
the remaining 7 genes are linear. ENV 9 contains a non-linear group
of order 8, containing two false peaks; good points in the payoff
function are much sparser than in the previous environments. The
remaining genes pay linearly. ENV 10 repeats the 8-group of ENV 9
twice and also has a very sparse group of 9 genes with two false peaks
in addition to the true peak. It is an important point that optimum
combinations (within groups) appear infrequently in random initial

' populations of ENV 9 and ENV 10.



Best " Worst

(near) (far) Significance
Exp ENV # Gens Mean Direction Mean (if any)
D1 2 75 2.93 2.94
D2 5 150 7.77 7.77
D3 3 ! 150 25.23 25.35
D4 6 250 34.15 34.52
D5 7 | 250  32.99 32.07 99%
D6 8 250 31.91 32.36
D7 9 250 22.87 22.51 95%
D8 10 250 22.50 21.46 99%

Table 4.6: Best/Worst Equilibrium Results.
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We note that the only significant results in Table 4.6 are in the
direction we desired, i.e., the permutation in which genes were
adjacent performed better than permutations in wﬁich they were far apart.
Of the more complex environments, only ENV 8 failed to show this direction.
We point out that experiments D2 and D4 are lowered-selection versions
of D1 and D3, and are comparable to B4 and C4. ﬁone of these four showed
significance or even any movement in the right direction.

We observe that the means in experiments D5 and D8 differed by more
than one, corresponding to a full allele's difference in the payoff

or possibly to a false peaking paying one less than the true peak.

Summarz

In general, the results above are mixed. In the earliest, linear
regression experiments, of the three methods used to introduce population
variance at the stable point only migration showed any effectiveness
at unmasking the position effect with respect to the population average.
Analyses of other population data, number of perfect chromosomes and
top five average, were inconsistent. (These 1atte? two analyses were
also tried on some previous experiments but did not show significance.)

Perhaps of most interest in the migration experiments which showed
significant position effects are the steepness of the slope and the
variance expiained by the regression line (formally defined as the square
of the coefficient of linear regression). The steepness of the slopes
in the regressions on population average were small, on the order of 4%
of the average payoff from one end of the range to the other. The

~ variance explained by the regression is only about 10% of the total
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variance observed. While these differences are small, the nature of
the reproductive plan is such that it could indeed take advantage of
them. Population geneticists are very comfortable working with selection
factors on the order of 1.04. Stochastic effects on small populations
(genetic drift, etc.), however, may confound the ability of a single
short run to show these effects. Any investigation in which genetic
operators (e.g., inversion) are used to explain the effect will require
a great many runs and a lot of statistical analysis to show any
significance.

Another problem lies in the level of the migration needed to
observe the effect. (It may be that the reproductive plan could do the
detection at lower levels, but this is not verified by the experiments
abéve.) The erivironments used to this point have been fairly simple.
Nonetheless, the best chromosomes observed in experiment C7 usually
differed by 3 to 5 genes from the optimum. In a very complex environment
with many false peaks, it may not be possible for even the best individual
to reach the optimum point because of the migration pressure. This could
destroy our confidence of the meaningfulness of the result. We want
information about the environment near the optimum.

However, we will perform some investigation on the effects of the
inversion operator on populations using migration, both at the 25%
level observed to have a distance effect and lower levels. Such popu-
lations maintain the variability needed over long spans of time for
the inversion operators to have effect. In much more complex classes
of environments than those in this research this desired variability

automatically exists--it just plain takes longer to home in on the maximum
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The besf/worst analysis yielded a bit more information. It appears
that the expected position effect shows up in more cémplex environments,
although not perfectly, as witness the failure of experiment D6.
Although these results are significant, there is the distinct
possibility that they are due to effects earlier in evolution, rather
than strict equilibrium considerations. This question is considered

in the next section.

Evolving Populations

The usefulness of a "correct" permutation of genes in evolving
populations is almost impossible to show analytically. Turner's
paper on a three gene model is the most complex analysis available on
linkage, and that involves an "equilibrium",ldiploid population.

There are few analyses of populations on the move.

The intuitive analysis of the position effect in evolving populations
is much the same as for populations in equilibrium with the following
difference: 'good" combinations of genes are likely to be rare in an
evolving population. If an instance of a good combination is encountered
via recombination and then (subsequently) breken up by recombination
it is very unlikely to be reconstructed soon. Thus, there is a sort
of "discovery" problem. When a combination appears for the first time
it is more likely to make its presence known if it is not broken up
easily, i.e., if it is in a good permutation. Clearly this implies
that good permutations lead to faster evolution than do poor permutations.
This is exactly the basis on which we will examine the position

hypothesis in this section.
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By faster evolution we do not mean instantaneous rates of change
with attendant difficulties of definition. We merely intend to measure
the average population payoff at each generation and make comparisons
on this basis. There is a distinct non-independence of sampling between
generations: if population A is greater than population B at time t,
then it is also likely to be greater than population B at time t+l.

But if there are no selective differences between the populations,
then, on the average, no population should predominate 511 the time,
and more importantly, the difference should not be statistically

significant.

Best/Worst Evolution

The experimental conditions for testing the faster evolution
hypothesis are exactly the same as for the best/worst-equilibrium
experiments, (As a matter of fact, the data for the best-worst
experimenfs éome from the terminal conditions of the computer runs
used in this section.) Briefly, the experiments involved no migration,
no inversion, no special mating rule (since there was no inversion),
single crossover, and a mutation rate of .005. For each experiment
two different permutations of genes were used: the best possible,
where all genes ffom dependent groups were adjacent, and the worst
possible, where all genes from dependent groups were as far away from
each other as possible. For éach permutation twenty different initial
populations were run to equilibrium for some number of generations. We
report on experiments D1-D8 as given in Table 4.6.

The analysis performed was simple. At each generation the means

of the twenty samples for the two permutations were calculated and a
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31.83
31.86
31 .89
31.92
31.92
31.91
31.95
31.83
31.80
31.81
31.82

Output from Experiment D6.

(Cont'd)

32.00
32.05
31.96
31.94
31.97
32.00
31.98
31.93
31.87
31.90
31.87
31.98
32.05
32.03
32.07
32.08
32.09
32.15
32.18
32.13
32.14
32.06
31.90
32.00
32.01

32.09

32.14

32.18
32.21
32.12
32.14
32.13
32.13
32.14
32.17
32.20
32.13
32.04
32.05
32.06
32.13
32.12
32.14
32.12
32.09
32.07
32.11
32.06
32.12
32.08
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200 31.74 32.23
201 31.79 32.24
202 31.84 32.27
203 31.82 32.26
204 31.84 32.23
205 31.84 32.19
206 31.78 32.13
207 31.76 32.18
208 31.79 32.08
209 31.76 31.95
210 31.76 31.96
211 31.73 31.96
212 31.72 32.01
213 31.68 32.064
214 31.65 32.02
215 31.67 32.07
216 31.73 32.08
217 31.63 32.02
218 31.64 32.10
219 31.59 32.03
220 31.65 32.07
221 31.72 32.01
222 31.68 32.01
223 31.77 32.01
224 31.73 32.10
225 31.69 32.08
226 31.73 32.10
227 31.72 32.10
228 31.71 32.09
229 31.77 32.12
230 31.79 32.17
231 31.72 32.12
232 31.67 32.12
233 31.61 32.10
234 31.67 32.12
235 31.70 32.10
236 31,65 32.17
237 31,74 32.15
238 31.79 32.14
239 31.81 32.19
240 31.74 32.21
2641 31.74 32.20
242 31.79 32.23
243 31.84 32.30
244 31.84 32.23
245 31.78 32.27
246 31.74 32.31
247 31.74 32.26
248 31.77 32.26
249 31,82 32.27
250 31.91 32.36

&%

*Q

*%
%

x¥
x%

*&
T

%
-2

s %

ANNANAAAAANAANAAAANAAAAAAAAAAAAANAAAAAAANAAANAANAAANANAANANANAAANAANAANAANAN

Figure 4.4: Output from Experiment D6.
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NEAR FAR
MEAN MEAN
13.46 13.46
13.77 13.73
14.06 14.06
14.37 14.37
14.69 14.65
14.92 14.95
15.26 15.28
15.48 15.47
15.75 15.72
15.93 15.86
16.25 16.10
16.45 16.34
16,646 16.45
16.84 16.63
17.09 16.84
17.39 16.99
17.60 17.24
17.76 17.47
17.78 17.63
17.84 17.80
18.01 17.90
18.15 18.05
18.31 18.17
18.40 18.32
18.54 18.49
18.59 18.64
18.62 18.69
18.69 18.86
18.75 18.97
18.86 19.08
18.98 19.17
19.06 19.25
19.14 19.39
19.16 19.42
19.30 19.53
19.34 19.65
19.43 19.79
19.55 19.84
19.64 19.84
19.79 19.90
19.88 20.10
19.91 20.12
20,06 20.23
20.15 20.35
20.27 20.43
20,33 20.48
20,45 20.46
20.56 20.52
20.66 20.64
20,79 20.68
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50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

"3

74
75
16
77
78
19
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

20.85
20.94
21.04
21.02
21.07
21.15
21.19
2117
21.24
21.34
21.38
21038
21 .45
21.43
21.50
21.51
21.59
21.55
21.62
21.66
21.67
21.66
21.66
21.71
21.77
21.77
21.79
21.81
21.85
21.80
21.78
21.83
21.85
21.91
21.82
21.88
21.89
21.95
21.92
21.96
21.91
21.95
22.01
21.94
21.97
22.07
22.04
21.99
22.02
22.01

Output from Experiment D7.
(Cont'd)

20.73
20,79
20.82
20.85
20.97
21.03
21.11
21.15
21.16
21,26
21,34
21.40
21444
21.50
21.52
21.59
21.62
21.63
21.69
21.67
21.67
21.68
21.67
21.72
21.77
21-.78
21.79
21.77
21.84
21.94
21.90
21.93
21.89
21.90
21.85
21.92
21.93
21.94
21.99
22.02
22.00
22.03
22.06
22.10
22.06
22.03
22.12
22.15
22.16
22.20
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131
132
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136
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138
139
140
141
142
143
144
145
146
147
148
149

22 .05
22.10
22.10
22.14
22.14
22.15
22.14
22.13
22.10
22.16
22.15
22.14
22.18
22.21
22.33

22.35

22.36
22.38
22.41
22 .41
22.42
22 .48
22 .48
22 .47
22 .46
22 .43
22.50
22.51
22 .46
22.42
22 .43
22 .45
22 .42
22.39
22 .46
22.42
22 .46
22 .43
22.51
22.53
22.51
22.45
22 .46
22 .48
22 .48
22.52

22.53

22.55
22.58
22.57

22.17
22.17
22.17
22.21
22.15
22.10
22.12
22.19
22.26
22.29
22.31
22.40
22 .47
22.55
22.49
22.47
22 .43
22.48
22445
22 445
22445
22.50
22452
22.40
22.43
22 .46
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22.41
22 .42
22.46
22 .41
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22.40
22.37
22.37
22.43
22.43
22 .44
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22.53
22.47
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22 .46
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22.46
22 .45
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150
151
152
153
154
155
156
157
158
159
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161
162
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167
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169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

22.64
22.64
22 .68
22.77
22.78

22.81

22.80
22.76
22.68
22.62
22.56
22.55
22.54
22.52
22.55
22.56
22.59
22.57
22.56
22.51
22.51
22.52
22 .48
22.52
22.53
22 .57
22.57
22.61
22 .64
22.57
22.53
22.50
22 .45

22.45

22.54
22.5¢4
22 .48
22.57
22.62
22.61

22 .60
22 .60
22 .55
22 .57
22.57
22.59
22.61
22.517
22.57
22.56

Output from Experiment D7.

