THE UNIVERSITY OF MICHIGAN

DEPARTMENT OF COMPUTER AND COMMUNICATION SCIENCES
Phonetics ILaboratory

Natural ILanguage Studies No. 9

PHONOIOGICAL GRAMMAR TESTER: DESCRIPTION

Joyce Eriedman
Yves Ch. Morin

September 1971

:”
é/fz(. \(:.‘-"Lr(/

L7
LN

ACKNOWLEDGMENT

An earlier version of this report was presented to the meeting of
the Association for Computational Linguistics, Columbus, Ohio, July 23,
1970. The research reported here was supported in part by the National
Science Foundation under Grant GS-2771, and in part by the Inter-

national Business Machines Corporation.

ii

ABSTRACT

A computer program to test phonological grammars has been con-
structed as an extension to Friedman's computer system for transforma-
tional syntax. The program accepts the phonological component of a

transformational grammar in a format derived from The Sound Pattern of

English and underlying phonological forms to which it applies the pho-
nological grammar.

In this report, the system is presented descriptively, with empha-
sis on the notation for a phonological grammar and its interpretation
by the program, for the reader who is thinking of using the system.
Extended examples show grammars acceptable to the program and the
result of computer runs. The underlying theory and its justification

by empirical data are given separately in Phonological Grammar Tester:

Underlying Theory.

iii

TABLE OF CONTENTS

Chapter Page
1. INTRODUCTION 1
2. OVERVIEW L
3. METALANGUAGE 10
3.1 Conventions of the Metalanguage 10

3.2 Example 12

3.3 Comments in a Grammar 13

L. TREES 1k
4.1 Terminology for Trees 14

4.2 Linear Form for Trees 16

4.3 Complex Symbols in Linear Trees 18

.4y Substitution Feature for Linear Trees 19

4.5 Tabular Trees 20

4.6 Substitution Feature for Tabular Trees 22

5. COMPLEX SYMBOLS 2k
5.1 Description of Complex Symbols 2L

5.2 Complex Symbol Operations 27

5.3 Redundancy Rules . 39

5.4 Markedness Conventions Lo

6. CONVERSION OF DUMMY NODES L2
6.1 Input Conversion L3

6.2 Output Conversion Ly

7. ANALYSIS, RESTRICTION, AND CHANGE 50
7.1 Structural Analysis 51

7.2 Restrictions 80

7.% Structural Change 86

7.4 Simple Rules 92

8. TYPES OF RULES 95
8.1 Modes of Application 96

8.2 Optionality 99

8.3 PFormal Definition of the Modes of Application 101

iv

TABLIC Ol CONT'EN'TS (Cnncl\lnh‘\i)

Chapter Page

9. RULE ORDERING 103%

9.1 Subtrees 104

9.2 Instructions 105

10. THE COMPUTER PROGRAM AND ITS USE 117

10.1 Program Input 117

10.2 Program Output 118

10.3 Program Structure 119
Appendix

A. TWO EXAMPLES OF GRAMMAR AND DERIVATION 12%

Example 1: Phonological Rules 124

Example 2: Markedness Conventions ' 134

B. COMPLETE SYNTAX FOR PHONOLOGICAL GRAMMAR 142

BIBLIOGRAPHY 151

CHAPTER 1

INTRODUCTION

This report describes an extension of Friedman et al. (1971),

Computer Model of Transformational Grammar to include the phonological

component of a transformational grammar.

This extension is implemented as a tool to help linguists write
the phonological component of a tranformational grammar. The program
and outputs a derivation of the underlying form according to this gram-
mar. Hence, the program permits the user to test a phonological grammar
by inputing a tentative version and study the derivation of some under-
lying phonological forms, and, once a phonological grammar is satisfac-
tory, to test the adequacy of underlying forms by comparing the surface
forms obtained through derivation with the actual phonetic representa-
tions.

This system differs from the two previous computer programs for
phonological grammar, Bobrow and Fraser (1968) and Fromkin and Rice
(1969), in that it tests a full phonological grammar rather than phono-
logical rules. It also incorporates recent suggestions in linguistics
theory. For examplé, (a) it is possible to modify the whole tree
structure during the'phonological derivation, and (b) "everywhere
rules" can be defined. The user has the ability to define for himself

the order of application of the rules; this may be either cyclic or

noncyclic. The program analyses systematic phonemes as nodes on a par

with the other nodes of the tree and is thus more general. Regular

tree operations apply to the phonemes: metathesis is viewed as the per-

mutation of two nodes, elision as the deletion of a node and assimila-

tion or dissimilation as the modification of feature values in a node.
The theory underlying the computer program is derived from the

theory presented by Chomsky and Halle in The Sound Pattern of English

(1968); however, we have felt free to make some modifications to this
theory. The underlying theory and its justification are reported in
Morin and Friedman (1971).

The computer system for phonology is completely compatible with
the syntax system; this implies that the features describgd here can
also be of use in syntax, in particular n-ary features (cf. Friedman
and Myslenski, 1970). We describe here, however, only the parts of the
system which are relevant to the phonological component. This descrip-
tion does not presuppose any knowledge of the syntax component
(Friedmen et al., 1971); we do, however, refer the reader to that de-
scription for some points which are relevant to syntax rather than to
phonology. The treatment here parallels, insofar as possible, that in
the syntax description.

To help the reader to understand the system as a whole, we give
in Chapter 2 an example of phonological grammar containing both the
conversion component and the rule component. This example is most

meaningful to readers familiar with some notation for phonological

grammars; others may choose to ignore it and return to it as its parts
are discussed. In Chapter 3 we introduce the formal metalanguage used
throughout this report and for the summary of the syntax given in
Appendix B. Chapter L4 presents the basic concept of tree, Chapter 5
the concept of complex symbol. Chapter 6 describes the conversion of
complex symbols when the trees are output by the program. Chapter 7
describes the representation of rules and their mechanism of applica-
tion; we describe in detail the application algorithm as it is essen-
tial in the choice of the segments which are modified. Chapters & and
9 present the concept of rule ordering and mode of application. In
Chapter 10 we give some indication of the use of the program. Finally,
in the Appendixes we give a summary of the syntax, and some computer

experiments in generative phonology.

CHAPTER 2

OVERVIEW

Before beginning the formal discussion of the computer modei, we
present in this chapter an example which illustrates both the notation
for grammars and the use of the program. This example consists of a
small grammar and a sample derivation. The appendix presents a longer
version and the full derivation of two words in this grammar.

Figure 1 shows the conversion lexicon. The conversion lexicon
associates symbols with sets of features. This lexicon is implicit in
most phonological descriptions where the symbols are either defined
during the description of the grammar, or assumed to be known. The
entry FEATURES 1lists all features which are used in the grammar. The
entry VARIABLE defines symbols which represent (or are the names for)
some type of segments. For instance, the symbol V represents a vowel,
i.e., a segment containing the two feature specifications +VOC and
-CONS; the symbol C represents a consonant, i.e., a segment which is
not a vowel (the symbol -] is the logical symbol for "not"). The symbols
defined in this entry are used for inputs and in the description of
the rules. The entry PHONUNIT, like the entry VARIABLE, defines sym-
bols; these symbols are used for output. For example when a string is
output which contains the segment

-CONS +VOC -HIGH -BACK +LOW -ANT -ROUND

the symbol A is to be output, and not the symbol V, which explains why

the two lexicons must be kept distinct.

The entry DIACRIT defines

symbols which are attached as diacritics in the output of strings.

PHONLEXI CON
FEATURES

VOC HIGH BACK LOW ANT ROUND CONS COR VOICED STRID CONT

TENSE STRESS

VARIABLE
00 = |-CONS +VOC -HIGH +BACK -LOW =-AMT +ROUND]|,
A = |~CONS +VOC =-HIGH ~-BACK +LOW =-ANT =-ROUMDI,
E = |-n~ONS +VOC -HIGH -BACK =-LOW =-ANT -ROUMNDI,
UH = |-CONS +v0C -HIGH +BACK -LOW =-AMT -ROUND|,
EH = |-CONS +VOC -HIGH -BACK =-LOW =-AMT =-ROUND =-TENSE =STRESS
+RED|,
R = |+CONS +VOC =-ANT +COR +VOICED -STRID +CONT]|,
S = |+CONS -VOC +ANT +COR ~-VOICED +STRID +CONT],
K = |+CONS -VOC -ANT -COR -VOICEN =-STRID =-CONT|,
J = |+CONS -VvOC ~-ANT +COR +VOICED +STRID =-CONT|,
V = |-CONS +vOC|,
cC =" V.
PHONUNIT
00=00, A=A, E=E, UH=UH, EH=EH, R=sR, S=S5, K=K, J=J.
DIACRITIC
' = |1STRESS|.
$ENDLEX
Figure 1
Figures 2 and 3 show a set of phonological rules. In Figure 2

they are as they would be represented in traditional phonological de-

scription and in Figure 3 as prepared for input to the computer pro-

gram. The computer form is basically a linearization of the usual form:
The context of a rule must be within angular brackets.

A single-quote symbol ' precedes each segment in the context.

c. The context must match the entire string under derivation. If
it need not match the initial segment, the variable symbol %

must begin the context; if it need not match the final segment,

the variable symbol % must end the context.

Redundancy
-tense
\
-stress

(1)

Main stress

vV > [1 stress]/ [% _Cy (

Rounding adjustment
+voc (
-cons
around
+back

>

[- round] /

|

()

e-elision

Vowel reduction

-cons
+voc
-stress
-tense

+voce

-tense

1

Blow

Bround
+tense

— __ _

v

Figure 2

-cons

-tense

d. The sqguare bracket notation is replaced by the angular bracket
notation, more specifically, the notation N < . . . > replaces
the notation [...]N.

e. Curly brackets are represented by parentheses; a comma separ-

ates the alternate elements.

f. The dash appears before a complex symbol rather than inside

the complex symbol.

g. The indices appear before, rather than after, the segments:

'0'C replaces CO.

The control program (CP) and the identification of the rules de-
fine the order of application of the rules of the grammar. In this
example, the rules apply in their order of appearance in the grammar.

Figures 4 and 9 show the derivation of the word [kirsj] from the
underlying form /koraeje/: Figure 4 is the traditional presentation
and Figure 5 shows part of the derivation of the computer program.

The output of the program contains a list of the rules which
have applied, the input string before and after application of the
rules, and a list of the rules which have applied. A history of the
derivation indicates which rules have been invoked (ANTEST CALLED ...)
and whether they have applied (ANTEST RETURNS ...). The changes are
shown as they take place; MERGEF IN n indicates that new feature
specifications have been introduced in the complex symbol with number
n (the segments are numbered during the input); ERASE O n indicates

that the segment with number n has been erased.

TRANSFORMATIONS

RULE REDVOWL AACC. V => |-STRESS -TENSE|.

RULE MSTR . V => |1STRESS| /< N <% _ '0'C ('|-CONS +VOC -TENSE| ('C))
('|-CONS +VOC -TENSE| 'O'C)# > >.

RULE RADJ. | +VOC -CONS (ALPHA)ROUND +BACK| => [(-ALPHA)ROUND|
/<% (_|-TENSE|, _|(BETA)LOW (BETA)ROUND +TENSE|, 'V) %>.

RULE EELI. | -CONS -HIGH -BACK -LOW| => * /<% _ (+,#) %>.

RULE EHRED. | -CONS +VOC -STRESS -TENSE| => EH.

cP@(N) I.