(Cont'd)

22 .45
22.50
22 .54
22.60
22.58
22.51
22.55
22.56
22.54
22.50
22.44
22.43
22 .44
22 .45
22 .42
22.47
22.42
22 .48
22.48
22 .44
22.49
22.52
22.53
22 .59
22 .66
22.69
22 .68
22.68
22 .60
22 .58
22 .55
22 .56
22 .49
22 .47
22 .51
22.48
22.37
22.35
22+41
22.38
22.37
22 .35
22 .43
22 .61
22 .40
22.47
22 .46
22.48
22 .42
22 .42
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200 22.59 22.38
201 22.61 22.38
202 22.55 22.40
203 22.57 22.40
204 22.66 22.41
205 22.67 22.45
206 22.71 22.44
207 22.71 22.44
208 22.72 22.39
209 22.73 22.40
210 22.69 22.42
211 22.65 22.47
212 22.68 22.42
213 22.75 22.38
214 22.78 22.44
215 22.81 22.46
216 22.80 22.48
217 22.80 22.40
218 22.84 22.39
219 22.83 22.46
220 22.89 22.48
221 22.91 22.48
222 22.91 22.44 |
223 22.88 22.45
224 22.86 22.48
225 22.78 22.50
226 22.85 22.48
227 22.90 22.55
228 22.92 22.58
229 22.95 22.58
230 22.97 22.55
231 22.98 22.57
232 22.95 22.55
233 22.91 22.55
234 22.93 22.54
235 22.88 22.52
236 22.92 22.56
237 22.95 22.58
238 22.99 22.58
239 23.00 22.61
240 22.96 22.63
241 22.92 22.64
242 22.92 22.60
243 22.95 22.59
244 22.93 22.57
245 22.94 22.56
246 22.87 22.54
247 22.87 22.49
248 22.90 22.54
249 22.89 22.54
250 22.87 22.51

R

VVVVVVVVVVVVVVVVVVVVV FVVFVVVVVVVVVVVVVVVVVVVVYVVVVYVYVYVYVY

Figure 4.5: Output from Experiment D7.
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NEAR
MEAN
14.10
14.28
14 .43
14.49
14 .58
14.71
14.83
15.02
15.10
15.17
15.21
15.32
15.36
15.52
15.66
15.79
15.88
15.98
16.04
16.05
16.21
16.35
16.46
16.56
16.64
16.69
16.69
16.82
16.93
17.09
17.14
17.22
17.35
17.42
17.56
17.68
17.72
17.87
17.92
17.99
18.14
18.29
18.45
18.52
18.55
18.64
18.73
18.77
18.81
18.91

Figure 4.6: Output from Experiment DS.
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MEAN
14.15
1427
14 .33
14.37
14 .48
14.53
14.51
14.66
14.70
14,79
14 .89
14.99
15.11
15.17
15.16
15.25
15.37
15.51
15.50
15.64
15.66
15.71
15.77
15.84
15.93
16.06
16.08
16.16
16.19
16.24
16.27
16.38
16.51
16.62
16.74
16.72
16.90
17.04
17.09
17.18
17.28
17.31
17.50
17.52
17.56
17.63
17.73
17.82
17.84
17.97
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(Contd)

74

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

19.05
19.11
19.22
19.39
19.50
19.59
19.67
19.77
19.88
19.99
20.01
20.03
20.14
20.14
20.23
20.22
20.22
20.26
20.30
20.36
20 .44
20.48
20.58
20 .65
20.71
20.74
20.76
20.90
20.95
21.06
21.08
21.08
21.05
21.07
21.19
21.16
21.16
21.28
21.28
21.36
21.39
21.44
21.46
21.48
21.50
21.49
21.51
21.54
21.53
21.60

18.01
18.09
18.18
18.26
18.28
18.28
18.48
18.44
18.53
18.59
18.73
18.82
18.86
18.91
18.98
19.08
19.02
19.11
19.10
19.13

19.08°

19.13
19.19
19.17
19.23
19.27
19.27
19.39
19.49
19.43
19.53
19.53
19.58
19.63
19.64
19.61

19.66
19.72
19.71

19.76
19.78
19.78

19.76
19.79
19.81

19.88

19.79
19.73

19.74

19.82
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113
114
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116
117
118
119
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132
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134
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137
138
139
140
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145
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147
148
149

21.56

21.56

21.65
21.68
21.66
21.66
21.69
21.74
21.71
21.77
21.76
21.87
21.91
21.91
21.84
21.91
21.85
21.92
22.02

22.05
22.09
22.14
22.10
22.07

22.12 |

22.15
22.07
22.08
22.08
22.05
21.99
21.90
21.89
21.91
21.87
21.92
21.94
21.92
22.01
22.03
22.08
22.05

22.10
22.01

22.00
22.05
22.17
22.12
22.18
22.21

19.96
20.05
20.08
20.15
20.15
20.22
20.24
20.31
20.32
20.33
20.42
20.42
20.43
20.56
20.52
20.53
20.50
20.57
20.61
20.65
20.65
20 .69
20.67
20.69
20.64
20.58
20.66
20.67
20 ’68
20.71
20.77
20.85
20.80
20.80
20.81
20.78
20.81
20.85
20.90
20.89
20.88
20.92
20.88
20.96
20.90
20.92
20.87
20.88
20.88
20.96
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Output from Experiment D8.

(Cont'd)
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160
lel
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le4
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177
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179
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182
183
184
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186
187
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22.21
22.23
22.21
22.33
22.36
22.27
22.28
22 .25
22.19
22.29
22 .24
22.27
22.22
22.23
22.19
22.27
22.39
22 .40
22.38
22.39
22 .37
22 .30
22.21
22.38
22.36
22 .24
22 .25
22.27
22.19
22.21
22.14
22.14
22.11
22.13
22.21
22.21
22.20
22.14
22.11
22.10
22.13
22.05
22.11
22.16
22.23
22.25
22.28
22.31
22.31

22.30

21.01
21.04
21.11
21.17
21.19
21.17
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21.11
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21.02
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21.01
20.97
20.96
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21.11
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21.02
21.00
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20.97
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22 .44
22 .55
22.55
22 .46
22.33
22.31
22.31
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22 .41
22 .40
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22 .42
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22 .40
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22.48
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22.30
22.31
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22.38
22 .42
22.38
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t-test performed to detect a significant difference. The results of
these experiments are best shown by the computer output. In these
figures (4.1-4.6) the column labeled "NEAR MEAN" gives the average
population payoff for the permutation with all dependent genes adjacent
and the column labeled "FAR MEAN" gives the average for the worst case
payoff. The column labeled "DIR'" shows the direction of the difference
(< means NEAR<FAR, and > means NEAR>FAR). The column labeled "'SIG"
shows whether the difference between the two values is significant.
One asterisk (*) means the difference is significant at the 95% level
and two asterisks (**) indicates significance at the 99% level.

Figure 4.1 shows the results f&r experiment D1, ENV 2. At no
time is the difference between the two‘populations significant and the
direction of the difference is not consistently in either direction.
With some confidence we can say there is no position effect in ENV 2,
our simplest non-linear environment. The lowered selection experiment,
D2, showed significance in the right direction at some points.

Figure 4.2 shows the results for experiment D3, ENV 3. It is
of considerable interest that the direction of difference between means
is in the desired direction quite consistently through 74 generations,
and that the difference is significant at the 99% level for generations
8 through 42. After generation 74 the sense of the difference wanders
but settles down after generation 95 to '<" up to generation 150, with
the difference only occasionally significant. There is a definite
difference in the rate of evolution early in time with the adjacent
combinations performing best. Afterwards the separated permutations
catch up and exceed the adjacent ones, although not usually significantly.

- Experiment D4, the lowered selection version of D3, showed somewhat
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Exp ENV Early Equilibrium

D1 2 > Not Sig < Not Sig

D2 5 > Sometimes Sig =

D3 3 > Sig < Not Sig

D4 6 > Sometimes Sig < Not Sig

DS 7 > Sig > Sig

D6 8 > Sig < Sometimes Sig
D7 9 > Sometimes Sig > Sig

D8 10 > Sig >

Sig

Table 4.7: Summary of Best/Worst Evolution Experiments.
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different behavior in that while the difference was '">" much of the time
in the early stages, it was only sometimes significant.

Experiments D5 (ENV 7), D6 (ENV 8), and D8 (ENV 10) all showed
early significant differences favoring the adjacent permutations.

In D5 and D8 there was also a significant difference at.the equilibrium
state. In D7 the earliest trend (while not always significant) again
favored the adjacent permutations.

Table 4.7 summarizes the differences in means for experiments
D1-D8 in their early and late stages of evolution. Out of the eight
different environments four show significant early differences favoring
the adjacent permutations, three show consistent, sometimes significant
differences in the right direction, and only one never shows significance,
although its earliest direction is still correct. It is important to
note that of the three environments containing more than one dependent
group (7,8, and 10), all three showed significant early differences.
This strongly implies that the more complex the environment, the more

important is the permutation.

Approach to the Optimum

We shall undertake anothér analysis to show the importance of
position in early evolution. We noted that experiments DS, D7,
and D8 all had significantly greater population averages at the end of
twenty runs for the best permutation. However, population average
doesn't tell us everything there is to know. We can, in addition, look
at the maximum payoff attained in each run. Not all populations attained
~ the maximum possible payoff value; many got hung up on false peaks.

It may be that permutations have something to do with this. Although
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we do not have enough data to make authoritative conclusions in this
regard, the analysis below is strongly supportive of the belief that good
permutations in early evolution are important..

In each of the three above-mentioned experiments we count the
number of populations (out of the 20 obtained) in which a particular
peak was attained at the end of the run. For example, in ENV 7, the
best individuals in the populations ended up on peaks paying 34, 35,
36, and 37, as well as on the true maximum of 38. We then take the
average of all the populations which have achieved a particular peak.
This is done for populations using both the best and the worst permuta-
tions. The results are tabulated in Table 4.8 for the three experiments.
It is clear that the population average associated with a particular
peak reflects the magnitude of the peak. (But it may be that at the
particular point in time that data was taken, a peak h;é just appeared
in or disappeared from the population, so that the population average
does not reflect the peak shown. As a matter of fact, we often note
in the source data that there are only one or two adherents to a peak.
However, these are standard problems in sampling and we must take the
data as is. Taking more sample points is the only way of solving this
problem.)

A two-sided t-test for difference between means was performed
for those peaks which showed up in two or more samples in both the
best and worst permutation runs. The direction of the difference most
often favored the adjacent permutations, but never significantly
(i.e., at the 95% level or more). This leads us to believe that once
a population has homed in on a peak the permutation makes no difference,

- as many of our previous experiments indicate. In simple environments
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Best Permutation

Worst Permutation

Best Number Ave. Number Ave.
Exp indiv.  populations Pay  populations Pay DIR SIG
DS 34 1 31.63 2 30.67
35 3 31.48 7 31.02 >
36 4 32.58 2 31.66 >
37 7 33.11 3 32.14 >
38 5 34.33 6 33.85 >
D7 24 0 3 21.47
25 9 22,45 11 22.34 >
26 11 23.22 6 23.35 <
D8 23 1 20.21 2 20.42
24 1 20.10 8 21.38
25 6 22,07 8 21.60 >
26 8 22.83 2 22.92 <
27 4 23.68 - 0
Table 4.8: Best Individuals vs. Population Payoff.
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nearly all fopulations find the true optimum, even given the worst
permutation of genes on their chromosomes. More complei environments,
however, are more likely to trap a population on a false peak so that
sampling the equilibrium point obtains more false peaks, possibly
yielding a significant difference'in sampled overall means, as in
this case. We note especially that experiment D8, which used our most
complex and sparsest payoff function, ENV 10, failed to attain the
optimum point at all in twenty runs with the worst gene permutation,
while the optimum was attained four times with the most favorable
permutation., - Other comparisons are similar. |

The important lesson to be gained from all this is that sparse
payoff functions require close permutations if a good point is to be
maintained once it is found; otherwise, random effects are enough to
overcome a true peak's ddvantage in selection and drivefthe population

to any of the numerous false peaks in an environment.