$END $MAIN FTRIN TRAN.
N< # 'K '00 'R 'A 'J'E # >,

Figure 3

#koreje#

. 7
main stress placement o)

3 . /
rounding adjustment A
e-elision [
vowel reduction 2

#kAr o Jj#

Figure L

WooNO VTE&E W
mc_>xlg7<

KOORAUJE#

ok kK TRANSFORMATIONS

SCAN CALLED AT L a

SCAN CALLED AT 5 |
ANTEST CALLED FOR 1"REDVOWL
ANTEST RETURNS *# 3xx

CHANGE. HAVE CSEXCH FOR MERGEF
CHANGE. HAVE CSEXCH FOR MERGEF
CHANGE., HAVE CSEXCH FOR MERGEF
ANTEST CALLED FOR 2'""MSTR
ANTEST RETURNS #*#% 1%=*

CHANGE. HAVE CSEXCH FOR MERGEF
ANTEST CALLED FOR 3"RADJ
ANTEST RETURNS ** 1w

CHANGE, HAVE CSEXCH FOR MERGEF
ANTEST CALLED FOR L"EELI
ANTEST RETURNS *=* 1x«

CHANGE. HAVE ELEMOP FOR ERASE
ANTEST CALLED FOR S5"EHRED
ANTEST RETURNS ** 1=«

CHANGE. HAVE CSEXCH FOR MERGEF
SCAN CALLED AT) .

Tk k k%

"(AACC)

- IN
IN
IN

"(AC

IN
"(AC
IN
"(AC

IN
"(AC

IN

~

TRANSFORMATIONS WHICH HAVE APPLIED ARE

1 1 REDVOW
2 2 MSTR
3 3 RADJ
L L EELI
5 5 EHRED
1N 2 #

3 K

b UH'

5 R

6 EH

74

9 #

K UH' R EH J
L UH' | -TENSE]

Figure 5 -

oo O &=

CHAPTER 3

METALANGUAGE

The metalanguage used to specify the syntax of phonological gram-
mars is a modification of the Backus-Naur Form (BNF) used in the defi-
nition of the programming language Algol (Backus, 1959; Naur, 1962) and
described in J. Friedman et al. (1971, 83).

In this chapter, we shall mention only the main characteristics of
this metalanguage. A complete definition of the form of phonological
grammar is included as Appendix A to this report. This syntax is de-
signed for (humen) readers and not for syntax-directed translation by
computer as is frequently the case in the definition of programming

languages.

3.1 CONVENTIONS OF THE METALANGUAGE
The metalanguage is a formalism for writing context-free rules or
"meta-rules" which define a phonological grammar. A meta-rule is of

the form:
RHS ::= LHS
which reads as "the elemert RHS consists of the elements in LHS."

3.1.1 Primitive Formats

Basic to the metalanguage are the three primitive formats word,

symbol, and integer. A word ls a conliguous string ol uppercase

10

11

letters and Jdipgits beginning with n letter. Ixamples of Words are A,
A(B, VERB. A symbol is a conliguous string ol uppercase lelters,
digits and special characters (with the exception of = (equal), "
(double quote), and $ (dollar sign)). The total length of a symbol may
not exceed 8 characters. Example of symbols are A, 35, *, ngli. An

integer is a contiguous string of digits, not beginning with zero.

Examples of integers are 312, 5, and 6000.

3.1.2 Nonterminal Symbols

The nonterminal symbols or format names are denoted by the name of
the linguistic construct in italicized type or, in typescript, by the

underlined name of the construct.

3.1.3 Symbols in the Language

Symbols which are not in the metalanguage (cf. 88 3.1.L4 and 3.1.5),
i.e., symbols other than ::=, [, [, and] are used to denote them-

selves. This includes digits and upper case letters.

3.1.4 Choice

The symbol [is used to indicate a choice and reads as '"or."

5.1.5 Operators

Five operators are used in the metalanguage to simplify meta-
rules. They are list, clist, sclist, option, and Boolean combination.
The operators are given in lower case letters; the operand is given

within square brackets following the operator.

12

the list operator: 1list[]

A list contains items separated only by spaces. It may contain only
one item, but must not be empty.

the clist operator: clist[]

A comma list, or clist, contains items separated by commas. There is
no terminal comma. It may contain only one item, but must not be
empty .

the sclist operator: sclist|]

A semicolon list, or sclist, is like a clist, but has semicolons in
places of commas.

the opt operator: opt|]

The optional operator indicates an optional element.

the booleancombination operator: booleancombination{]

The booleancombination operator expresses a Boolean combination. The
logical operators are - (not), & (and), | (or); their precedence is:

- before & and & before |. Parentheses override this precedence order.

3.2 EXAMPLE

1.01 +tree ::= complex-node opt[< list[tree] >]

Rule 1.01 reads as follows: "a tree consists of a complex-node op-

tionally followed by the following sequence: the character <, a list
of trees, i.e., a sequence of at least one tree separated by spaces,
and finally the character >."

L.08 sign ::= +] -

15

Kule 4.08 reads as follows: '"a sign consists of either the character

+ or the character -."

3.5 COMMENTS IN A GRAMMAR
Expressions within quotation marks (") are not formally part of
the grammar. This permits their insertion at any point in the grammar

as clarifying remarks or comments for readers of the grammar.

CHAPTER 4

TREES

Trees play an essential role in transformational grammars. The
input of the phonoiogical component is a tree which contains both
labelled and unlabelled nodes., The computer program uses two forms for
trees: (1) a linear form for the trees which appear in the description
of the grammar, and (2) a tabular form for output. Input trees may
have either form; the linear form, however, is more convenient for the
input of trees used in the phonological component and we shall restrict
the description of input trees to this form.l The linear form is de-

fined in the formal metalanguage (definition 1.0l in Appendix B).

4,1 TERMINOLOGY FOR TREES
We define here some of the terms that refer to the relationship
between the nodes of a tree and that appear frequently in this report.
The following is an archetype of tree used in the phonological
component of a transformational grammar and which we will further de-

fine later in this chapter.

(1) S
NP/ \VP
N/ l

/\ AN

! 1

1
The reader is referred to Friedman et al. (1971,84), for an alter-
nate input using the tabular form,

1k

15

This tree contains both labelled and unlabelled nodes. The position of
the labelled nodes is represented by their labels: 8, NP, N, VP, V;

we may refer to a node with the label NP as a node NP, The position

of the unlabelled nodes is represented by the character ' (single
quote); we may refer to unlabelled nodes as dummy nodes. The root of
the tree is the node at the top of the tree, in tree (1) this is the
node S, The branches of the tree are lines which connect some of the

nodes,

daughter: A node X is a daughter of node Y if a branch connects X and
Y and X is immediately below Y. In tree (1) N is a daughter of the

node NP,

parent: 1if X is a daughter of Y, then Y is the parent of X.

immediately dominates: Y immediately dominates X, if Y is the parent

of X,

dominates: X simply dominates Y, if there exists a sequence of nodes

X X
o’

17 X2,..., Xn—l’ Xn such that each immediately éominates its

follower, i,e, XO immediately dominates X Xl immediately dominates

l}

X ceey X immediately dominates Xn and such that X equals Xo and

o’ n-1
Y 1ls X .
equals X

X dominates Y if in th ces
e sequence Xo’ Xl’ X 9 Xn-l’ Xrl none of the

2)

nodes has the label S, except, possibly, the extreme nodes XO and Xn.

16

sister: X is a sister of Y if X and Y have the same parent,

right sister: X is the right sister of Y, if X is a sister of Y and

is immediately to the right of Y in the right-to-left list of daughters
of the common parent., In the tree (1) VP is the right sister of node

NP.

first daughter: X is the first daughter of Y if X is a daughter of Y

and is the left-most daughter in the right-to-left 1list of daughters

of Y.

left sister, last daughter: same definition as previously changing

right for left and first for last, mutis mutandis,

subtree: the subtree headed by X consists of all the nodes it simply

dominates and the branches connecting these nodes.
terminal: a terminal node is a node without daughters.

4,2 LINEAR FORM FOR TREES
If we use angular brackets to represent the notion "immediately
dominates the list," the subtree headed by the node N in tree (1) can

be represénted as (2) and tree (1) can be itself represented as (3)

(2) W< ' '>

(3) S < NP < N <' '">>VP <V <" ' " '>>>

17

In this representation, the daughters of a node appear to the right of
the node, and are surrounded by angular brackets. The linear repre-
sentation does not change the right-to-left order of daughters.

The following definitions in the metalanguage define the linear

form of trees without complex symbols:

1.01 tree ::= complex-node opt[<1list[tree] >]

1,02' complex-node node f dummy-node

1.03 node ::= word [sentence-symbol [boundary-symbol
1.04 sentence-symbol = 8
1.05 boundary-symbol = # 0 +) =

1,06 dummy-node ::=

The optional list of trees following node in the definition 1,01 is the
list of daughter subtrees of this node. The semantic interpretation

of rule 1,01 is that a tree consists of a node, referred to in the rule

as complex-node, which may either immediately dominate a list of trees;
or be a terminal node,

Rule 1,02' distinguishes two types of nodes: labelled nodes
(node) and unlabelled nodes (dummy-node). (Rule 1.02' is a modified
version of rule 1,02 to follow,)

Rule 1,03 indicates that the‘label of a labelled node may be
either a word, the label S, or one of the boundary symbols #, + or =,
The symbol S is distinguished by its appearance in rule 1.0Lk. Tt

represents the sentence-symbol and may not be used as a word,

18

4,3 COMPLEX SYMBOLS IN LINEAR TREES
We describe the form and function of complex symbols later in
Chapter 6. In this section, we discuss the position of the structure

complex-symbol in the structure tree,

In a tree, a complex-symbol may optionally follow any node; a

complex-symbol-reference must necessarily follow a dummy-node. A

complex-symbol-reference is either a complex-symbol or a complex-symbol-

name, The definitions previously given for tree extend as follows:

1,02 complex-node ::= node opt[complex-symbol]

[dummy-node complex-symbol-reference

1,07 complex-symbol-reference ::=

complex-symbol [complex-symbol-name

Tree (1) was not complete since the dummy nodes are not followed

by complex-symbol-references. Trees (4) and (5) are examples of full

trees with complex symbols: Tree (L4) contains all complex-symbol

names.
NP VP
/N--- [+ +HUMAN | /\II\ [+v]
'Y 'ou 's 'L 'EE 'P

TP’///////// \\\\\\\\\\VP

Ne oo |+0 +HUMAN | ////"V&iiliy“*~——-—-—‘~_~____
'ees |-CONS| 'ee<|-CONS Ve +CON5\\TTT‘IEBN§~"" -CONS| ' * *|+CONS
-VOC +VOC -VoC +VOC +VOC -VOC
+HIGH +HIGH +CONT -HIGH -HIGH -CON

The linear form of trees (4) and (5) is (6) and (7), respectively.

(6) S<NP<N|+N +HUMAN| < 'Y 'OU>> <VP<V|+V|< 'S 'L 'EE 'P>>>>

(7) S < NP < N|+N +HUMAN| < '|-CONS -VOC +HIGH|
'|-cons +VoC -HIGH| >> < VP < V|+V| < '|+CONS -VOC -HIGH
'|+cONS +vOoC -HIGH| '|-CONS +VOC -HIGH]

'] +CONS -VOC -CONT| >>>>

L.4 SUBSTITUTION FEATURE FOR LINEAR TREES

A substitution facility, defined by the format tree-specification,

permits the user to decompose a tree into several subparts, for easier
reading of long and intricate trees., This facility is avallable only

for the input of trees. Trees must be input as tree-specifications:

that 1s, they must be terminated by a period.

tree-specification ::= +tree opt[, clist[word tree]].

A tree-specification is a tree followed by word tree pairs. A period

ends the tree-specification., The semantic interpretation of a tree-

specification is best described by using an example:

20

(8) S<A B<E SUBSl >C >,

SUBSL F <SG H>.

In (8) the first tree contains the node SUBS1 which is identical to the

word of the following word tree pairj; this is an indication that the

tree F < S < G H >> of this word tree pair replaces the node SUBSl of

the first tree. Thus, the tree specified by (8) is the tree (9):

(9) S<A B<E F<S<G EH>C>

A tree-specification defines a tree only if the word of each word tree

pair bccurs once and only once as the node of a previous tree, The
word tree pairs in the clist are processed from left to right. The
interpretation of each wordi treei pair is that in the tree so far con-
structed, the subtree treei replaces the node labelled wordi.

A last example of this substitution feature is the specification

(10) for tree (L)

(10) 8 <NP <N1L> VP <VL>>,
N1 N|[+N +HUMAN| < 'Y 'OU >,

\al v|+v| <'s'L 'EE 'P>.

4,5 TABULAR TREES

In the tabular output form tree (5) appears as

21

TREE READ BY FTRIN

18 2 NP 3N Lot
5 1]
6 VP 7TV 8 '
9 1
10 !
11 !
NODE :
5 N|+N +HUMAN |
D Lo
NOPE [-cons -voc +HIGH]
NODE '
2 |-cons +voc +HIGH|
NODE v
MY
NODE 8 !
| +CONS -VOC +CONT|
NODE '
7 | +coNs +voc -HIGH]
NODE 10 '
|-coNS +VOC -HIGH|
NODE 11

1
[+CONS -VOC -CONT|

A tabular tree contains four parts: (1) a title, here TREE READ BY
FTRIN, which indicates that the input of the tree was linear; (2) a
representation of the tree in which each node has an index; (3) a list
of the complex symbols and of the nodes to which they are attached;
and (4) a 1list of the terminal nodes separated by blanks.l

In the tabular representation of the tree, each node of its index
appear at the beginning of a field of twelve character width. The
tabular representation is a mirror reflection of the representation
we described earlier, followed by a deformation which brings the left-

most daughter of a node on the same line and in the field immediately

1lIn the syntax program (Friedman et al., 1971) the terminal nodes are
separated by blanks unless they are special characters., In the
phonology program thetreatment of all terminal symbols is uniform.

22

to the right of the node, and the daughters to the right below the left-
most daughter. 1In the following figure we reintroduce the branches
which are not expressed in the tabular output (because they are redun-
dant in a fixed field representation) to show the relation between the

tabular representation and the representation defined previously:

18 2 NP 3 N Lot

6 VP TV 8 "'
10 '
11 !
4,6 SUBSTITUTION FEATURE FOR TABULAR TREES
If the depth of a tree exceeds the maximum number of filelds
allowed for output a substitution feature analogous to the previous
feature defined for linear trees permits the representation of the

whole tree,

18 2 NP 3 SUBO
6 VP 7 SUBL
REPLACEMENT FOR SUBO
3N Lot
5!
REPLACEMENT FOR SUBL
7TV 8 !
9'
10 '

1

25

This representation indicates that the node SUBO in the first tree

stands for the subtree listed under "REPLACEMENT FOR SUBO," the same

remark applies to SUBR1,

CHAPTER 5

COMPLEX SYMBOLS

.Complex symbols play an essential role in the phonological grammar
program because in our interpretation a phonological segment is the
complex symbol of a terminal dummy node. We distinguish two types of
complex symbols: (a) tree complex symbols; and (b) operator complex
symbols. The input trees contain only tree complex symbols and the
rules of the grammar preserve their character, i.e., they transform
tree complex symbols into tree complex symbols. The operator complex
symbols appear in the description of rules and participate in complex

symbol operations, viz., comparisons and changes.

5.1 DESCRIPTION OF COMPLEX SYMBOLS
A complex symbol is an unordered set of featuresl which can take
different values. The set of features which can appear in a complex

symbol is defined in the lexicon.

6.01' conversion-lexicon ::= PHONLEX feature-lexicon $ENDPHON
6.02 feature-lexicon ::= FEATURES list[feature]
4.09 inherent-feature ::= word

We allow features to appear with or without a preceding value. A value

lThese features correspond to the inherent-features of the syntactic
program; we may sometimes refer to Lhem as inherent-teatures.

2l

can be a binary value, i.e., one of the two signs + (plus) or - (minus),
or a n-ary value, i.e., an integer O, 1, 2, 5,..., or else one of three

operator values -], prefix and *.

4.01 complex-symbol ::= | opt[list[feature-specification]] I

An example of a complex-symbol 1is |+CONS -VoC —CONT|. Note that the

definition allows a complex symbol to be empty.

4.02 feature-specification ::= opt[value] feature

In the example above, the feature CONS has the value + and VOC has the

value -; an example of a complex-symbol with a feature-specification

without a value is |+CONS NASAL|

4.03 wvalue ::= sign || integer [-]| (prefix) | *

4.07 sign ::= +] -

5.1.1 Tree Complex-Symbols

Tree complex-symbols are complex-symbols in which feature-

specifications have either no value or else a binary or n-ary value.

If a tree complex-symbol does not contain a feature, it is said to be
unspecified for this feature; if it contains a feature without a value,

it is said to be marked for this feature.

5.1.2 Operator Complex-Symbols

In addition to the feature-specifications allowed for tree

26

complex-symbols, an operator complex-symbol may also contain feature-

specifications with one of the three operator values. An operator

complex-symbol is said to be unspecified and marked for certain fea-

tures in the same conditions as tree complex-symbols. It is said to be

unmarked for a feature if it contains a feature-specification with this

feature preceded by the symbol —. Prefixes in operator complex symbols
correspond to Greek letter variable in phonology, i.e., they are vari-

ables over binary and n-ary values; we distinguish sign-prefixes, where

the variable ranges over binary values and integer-prefixes where the

variable ranges over integer values.

4.04 prefix ::= sign-prefix [integer-prefix

4.05 sign-prefix ::= opt[-] variable

4.06 integer-prefix ::= variable opt[sign integer]
4.08 wvariable ::= word

Examples of complex-symbols containing a sign-prefix are:

| (ALPHA) CONS|

| (-BETA) NASAL|

Examples of complex-symbols containing an integer-prefix are

| (ALPHA) STRESS|

| (ALPHA+1) STRESS|

The name for variables can be any word; the same name may be used in

aifferent rules withc: i iaterferencc.

H.1.3 Conventions

As we shall obserwve later unmarke. features in- operator complex-
symbols correspond to nunspecified features in tree complex-symbols; for
this reason, the terminclogy "unmarked feature'" can be extended to tree
complex-symbols to mesn "unspecified feature" (this convention is pos-
sible because tree conplex-symbols do not contain feature specifica-

tions with the value -).

5.2 COMPLEX SYMBOL OFEXATIONS

There are two types of operations for complex-symbols: compari-
sons and changes. Thc rirst argument of an operation is always an
operator complex-symb 1 and the second a tree complex-symbol. A tree
complex symbol can al:o be interpreted as an operator complex-symbol

and used as the first argument of any operation.

5.2.1 Complex Symbol Comparisons

Testing structur:l descriptions and restrictions in a transforma-
tion, as well as testing the applicability of a redundancy rule re-
quires comparison of complex symbols. The basic comparisons in the
program are equality, nondistinctness and inclusion.

The comparison o!" two complex symbols is defined in terms of indi-
vidual feature comparisons. The comparison of two complex symbols suc-

ceeds for each featur-. For instance, two complex symbols are equal if

28

for each feature in the lexicon both complex symbols are either
unspecified for that feature, or else have the same value, or else are
marked for that feature. A special case must be made, however, for the
three values which appear only in operator complex symbols. The gen-
eral interpretation of - and * is that the feature in the corresponding
tree complex symbol must be, respectively, unspecified and specified
for some value (binary or n-ary). A prefix is either assigned or
unassigned; a prefix is assigned either a binary or an n-ary value,
thus the two complex symbols |(ALPHA) CONS| and |+CONS| are equal if
ALPHA is assigned the value +, and unequal, if ALPHA is assigned the
value - or 3. Prefixes are assigned values during comparisons. If a
prefix remains unassigned at the end of a comparison, the comparison
fails. A comparison can be formally defined by a matrix which de-
scribes whether tﬁe result of the comparison is true for each of the
feature specifications in the operator complex symbol and the tree com-

plex symbol.

29

tree complex symbol

unspf 'd
marked

operator complex symbol

marked

*

prefix

In the table above, the comparison of two specifications for a feature
succeeds if the operator complex symbol has the value - for this fea-
ture and the tree complex symbol has the value + for the same feature;
the comparison fails, if the tree complex symbol is unmarked for the

feature.

5.2.2 Value Assignment

A prefix is said to be assigned when its value has been computed.
We first describe how the value of a prefix depends on the value

assigned to its variable.

Given an integer-prefix P and an integer i, the value of P for the

assignment i is the value obtained by substituting i for the variable

350

of P and evaluating the resulting arithmetic expression. For example,
prefix (AL?HA+1) with integer assignment 3 has the value L4, and prefix
(ALPHA-2) with assignment 2 has the value O. If the substitution
results in a negative value, the value is taken by definition to be O.
For instance, the prefix (ALPHA-2) with assignment 1 has the value O.

Given a sign-prefix P and a sign s, the value of P for the assign-
ment s is obtained by substituting s for the variable in P and evalu-
ating the resulting logical expression. For example, sign-prefix
(ALPHA) with assignment + has the value +, and sign-prefix (-ALPHA)
with the assignment - has the value +.

The value assigned to the variable must be of the appropriate
type; it is meaningless to assign an integer value to a prefix unless
it is an integer-prefix, or conversely, a sign value unless it is a
sign-prefix.

Whenever a previously unassigned prefix P is compared to a value
v, the variable of P is assigned a value which makes the value of P
equal to v, if this is possible. For example, a comparison of
| (ALPHA)VOC| with |+VOC| assigns + to ALPHA, if it is otherwise unas-
signed. If there is no assignment which makes P equal to v, the vari-
able and the prefix remain unassigned. For example, ALPHA remains
unassigned in the comparison of [(ALPHA;Q)STRESSI with each of the tree

complex-symbols |+VOC -CONS|, |-STRESS|, and |LSTRESS| .

31

h.2.5 bquality

Two complex symbo's are oquadl 10 for ench ferture In the Texicon,
both complex symbols are (a) unspf'd for that feature, or (b) marked
for that feature, or (c) have the same value (after assignment). The
values * and -] are not meaningful for equality. The following matrix
formally defines equality of complex symbols (* and -} are included for

completeness of the definition).

tree complex symbol

[
(0]
-)
Equality o 3 3
o 5 X
4 g
5+ - Ip €
= n T F F F F
E unspf'd T F F F F
un
ﬁ + F T F F F
;,.ﬁ - F F T F F
o integer I F F F Al,2 F
[
3 marked F F F F T
@
5 * F F F F
% .
prefix F X X X F

Al 5 is T if integer I. equals integer 12, F otherwise. X behaves
) 1.
like the corresponding binary or n-ary value if it is assigned a value.

It is equal to F, if it cannot be assigned a value.

5.2.4 Nondistinctness

An operator complex symbol is nondistinct from a tree complex

symbol, if for each feature in the lexicon,

32

(a) the feature is unspf'd in the operator complex symbol.

(b) the feature has the value -1 in the operator complex sym-
bol and is not marked in the tree complex symbol.

(c) the feature has a binary or an n-ary value (after
assignment) in the operator complex symbol and is either
unmarked or has the same value in the tree complex
symbol.

(d) the feature is marked in both complex symbols.

(e) the feature has the value * in the operator complex
symbol and the tree complex symbol is not marked for
this feature (in this case, therefore, the valué * cor-
responds to the notion of "any binary or n-ary value'").

Informally, this means that two complex symbols are noﬁdistinct if

they have the same values for the corresponding features, or one is
unmarked for that feature. The following matrix explicitly defines

nondistinctness.

tree complex symbol

~
&0

Liondis- S 9 -

tinctness ti 5 >

a a

s+ - Io £

o 7 T T T T F
(]

% unspf'd T T T T T
[}

x + T T F F F

”é - T F T F F
o]

: integer Iy T F F 01,2 F

8 marked F F F F T
@
g

% * T T T T F

prefix T X X X F

A and X have the same meaning as previously.