Inversion Experiments

To determine whether inversion has any effect as a genetic operator
we can do two things: 1look at the population average when inversion
is and is not in use; and investigate the actual gene permutations
in the populations. The first method was that chosen by Cavicchio (3)
and Bosworth (2). Its greatest failing is that it does not completely
verify the hypothesis; that is, it may be that the inversion operator
effects the payoff average by means other than bringing together inter-
acting genes.

In fact, Cavicchio's inversion experiments are subject to an

entirely different analysis. Briefly, Cavicchio's chromosomes consisted



102

of many copies of the same gene--a gene which had a very large number
of alleles. If there were two copies of the same allele on one chromo-
some (an a priori unlikely event) the effect of that allele would be
increased--unlike our system in which only one allele is allowed to
appear for a gene. His system did not need to check fof homology since
all genes were the same. Any two individuals could always mate. The
alternate analysis of the effectiveness of inversion then states the
following. For exactly the same reason that we need mating rules when
inversion is used in our system (i.e., to avoid missing or multiple
copies of a gene), it is likely that an inversion followed by a mating
with the parent or a sibling will produce individuals with multiple
copies of some alleles. Multiple copies of a good allele would then
increase payoff. Since Cavicchio did not study the micro-structure

of his populations we do not have any evidence on which to accept one
explanation over the other.

If we were to make Cavicchio's claim (i.e., comparison of population
averages) on our kinds of experiments, the claim would be easier to
accept since our protocol does not allow for this alternate hypothesis.
It does, however, allow for the possibility that dependent genes work
best farther apart and that inversion helps attain a large distance.
Further verification would be needed.

Bosworth makes this sort of claim (that inversion is effective
in bringiﬁg epistatic genes together) but presents no proof in (2).
However, in discussions with him, it appears that he has unanalyzed
data that might prove the point for a two gene case.

The experiments in the first two parts of this chapter are first

attempts to show that inversion can work as advertised: indeed, under



103

certain circumstances the position of genes on a chromosome is important.
Formally, it is easy to show that an operator such as inversion can
produce any possible permutation of genes. Thus, as in a classic

crime case, we‘can show motive (adaptive advantage), means (the ability
to produce any permutation), and opportunity (inQersion.is a part of

our adaptive system). However, in this case we need an eyewitness:

hence the experiments.

Probabilities of Permutations

In order to state that genes are actually béing pushed closer on
a chromosome, we need some idea of how distant a set of genes is likely
to be under random assignment.

Let the length of the chromosome be m and let the number of genes
" in the set, N, be n(2 < n < m). Assume that every permutation of m
genes (of which there are m!) is equally likely. For any permutation
define L to be the position of the leftmost gene from the set N and R
to be the position of the rightmost gene from the‘set N. For convenience
we define the distance, D, to be R-L+l. Thus the maximum distance is
m and the minimum distance for a set of two genes is two (when they
are adjacent).

Now, the total number of different permutations of n genes on a

chromosome of length m is (g). Thus, for any distance, we have
P(D=d) = (Number permutations with D=d)/(§).
The numerator of this expression is just

(m-d+1) (4-%)
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&
P(D=d) = (m-d+1)\n-2 2<nsdsm
()
where m = length of chromosome
= size of group
= distance
Numbers below are for m = 25.
2 5 6 8

d P(D=d) P(Dsd) P(D=d) P(Dsd) P(D=d) P(Dsd) P(D=d) P(Dsd)
2} .080 .080 !
3 077 .157 ?
4 .073 .230 '
5 .070 .300 .000 .000
6| .067 | .37 .002 | .002 || .000 | .000 |
71 .063 .430 .004 .005 .001 .001
8 .060 .490 .007 .012 1,002 .002 .000 .000
91 .057 .547 .011 .023 .003 .006 .000 .000
10 .053 .600 .017 .040 .006 .012 .001 .001
11 .050 .650 .024 .064 .011 .023 .001 .002
12 .047 .697 .032 .096 .017 .039 .003 .004
13 .043 .740 .040 .136 .024 .063 .006 .010
14 .040 .780 .050 .186 .034 .097 .010 .020
15 .037 .817 .059 .245 .044 .141 .017 .038
16 .033 .850 .069 .313 .057 .198 .028 .065
17 || .030 .880 .077 .391 .069 .267 .042 L1074
18]| .027 | .o07|| .084 | .a75 || .082 | .3a9 || .059 | .166];
19|} .023 .930 .090 .564 .094 .443 .080 .246?;
20} .020 .950 .092 .657 .104 .547 .103 .349 |
21 .017 .967 .091 . 748 .109 .657 125 .475
22 (| .013 .980 .086 .834 .109 .766 .143 .618
23| .010 .990 .075 .909 .101 .867 .151 .769
24 .007 .997 .058 .967 .083 .950 .138 .907
25| .003 1.000 .033 1.000 .050 1.000 .093 1.000

Mean = 9,67 Mean = 18.34 Mean = 19.56 Mean = 21.22
Table 4.9: Probability of Dispersion of Genes on a Chromosome.
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That is, there are (m-d+1) ways of positioning the outermost two genes
at distance d, leaving the interior (d-2) positions to be filled by

the (n-2) remaining genes. The cumulative distribution is

P(Dsg)

(&) @mndedy/ (my

which is obtained after a page of not very interesting manipulation.
Table 4.9 contains the probabilities for distances on a chromosome

of length 25 of groups of size 2,5,6, and 8. We note particularly

that for 2 genes the median and mean distances are between 8 and 9;

for 5 genes they are between 18 and 19; for 6 genes they are between

19 and 20,‘and for 8 genes they are between 21 and 22. Any reference

to "good" permutations will have to be measured against these figures.

Experimental Protocol

All the experiments in the rest of this chapter have the following
protocol. .Each experiment consists of 5 or 10 runs from an initial,
random population. Each population begins with all its individuals
having the same gene permutation, but that permutation is different for
each run. The ten random permutations used are listed in the Appendix.
(These random permutations were obtained by generating 25 random numbers
and sorting them. The i'th random number then ends up in position j,
defining a random permutation of the numbers 1-25.)‘ Each experiment
involves a particular combination of an inversion operator and a mating
scheme.

At the end of each run three sets of data are collected. The first
concerns the distance D, as defined above, for a given set of genes:

- the distance between the left- and right-most positions of genes from
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that set. D is calculated for every chromosome in the population,
100 samples in all. At the end of 5 or 10 runs there are 500 or 1000
samples of D, falling into at most 25 different cells. The data collected
is then the number of‘chromosomes which have distance D(2 < D < 25).

The other two sets of data concern the distance between all possible
pairs of genes. There are (%?) = 300 such pairs. For each of the
300 pairs two items are collected over the 500 or 1000 samples: the
average distance, and the number of chromosomes in which the distance

is 9 or less.

The analysis to be performed is a comparison of these values
against the values predicted by the probability distribution calculated
above to determine whether the inversion/mating combination has produced
permutations which are different from chance, specifically, whether
particular sets of genes have moved closer together on the chromosomes.
(Details are given below.) Immediately we are faced with an ancient
~ problem in statistics. Any statistical test requires that all sample
points be obtained independently. But in each of the 10 runs all 100
chromosomes start out with the same permutation, not 100 different
random permutations. Presumably, the random inversion will tend to alter
the initial permutations, but the danger exists that the chromosomes
will still look like the initial permutation after some number of
generations. In addition, even if the initial permutation has been
changed by inversion so that it bears no more than a chance resemblance
to some terminal chromosome, it is quite likely that all the chromosomes
in a terminal population resemble each other. These problems are of
great importance and would cause serious difficulties if we wished

to perform strict statistical analyses. It is our hope, however, that
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the results will be sufficiently outstanding that such a procedure is
not required. We will take the data as it is to see if statistical
analysis is warranted and then worry about whether it is feasible.
There are many possible combinations of the genetic operators
and mating rules concerned with inversion described in Chapter Three.

We list them below for convenience.

Inversion type Inversion time Mating rule

Linear Continuous | Strict-homology
Linear+end Mass : Viability
Any-pattern

Best-pattern

We do not report in detail any of the experiments attempted using the
linear inversion type (i.e., just picking two inversion.points at
random). As mentioned in Chapter Three, this method of selecting pivot
points yieids a small probability for the end points to be moved in an
inverted segment. Early experiments indicated that there was a very
strong tendency for the end genes to stay in place over many generations.
We stopped using "linear" and all the remaining experiments were run’
using the linear+end operator.

Of the eight possible inversion time/mating rule combinations which
might be tested for usefulness we immediately knock out
continuous/strict-homology. Bagley ( 1) reported that this combination
caused great difficulty because the individual inversions were almost
all different so that few were able to discover homologous mates. As
a result the system was slowed down by the necessity of making several

" selections of parents for one member of the new population; and, we
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presume, most of the offspring thus tended to be of the initial
permutatioﬁ, since there were more of these in the parent generation.
We are thus left with seven possibilities, all ofvwhich we will try.
For each of these combinations, the level of the inversion probability
is another variable. We will try these combinations at two or three
levels only.

For convenience we will identify experiments by two letters specifyin
the inversion type and mating scheme, followed by a number specifying
the inversion operator probability level, followed by a number specifying
the experiment of this type. For example, MH3/2 means the second
experiment using the combination Mass/Homology/0.3. The experiment

designations are as follows.

Inversion t&pp Mating scheme Operator level. Designation
Mass Viability 0.2 MV2
Mass Viability 0.3 MV3
Mass - | Homology 0.2 MH2
Mass Homology 0.3 MH3
Mass Any 0.2 MA2
Mass Any 0.3 MA3
Mass Best 0.2 “MB2
Mass Best 0.3 MB3
Continuous Viability 0.1 Ccvl
Continuous Biability 0.2 Cv2
Continuous Any 0.05 CAO0S
Continuous Any 0.1 CAl
Continuous Any 0.2 CA2
Continuous Best 0.1 CB1
Continuous Best 0.2 CB2

- generation times.

Not all combinations will be tried with all environments or at different
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Experimental results are given in tables such as Table 4.10.

While most of the table heading are obvious, the last three require
explanation, being the basis for judging the results of the experiment.
Each of the environments listed (See Figures 3.2-3.10) has its

first group 6f genes non-linear. For example, in environments 3,7,

and 8, genes 1-6 are non-linear, and in environment 2, genes 1-5 are
dependent. For each experiment facing these environments, the D-value
for these groups of genes is calculated, yielding the number of chromo-
somes observed with the various D-values. The column labeled ''PropsM"
is the proportion of chromosomes observed whose D value was M or less,
where M is 19 for environments 2-8 and 21 for environments 9 and 10.
Consulting Table 4.9 we note that for 5 genes, the proportion of chromo-
somes expected randomly to assume D—valﬁes of 19 or less is .564;

for 6 genes the proportion is .443; for 8 genes the profortion of
D-values of 21 or less is .475. If there is any movement of genes
together we expect these proportions to be exceeded in the data collected.
As an example, see Figure 4.7(b) which shows the results of

experiment MH3/4: the number of chromosomes taking on various D-values.
If we were so inclined we ‘could do a chi-squared goodness-of-fit test
to see if the distribution of D-values observed were close to that
predicted. Failing that, we might perform a binomial probability test
to see whether the proportion observed at 19 or less was significantly
more than the proportions (i.e., binomial probabilities) mentioned
above. We did not perform either of these tests. We merely point out
in the table (by an asterisk next to the value) those experiments in
which the proportion observed was greater than the proportion expected.

We follow this course rather than that of the more sophisticated statistics
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for two reasons: non-independence of sampling makes the statistics
suspect, and, as we note below, the results do not seem to be very
positive, obviating the need for subtle analysis.

The column labeled "#2.547'" refers to the pair-data collected.
By Table 4.9 we observe that the probability that a pair is randomly
at a distance of 9 or less is 0.547. For convenience, we shall call a
distance of 9 or less ''close'". One of the pieces of data collected
for each pair of genes is the number of chromosomes in which the
D-value for the pair is observed to be close. On the average then,
we expect 54.7% of the pair D-values observed to be close. Further,
there is a 0.5 probability that we will observe a pair whose close
count is greater than 54.7%. Now in a dependent group of size n there
are (g) pairs of genes from that group; e.g., for groups of size 6
there are 15 pairs and for groups of size 5 there aré 10 pairs.
If genes are positioned randomly we expect half the pairs to have
large counts. If there is any tendency for genes to move together,
there will be a tendency for there to be more chromosomes with D<9
and a greater than .5 chance for a pair to have a close count larger
than 54.7%, so that we would expect that more than 50% of the pairs
from a congregating group to have large close counts. The column
#<.547" refers to the number of pairs which have large (i.e., a
proportion larger than .547) close counts. It sounds a bit complicated,
but an example will probably (P=.8) help. Figure 4.7(a) shows a portion
of the printout from the computer program which yields this data for
experiment MH3/4. The upper portion of the matrix contains the close
counts (i.e., the number of chromosomes observed with D-values less

~ than or equal to 9). This experiment had 10 runms, obtaining 1000 sample
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1 2 3 4 5 6 7 8 9 10 11 12 13

= 770 368 365 637|596 627 712 691 368 632 359 639_
65 - 473 544 738(375 642 731 211 132 463 346 385
100 97 - 485 524|816 561 800 668 653 396 303 498
111 92 91 =~ 748{753 592 405 626 493 332 586 656
83 56 B84 66 =1673 616 561 214 449 518 502 560
72 95 66 14 11 - 506 612 768 611 510 514 977
69 67 76 _78 66 84 - 677 529 415 577 443 605_
82 71 69 98 86 57 74 - 501 306 468 198 609
86 125 100 78 105 53 88 79 - 811 515 485 759
106 143 88 85 107 73 86 99 55 = 520 654 815
76 97 103 110 90 74 79 97 80 96 ~- 657 705
106 125 115 81 90 84 98 132 99 73 66 ~- 680
79 106 77 75 _75 35 85 82 57 59 69 77 -
92 74 63 74 57 69 71 56 98 108 81 92 84
69 110 102 93 92 58 99 101 52 72 64 94 44
75 83 95 81 78 94 55 69 77 84 87 98 100
83 93 82 114 100 86 57 74 88 81 73 102 83
92 74 90 100 88 106 75 90 121 112 93 74 97
104 121 81 82 95 64 87 82 79 75 108 89 74
83 127 104 87 96 76 91 113 74 66 120 81 82

N = pd bt Pt Pk St it Pl pmd ok i
CO@\I@W?WNHO\O@_\!OW#NNH
t

21 85 62 114 73 50 95 76 101 123 119 86 83 98
22 68 93 93 106 87 84 66 91 82 69 64 91 79
23 100 101 77 87 80 58 75 73 61 710 78 86 70
24 93 92 54 108 102 92 59 60 107 90 100 108 96
25 116 97 72 83 102 86 88 81 101 106 112 98 89

Closeness count (upper triangular matrix)

Average distance times 10 (lower triangular matrix)

(a)

Distribution of group distance

D count D count
<10 0 18 60
11 142 19 169
12 0 20 252
13 -0 21 74
14 0 22 0
15 49 23 31
16 33 24 6
17 126 25 58
(b)

Figure 4.7: Output from Experiment MH3/4.
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chromosomes. Of the 10 pairs from the set (1,2,3,4,5), four are greater
than 547: (1,2) is 770, (1,5) is 637, (2,5) is 738, and (4,5) is~748;
the other six pairs have lower than average values. The entry in the
"#>.547" column is thus 4/10.

A sophisticated analysis of this information would use the binomial
distribution to test the significance of the close count's excess
over .547 and the excess of pairs (over 50%) having large close counts.
(We realize that the pairs are not independent samples, but this approach
might still have value.) However, such manipulation would only be useful
for our purposes if a clearcut trend were to be observed. Instead,
we only indicate when a value is in the right direction (greater than a
half) by putting an asterisk next to it in the table.

The column "#<8.67" again refers to pair data, this time to the
average distance between pairs over all samples in the experiment.
In this case, we are using D' as the distance where D'=D-1=L-R, for
convenience. The lower half of the matrix in Figure 4.7(a) gives this
average distance. Again, we count the number of pairs (from a group)
whose average distance is less than the expected distance of 8.67.
The average distance between pairs in a group should go down if the
group is congregating, so that the number of pairs with distance less
than 8.67 should be large if inversion is working. As postulated in
the previous column, we indicate that a value is in the right direction
by an asterisk.

Clearly, these last two columns are related: the more chromosomes
that have a D-value less than the average, the lower the average distance.

We include both measures to see if one is any better predictor.
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(As the reader will note, not all experiments collected pair data.
Those experiments were run at a time before this data collection was
programmed. In general, the results do not seem interesting enough
to do a rerun.)

The reason we bother collecting data on pairs is the following.

If we determine that genes really do move closer together, we will

still be faéed with finding a method of determining which genes con-
stitute a group when we do not have any a priori knowledge of the
environment. If, at the same time, all pairs of genes in a congregating
group show distances much smaller than predicted by chance, it may be
possible to construct a group merely by examining the pair matrix to

find pairs with abnormal values.

Equilibrium Tests

We recall that the first part of this chapter showed migration
to be an effective means of prolonging variance in the population such
that small differences in distance became a significant determinant
in average population payoff. Table 4.10 summarizes the experiments
performed to test the effect of the inversion/mating/operator-level
combinations for populations in equilibrium under migration pressure.
Several environments and run lengths were tried, along with two different
migration levels. Since most of the runs were 500 generations or more
we anticipate that any long term effect should have time to make
itself felt.

Recalling that asterisks next to a value indicate that the value

is in the direction of showing clumping, we observe that the asterisks
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INV/
MATE/
LEVEL ID MIGR % ENV  # RUNS  # GENS  PropsM #2.547 #<8.6
MV2 ] 25 3 10 500 .516*
2 25 3 10 2000 412
3 | 25 2 10 250 .628* 5/10 | 3/10
4 25 2 10 500 .552 5/10 | 4/10
MV3 1 15 8 5 500 .562* 9/15* | 8/15
2 15 7 5 500 .408 6/15 | 7/15
MH2 1 25 3 10 500 .298
MH3 1 25 3 10 500 771
2 25 3 10 2000 .325
3 25 2 10 250 .460 2/10 | 3/10
4 25 2 10 500 .579% 4/10 | 5/10
5 15 8 5 500 .242 4/15 | s/1s
6 15 7 5 500 .402 9/15% | 9/15
MA2 1 25 3 10 500 .522%
2 25 3 10 2000 .436
3 25 2 10 2000 .552 5/10 | 6/1C
4 25 2 10 2000 .591* 5/10 | 5/1¢
MA3 1 | 25 3 10 500 .354
MB2 1 25 3 5 500 .322 6/15 | 6/1¢
2 25 2 5 500 .638* 7/10% | 7/1C
MB3 1 25 3 5 500 J722% | 12/15% | 11/18
2 25 2 5 500 .730* 5/10 | 5/1C
3 15 7 5 500 .578% 9/15* | 9/1¢
4 15 8 5 500 .404 7/15 | 6/1¢
cvl 1 25 3 10 500 . 260
2 15 7 5 500 .410 9/15* | 7/15
3 15 8 5 500 .388 8/15% | 8/15
CAO5 1 25 3 10 500 .332
CAl 1 25 3 10 500 .391
CA2 1 25 3 10 500 .463*
CB1 1 25 3 5 500 .508* 9/15% | 7/1:
2 25 2 5 500 .664* | 10/10% | 9/1¢
3 15 7 5 500 ,280 6/15 | 8/1¢
4 15 8 5 500 .456* 6/15 | 8/1¢

See text for explanation of headings

Table 4.10:

Inversion/Equilibrium Experiments.
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appear next to 34 out of 78 entries in the table. (We might expect
slightly less than 39 asterisks randomly.) This is the bad news which
makes it unnecessary for us to perform any more sophisticated analysis.
We conclude that over all the possible combinations of inversion tried,
there is no distinct movement of genes together on the chromosome.
The combinations mass/best/0.3 and continuous/best/0.1 are much more
positive in their effects than others, but they are not consistent.
If we were to explore further it would certainly be with these parameters.
However, the pair data for those combinations is weak, destroying
whatever hope we might cherish of being able to detect movement when
we did not know what we were looking for. In particular, although the
counts and average distances exceed the thresholds set for them, they
do not exceed them by much, certainly not by as much as_many other samples
do.

Since the table speaks for itself, and since the results are
not too positive, we will mercifully cut short any further analysis

and end this section, saving discussion for the end of the chapter.

Evolving Tests

In the section of this chapter entitled "Evolving Populations"
we showed that although differenceé in payoff due to gene distances
did not always show up in the equilibrium state, they did show up
consistently, very often significantly, in the early stages of evolution.
In addition, the goodness of a permutation had an important effect

on how close the population could get to the true maximum.
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With this in mind we report here on a set of experiments which
test combinations of the mating/inversion operators to see if any of them
have effect on permutations early in evolution. Picking a time at which
to measure distances is a difficult task. Clearly, if there is a distance
effect early, but not later, running too long will destroy any
adaptation on permutations due to the early effect; The values chosen
(50,150, and 250 generations for the various environments) seem to be
reasonable. If the effect is there, but only to be observed at partic-
ularly special instants of time, it does not do.us much good, since
it is unlikely that we would discover this time accidently. We do not
wish to do an exhaustiﬁe search: we need a strong effect.

Table 4.11 reports on these efforts. Most of the trials were
allocated to the combinations involving the 'best-pattern' mating rule
since these had shown the most promise in the previous trials. Again,
mass/best/0.3 showed well; but continuous/best/0.1 did not fare well
and continuous/best/0.2 did only average (4 of 8 trials showed movement
in the right direction). For MB3, 7 of 8 trials showed movement of the
total group'D-value in the right direction but experiments 14,15, and
16 exceeded the expected proportion of .433 by .008,.013, and .0l1,
hardly significant differences. In addition the result-for ENV 2
must be viewed with caution since our previous experiments show little
reason to expect success with this, the simplest of all our non-linear
environments, Even counting ENV 2, the four positive experiments
(MB3/10,11,12, and 17) may well be significant, but they represent
success on only four of the six environments. A final source of
discouragement is that the pair data do not reveal any reason to believe

~ that detection of a group would be easy under these circumstances.
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INV/
MATE/ ,
LEVEL D ENV # GENS Prop<M #2.547 #<8.67
MV2 10 9 150 .642* 11/28 13/28
11 10 250 .429 14/28 12/28
MV 3 10 9 150 .439 - 12/.28 10/28
11 10 250 411 15/28* 13/28
|
MH2 10 9 150 .600* 11/28 13/28 |
11 10 250 457 - 8/28 8/28
MH3 10 9 150 .450 12/28 7/28
11 10 250 . 748% 19/28* 19/28*
MA2 10 9 150 .455 11/28 13/28
11 10 250 .482% 11/28 10/28
MA3 10 9 150 .539* 19/28* 18/28*
11 10 - 250 .454 15/28* 11/28
MB2 10 9 150 .240 12/28 10/28
11 10 250 .418 13/28 13/28 |
MB3 10 9. 150 .535% 10728 11/28 !
11 10 250 L644% 18/28* 16/28*% ©
12 2 50 .692* 7/10* 7/10*
13 2 150 .488 5/10 5/10 |
14 3 50 .451%* 7/15 7/15
15 3 150 .456% 9/15* 10/15*
16 7 150 454* 9/15* 7/15
17 8 150 561% 10/15* 9/15*
Table 4.11: Inversion/Evolution Experiments.