1,2

5.2.5 Inclusion
An operator complex symbol is included in a tree complex symbol,
if for each feature in the lexicon,
(a) the feature is unspf'd in the operator complex symbol.
(b) the feature has the value -] in the operator complex
symbol and it is unmarked in the tree complex symbol.
(c) the feature has a binary or n-ary value (after assign-
ment) in the operator complex symbol and has the same
value in the tree complex symbol.
(d) the feature is marked in both complex symbols.
(e) the feature has the value * in the operator complex

symbol and the tree complex symbol is neither marked

54

nor unmarked for this feature (in this case, the value *
corresponds to the notion of "any binary or n-ary value").
Informally, this means that an operator complex symbol is included
in a tree complex symbol if both have the same values for those fea-
tures which are not unmarked in the operator complex symbol. The fol-

lowing matrix explicitly defines inclusion.

tree complex symbol

5y
)

b ¢ o

Inclusion o P O

o o A

g iy 3

= - Io =

y - T F F F F

Ei unspf'd T T T T T

@ + F T F F F
3

é‘ - F F T F F

S integer Iy F F F Al,2 F

§ marked F F F F T
@

& x F T T T F
Q

o prefix F X X X F

where Al 5 and X are defined as previously.
J

5.2.6 Complex Symbol Changes

An operator complex symbol containing prefixes successfully par-
ticipates in a change only if its prefixes have been assigned. The
basic changes are merging, erasing, and saving. As in the case of com-

parisons, each change upplies Lo one Louture al a Lime.

35

5.2.7 Merging

Fach of the features which are specified in the operator complex

symbol,

(a) 1is marked in the tree complex symbol, if it is marked in
the operator complex symbol.

(b) receives the same value as in the operator complex sym-
bol if the operator complex symbol has a binary or n-ary
value for this feature.

(c) 1is erased from the tree complex symbol, if it has the
value -1 in the operator complex symbol.

The value * in the operator complex symbol is not meaningful.

Informally, the change merges the feature specification of the

operator complex symbol into the tree complex symbol. The following

matrix explicitly defines merging.

tree complex symbol

o
(O]
i &
Merge o o 3
B A
§ + - Is ‘g
g 7 U U U U U
‘é unspf'd U + - Io U
@ + + + + + +
x
(O]
—
3 - - - - - -
5
9] integer Il Il Il Il Il Il
o
8 marked M M M M
©
o * + -
prefix X X X X X

36

The value U means unspf'd
M means marked
X means that the prefix behaves like its value if it is
assigned a value, and that the operation is not defined

otherwise.

5.2.8 Erasing

Each of the features which are not unspf'd in the operator com-

plex symbol,

(a) becomes unmarked in the tree complex symbol, it if has
the value * in the operator complex symbol.

(b) becomes unmarked in the tree complex symbol, if the two
complex symbols have the same binary or n-ary values or
both marked for this feature.

The operation is meaningless for the value -.

Informally, the change deletes the feature specifications desig-
nated by the operator complex symbol from the tree complex symbol (the
value * here means '"any binary or n-ary value, or marked"). The fol-

lowing matrix explicitly defines erasing.

o7

tree complex symbol

S~
"
ke
lrase ;‘ % 8
5 G
5 + - 1 ¢
o 4 U o+ - I, M
Ei unspf'a U + - I M
0
+ -
< U U Is M
é* - U + U 12 M
o integer I U + - U,2 M
])
% marked U + - Is U
o x U U U U U
5
prefix X X X X X

The value U means unspf'd
M means marked
X means that the prefix behaves like its wvalue if it is
assigned, and that the operation is not defined other-
wise

Ul,2 means U if Il equals 12, means 12 otherwise

5.2.9 Saving

Each of the features which are unspf'd in the operator complex
symbol and the features which have different values in the fwo complex
symbols, unless one of these values is * in the operator complex sym-
bol, become unspf'd in the tree complex symbol. The value - is mean-
ingless for this operation.

Informally, the change deletes all the feature specifications of

38

the tree complex symbol, unless they are specified in the operator com-
plex symbol (the value * here means "any binary or n-ary value, or

marked"). The following matrix explicitly defines saving.

tree complex symbol

&~
()
i &
Save — ! b
oh 5 d
; ;
5+ - 1o £
. 9 U U U U U
(o]
Ei unspf'd u U U U §)
[}
+
. + U §) U U
é - U U - U 0]
© dinteger I; U U U Up,p U
&
8 marked U U U U M
©
5 * U + - I, M
5
prefix X X X X X

The value U means unspf'd
M means marked
X means that the prefix behaves like its value if it is
assigned a value, and that the operation is not defined
otherwise

U eans U if I is different from I eans I therwise.
1,2 m s 1 i r m N mean 1 o ise

5.2.10 Moving
Moving is a composite change obtained by composition of the

changes Saving and Merging. The change n MOVEF m k moves the feature

specifications common to the operator complex symbol n and the tree

59

complex symbol m into the tree complex symbol k. It is equivalent to

n SAVEF m, m MERGEF k, except that m is not affected during the change.

5.3 REDUNDANCY RULES

The use of redundancy rules permits (a) the input of minimally
specified trees, and (b) the reduction of the specifications of rules.
For instance, all vowels of English are voiced and therefore need not
be specified as such in the input trees and also if a rule creates a
new vowel, it is unnecessary to specify that this new segment is
voiced. For that reason, the redundancy rules specified in the lexicon
apply at any time in the entire process of the derivation when a com-
plex symbol is modified. This is what Stanley (1967) refers to as
"everywhere rules."

The metarules defining redundancy rules are:

RULES clist[redundancy-rule]

7.0l everywhere-rules

Il

7.02 redundancy-rule complex~symbol-reference =>

complex-symbol-reference

Example of redundancy rules are:

| +voc| => |+soN|
| +vOC -CONS| => |-ANT -STRID +CONT +VOICE -LATERAL|

| -LOW (ALPHA)BACK| => | (ALPHA)ROUND|

The redundancy rules apply after the input of the tree and

Lo

everytime a complex symbol 1s modified in the derivation. Any complex
symbol which includes the complex symbol on the left-hand side of the
redundancy rule is expanded to contain the complex symbol on the right-
hand side of the redundancy rule; i.e., the complex-symbol on the
right-hand side of the redundancy rule merges into any complex symbol
which includes the left-hand side complex symbol of the redundancy
rule.

The redundancy rules of the grammar are not ordered. The process
of expansion of the complex symbols terminates only when no further

application is possible.

5.4 MARKEDNESS CONVENTIONS

The program distinguishes two special prefixes, the prefix U and
the prefix M which are used for the representation of the marking con-
vention rules.

Unlike other prefixes which match a tree complex symbol when the
feature associated with the prefix has a sign or an integer value,
these two prefixes match only tree complex symbols which are either
unmarked or marked for the feature associated with the prefix. The
prefix U is assigned the value + if the complex symbol is unmarked for
the associated feature and the value - if it is marked. The prefix M
is assigned the value + if the complex symbol is marked for the asso-
ciated feature and the value - if it is unmarked.

In our implementation, there can be only one occurrence of either

L1

of these marking prefixes in & complex symbol, as it appears that

markedness convention rules require only one marking prefix.

5.4.1 Example

The complex symbol |+SEG (U)VOCI matches the complex symbol |+SEG|
and U is assigned the value +; it matches also the complex symbol
| +SEG vOC| and U is assigned the value -.

The tables describing the comparisons can be further specified for

the "marking" prefixes as follows:

B 5

- [0} Lo}

O 8 O

2y [0}]

& £ 3

o] + - o =}
prefix Uor M T F F F T

CHAPTER 6

CONVERSION OF DUMMY NODES

A dummy node is completely characterized by its complex-symbol.
Complex-symbols are difficult to write and even to read; this suggests
giving a name to the most frequent of theée complex-symbols and refer-
ring to them by name, thus simplifying the description of trees and of
rules. On input each name must be converted into its associated com-
plex-symbol, and on output a name must must be found for each complex-
symbol whenever this is possible. We thus distinguish two types of
conversions for names of complex-symbols and of complex-symbol combina-

tions: 1input conversion and output conversion.

6.01 conversion-lexicon ::= PHONLEX feature-lexicon

opt[input-name-lexicon]

opt[output-name-lexicon]

opt[diacritic-lexicon]

$ENDCON

This rule of the metalanguage defines the conversion-lexicon as the

set of feature-lexicon and three optional lexicons: input-name-lexi-

con, output-name-lexicon and diacritic-lexicon. The diacritic-lexicon

is used in the output conversion.

L2

6.1 INPUT CONVERSION

The input-name-lexicon contains the list of the input-name-defini-

tions:

6.03 input-name-lexicon ::= VARIABLE clist[input-name—defini—

tion].

An input-name-definition associates a name with a given complex symbol.

1]

6.06' input-name-definition

complex-symbol-name = complex-symbol

6.09 complex-symbol-name ::= word

Once a name has been given to a complex symbol in the conversion lexi-
con, this name can be used instead of the complex-symbol itself in most

parts of the grammar. This is why the term complex-symbol-reference

in the metalanguage represents either a complex-symbol or a complex-

symbol-name.

1.07 complex-symbol-reference

complex-symbol [complex-symbol-name

Examples of input-name-definitions are

V = |-CONS +VOC|
L = |+CONS +voC|
G = |-cons -voc|

e

CONS = |+CONS -voC|

GR = |(ALPHA)CONS (ALPHA)VOC -ANT|

Phonological rules are susceptible of further simplification if boolean-
combinations of complex symbols also have names. For instance, a con-
sonant is a segment which is not a vowel. Definition 6.06 extends 6.06'

to permit such naming.

1l

6.06 input-name-definition

complex-symbol-name = complex-symbol
0 input-name = booleancombination[complex-symbol-

reference |

Examples of input-name-definitions with input-names are

C = —V& |+SEG|
c = |+cons| | |-cons -voc|
C = L | G| cons

The first example defines a consonant C as a segment |+SEG| which is
not a vowel V. The last example defines a consonant C as being either
a liquid L or a glide G or a "restricted consonant" CONS.

A complex-symbol-name may appear in the definition of an input

name only if it has been previously defined.

6.2 OUTPUT CONVERSION

Output conversion takes place Jjust prior to tree output. It does

L5

not modify the structure of the tree; it only gives a printed version
of the tree which is easier to read. It operates in two steps, first
it finds the principal symbol corresponding to the ddmmy node and com-
plex-symbol which are to be converted, and then finds the diacritics

modifying the principal symbol.

6.2.1 Principal Symbol

The output-name-lexicon contains the list of the output-name-defi-

nitions which define the principal symbols of the output conversion.

6.04 output-name-lexicon ::=

PHONUNIT clist[output-name-definition].

An output-name associates a name to a given complex-symbol-reference.

6.07 output-name-definition ::=

output-name = complex-symbol-reference
6.10 output-name ::= symbol

Example of output-name-lexicon

PHONUNIT A

| +VOC -CONS +LOW|,

E =V

b

=
1]

| +CONS -VOC +NASAL|,

[ve}
n

| -vOC +CONS -CONT|,

L = L.

L6

The complex symbol corresponding to the output-name must be a tree com-
lex symbol with binary or n-ary valued features. Before a tree is out-
put, each of the complex symbols associated to its dummy nodes is com-

pared with the complex symbol associated with the output-names. If the

complex symbol of an output name definition is included in the complex
symbol of a dummy node, this output name replaces the dummy node in the
tree. The features of the complex symbol in the tree which are not

specified in the complex symbol of the output name are listed‘after the
terminal string. For example let us analyze the conversion of the tree

TREEL.

TREEL

T
/;// ' ,

-voc +VOC " |+voc +V0C -VoC
+CONS -CONS +CONS -CONS +CONS
-CONT| |1STRESS +ANT | |2STRESS +NASAL
+LOW +NASAL
+LONG

Without a conversion lexicon, this tree has the following output:

TREE1
1 S 2N 3!
. "
57
67
7!
NODE 3 '
| -vOC. +CONS -CONT|
NODE 4
| tVOC -CONS 1STRESS +LOW +LONG|
NODE 5

| +VOC +CONS +ANT|

L7

NODE 6

| +VOC -CONS PSTRIESS +NASAL
NODE 7 '

| -vOC +CONS +NASAL|

The same tree, but this time using the output-name-lexicon above, has

the following output:

TREE1
18 2 N

~N O\ W
= 0w

BALEN
4 A |1STRESS +LONG|
5 L |+ANT|

6 E |2STRESS +NASAL|

It is very important that the definitions in the output-name-lexicon

be properly ordered, since it is the first cutput whose complex symbol
is included in the complex symbol of the dummy node which is taken as

the symbol for output. In the previous example, if the definitions of
A and E are inverted, the terminal string is BELEN, since E is defined

as any vowel and is compared first.

6.2.2 Diacritics
The features which are left after the principal conversion can be
specified as diacritics after the principal output symbol. The dia-

critic-lexicon contains the list of the diacritic-definitions.

6.05 diacritic-lexicon ::= DIACRIT

clist[diacritic-definition]

L8

A diacritic-definition associates a name to a given complex-symbol-

reference.

6.08 diacritic-definition ::=

diacritic = complex-symbol-definition

6.11 diacritic ::= symbol

Example of diacritic-lexicon

DIACRIT > = |+NASAL|,
= |+LoNG]|,

/1/ = |1STRESS|,

/2/ = |2STRESS].

The complex symbol in the definition of a diacritic must be a tree
complex symbol with binary of n-ary values features. The complex sym-
" bol of each diacritic is compared for inclusion in the complex symbol
of the dummy nodes in the tree; if some feature specifications were
specified in the complex symbol of the principal symbol and of previous
diacritics, they are not available and are assumed to be absent from
the complex symbol being converted at this stage. If the complex sym-
bol of a diacritic is included in the complex-symbol of the tree, the
diacritic is written immediately after the last character of the mode.
In the previous example of conversion, if we add the diacritic lexicon,

the printed output of TREELl becomes

L9

TRERL

18 2 N 3 B
b A:/1/
5L
6 B>/2/
7N

BA:/1/ L B>/2/ N
5 L | +ANT

In the example node 7 is converted to N; the diacritic > for nasality
does not appear after the principal symbol because the feature +NASAL
was part of the definition of N. The diacritics appear in the order of
their definition in the lexicon. If the definitions of the diacritics:
and /l/ are inverted in the lexicon, the terminal string becomes

B A/1/: L E>/2/ N.

CHAPTER 7

ANALYSIS, RESTRICTION, AND CHANGEL

A phonological rule typically specifies modification, deletion,
or introduction of segments in a given environment. In the tree format
of the program the representation of a segment is a dummy node followed
by its complex symbol; the interpretation of a phonological rule be-
comes the modification of a complex symbol, the deletion of a node,
or the introduction of a node, i.,e., a tree operation. We refer to

tree operations as structural-changes, The description of the environ-

ment in which the change takes place is the structural-description of

the rule., The structural description is aimed at singling out specific
nodes in the tree to which the changes apply. Consider, for instance
the rule of penultimate stress placement, which places a stress on the
penultimate vowel of a word., It may be stated as a structural descrip-
tion, which singles out the penultimate dummy node with a complex
symbol with the features |+VOC -CONSI, and a structural change, which
consists of merging the feature llSTRESSI into the complex symbol
attached to the node singled out in the structural description.
Actually, a structural description contains two parts, a structural
analysis and, optionally, a restriction., The metarule corresponding

to this decomposition is

l .
Except for bounded-skips and node-names, the analysis of phonological
rules is essentially the same as in Friedman et al. (1971,88), to
which the reader is referred for a complete description of transforma-
tions,

50

2,01 structural-description

51

It

structural analysis opt[, WHERE restriction]

In this chapter, we treat structural analyses, restrictions, and struc-

tural changes.

T.l STRUCTURAL ANALYSTIS

Before we describe the format for structural-analysis and its

interpretation, we give three examples of structural analyses which we

use as examples throughout this section. Analyses (1) is associated

with stress placement, analyses (2) and (3) with diphthongization.

(1) N<%1'v('o'c 'V) 'Oo'c#>

(2) 9% 1'|-coNS +VOC +TENSE (ALPHA)BACK| %

(3) %1'A ('R'c, 'R#, 'L'M#, #) %

7.1.1 Formal Description

2,02

2,0k

2,06

structural-analysis ::= 1list[term]

term ::= opt[integer] structure

[opt[integer] choice [skip

structure ::= complex-element opt[opt[7] opt[/]

< structural-analysis >]

complex-element ::= element opt[complex-symbol]

| dummy-node node-name

element ::= node [* [

52

2,07 node-name ::= complex-symbol [complex-symbol-name

0 input-name

2,08 choice ::= (clist[structural analysis])

2,09 skip ::= 9% [Dbounded-skip

1l

2.10 bounded-skip

' integer opt[, integer] dummy-node node-name

Terms
The structural analysis (1) is a single term, it is also a

structure. The substring (L4) of the structural-snalysis (1) is a

structural-analysis,

() 41 'v ('o'c 'v) ‘'o'c#

It contains five terms: %, 1'V, ('0O'C 'V), '0'C and #. The
first and the fourth of these terms are skips, the fourth being a

bounded-skip, The third term is a choice containing the two structural-

analyses., 'O'C and 'V which are also, respectively, a bounded-skip

and a complex-element. The second term of (L4) is of the form integer

structure; this structure is a dummy-node followed by the node-name V.

Numbering of terms

The definition of terms allows them to contain integers. These
integers arce indices which single out some nodes in the trec, These

indices appear in the definition of changes and in restrictions. Skips

53

are terms, but are not numbered. To insure proper indexing of the

nodes in a tree, two further constraints restrict the use of integers
in terms: first, the same integer may precede two terms, only if one
of those terms must be null in any analysis, and second, two different

integers may not govern the same term as in 2(3'C,L'V) or 1(2'C).

Structures

The structural-analysis (1) is a structure. The complex-element

N is an element and also a node, the string (4) is the structural-

analysis of this structure,

Skips

There are two types of skips: 9% and bounded-skips. The skip 9%

replaces the variables used in conventional notations., Bounded-skips

replace sequential variables of the type Ci which represent strings of

at least 1 and most j consecutive segments C:

'0'C stands for Co

'0,3'C stands for Cz

Skips need not correspond to single subtrees and connot be numbered;

this prevents their indexation and their use in structural-changes and

restrictions,
Two other constraints restrict the use of skips: first, in a

structural-description two adjacent terms of a structural analysis may

ok

not be both skips and second, each structural-analysis in the clist

[structural-analysis] of a choice must contain at least one term which

is not a skip. The first constraint is partially Jjustified by the

following equivalences:

% '0'c, '0'C %, and % '0'C % are all equivalent to %.
% '2,3'C is equivalent to % 'C 'C.

'2,3'C % is equivalent to 'C 'C %.

Complex-elements

The most common complex-element i1s a dummy-node followed by a node~

name, A node-name can be a complex-symbol, a complex-symbol-name or

an input-name; the last two are also words. Therefore any word

following a dummy-node is interpreted as a complex-symbol-name or .an

input-name (this applies also to trees). It is for this reason that

a dummy-node to which no complex-symbol is attached must be followed

by an empty complex-symbol; it prevents the next word from being ana-

lyzed as a node-name., Another type of complex-element is an element

optionally followed by a complex-symbol,

Elements
The most common element is a node, The element * is an unspeci-
fied single node, i.e., a variable over a single node, The element _

(underline) may appear only within the structural-description of a

simple-rule where it indicates the position at which a change takes

25

place, We study these simple rules later and ignore the underline in
our discussion until then, There may be several underlines in a

structural-analysis, it must be the case, however, that ekactly one

underline be nonnull in any analysis.

There are two types of choices: options and collections. In an

option, the clist of the structural-analysis is limited to one element;

for example ('C) or ('0'C 'V)., It corresponds to the use of optional
parentheses in phonological descriptions, In a collection, the clist
contains at least two elements; for example ('F'C, 'R #, 'L'M#, #).
It corresponds to grouping by curly brackets in phonological descrip-
tions:

rC

Lt

Teles2 Analyzability

Analysis is a mechanism which compares a tree and a structural-
analysis and, if the comparison succeeds, indexes some nodes in the
tree with the integers appearing in the terms of the structural-
analysis., We describe here the analyzability of a tree with respect to

a structural-description, that is the conditions under which a match

between a tree and a structural-description is possible; we 1limit this

description to structural-descriptions without restrictions and witheut

56

prefixes in complex-symbols or in the definition of their complex-

symbol-name and input name, These cases are studied later.
The conditions of analyzability not only describe whether a tree

is énalyzable with respect to a structural-description, but also indi-

cate how many possible analyses of the tree there are; they do not,
however, indicate any relation between these analyses, these relations
are described later in the description of scans.

The indexing of nodes is straightforward, once a match has been
found, The integer.of a Egzgvby definition governs this term; if an
integer governs a term, and this term contains a structure, the integer
also governs the element or the dummy-node of this structure; if the

term contains a choice, the integer also governs the first term of each

of the structural-analyses in the clist of the choice, By recursive
application of the relation "governs," an integer governs a list of
elements and/or dummy-nodes. For instance the integer 3 governs the

dummy-node of the complex-element 3'C, the dummy-node of the choice

3('C) and all the dummy-nodes of the choice # 3('R, 'L, 'N). In an
analysis, the integer of a term indexes the node of the tree which

matches one element or dummy-node of the structural-description

governed by this integer., For example the integer 3 indexes the un-
>labelled node in the tree which matches the dummy-node of 3'C, 3('C)
or one of the dummy-nodes of the collection 3('R, 'L, 'N).

We describe analyzability for structural-analyses which are more

and more complex, until the description 1s general,

57

(2) The terms of the structural-analysis are all elements. The

structural-analysis is simply a list of elements, for example (5).

(5)

* N VP

The comparison between a tree and the structural description succeeds

if there is a one-to-one match of the tree nodes with all the

structural-description elements and such that:

1l.a

1l.b

The element * matches exactly one node of the tree, whether
this node is labelled or not, and independently of its label
if it is labelled.

An element, which is a node, matches exactly one labelled
node in the tree whose label is the same as the node.

Each terminal node in the tree matches an element or a dummy-

node of the structural description or is dominated by a node

which does.

The right-to-left order of the elements and dummy-nodes in

the structural-description and the right-to-left order of

the nodes in the tree which they match is identical.

The structural description (5) matches the tree (6).

58

In this match, the element * matches the node labelled DET in the tree,
the element N matches the node labelled N in the tree and the element

VP matches the node labelled VP in the tree,

(b) The terms of the structural analysis are all complex-elements,

The procedure is identical to the preceding, but if an element is

followed by a complex-symbol in the structural-analysis, the tree node

it matches must have a complex symbol which includes the complex-symbol

of the structural-analysis, If the complex-element is the sequence

dummy-node node-name, it matches an unlabelled node of the tree which

has a complex symbol which meets the conditions of the node-name., When

the node-name is a complex-symbol or a complex-symbol-name this means

that the complex symbol attached to the unlabelled node includes this

complex-symbol or the complex symbol corresponding to the complex-

symbol-name. When the name-node is an input-name, each of the complex

symbols corresponding to the complex-symbol-references appearing in

the booleancombination defining the input-name are tested for inclusion
in the complex symbol of the unlabelled node; this complex symbol meets
the cénditions of the input-name if the booleancombination of the
values of the test for inclusion is true.

The structural analysis (7) matches the tree (8).

(7) 'c 'v '[|+cons +voc|

(8) T\\\\\\
"+CONS "|-CONS| '|+CONS
-voc +V0C +V0C
+VOICE +HIGH +ANT

where V is the complex-symbol-name defined by

v = |-coms +voc]
and C the input-name defined by

C = "7V

(c) The terms of the structural analysis are complex symbols or

skips., The skip % matches not only a single node, but any string of
adjacent nodes, including a string of zero nodes, in which case the

skip is said to be null, A bounded-skip is of the form 'n,m' node-name

or 'm'node-name, In these two forms n is the lower-bound of the

bounded-skip, in the first form, m is the upper bound of the bounded-

skip. A bounded-skip matches a string of adjacent unlabelled nodes

such that the complex symbol of each of these unlabelled nodes meets
the conditions of the node-name and such that the number of nodes

matched is at least equal to its lower-bound, and, if the bounded-skip

has an upper bound, at most equal to its upper bound. Note that 'n,n'

node-name, not 'n'node-name, expresses "precisely n."