(Cont'd)
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INV/
MATE/
LEVEL ID ENV # GENS PropsM #2.547 #<8.67
Cv1 10 9 150 .322 12/28 16/28*
11 10 250 .387 11/28 14/28
Cv2 10 9 150 - .297 13/28 14/28
11 10 250 .328 11/28 12/28
CAl 10 9 150 . 554* 10/28 8/28
11 10 250 .454 19/28* 17/28*
CA2 10 9 150 .459 14/28 11/28
11 10 250 . 549* 16/28 18/28*
CB1 10 9 150 .531* 13/28 15/28*
11 10 250 .349 13/28 10/28
12 o2 50 .561 5/10 5/10
13 2 150 472 3/10 3/10
14 3 50 441 8/15% 9/15*
15 - 3 150 418 8/15* 8/15*
16 7 150 .392 6/15 7/15
17 8 150 .505% 7/15 6/15
CB2 10 9 150 446 8/28 7/28
11 10 250 .423 14/28 11/28
12 2 50 .602* 6/10* 6/10%
13 2 150 .625*% 8/10* 8/10*
14 3 50 .451* 11/15* 9/15*
15 3 150 LA467* 6/15 8/15%
16 7 150 .358 7/15 6/15
17 8 150 .400 6/15 5/15
Table 4.11: Inversion/Evolution Experiments.
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Summazx

Much as we would like to claim confirmation of our hypothesis
that dependent genes move together under the influence of inversion,
we do not feel confident in doing so on the basis of the evidence
garnered in‘this chapter. Of all the experiments performed involving
combinations of the inversion operators and the mating rules, it appears
that the combination of mass/best/0.3 is by far the best in approaching
the beahvior we sought. It produced possibly signifiéant movement in
three out of the four environments used in the migration equilibrium
experiments and four out of six environments used in the early evolution
experiments. But the failure of inver;ion in general to be stronger
where it did move correctiy, its failure to be universally successful,
and the outstanding failure of the pair data to be useful, all contri-
buted enough negative output to discourage us from trying to overcome
the difficulties in producing meaningful statistics from these highly
non-independent samples. The MB3 data may show a trend or even be
significant, but if so the significance is of low order and the results
are not likely to be of great interest. Our efforts are best devoted
elsewhere.

However, the results of the early evolution experiments must still
be accounted successful. We can state with some confidence that position
is an important factor in the rate at which populations advance from
starting conditions far from the optimum (which is certainly likely
to be the type of starting condition encountered in artificial work).
More importantly, position can affect the system's likelihood of

achieving the maximum value in a space.
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That wé cannot demonstrate the ability of inversion ot take
advantage of these conditions is regrettable. Two possible explanations
for this failure come to mind, two explanations which suggest conditions
under which inversion may work better. The first is that we are working
with chromosomes which are too short. Consider a non-linear group of
order six. Given a single crossover operator and a random positioning
of genes on a chromosomes of length twenty-five, the éverage distance
between the left- and right-most genes of the group is about nineteen,
so that crossover will occur within the group with probability .8
or so. If inversion manages to reduce the spread by a third to a distance
of 12 or less (which has an a priori probability of .04), the probability
of crossover splitting the group is still one-half. It may be that our
experiments did, not work because this reduction
does not provide sufficient selective advantage to over:
come the stochastic effects of the adaptive system. If so, problems
with much longer chromosomes might find inversion more useful. This
suggests an experiment in which many superfluous genes are added to the
chromosome to provide enough length so that groups have a very wide range
of probabilities of being split in different permutations.

The second possible reason for inversion's non-effectiveness is
the shortness of the length of time in which inversion has to act while
position is important in early evolution. In our experiments this was
anywhere from 25 to at most 150 generations. Considering the mass
inversion operator at a level of 0.3, only 45 different inversions
occur, on the average, in 150 generations. If even a third are
advantageous and if three-quarters of those are able to overcome the

. stochastic effects of the system, there are only 11 advantageous permu-
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tations in that time. From our expericnce this is not enough to do

the job. Inversion may be effective only in systems in which significant
adaptation continues for a very long time. Such systems may be very
much more complicated in terms of number of genes and alleles, they

may be diploid with dominance adding to the adaptive problem, or the
environment may be non-stationary. All these possibilities suggest a
whole new series of experiments. At any rate, the subject is not closed;

the early evolution experiments are too positive for that.



CHAPTER FIVE

FREQUENCY EFFECTS.

Existence of a Frequency Effect

The complete analysis of frequency effects for a simple two gene
model (given in Chapter Two) is difficult to extend to a complex environ-
ment and a complex adaptive system involving stochastic genetic operators.
Most work to this point merely assumes that effects demonstrated for
two genes do indeed generalize to the more complicated case. ("It
is intuitively obvious that ... .'") However, if we hope to detect
evidence of non-linearities using this idea, it would be well to establish
the fact--which we shall call the IFC (Increased Frequency of Combin-

ation) effect.

Chi-Squared Analysis

The chi-squared goodness-of-fit statistic is a simple test to
determine how well a set of observations of a random variable agrees
with a probability distribution. The distribution defines classes
(or ranges) of the random variable called cells and the observations
are assigned to those cells. When the classification is the cross
product of two or more independent criteria, the cells are arranged
in a table and the test is then called the chi-squared contingency
test. The degrees of freedom in any chi-squared test is equal to the
number of cells, minus the number of parameters estimated from the
data, minus one. Thus, in a 2 x 2 table in which the probability

~ of occurrence of each class is estimated from the data there are

122
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2 x 2-2-1 = 1 degrees of freedom. Similarly ina 2 x2x2 x 2 x 2
table (which we will call a five-way table) there are 26 degrees of
freedom.

The nature of the contingency table test is to detect any departure
from linearity--the hypothesis is that the frequency of the cross-product
classification can be predicted by the estimated frequency of the

individual classes. The statistic

:E: (Expectedi—Observedi)2
over all Exbected
cells i P i

is then distributed according to the chi-squared distribution with the
appropriate degrees of freedom. If the statistic exceeds the given
confidence level we may reject the hypotheses of linearity: there is
some interaction between' the classes.

In addition to being a statistical test the observed chi-squared
value may be used as a measure of association among the variables.
That is, the magnitude of the statistic calculated above may serve as
a ranking on the degree of association.

A key point in the chi-squared test, as in most statistical work,
is that the obﬁervations are required to be independént samples of the
random variable. We will immediately run into difficulty on this
account. Another important point which will be a source of difficulty
is that, for the test to have validity, authorities recommend that the

expected number of items per cell be at least five for 80% of the cells

and never less than one (14).



124

Multiple-Gene Tests

In app;ying contingency table analysis to our situation we find
that a gene is a component class and that alleles are the possible
values for the class. In determining whether there is interaction
among n genes, Wwe use an n-way contingency table, i.e., a table with
2" cells and 2"-n-1 degrees of freedom. We shall call the resulting
statistic a Group Chi-squared Value (GCV) or an association index.

Now, if each of the alleles were to have a frequency of 0.5,
in order to satisfy the requirement that each cell has an expected
value of 5, we would need (on the average) 5 x 2" samples. In the case
of n =5 this is 160. If some of the allelic frequencies are lower
we need a correspondingly higher number of samples. In any event,
in order to calculate the chi-squared statistic for more than 3 or 4
genes at a time we require more samples than are available from our
basic 100-individual population. To handle this requirement and to
satisfy the requirements of randomness as much as possible we will
adopt the following experimental protocol:

1. Under a given set of parameters, 10 populations will be run

to a terminal state, producing 1000 samples.

2. To minimize the effects of the starting condition a new
population (i.e., a new set of alleles for each individual)
will be generated at the beginning of each run.

3. In some experiments, to minimize the effects of the original
gene permutation, a new initial permutation of genes will

be generated at the beginning of each run.

Table 5.1(a) displays the parameters used in the H,I,J,K, and L
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Gene

Permutations
EXP ENV # Generations Crossover* across runs**
H1 2 8 One All Same
H2 2 8 One Random
H3 2 8 .100 Random
H4 2 8 .250 . Random
HS 2 8 .500 Random
H6 5 8 .100 Random
H7 ) 25 .100 Random
H8 5 50 .100 Random
11 1 4 One All Same
I2 1 4 One Random
I3 1 4 .100 Random
I4 1 4 .250 Random
15 1 4 .500 Random
J1 3 16 One All Same
J2 3 16 One Random
J3 3 16 .100 Random
J4 3 16 .250 Random
JS 3 16 ©.500 Random
Jé 6 16 .100 Random
J7 6 25 100 Random
K1 7 25 One Random
K2 7 25 .100 Random
K3 7 25 .250 Random
K4 7 25 .500 Random
K5 7 50 .167 Random
K6 7 16 .167 .~ Random
K7 7 100 One Random
K8 7 150 One Random
L1 8 8 .167 Random
L2 8 16 .167 Random
L3 8 25 .167 Random
L4 8 16 One All Same
LS 8 50 One Random
L6 8 100 One Random
Mutation = .005
Inversion = None
Migration = None

*One => One-crossover. A number => probabilistic crossover with
given probability.

**All same => Permutation (1,2,...,24,25) used in all 10 runs.

Random => A different random permutation used in each of 10 runs
(See Appendix B).

Table 5.1(a): Multi-gene xz Tests: Experimental Parameters.
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Experimental xz Observed**

Genes Tested Freedom
H1' H2! H3' H4' H5" H6"
*1,2,3,4,5 26 5804 2908 3120 3268 4771 87
21,22,23,24,25 26 80 68 53 27 41 61
10,11,12,13,14 26 84 62 58 41 27 27
6,10,15,20,25 26 41 69 68 53 43 39
1,7,13,19,25 26 62 47 94 64 45 50
I1' 12! 13" 14" I5'
1,2,3,4,5, 26 91* 47" 22* 50° 37*
21,23,23,24,25 26 78 28 35 43 42
10,11,12,13,14 26 59 34 27 21 2
6,10,15,20,25 26 22 45 53 37 24
1,7,13,19,25 26 44 59 72 26 30
J1' J2! J3! J4' Js! J6'
*1,2,3,4,5,6 57 1708~ 158" 328 384 140 263
20,21,22,23,24,25 57 1767 167* 98* 74 75% 138
10,11,12,13,14,15 57 234 101* 98* 107* 60% 99
1,6,10,15,20,25 57 216 140 106 147 67 99
K1' K2' K3! K4 KS! Ké!
*1,2,3,4,5,6 57 336 486 240 385 8214 106
*7.8,9,10,11 26 112 84 114 48 114 53
*13,14,15,16,17,18 57 253 120 214 164 424* 91
*19,20,21 4 11 56 54 26 92 16
*22,23,24,25 11 33 78 101 13 84 41
1,7,13,19,25 26 94 83 130 74 188 55
2,8,14,20,24 26 52 58 128 44 122 55
1,2,7,8,13,14 57 261 108 214 146 300Y 133
L1 L2 L3! L4
*1,2,3,4,5,6 57 161 214 750" 949
*7,8,9,10,11,12 57 112 92% 463 678
*13,14,15,16,17,18 57 184 266 420 1414
19,20,21,22,23,24 57 69 100*  153% 267"
1,7,13,19,22,2 57 90 84 1597 190
2,9,18,20,21,23 57 85 115 239" 1234
3,12,15,19,21,24 57 96 1217 130* 147
2

Table 5.1(c):

Multi-gene ¥

Tests: Results of Second Runs.
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[Degrees of Freedom o Xo.95 0,99 0,995
1 0.46 3.84 6.64 12.12
4 1 3.36 9.49 13.28 20.00
11 10.34 19.68 24,73 33.14
26 25.34 38.89 45,64 + 56.41
57 56,34 75.61 84,71 98.75
Table 5.2: Selected Points of the x2 Distribution.
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CASE 393