(d) Terms of the structural analysis are complex-segments, choices

and skips. If the choice is an option, i.e., the clist of the choice

contains only one structural-analysis, then the structural-analysis

containing this option matches any tree that would be matched by a
similar structural description where the cholice is absent or replaced

by its own structural-analysis.,

If the choice is a collection, i.,e,, the clist of the choice con-

tains several structural-analyses, the structural-analysis containing

this option matches any tree that would be matched by a similar struc-

tural description with one of the structural-analyses of the choice in

place of the choice,

The structural-snalysis (9) matches trees (10) and (11),

(9) 9% 'v ('o'c 'v) ‘'o'c#

(10) //<;;,¢7N§EffEEEEEEEEEfEEF:::I::::::T“--—-___
"% |4+CONS Tee |-CONS 'ee 1 +CONS| ~'**|-CONS
-voC +V0C -voC +V0C
+STOP +FRONT -STOP -FRONT

(11)

}

'+ |*CONS| ‘'e-y-cows |
-voc +V0C
+STOP +FRONT

The structural-description (3) matches trees (12), (13), (14),

and (15). (In these trees the complex symbols have been written as

complex-symbol-names.)

(12)

P /\

CONS A R CONS A CONS A

61

CONS A CONS A

(e) General case, In the general case a complex-element may be

followed by a bracketed structural-analysis. The four types of

brackets are: (1) < vee >, (2) / < vee >, (3) 79< ¢oe >, and (k)

7/ < «eeo > A bracketed structural-analysis is a "sub-analysis" of

the complex-element it follows. This means that the complex-element

not only matches a node and its complex symbol, but also that the

bracketed structural-analysis "matches" the subtree headed by this

node, The subanalysis differs slightly from an ordinary analysis of
a tree. The top node of the subtree, which has already been matched
to the complex-element, is not allowed to match any term within the
subanalysis, Otherwise, subanalysis is primarily a recursive applica-
tion of the definition of analysis. The exact requirement of the sub-
analysis depends on the type of bracketing. For bracketing (2), the
analysis is made in the usual sense; for bracketing (1), the analysis

is subject to the further requirement that any element or dummy-node in

the bracketed structural-analysis must match a tree node which is im-

mediately dominated by the top node of the subtree, Brackets (3) and
(4) correspond to brackets (1) and (2) respectively, but in this case,
the analysis is successful if the subanalysis cannot match the subtree.

For example structural-analysis (1) matches tree (10), but does

not match the same tree if the label of the top-node is replaced by the

label V.

62

7.1.3 Assignment of Variables

(a) Variables appearing in the complex-symbol of a complex-

element., We defined the conditions of analyzability when the complex-

symbols in the structural-description have no prefixed features. If

~an assignment of the variables can be found such that the tree is ana-

lyzable with respect to the assigned structural-description, i.e., the

structural-description where all the prefixes have been replaced by

their assigned value, then the tree is analyzable with respect to this

structural-description,

For example, let us consider the structural-descriptions (16),

(17), (18) and the tree (19).

(16) % '|-cons +voc| '|+CONS -VOC (ALPHA)NASAL| %

(17) % '|-cons +voc| '|+CONS -VOC (ALPHA)NASAL
'[+cONS -VOC (ALPHA)NASAL| ¢

(18) 9 '|-cons +voc| '|+CONS -VOC (ALPHA)NASAL|

'|+CONS -VOC (-ALPHA)NASAL| 9

7 //\\
"o+ [+CONS Yee|-CONS 'es |+CONS Tee 14CONS
-vocC +VOC -vVoC -VoC
+VOICE +HIGH +NASAL +NASAL

Structural-description (16) matches tree (19) for the assignment of +

to ALPHA

63

Structural-description (17) matches the tree (19) for the same assign-

ment

Structural-description (18) does not match tree (19), because no assign-

ment of ALPHA allows a match.

The variable occurring in the complex-symbol of a complex-element is

assigned after analysis if the complex-element matches a node in the

tree. 1In the previous example, ALPHA is assigned after comparison of

the tree and the structural descriptions (16) and (17); on the other
hand, if tree (19) is analyzed with respect to structural description

(20),

(20) ¢ '|-cows +voc| ('|+CONS -vOC (ALPHA)NASAL],

'|-cons (BETA)NASAL|) %

the complex-element ']—CONS (BETA)NASALI does not match any node and

since BETA does not appear in the complex-symbol of any other matching

complex-element, BETA remains unassigned after analysis.

There are as many assignments for the set of variables as there

are analyses of the tree.

(b) Variables appearing in the complex-symbol of a skip or in

the definition of complex names and ihput—names. The assignment of

variables appearing in the definition of a complex-symbol-name, or an

input-name, or in a bounded-skip is independent in each occurrence of

that complex-symbol and need not be uniform throughout the structural-

6k

description, i.e., in an assigned structural description these
variébles may have different assignments; the assignment is restricted
to the matching of only one node, or to the testing of one complex
symbol in case of skips.

For example, if the complex-symbol-name GR is defined as (21),

then structural description (22) matches tree (24), but structural de-

scription (23) does not.

(21) GR = [(ALPHA)CONS (ALPHA)VOC -ANT
(22) % 'GR '|-cows +voc| 'GR %
(23) % '|(ALPHA)CONS (ALPHA)VOC -ANT| '|-CONS +voC

"|(ALPHA)CONS (ALPHA)VOC -ANT| 9

(2k) .
| -CONS "|-CONS " | +CONS
-voc +V0C +70C
- ANT +HIGH - ANT

Structural description (22) is equivalent to structural description

(25) where all the complex-symbols are specified in the structural-

description.

(25) % '|(ALPHA)CONS (ALPHA)VOC -ANT| '|-CONS +voC

"|(BETA)CONS (BETA)VOC -ANT| ¢

In the case of skips, complex-symbols and complex-symbol-names play

the same role, For example, structural descriptions (26) and (27)

match tree (28).

65

(26) ¢ '|-coNs +voc| 'O'GR #

(27) % '|-cons +voc| 'o' |(ALPHA) CONS (ALPHA)VOC -ANT| #
(28) N\\
#7 T |+CONS '"\-CONS Tee |4+CONS| ' |-CONS| #
-voc +VOC +Voc -voC
+VOICE +HIGH - ANT +ANT

The variables appearing in these contexts are not assigned after an

analysis, The difference in conventions between on the one hand

complex-symbols appearing in complex-elements and on the other hand
complex symbols appearing in skips and definitions correspond to the

fact that in the complex-symbols of complex-elements, the variables

represent true relations between different nodes in the tree, where as
in the other cases, the variables characterize only types of segment
and do not represent a relation between segments.

To avoid interference between the two interpretations, the same

variable should not be used in the complex-symbol of a complex-element

and also in a skip or in the definition of a complex-symbol-name or of

an input-name, For instance, if GR is defined as above, the following

structural-description might not behave as expected:

(29) ¢ '|+coNs -voc (ALPHA)NASAL| 'GR

"|-coNs +voC (ALPHA)NASAL| 9

The variable appearing in the definition of a name represents a

contraint which typifies a complex symbol, and a definition such as

66

(30) 7z = |+CONS -VOC (ALPHA)NASAL|

makes little sense, since ALPHA does not indicate any constraint; ZZ
matches all tree complex-symbols that includes |+CONS -VOCI and that

are neither marked nor unmarked for the feature NASAL.

7.1.4 Scan

The scan defines an order among the possible analyses of a tree
with respect to a structural description. One scan only is defined in
the program. It is a left-to-right scan., We define the notion of
first analysis and the notion of next analysis, thus a complete ordering
of the analysis,

First we must introduce a few definitions relative to the nodes of
a tree and the element of a structural description. Node A is next
below node B, if A is the first daughter of B. Node A is next right
to node B, if either B has a right sister and A is B's right sister or
B does not have a right sister and A is the right sister of the lowest
node which both dominates B and has a right sister. In the example
below, the arrows indicate in (31) the relation next below and in (32)

the relation next right,

(31) S (32) S
N P

P =p" VP

g0 |
AN 4SRNV ANANN

67

In a structural description elements and dummy-nodes play the same role
and are referred to as descriptor-nodes, or simple, as descriptors.
Descriptor A is next right to descriptor B in a structural description
in the obvious sense, i.e., A is to the right of B and there is no
intermediate descriptor between A and B, Node A is below node B in a

tree if there is a chain of nodes Xo’ X coe Xn where XO=A and Xn=B,

l’
such that each node of the chain, but the last, is next below the next
node, A cut 1s a chain of nodes such that each node, except the first,
is next right to the previous or below a node which is next to the pre-
vious node of the chain, The first node is called the beginning node,
‘the last, the terminating node of the cut. 1In the tree (32), for

example, the node NP and the last four unlabelled nodes form a cut.

An unlabelled cut is a cut, in which all the nodes are unlabelled

nodes and such that each node, except the first, is next right to the

previous or the first unlabelled node below the node which is next

right to the previous node of the cut.

A cut C joins the nodes A and B if the chain A C B is a cut. A
cut joins the‘node A and the right edge of the tree if A C is a cut and
the terminating node of the cut C does not have a next right successor.
A cut C joins the left edge of the tree and the node B if C B is a cut
and the beginning node of the cut does not have a predecessor, i.e.,

a node such that the beginning node of the cut is its next right suc-
cessor, In case of unlabelled cuts, the joining cut must be such that

there are no unlabelled nodes between the node next right to A and the

68

beginning node of the cut or, if the cut joins the left edge of the

tree, between the top of the tree and the beginning node of the cut.

(33) Example
Bl /K

NP<:>
//\\

/N\@
® ® ®p ®©O

In tree (33) the nodes are numbered only for reference during the
discussion,

In the tree the cut (2, 8, 9, 10, 11) joins the two edges of the
tree; the cut (8, 9, 10, 11) is an unlabelled cut which joins the node
(2) to the right edge of the tree and the unlabelled cut (7, 8, 9, 10)
joins node (6) to node (11).

There are two types of matching in the algorithm we define in the
next section: a matching of nodes with descriptors and a matching of’
cuts with skips, We shall use the term matching for the first type
and the term s-matching for the second (this formal difference makes

the description easier, a matched node refers to a node which has been

matched during the comparison of a descriptor and a node, not during
the comparison of a skip and a cut.)

A descriptor * matches any single node, a descriptor which is a
node in the structural description matches a tree node with the same

label and a dummy-node ' matches an unlabelled tree node,

69

A skip % s-matches any cut, including an empty cut (i.e., a cut

with no nodes)., A bounded-sklp s-matches an unlabelled cut of length

at least equal to the lower bound and at most equal to the upper bound
if the bounded skip has an upper bound; each of the nodes of the cut
must satisfy the conditions of the node name specified in the skip,
i.e., if the node-name is a complex symbol or a complex symbol name,
the complex-symbol attached to each node must include this node name
and if the node name is an input name, the complex symbol attached to
each node must give a_true value to the boolean combination of the
input name. A bounded skip whose lower bound is zero may s-match an
empty cut.

A. First analysis. The description of the analysis requires the

use of two markers, a tree marker pointing to a node in the tree and
a structural description marker pointing to a descriptor in the struc-
tural analysis, Initially, the tree marker points to the top-node of
the treevand the structural description to the left-most descriptor.
After a successful match of the node pointed to by the tree marker
and the descriptor pointed to by the structural description marker an
attempt to move the tree pointer to the node next right to the matched
node and the structural description marker to the descriptor next right
to the matched descriptor is undertaken., If the attempt is successful,
both pointers are moved. This stage is the "ready for a next match"
state, this is the state assumed at the beginning of an analysis., A

new match is attempted every time this state is reached, If after a

70

successful match, the state "ready for a next match" cannot be reached,

the next step is the back-up procedure (which we describe later) unless

the analysis is successful, The analysis is successful, 1f the struc-
tural description marker cannot move to a next right position and either
the last matched descriptor is not followed by a skip in the structural
analysis and the-tree marker cannot move to a next right position (i.e.,
it is on the right edge of the tree) or the ékip following the last
matched descriptor in the structural analysis s-matches any cut joining
the last matched node and the right edge of the tree.