117, 06723712

ANALYSTS AT END OF lo GENERATIONS

SAME PERMUTATION EACH RuUN

COPIES= 10

GENES: 1 2 > 4 b) o

FREGS: 62 G4 51 G2 .50 W48

COMB EXP aes CGMo EXP
00d00¢C 19.29 5 1000Jv 13.96
000001 1%9.15 5 100001 15.¢0
0N0010 27.06 33 100010 19.58
000011 25.59 43 1000114 it.01
005100 14 .42 21 100i00 10.49
0nd101 13.6¢4 7 160101 9.52
0ot110 20 .33 9 100110 14,723
009111 19.23 \ ) 100111 13.78
v01000 ¢0.2¢2 9 10100v 14,70
001061 19.12 17 101001 . 13.9%0
001010 28.51 68 . 101019 20.73
0nl1011 ¢6.95 91 101011 19.60
u01100. + 15.19 16 101100 11,35
001101 16.37 . b 101101 1u.45
uNitllo 2l .62 & 101110 15.57
001111 20.25% 31 101111 14.73
v10000 15.15 11 110000y 11.01
u10001 14.32 i 110001 1.4l
01C€010 21.35 6 110019 15.02
010011 20.19 15 110Ul 14.68
012100 11.38 53 11010y 8.27
010101 10.7¢ 12 110101 7.82
010110 16.04 3 110110 11.66
010111 15.17 11 110111 11.03
011000 15.95 1 111000  11.6C
011001 15.09 5 111001 106.97 -
011010 22449 13 111010 16.35 4
011011 21.26 36 111011 15.4%6 20
0111090 11.99 18 111100 .12 b
011101 i1.33 A 111101 0elb 3
011110 16.90C 0 111110 12.29 7
011111 15.938 17 111111 11.62 2

CHISQUARE = 1N26.23
DEGREES 0OF FREEDOM = 57

The underlined points are the peaks of the environment.

Figure 5.1(a): Sample x2 Multi-gene Test-Experiment Jl.
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CASE 404

01:43, 06/23/72

ANALYSTS AT END OF 16 GENERATIONS

NEW PERMUTATIUN EACH RUN

COPIES= 10

GENES: 1 2 3 4 5 6

FREQS: 48 .50 57 +39 «55 .55

CGMB EXP Jd8s CUMsg EXP 0ovS

000000 12.27 5 102000 11.79 8
000001 15.55 11 100001 14.96 19
000010 15.62 10 10001~ 15.00 i0
000011 19.79 25 100011 19.352 21
000100 8.15 9 100100 T.63 12
0CJ101 10.32 4 100101 9.32 5
000110 10.37 5 1C0110 9.5¢6 10
000111 13.14 13 100111 1¢.63 6
001009 16.87 11 1010C0 le.21 la
001001 Z1.39 21 101001 2U.55 ih
601010 21.48 16 . 101010 20.53 ¢3
Un1N11 ¢1.22 76 101011l 2€.15 40
001100 i1.20 1¢ 10110V 10.7¢€ 10
unN11ol 16.20 - 7 101101 13.664 11
021110 14.26 7 1011190 - 13.70 10
001111 18.07 28 101111 17.36 i
0106000 12.77 9 110000 1¢.27 27
010001 16.19 v 8 116001 15.55 9
01u010 16.25 14 110010 15.02 i5
010011 2C .60 3 110011 19.79 i0
v10100 8.48 26 110100 5.15 41
010101 10.75 9 110101 1v.32 19
010110 10.79 9 110110 10.37 20
010111 13.68 i 110111 13.1¢4 8
011000 17.56 13 111000 lo.87 2l
011001 22.26 2Z 111001 21.39 16
011010 22 .35 19 111010 21.48 17
011011 ¢8.33 43 111011 27.¢2 ¢l
011100 11.66 12 111100 11.20 11
011101 14.78 lo 111101 14.20 8
011110 14.84 6 111110 14.¢6 9
Jvl1ll1ll1l 18.81 0 111111 18.037 8

CHISQUARE = 394.87

DEGREES OF FREELOM = 57

The underlined points are the peaks of the environment.

Figure 5.1(b): Sample X2 Multi-gene Test-Experiment J4.
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CASE 418, 06:16, 07/10/72

,%NALYSIS AT END OF 50 GENERATIONS, NEW PERMUTATION EACH RUN,
0 Runs

GENES: 1 8 9 10 11 12
FRECS: 14 .13 «80 .18 «70 76
COMB EXP ags COMB EXP 08s
000000 71.917 5 100000 1.36 1
000001 26.40 13 100001 4.51 3
000010 19.43 11 100010 3.32 1
000011 64.31 49 100011 10.99 4
gco100 1.85 4 100100 .32 37
000101 6.11 6 100101 1.04 8
000110 4.50 4 100110 17 12
000111 14.89 5 100111 2.55 3
001000 32.71 19 101000 5.59 10
001001 108.28 105 101001 18.51 10
0C1010 79.69 71 101010 13.62 6
0C1011  263.81 317 101011 45.10 15
001100 71.51 5 101100 1.29 4
001101 &5.07 13 101101 .29 3
001110 18.45 11 101110 3.15 8
001111 61.08 45 101111 10.44 1
010000 1.20 3 110000 .21 2
010001 ~ 3.98 9 110001 .68 1
010010 2.93 3 110010 50 0
010011 9.70 5 110011 1.66 1
010100 .28 0 110100 .05 2
010101 - .92 0 110101 .16 1
010110 .68 0 110110 .12 1
010111 2.24 2 110111 .38 0
011000 4.93 2 111000 .84 0
011001 16.32 19 111001 2.79 2
011010 12.01 3 111010 2.05 1
011011 39.77 58 111011 6.80 3
011100 1.14 0 111100 .20 1
011101 3.78 3 111101 <65 0
011110 2.78 1 111110 «48 4
Oli111 9.21 3 111111 1.57 1
CHISCUARE = 4807.74

DEGREES CF FREEDOM = 57

The underlined points are the peaks of the environment. This set

of data does not satisfy the X2 test requirement.

Figure 5,2(a): Sample x2 Multi-gene Test-Experiment LS.
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CASE 418, 06:19, 07/10/72

ANALYSIS AT END OF 50 GENERATIONS, NEW PERMUTATION EACH RUN,
10 Runs

GENES: 3 12 15 19 21 24
FRECS: .73 .76 67 .81 .81 «70
COMB EXP 0BS COMB EXP 0BS

000000 .20 0 100000 «56 1
000001 «48 0 100001 1.35 2
0Co010 .89 2 100010 2.48 7
000011 2.13 1 100011 5.94 17
000100 .89 0 100100 - 2.48 8
000101 2.13 1 100101 5.94 13
000110 3.92 1 100110 10.94 10
000111 9.38 5 100111 26.15 38
0C1000 b2 0 101000 1.16 1
001001 .99 0 101001 2.77 0
001010 1.83 0 101010 5.11 3
001011 4.38 0 101011 12.22 14
001100 1.83 1 101100 5.11 g
001101 4.38 3 101101 12.22 5
001110 8.08 7 101110 22.52 18
001111 19.30 16 ‘101111 53.81 49
010000 67 3 110000 1.87 0
¢g10001 1.60 6 110001 4.46 i
010010 2.95 1 110010 8.22 9
010011 7.05 10 110011 19.65 9
010100 2.95 4 110100 8.22 8
g1o101 7.05 14 110101 19.65 8
010110 12.99 16 110110 36.22 35
010111 31.05 48 110111 86.55 49
©011000 1.38 1 111000 3.84 5
011001 3.29 1 111001 9.18 14
011010 6.07 1 111010 16.92 16
011011 14 .50 13 111011 40.44 47
011100 6.07 5 111100 16.92 9
011101 14.50 11 111101 40.44 51
o1i110 26.74 18 111110 74 .54 96
011111 63.90 75 111111 178.14 184

CHISQUARE = 187.94

DEGREES OF FREEOOM = 51

This group of genes is linear with respect to payoff. The data

do not satisfy the x2 test requirement.

Figurel5.2(b): Sample x2 Multi-gene Test-Experiment LS.
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sefies of experiments analyzed below. In all experiments the mutation
rate was ,005, there was no migration, and no mating rule was needed
since there was no inversion. Single crossover is indicated by "Oﬁe"
and probabilistic crossover is indicated by the probability used.
An initial gene permutation of (1,2,3,...,24,25) for each run is indicated
by "All same'" and '""Random" indicates that a different, random initial
permutation was used for each run. The 10 random permutations used
may be found in the Appendix. In each series there were several groups
of genes tested for their association indices after a given number of
generations. (Figures 5.1 and 5.2 are sample outputs from the program
which calcuiates the chi-squared value.) Most experiments were run
twice (with-different random number starters)--the GCV results are given
in Tables 5.1(b) and 5.1(c). The analysis below refersvspecifically
to the first run (5.1(b)) but the second run results ar; qualitatively
the same. Table 5.2 contains selected values of the chi-squared
distribution for reference.

The first set of experiments involved ENV 2 (Figure 3.2). HI
used one-crossover and the initial permutation of genes in numeric
order (1,2,...,24,25). Analyses were made of five combinations involving
five genes each--the one combination of dependent genes and four control
combinations of independent genes. The degrees of freedom for a five
way table are 26 and X2 .99(26) = 45.64. Clearly the observed
chi-squared value of 7225 for the combination (1,2,3,4,5) is significant,
as expected. However, the gene combinations (21,22,23,24,25),
(10,11,12,13,14), (6,10,15,20,25), and (1,7,13,19,25), in spite of
having much lower chi-squared values, are also significant at the 99%

- level although the second last was not significant at the 99.95% level.
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The high degree of significance even among non-interacting genes
points out our violation of the requirement of independence of sampling.
Each member of generation n is formed by a (limited) mixing of the
genes from fwo parents of generation n-1. Since selection of parents
is biased (by the reproductive scheme) towards those individuals with
high payoff, many individuals in the next generation automatically
bear a resemblance to the parents with highest payoff. This effect
is desired and expected as the means of exploiting non-linearities.

What is surprising is its magnitude. Genes other than 1,2,3,4, and 5

are non-adaptive (neutral) and may be expected to assort randomly.
However, other effects of the experimental parameters (one crossover

and every individual having the same gene permutation) are such that large
portions of the chromosomes vary together. We note that genes 10-14

and 21-25, which are adjacent on the chromosome (and thhs are split

' infrequently by the one-crossover operator), have a larger chi-squared
value (association index) than do the other two control combinations,
parts of which are separated practically every crossover.

Two steps were taken to reduce the association of non-interacting
genes while at the same time (hopefully) maintaining that of the truly
interacting genes. In experiment H2, each of the ten runs from the
initial random population was made with a different permutation of genes.
(Ten random permutations were used. See Appendix.) The intention
is to reduce the adjacency effect. The result was to lower somewhat the
association of genes 1-5; but the association of the other gene combina-
tions was not changed greatly: three of the four remained significant
at the 99.95% level.

The second step, in experiments H3, H4, and HS was to use the
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probabilistic crossover operator at levels 0.100, 0.250 and 0.500,
again to reduce the adjacency effect by reducing the length of the
portions of the chromosome which were taken from one parent at any
time. As can be seen in Table 5.1(b), the effect of the probabilistic
crossover can be seen in most of the groups. The interacting group's
chi-squared value is lowered to about 30% of its previous (H2) value
at Pcross= 0.5 in experiment H5. Crossover values of 0.1 and 0.25
seemed to have some effect on the non-interacting coﬁbinations but a
value of 0.5 finally reduced the GCV for three of them to below the
95% point and the fourth was below 99.95%.

As a further experiment in this series, H6 used ENV 5, which is

the same as ENV 2, but with reduced selection (the payoff range is

0.1.

6-8 instead of 1-3). H6 also used probabilistic crossover, pcrOSS=

The reduction in the GCV for the interacting genes is dramatic. The
value is still well above the values for non—interacting genes, but the
association is still a factor of 25-90 below previous values, which

may be cause for difficulty in more complex environments. Inspecting
the data from H6 more carefully, we observe that because of the decreased
selection there has not been much evolution: the average tendency
toward fixation (difference from 50%) is 3% for the 5 dependent genes.
Experiment H3, which had comparable parameters but which used the
higher selection rate, averaged over 5% fixation tendency. Comparing
the runs direétly (adjusting for the different selection factors),
populations in exepriment H6 had an average payoff of 1.62 at the end
of 8 generations while those in experiment H3 averaged 2.25. H6 did not
approach H3’s payoff average until it was allowed to continue to about

~ 30 generations.

Accordingly, experiments H7 and H8 were run at lengths of 25 and 50



137

generations, otherwise keeping the same parameters as H6. Table 5.1(b)
again shows positive results (increased GCVs for the dependent group).
Because selection alters the rate of evolution, we must take care

in choosing the times at which to make our analysis. Gene frequencies
may guide us in this regard (tendency toward fixafion may mean that
significant evolution has occurred), although population averages

may be better.

In summary, the H series shows that chi-squared values are always
higher for the non-linear group than for others, and usually much
higher.

Before going on to more complex environments, we shall go to one
simpler yet, ENV 1, which has only 5 linearly acting genes (1-5).

We use this as a basis of comparison to see if the observed chi-squared
values for the H-series were merely the result of selec;ion on the only
adaptive geﬁes, or whether the non-linear interaction is what caused
the effect. Experiments{II-IS follow exactly the same course as H1-HS
and the same gene combinations were analyzed.

(Note ;hat these experiments continued for only four generations
rather than the eight generations of the H-series. The linearity of
ENV 1 allowed such rapid adaptation that gene frequencies approached
1.0 much more quickly, making the chi-squared analysis less accurate
due to the reduced size of the expected values in each cell. Doing
the analysis earlier catches the frequencies before they get too low.
Although we have already noted that some associations do not become
apparent until a longer period of evolution has taken place, we can
feel reasonably confident that we are not losing information in this

- case. When the gene frequencies tend to fixation so fast, combinations
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involving the other alleles will not have much effect, even later.
We automatically suspect linearity when we observe this behavior.)

The results are positive: all the associations observed are in
the same order of magnitude and the values for the adaptive genes
(1-5) are often lower than the values for the non-adaptive combinations.
In addition, the lowering of the association index across the experiments
designed to do just that seems to follow the same course as in the
H-series. In general the associations are below the values in the
H-series even though the selection is greater, perhaps indicating that
some of the non-adaptive combinations in H were affected by something
we might call a "tag-along" effect: selection of better chromosomes
emphasizes the non-adaptive gene combinations on the chromosome as
well as the adaptive gene combinations; While much of this should
be smoothed by random effects over time it is probably present at every
instant. Another possibility is that the smaller nunber of generations
did not allow as much build-up of associations. Most of the association
values ended up less than statistically significant. In any case,

a linear payoff does not present the same behavior as a non-linear
payoff.

The J-series of experiments used ENV 3 (ENV 6 in the reduced selectio:
experiment J6), which consists of 6 dependent genes and 19 genes producing
a linear payoff. As such it differs from ENV 2 by having a larger
dependent group and by having the remaining genes all adaptive; it also
has reduced selection on the dependent group because of the larger
number of genes contributing to payoff. J1-J7 followed exactly the same
course as H1-H7, producing somewhat similar results. J1 produced a huge
~association index for the dependent genes which were adjacent on the

chromosome, and much smaller associations for adjacent, independent
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genes. Use of random initial permutations (J2) and lower selection

(J6) reduced the associations, as did use of probabilistic crossover;
longer runs increased the association (J7). The J-series did not have
the same nice progression as H3-H5 in the reduction of the association
with larger recombination values. This deserves some comment. We

recall that the intention in using probabilistic crossover was to
decrease the direct association between adjacent genes by splitting

them up more often than in the one-crossover case. However, it still
remains the case that when a split (crossover) occurs, the next gene

is taken from the other parent. When this happens twice, the source

for genes for the new chromosome is again the new parent. In the
extreme case of crossover probability 1.0, every other gene is taken
from the same parent. Given an initiai gene permutation of (1,2,...,25),
the result is the same as if the permutation were ]
(1,3,5,7,...,23,25,2,4,...,22,24), and there were again exactly one
crossover, but always between positions 13 and 14 (genes 25 and 2).

Thus, higher values for the probability of crossover actually reduce

the disassociation desired. In addition, to allow the inversion operator
to produce permutations which are advantageous, crossover must be

fairly low.

No matter what the means of mixing genes, there will always be a
residue of association caused by using only two parents as sources.
Since we are not interested in finding optimum setting for parameters
we will not attempt to determine which value of crossover‘might be
"best'" for this particular purpose; use of probabilistic rather than
one-crossover might well be indicated for longer chromosomes. At any

. rate, the optimum setting might depend on the number of genes in a
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dependent group, on the selection coefficients, or any number of other
factors. By'inspection of the data for the H,J, and K experiments{

it appears that levels around 0.1 seem to be effective, and are probably
10& enough to allow inversion to work, so that we would recommend levels
on this order in future work.

In the next set of experiments, K1-K4 follow the pattern of H2-H5
and J2-J5, producing somewhat similar results again, using ENV 7, our
most complex environment. The five dependent groups mostly show large
association indices, but the two groups of five mutually independent
genes, (1,7,19,25) and (2,8,14,20,24) are not consistently larger or
smaller than the comparable dependent group, (7,8,9,10,11). These
groups contain one gene from each of the dependent groups. While we
expect the groups to vary independently since payoff is additive among
them, we should not be too surprised if one group dominates the others
(in terms of selective pressure), leading to a strong tag-along effect
at specific times of evolution. The group (1,2,7,8,13,14) contains 2
genes each from 3 dependent groups. It shows higher indices than the
independent groups and often exceeds the dependent groups in strength
of association. These somewhat clouded results give some idea of the
difficulty involved in very complex environments.

Actually, éven after 25 generations, the degree of improvement
from the initial random population was not great. (We do not reproduce
the data here.) Because of the large amount of interaction, the populatior
average did not advance very rapidly, and the best strings produced
were much below the optimum. As a measure of the amount of adaptationm,
the tendency toward fixation of all the individual gene frequencies

(i.e., difference from 50%) at the end of 25 generations, averaged
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across the 10 runs for experiment K2, was only about 8%. To get some
feel for the possible effects of greater adaptation, KS continued for

50 generatibns. A higher degree of adaptation was seen (gene frequency
fixation averaged 11%) and the associations were much larger (compared
to K2 or K3 which had similar crossover probabilities). One factor making
the associations larger was the additional non-independence of sampling
provided by the longer evolution times, as evidenced by the increase
even among the independent groups. K6 measured the associations at only
16 generations where gene frequency fixation averaged 6%. As expected
the associations were mostly lower, with the two completely independent
groups falling in the same range as the comparable dependent group.

K7 and K8 confinued'for 100 and 150 generations. Here the dependent
group clearly dominated the two controi groups (in K7, 1212 versus 283
and 157). The groups of 'six dependent genes also domin€ted the control
’group of six and the group of four dependent genes dominated even the
control groups of five which could be expected to be higher. It seems
that increasing the lengths of runs (at least in this range) definitely
alters the relative association indices.

Short runs may be better for detecting differences in smaller groups,
although the evidence is inconclusive, observing the failure in the small
group (19,20,21). 1In longer runs the small groups may be almost completely
adapted and thus contribute less to the payoff. They thus have higher
gene frequencies and fewer members searching false peaks so that the
chi-squared calculation appears to yield smaller association indices.

The K-series used an environment in which every gene but one was
included in a dependent group, so that it was difficult to get an idea

of the relative magnitude of the associations in dependent and independent
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groups. In the last series of experiments on this topic, L1, LZ, and

L3, used ENV 8 which consists of three groups of 6 de%endent genes,

each group identical to the dependent group of the J-series. The femain-
ing 7 genes are linear, allowing plenty of independent gene groupings.
Random permutations and probabilistic crossover were used. The three
experiments show the results of the analysis at the end of 8,16, and 25
generations. By the end of 8 generations there has not been enough

time for all associations to build up, but by generation 16 they are
more plainly there, and at the end of 25 generations they are
unmistakable. The five control groups are well below the dependent
groups, and associations in these five groups seem to increase with a
larger number of generations, as indicated by the K-series. L4 again
returned to one-crossover and numeric order for the genes: all dependent
groups had their genes adjacent for the 10 runs. The r;tio of
association between the dependent and independent groups was very

large, as expected.

Experiments L5 and L6, with single crossover and random permu-
tations, continued for 50 and 100 generations, producing even larger
ratios than L4. As noted in Table 5.1(b), every GCV calculated violated
the strict rules for the statistical test. A large degree of adaptation
took place even by generation 50, producing a large tendency to gene
fixation, resulting in expected gene frequencies of combination below
1.0 for the cells in the contingency table. Such cells contribute
inordinately to the GCV, ruling out its use as a pure statistic.
However, we note that the GCV ratio is still large in exactly the manner
we had anticipated, indicating that use of the GCV is still valuable

in this situation. Examination of the particulars of such a table is
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often valuable for determining the importance of such deviance from
strict form. See Figures 5.2(a) and 5.2(b) for two such tables,

one for a dependent group and one for an independent group.

Summa

The results of the experiments described in this section are
extremely satisfying. First, they verify the genmeralization of the
simple two gene model prediction of frequencies to a complex multi-gene
model with genetic operators. Secondly, the K and L experiments indicate
that when there is more than one group of dependent genes, the groups tend
to vary independently, emphasizing their own best combinations
simultaneously. This bodes well for the ability of this analysis to
handle even more complex, real-world problems. Another pleasant result
is that the Increased Frequency of Combination (IFC) effect manifests
itself to a significant degree very rapidly. Twenty-five generations
were enough to show it even in some of the complex cases tested. This
means analysis ﬁeed not take an unreasonable length of time--certainly
no more than adaptation itself takes.

One somewhat disappointing result is that we are not able to use
the chi-squared contingency test as a pure statistical method of detecting
non-linearities. The experimental data obtained violate the requirements
of independence in spite of all our efforts in manipulating parameters
and initial conditions. This is a direct consequence (and intended
operation of) the Reproductive Plan. Independent groups will always
show strong associations with respect to statistical significance.

~ On the other hand, using the chi-squared statistic as an index of
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association appears to be a completely adequate discriminator.

One extremely important result is that the association ratios
observed between dependent and independent groups were highest when
the genes in the groups were closest together. Figures 5.1(a), 5.1(b),
and 5.2(a) show that the reason for a high association index is that there
are many individuals on or near both of the peaks of the environment.
When a (linear) prediction of combinations from individual gene
frequencies yields a high value for one combination, it must necessarily
give a lower value for other combinations. When there are two peaks
and individuals cluster on both, the chi-squared value grows large from
the contributions of at least one of the peaks. In the cases shown
here (which are completely typical), the observed count on both peaks
considerably outdistanced the predicted count, and the disparity was
larger for the case where the genes were adjacent. Thé only possible
conclusion is that very good combinations are separated and destroyed
much less often when the genes are closest. As a result the search
concentrates around local maxima in the environment. This is important
supporting evidence of the potential value of inversion in promoting
favorable permutations.

Since efforts to create conditions satisfying the chi-squared
independence requirement were a failure, and since such efforts reduced
the association ratios of dependent to independent groups, it appears
that the best discrimination (and probably best adaptation) can be made
using the single crossover operator (or at least low probabilities of
the probabilistic crossover operator for larger chromosomes) and permu-
tations in which suspected genes are adjacent.