When a state of "ready for a next match" is reached, or initially,
a match is attempted between the node pointed to by the tree marker

and the descriptor pointed to by the structural description marker,

(34) Example

Structural description DET

=
*

Tree

NP/(@ veQ®)
/N s

TN
© ® 00O ERCN N E)

Tnitially, The tree marker points to the node S.
The s.d. marker points to the descriptor DET.
1st match S does not match DET.
The tree marker moves to the node NP, next below S.

(1

NP does not match DET,

The tree marker moves to the node DET, next below NP,
DET matches DET,
The match is successful, the pointers move to their
next right position, the tree marker to N and the s.d.
marker to N,

2nd match N matches N
The match is successful, the pointers move to their
next right position, the tree marker to VP and the s.d.
marker to *,

3rd match VP matches *,
The match is successful, none of the pointers has a
next right position: the analysis is successful,

If a match is found and a complex-symbol foilows the descriptor in the

structural description, this complex-symbol is compared for inclusion

with the complex symbol attached to the node matched by the descriptor.

If a complex-symbol-name follows a dummy-symbol, the test is again in-

clusion, but this time with the complex symbol corresponding to the

complex-symbol-name, If an input name follows a dummy-symbol, each of

the complex symbols mentioned in the definition of the input name is
tested for inclusion and the corresponding booleancombination is com-
puted., If the comparison fails or the booleancombination is not met,
the analysis proceeds as though the tree node and the descriptor do

not match, otherwise, the match is valid,

(35) Example

Structural description * |+cons| ‘'c 'V
1 2 3

C and V are defined as V | +voc -cons |

1l

C= "V

72

Tree

7R,

! 1
@ -VoC @ +VOC

+VOC
+CONS +CONS ~-CONS
-CONT +BACK +FRONT
-VOICE

Initially The tree marker points to the node N,
The s.d. marker points to the descriptor *,

1st match N matches the descriptor *,
The complex symbol |+CONSI is tested for inclusion in
the complex symbol attached to N, which is empty.
The test fails, the tree marker moves to the node (2)
next below,
The unlabelled node (2) matches the template *,
The complex symbol |+CONS| is included in the complex
symbol attached to the dummy node (2); the match is
successful,
The tree marker moves to point to the unlabelled node
(3) in the tree and the s.d. marker moves to point to
the dummy node (2) in the structural description.

2nd match The unlabelled node (3) matches the descriptor '(2).
The complex symbol |+VOC —CONSI mentioned in the input-
name C by 1ts name V is tested for inclusion in the
complex symbol |+VOC +CONS +BACK| attached to the un-
labelled node (3).
The booleancombination -}V, (i.e.,, not V) is true, the
match 1s valid.
The pointers move to their next right positions.
The tree markers points to the unlabelled node (k4) and
the s.d. marker to the dummy-node (3).

3rd match, etc.

If a complex symbol contains an unassigned variable, a successful in-
clusion test assigns a value to this variable, The variables are all
unassigned at the beginning of an analysis. At the end of a successful

analysis the variables which appear in the complex symbols of the struc-

tural description and which follow matched descriptors asre all assigned,

()

This does not apply to the complex symbols of complex-symbol-names or

input-names, which are all unassigned after any match.

If an integer precedes the descriptor, or a complex symbol follows
the descriptor, the restrictions must be checked (we see later that
restrictions mention the integers preceding a template, or the variables
appearing in a complex symbol), During the process of an analysis, the
value of a restriction may depend on information not yet available.

For instance, in the following structural description, when the first

dummy node is matched, the value BETA has not yet been defined.
(36) D '|(ALPHA)LOW| '|(BETA)LOW|, WHERE BETA VEQ ALPHA.

For this reason a three-valued logic is used. The value of a condition
is "undefined" until the analysis has proceeded far enough to determine
a value of "true" or "false" for the whole restriction. Again, failure
of the restriction causes the analysis to proceed as though the node

on which the restriction received the value '"false" had not matched the
descriptor. Everytime a descriptor is preceded by a skip in the struc-
tural analysis and the descriptor successfully matches a tree node,

the preceding skip must s-match the cuts which join the previously
matched node, or the left edge of the tree if there was no previous
match, to the newly matched node., If the s-matching fails, and in that
case the skip is a bounded skip since % s-matches any cut, the next
step depends on whether or not the skip is s-matchable. The skip is

s-matchable if there is an unlabelled cut which joins the previously

T4

matched node, or the left edge of the tree if there was no previous
match to the newly matched node and which meets all the conditions for
s-matching the skip, except that the number of its nodes is smaller
than the lower bound of the skip. The analysis, then, proceeds as
though the template which is preceded by this skip had not matched the

node, If the skip is not s-matchable, the back-up procedure is entered,

(37) Example

Structural description '1'c1'c 'v 9
1 2 3 L

//,éN\,@

(:)’ +HONS

Tree

+CONS -CONS
-VoC +VOC +VOC
-CONT -BACK +HIGH

Initially The tree marker points to node (1).
The s.d. marker points to the descriptor (2).

1st match N does not match the dummy-node (2).
The tree marker moves next below to node (2),
Node (2) matches descriptor (2).
The complex symbol of node (2) satisfies the condi-
tion of the input-name C.
Descriptor (2) is preceded by the skip (1), there is
no unlabelled cut joining the left edge of the tree
and node (2) which contains at least one node; in
this case the unlabelled cut is too short.
The analysis proceeds as if node (2) and descriptor
(2) do not match.,

If in an attempt to match a tree node and a descriptor, the tree
marker has moved from one tree node to the next below, until a termi-

nal node has been reached without success, there are two options

7>

depending upon whether or not a skip precedes the descriptor 1n the
structural description. If there is a skip, the tree marker moves to
the node next right to the terminal node which has been reached, and

a match is attempted again, If in this process, the marker reaches

the right most terminal node of the tree without any match, the back-up

procedure is entered,

(38) Example continuation of example (37).

1st match (cont'd)

At the end of the description of example (37),
the tree marker points to node (2) and the s.d.
marker points to descriptor (2) and the analysis
proceeds as if they do not match, The tree
marker has reached a terminal node and there is
no matching., The descriptor (2) is preceded by
the skip (1) in the structural analysis: the
tree marker moves to node (3) which is next right
to node (2).
The unlabelled node (3) matches the descriptor
(2). The complex symbol of node (3) satisfies
the conditions of the input-name C,
Descriptor (2) is preceded by the skip (1) which
s-matches the unlabelled cut consisting of the
single node (2). The match is successful. The
s.d, marker move to the next right descriptor
(3) and the tree marker moves to the next right
node (L4).

2nd match, etc.

If the structural description marker is pointing to the first
descriptor of an option, i.e., a choice containing only one structural-

analysis, the analysis proceeds as if the parentheses around the op-

tion were absent; the parentheses of an option only affect the backup

procedure,

76

If the structural description marker is pointing to the first
descriptor of a collection (i.e., a choice with several structural-
analyses) the analysis proceeds as if the parentheses were absent.
However, the instruction "move to the next right template" to the struc-
tural description marker has a different meaning if the descriptor
currently pointed to by the structural description marker is the last
descriptor before one of the commas of a collection., In that case, the
structural description marker moves to the next descriptor following
the last parenthesis of the collection., This hopping of the structural
description marker before the comma of a collection applies at any level
of embedding of choices, for instance in the structural analysis
A (B, (C,D), E) F, if the structural description marker must move from
descriptor C to the next descriptor it moves to descriptor F. The
backup procedure allows the structural description marker to move in-

side the different structural-analyses of & collection.,

If a structural-analysis within angle brackets follows a descrip-

tor that has been satisfactorily matched, a record is made of relevant
information about the current status of the analysis, and analysis

begins again, this time using the angle-bracketed structural-analysis

and the subtree headed by the node matched to the template, If no /
precedes, the tree marker is only allowed to point to immediate
daughters of the top node during this analysis, instead of looking all
the way down to terminal nodes., If a -] precedes and the subtree is

not analyzable, or if no -3 precedes and the subtree is analyzable,

anslysis continues following the angle-bracketed structural-analysis;

otherwise, anslysis proceeds ss 1f the descriptor followed by this

angle-bracketed structural-snalysis had not matched its tree node.

Backup procedure

(a)

(p)

(d)

Tf a backup procedure is entered when the structural descrip-
tion marker points to the left-most descriptor, the analysis

is unsuccessful.

If the backup procedure is entered when the structural des-
cription marker points to the first template of an option,
the structural description marker hops to the descriptor next
right to the last descriptor of the option; the tree marker
does not move,

If the backup procedure is entered when the structural des-
cription marker points to the first descriptor of the

structural-analysis of a collection, the tree marker does

not move, the structural description marker hops to the first

descriptor of the next structural-analysis of the collection

if there is one; if there is none, it follows the general
case (d) of backup.

In the general case, the structural description marker backs
up to the previous descriptor which matched and the tree node
to the previous tree node which matched. The matching

resumes from these new pointer positions as though the node

78

and the descriptor do not metch., If during a previous match of a node

on which the tree marker backs up a variable was assigned or a condi-

tion was defined, they are respectively unassigned and undefined.

(39) FExample

Structural description N 'Cc 9
1 2 3
Tree
(:)Bk\\\\\\\
m'
H 00 D

Initially

1st match

2nd match

The tree marker points to the top-node N (1),

The s.d. marker points to the descriptor N (1).

N matches the descriptor N.

The tree pointer cannot move on the right, and the
s.d., marker can move to the right; the back-up pro-
cedure is entered.

The markers move back to the last successful match.
The tree marker points to the top-most node N.

The node N does not match the descriptor N (because of
the back-up procedure convention).

The tree marker moves to the next node (2) N below,
The new node (2) N matches the descriptor N,

The tree marker moves to the next right node, the un-
labelled node (6).

The s.d., marker moves to the next right descriptor '(2).
The unlabelled node (6) matches the description (2)'
and the booleancombination corresponding to the input
name C is true.

The descriptor (2) does not have a next right successor
and is followed by a skip (3) which matches the last
two unlabelled nodes: the analysis is successful.

(9

B. Next analysis, After an analysis is found, the next analysis

i{s obtained bv enterine the back-up procedure on the last descriptor
that watehed in thal analysis. The values assipgned to variables are

saved before a next analysis 1s started.

Examples of ordering

(46) Example

Structural description % 1'v ('o'c 'v) ‘'o'c

! 1
© icons| @ |-cons | B |+oms| @ |-cons | # @D
-VOC +V0C -voC +V0C
+STOP +FRONT -STOP -FRONT

lst analysis ©kip 1 s-matches the cut (2 - 3).
Descriptor 2 matches the node (3).
Descriptor 4 matches the node (5).
Skip 5 s-matches the cut (6).
Descriptor © matches the node (7).

We can abbreviate this analysis as 1(2 - 3), 2(3), 3(4), 4(5), 5(6),
6(7).

2nd analysis 1(2 - 3 - b - 5), 2(6), 3(8), W), 5(8), &(7).