Given a particular hypothesis about which genes are dependent we

can then suggest the following experimental procedure. Form several
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control groups with the same number of genes as in the suspected group;
choose these groups from known (or thought to be) indebendent genes.
Use the reproductive'plan with low mugation, single crossover, and
multiple runs each with the same permutation of genes such that all
genes from a single group are adjacent on the chromosome. Perform
runs of various lengths. Comparing the chi-squared values from the
"independent' groups with the value for the suspected groups, we can
accept the hypothesis of dependence if there is a large (say, order of

magnitude) difference.

Detecting Dependent Groups

From the results of the last section we are now certain that the
association indices of dgpendent groups of genes are much larger than
»indices for comparable, independent groups of genes. However we are
still faced with a large problem: how to form hypotheses about which
groups of genes to test in environments about which we know little.

Even in the:relatively simple (25 gene) environments uséd in this
research, if we are looking for groups of size 6, there are (i?) = 177,100
possible groups. Obviously some screening method must be used. One

such method might be the experimenter's knowledge or hunches about the
environment. Other screening methods are discussed below.

But first a note of warning. The process of hypothesis formation
(induction) on scanty data is an arcane art at best. Even 500 generations
of 100 individuals sample at most 0.15% of the total payoff points
in our environments of size 225 = 33,554,432, It is unlikely we shall

be able to discover every interaction. But then, any information

we can discover is more than is otherwise available.
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Pair Analysis

Although testing every combination of 5,6, or 7 genes requires
an unreasonable amount of ‘analysis, calculating contingency tables
for every pair does not; there are only (%f) = 300 pairs of genes on
a 25-gene chromosome. This immediately suggests an interesting possibility
Consider a group of 5 interacting genes. There are (g) = 10 pairs
of genes from this group. If the group has a relatively high
chi-squared value, it might be that every one of the pairs does also.
If indeed these pairs have unusually high chi-squared values when
compared to control pairs, we have a valuable screening tool. The
intended usage is as follows: from the 300 pairs of values it may
be possible to select a group of n genes, all of whose (g) Pair
Chi-squared Valdes (PCVs) are comparatively large. Then, using the
techniques suggested in the previous section of this chapter, we may
test thé hYpotheses that these genes do interact as a group by means
of an n-dimensional contingency table, obtaining the GCV, and making

the final decision based on this value.

Analysis at the End of Runs

The most obvious method for detecting interacting pairs follows
the experimental procedure of the last section exactly. Ten runs of
each experiment were performed, under the experimental parameters of
Table 5.1(a). A chi-squared contingency table analysis was performed
on each of the 300 pairs of genes over the 1000 sample points.

The result of the analysis for experiment H1 is shown in Figure 5.3.

~ Genes 1-5 are known to be interacting and the average of the 10 PCVs
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in this group (in the triangle) is 481 while the average for the remaining
290 pairs is 7. Clearly this is positive confirmation of our hopes.

There is no doubt about which genes should be tested for 5-way inter-
action. Such a test is probably not even required. 0f course, Hl

was run with genes 1-5 adjacent, a piece of prior knowledge known to
increase the IFC effect. But analyses of experimenﬁs H2-HS yielded

very similar results; although the numbers were slightly smaller, there
was still no difficulty in determining the correct set to try

(Figure 5.4 gives the results of experiment H2.) These results match
well with the GCVs obtained in Tables 5.1(b) and 5.1(c).

Figure'S.S; stating the results of experiment H6, has a different
tale to tell. The average chi-squared‘value for the 10 pairs known to
be interacting is 6.9 and the average value for all other pairs is
2.1 so that again our hypothesis is confirmed: high GC&S are reflected
in high PCVs. But alas, mere inspection of the data does not yield
the best information on which genes to try. It would be easy to choose
a set of five genes whose pair associations averaged higher than 6.9;
for example the group (8,10,14,17,23) has an average PCV of 7.6. Thus,
the decreased GCV ratio shown in Table 5.16 definitely reflects itself
in the PCVs, Again, more evolution is called for.

Figure 5.6 shows the pair analysis at generation 50. The results,
under these conditions, are just as positive as for the previous exper-
iments.

Figure 5.7(a) contains the pair analysis for experiment I3, ENV 1,
a typical representative of the completely linear environment. As
expected, no set of genes stands out. Figure 5.7(b) contains the

 analysis for 8 generations with similar results. We include Figure 5.8
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analyzing J5, ENV 3 as a typical output of the six gene dependent group
series. The effect is clear, and longer runs make it stand out even

more.
Figures 5.9(a), 5.9(b), 5.10(a), 5.10(b) contain the PCV analysis

for experiments K7,K8,L5,and L6. Pair analysis of ENV 7 (K-series)

on shorter runs was’not very successful: only the group (1,2,3,4,5,6)

stood out much--probably because it had the widest selection range.

Genes (7,8,9,10,11) showed up slightly by generation 50, but as

can be seen in Figure 5.9, they are not completely consistent even at

generations 100 and 150. Similarly, the three other groups were standouts

at some instants but not at others. ENV 8 (L-series) showed a like

inclination to emphasize one or another group at runs of various lengths.

Cumulative Analysis

We are thus faced with the problem of different groups having
more or less influence at particular instants of time and thus being
more or less detectable in a pair analysis matrix. To overcome this
effect we must perform pair analyses at different instants in time and
try to pick groups from each analysis for testing via GCV. An alternate
method which proves to be quite good is based on the observation that
when PCVs stand out, they are quite a bit larger than the linear,
essentially random PCVs. Thus, if a PCV is abnormaliy high at some
instant an& only in the random range at another, tﬂe average of the
two will still be quite high and may be large enough to stand out and
deserve our attention. We establish the following experimental protocol:

~ perform PCV analyses at a number of different generations and sum the
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values obtained at each instant.

Figure 5.11 shows the results for ENV 7 (K-series) and Figure 5.12
shows results for ENV 8 (L-series). The experimental parameters used |
were the same as for experiments K8 and L6, except that the analyses
were done at the instants of time stated in the figures. As expected,
the results are unmistakable in both instances, with the exception
of the smali group (19,20,21) in ENV 7. Small dependent groups may
be difficult to pick out especially if their selectionvfactors are

low as in the current case.
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CHAPTER SIX

CONCLUSIONS

Methods of adaptive search must contain, at least implicitly,
the ability to detect and act upon non-linearities in their environments
(i.e., in the functions to be optimized). If such knowledge can be
made explicit, this information may be of value in constructing models
of the environment and may lead to faster and more successful' adaptation.

We define a function to be linear (or independent) with respect
to its arguments (or parameters) if it may be expressed as a sum of
sub-functions of at most one argument. If the function cannot be
expressed as such a sum, it is called non-linear. Those parameters
which appear as the only arguments for sub-functions are called indepen-
dent parameters. A set of parameters which appear as a}guments in a
‘non-linear sub-function are called dependent or non-linear parameters.
For example, consider the total function f:

£(x,y,2) = g(x)+h(y,2)
where h is non-linear (cannot be expressed as a sum of functions
containing only y and z). The set {y,z} is a dependent group of parameters
and x is an independent parameter. Our goal-is to detect dependent
groups of pafameters.

The environments studied had twenty-five arguments, each of which
could take on two values. For the case of only two parameter values
non-linearity is insured if the payoff for a group of parameters is
multimodal (has more than one maximum). These environments contained
from one to five dependent groups of parameters, where the groups ranged

- in size from three to nine.
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The adaptive plan used was a Holland Reproductive Plan (10,11),
a method inspired by genetics. Briefly, the state of the adapfive
system resides in a ''population" of many "individuals' or ''chromosomes',
each of which consists of a specification of a point in the function
space, i.e.,>each chromosome contains a parameter value for each of
the twenty-five arguments. The next state of the system is obtained
by a two step process: 1) two individuals are randomly selected from
the current population with the selection biased according to the payoffs
(function value) of the old population; 2) these two ''parents' are
combined by operators to form an offspring, a new point in the function
space. The operators used are similar to (but not necessarily identical
to) the genetic versions of crossover, inversion, and mutation. Crossover
selects portions' of the chromosome from different parents, mutation
randomly changes the parameter values, and inversion changes the order
in which parameters are listed in the string defining an individual.

The experimental work set out to prove two things: that the
reproductive pian adapts to non-linear sets of environmental parameters
in different ways than it adapts to linear sets, and that the difference
allows the detection of such non-linear effects without prior knowledge,
thus supplying additional information to the experimenter. Two differ-
ences tested in the behavior of non-linear sets concerned the effects
of distance along a string and the frequency-of—combiﬁation of parameter
values.

In both cases we have shown that the differences do exist and are
important. But only in the frequency-of-combination effect were we

able to use this information in detecting non-linear sets of parameters.
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Of course, all these conclusions are limited to the specific
environments tested. However, these environments are definitely
non-linear and, for lack of any theory of non-linearity, we must assume
that the results will generalize to other environments with similar
properties: a small number of parameter values and multiple peaks
in the environment. There are many problems in artificial intelligence
with these characteristics so that we can foresee some usefulness for
this method.

More speéifically we have shown:

Position Effect:

1) The position effect (i.e., distance between genes in a dependent
group) is very important during the period of time a population is
undergoing the most rapid evolution. Smaller distgpces between
genes leads to a faster convergence in payoff average. This seems
to be directly related to the ability of the population to keep
good combiﬁations of alleles together once they have been found.
Bad permutations of genes may make it unlikely that a population.
will ever find the true optimum. |

2) The position effect has not been demonstrated at equilibrium under
normal operation of the reproductive plan. The only instances in
which a population with a good permutation performed better were
those in which the early evolution effect enabled populations to
find better peaks before reproduction fixed the gene frequencies.

- This seems to be constant over a wide range of experimental para-
meters.

3) Introducing migration as an artificial means of increasing variance



4)

5)
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into the population leads to a fairly smooth position effect,
albeit at a population performance level much lower.than is
acceptable.

Experiments using inversion failed to take advantage of the
position effect with any consistency, and certainly not in a manner
which we mighf be expected to use in detecting dependent groups

of genes.

Although inversion failed in our experiments, we were able to

propose conditions under which it might perform better.

Frequency Effect:

6)

7)

8)

Non-linear groups of genes have different behavior than linear
groups in the combinations in which they are observed. A linear
prediction éf gene combinations from individual geme frequencies
fails in most cases (in the sense of a chi-squared contingency
table test for independence), but the association index calculated
for non-linear groups is often an order of magnitude higher, a
consistently observable difference.

It is possible to pick out dependent groups of genes via use of
chi-squared tests even when there is no a priori knowledge of

the environment.

Investigation of several multi-dimensional contingency tables
indicate that the reason for the greatly increased association
indices of non-linear groups lies in the large excess (over
predictions) of sample points which inhabit peaks of the environ-
ment. This excess increases as the genes in the group are brought
closer together on the chromosomes, indicating that close permu-

tations more effectively sample the payoff function near the peaks.
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This is further confirmation of the hypothesized position effect.

Although we have not been able to demonstrate that an inversion
operator works to produce beneficial permutations, we have shown that
position can be extremely important in searching the space. One
experiment using a bad permutation, for example, failed to achieve
the true optimum of the space even after twenty runs. We expect similar
happenings with yet more complex environments. Ideally we would prefer
some reordering operator, such as inversion, automatically to rearrange
the genes to minimize this difficulty. In some cases this might
occur but even with our current environments--in which inversion failed
to operate as desired--there is an alternative. Using the results
from a chi-sduared pair analysis of the same twenty runs, we, as exper-
imenters, can hypothesize (with some degree of confidence) which genes
. are dependent and thus which permutations are best. We can then intervene
. in the initial conditions of the experiment to arrange such a permutation.
'The result is an increased probability of finding the true optimum of

the space.

Thus not only can we gather additional information about the form
of the environment, but by so doing we can increase the probability that
the adaptive system will achieve the true mean--an unanticipated bonus

of the analysis suggested in this research.
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