This can be paraphrased as: 1if a structural description contains en
option, the analysis where the option is present precedes the snalycsic

where the option is absent,

80

(41) Example

Structural description % 'c 1('|+NAsAL|, '|-HIGH|) 9%

@@@

(;rce/ \ |

@ oo -CONS (3) +CONS (@) -CONS +(D

-VOoC +VOC -VoC +VOC
+VOICE -HIGH -STOP +NASAL
1st analysis 1(2), 2(3), 3(§), “(L), 5(5 - 6 - 7)

2nd analysis 1(2 - 3 - L), 2(5), 3(06), 4(p), 5(7)

This example shows one of the characteristics of left-to-right
scan, namely, if there exist several analyses of a tree with respect to
a structural description, they are ordered from left-to-right. An
analysis is to the right of another analysis if its first matched node

is below, or right of, the first matched node of this other analysis,

7.2 RESTRICTIONS

Restrictions add conditions to a structural description, and are
necessary to state requirements for analyzability which cannot other-
wise be expressed in the notation for structural descriptions. For
example, the requirement that the value of one feature be smaller than
the value of another feature necessitates a formulation with a restric-
tion. The conditions of analyzability when s structural description
when a structural description contains a restriction remain the same
as previously stated, except that the analysis of the tree must satisfy

the restriction,

A restriction is o Booleancombination of conditions, the logical
connectives being -y (not), & (and), | (or). The metarules defining

the restrictions are:

3,01 restriction ::= booleancombination[condition]
%.02 condition ::= unary-condition [binary-condition
3.05 unary-condition ::= unary-relation integer

3.04 binary-condition ::=

integer binary-tree-relation node-designer

0 integer binary-complex-relation complex-symbol-designator

' p-value value-relation p-value

5.05 node-designator ::= integer [node [dummy-node
3,06 complex-symbol-designator ::= complex-symbol [integer
3.07 p-value ::= sign [integer [variable

If a node-designator is an integer, it refers to the tree node indexed

by that integer in the analysis., For example, in the structural-

description

(k2) ¢ 1'c 2'c 9%, WHERE 1 EQ 2

The binary-condition assures that in the tree matches by this struc-

tural description, the subtrees headed by the nodes indexed 1 and 2

are identical, namely here that they have the same complex symbol, If

a complex-symbol-designator is an integer, it refers to the complex-

symbol attached to the tree node indexed by that integer.

(43)

32

1< ¢ 1'v ('o'c 'V) 'o'C # >, WHERE 1 INC1|+N]

1 INC1|+w]

Structural description (L43) assures that the node dominating the un-

labelled nodes contains either the feature specification |+N| or the

feature specification I+V[, that is it is either a noun or a verb., If

p-value is a variable, the variable must be defined somewhere in the

analysis, i.e., it must appear in the complex-symbol of a complex-

element which matches a node,

The various relations are defined in the following metarules.

3,08

5.09

%.10

3,11

unary-relation ::= TRM [NTRM [NUL [NNUL

binary-tree-relation ::= EQ [NEQ [DOM [NDOM

| DOMBY [NDOMBY

binary-complex-relation ::= INC1 [NINCL

] CSEQ [NCSEQ [NDST [NNDST

value-relation ::= VLT [VLE [VkQ [VGE

0 vor [VNE

The relations 3.08 - 3,10 are in pairs of the form XXX and NXXX, where

NXXX 1s the negation of XXX; for the value-relations, this convention

has not been followed because the negation of a relation has another

conventional name.

Unnry-rclations

TRM : the corresponding node is a terminal node of the tree

WUL : the descriptor governed by the integer does not match a node

in the tree; this relation is meaningful only if the integer

governs a descriptor in an option or a collection.

1
Binary-tree-relation

BQ ¢ The subtrees dominated by the two nodes are identical,

including equality of complex symbols., For this relation

the

DOM : The

the

For

DOMBY : The

nated by

node-designator must be an integer,

node

node

this

node

on the left-hand side of the relation dominates
on the right-hand side without an intervening S.
relation, the node-designator must be a node.

on the left-hand side of the relation is domi-

the node on the right-hand side, For this re-

lation the node-designator must be a node,

1
Binary-complex-relation

These relations are defined in Chapter 6; they are INC1 (include),

CoEQ (equal) and NDET (nondistinct). If a complex-symbol contains a

variable, this variable is assigned a value during the comparison if

it was not already defined, 1In the case of a negative complex rela-

tion, the value assigned to a variable is not necessarily unique.

Other relations defined in syntax (cf. Friedman et al.; 8§8) are
available, but do not seem to be required in phonology.

8l

For instance, if the condition

(44) 2 NCSEQ |(ALPHA)CONS (-ALPHA)VOC |

is tested for a node whose complex symbol is ’+CONS +voc|, the condi-
tion will be met, furthermore, 1f ALPHA was unassigned, ALPHA is
assigned the value + wh=n the feature CONS is checked first and the

value - when the feature VOC 1s checked first, Binary-complex-

relations as a rule should be used to check conditions, and not to

assign values., Another example is the restriction (L45):

(L5) 3 NCSEQ |(ALPHA)NASAL|

If ALPHA is not defined at the time of comparison, ALPHA is assigned
the value of the feature NASAL in the tree complex-symbol, and the
comparison returns false whatever this value of NASAL, unless the tree
complex symbol was marked or unmarked for NASAL, in which case ALPHA
cannot be assigned and since the positive condition 3 CSEQ |(ALPHA)
NASALI in this case 1s false, the negative restriction 3 NCSEQ

|(ALPHA)NASAL| is true.

Value-relation

VLT : less than
VLE : 1less than or equal to
ViQ : cqual to

VGl : greater than or cqual to

var o s greater thon

VNE : non-cqual to
The p-values on both sides of the relation must be both integers or
both signs; otherwise, the relation is assumed to be false, TIn the

Sound Pattern of Fnglish (SPE), the interpretation of value-relation

is that the sign - is greater than any integer. Therefore, the relation
alpha > 3 of SPE should be written in our conventions (ALPHA VGT 3

ALPHA VEQ -).

The variables appearing in a value-relation must be assigned a

value at some point in the derivation; otherwise the relation is taken
to be true. This excludes the use of variables which appear in skips,

in complex-symbol-names or input-names in restrictions, since they are

unassioned after cach matceh,

Restrictions are restricted to nodes matched by descriptors
because a relation requires the use of integers, which can only govern
descriptors, or of a variables which appears only in the complex

symbols of descriptors. In SPE, some rules use restrictions on skips,

for instance

(b6) ## % 1'|+voc -cONS 1STRESS| X ##,
WHERE X is an unlabelled skip which does not contain a seg-

ment including the feature specification llSTRESS!.

This restriction should be interpreted in the program as a bounded-skip

using an input name describing the restriction,

86

(L7) NSTRESS = = |1eTRESS

SD ## ¢ 1'|+VOoC -CONS 1STRESS| 'O'NSTRESS #4.

7.5 STRUCTURAL CHANGE
The effect of the structural change of a rule is to modify nodes
which have been indexed during the analysis and trees headed by such

nodes. For example a rule with the structural-description 9% 1'|[+CONS

-STOP —VOCI # and the structural-change ERASE 1, has the effect of

deleting the subtree headed by the node which matches the term l'|+CONS
-VOC -3TOP| of the structural description.

The metarule for a rule is

8.03 rule ::= 8D structural-description.

opt[SC structural-change .]

A more extended example of rule is the rule (L48) of reduplicative

stem formation, which reduplicates some monosyllabic stems.

(48) eD 1'c 2'v 3('c).

SC 1 ADLES 1, 2 ADLES 1, 3 ADLES 1.

This rule applies to the tree (L49)

(49) N
1 1 1
<:> TOONS <:) -(CONO (:> HOONS
-VoC FVOC -VOC

+STOP +LOW -5TOP
-NASAL HTAS AT HNASAL

87

The indices 1, 2, and 3 of the structural-description are represented

in the tree. The three changes are instruction to adjoin the three
nodes indexed 1, 2, and 3% as left sisters of the node 1 in this order.

The tree, after application of the rule, contains six unlabelled nodes:

(50)

+CONS -CONS +CONS +CONS -CONS +CONS
-VoC +VOC -VOC -VOC +VOC -VOC

+STOP +IL,OW -STOP +STOP +LOW -STOP
-NASAL +NASAL +NASAL -NASAL +NASAL +INASAL

The order of the changes is important. Any other ordering of the

changes in the previous structural-change does not produce an output

tree where the two syllables are identical.

The metarule for structural changes is

5.01 structural-change ::= clist[change-instruction]

5.02 change-instruction ::= change [conditional-change

In the reduplicative rule, all the change-instructions are simple

changes rather than conditional-changes. We discuss these two types

of change-instructions in this order.

7.3.1 Simple changes

A change consists of an operator and one, two, or three srguments,

88

5,04 change ::= unary-operator integer
I tree-designator binary-tree-operator integer
0 complex-symbol-designator

binary-complex-operator integer

0 complex-symbol-designator

ternary-complex-operator integer integer

The change operators are either operators which change tree structures

or operators which modify complex symbols.,

Tree operators

5.06 unary-operator ::= FRASE

5.07 Dbinary-tree-operator ::=

ADLAD [| ADFID [ADRIS [ADLES [SUBST [ADCHR] ADCHL

ALADE || AFIDE [ARISE [ALESE [SUBSE | ACHRE [ACHLE

The unary-operator ERASE deletes the subtrece indexed by the number,

and then chains upward, i.e., it erases 211 the ancestors of the sub-
tree until a node with at least two daughters is encountered.

The binary-operators are different types of adjunctions: sister
adjunction, daughter adjunction and Chomsky adjunction. They are
divided into two groups: adjunction with erasurc and adjunction with-

out crasure,

Other operators are available, which are described in the syntax pro-
cran (88), but which do not seem to be required for phonology.

89

ADLAD adjoin as last daughter ALADE, idem with erasure
ADFID adjoin as first daughter AFIDE, idem with erasure
ADRIS adjoin as right sister ARISE, idem with erasure
ADLES adjoin as left sister ALESE, idem with erasure
ADCHR Chomsky-adjoin to the right ACHRE, idem with erasure
ADCHL Chomsky-adjoin to the left ACHLE, i1dem with erasure

An operator with erasure is equivalent to the corresponding operator
without erasure, followed by an erasing of the first argument of the
operator; hence i ALADE j has the same effect as i ADLAD J, ERASE 1.

The second argument of a binary-tree-operator must be an integer,

i.e., it must refer to a node or sub-tree which has been specified in
the structural description, the first argument of the tree-binary-
operator may also refer to a node or subtree defined in the structural-
description as it is the case in the rule of reduplicative stem forma-

tion, but it can also refer to nodes or trees directly.

5.05 tree-designator ::= (tree) [node 0§ integer

An example of transformation which adds a subtree is the rule of

diphthongization.

(51) SD ¢ 1'|-CONS +VOC +TENSE (ALPHA)BACK]| 9.

sc ('|-voc -cons +HIGH (ALPHA)BACK (ALPHA)ROUND|) ARISE 1.

N changes N
to
'///////// \ ::::#>r///////////:;;; \\\\\\\\'

+CONS -CONS +CONS -CONS -VoC

-VoC +VOC -VOoC +VOC -CONS
+STOP +TENSE +STOP +TENSE +HIGH
-NASAL -BACK I-NASAL -BACK -BACK

-ROUND

90

Complex-symbol operators

5,08 binary-complex-operator ::= ERASEF [MERGEF (] SAVEF

5.09 ternary-complex-operator ::= MOVEF

These changes are defined in Chapter 6. An example using a binary-

complex-operator is the rule of penultimate stress placement.

(52) sD 9 1'v ('o'c 'v) ‘'o'c #.

sC |1STRESS| MERGEF 1.

The feature specification 13TRESS is added to the complex symbol of the
penultimate vowel 1f the word has two syllables, or to the only vowel
of the word, if i1t is monosyllabic. An example of a rule using a

ternary-complex-operator is the rule of voice assimilation

(53) sD 9% 1'c 2'C %.

sc [xvoick| MoOvEF 2 1.

The feature specification of the second consonant for the feature
VOICE is added, or substituted, in the complex symbol of the first

consonant, Note that (53) is equivalent to formulation (5k):

(54) sD ¢ 1 cC '|+cONS -vOC (ALPHA)VOICE| .

s¢ |(ALPHA)VOICE| MERGEF 1.

This sccond formulation, however, is less efficient than the tirst.

o compltex aymbol on Lhe Tetb=hand afde ol an operalor conlaing o

91

variable, this variable must have been assigned in the analysis or in

evaluating the restriction of a conditional change.

7.5.2 Conditional changes

A conditional change is a structural change which applies only if

certain conditions are met, more specifically:

5.03% conditional-change

1l

IF < restriction >

THEN < structural-change > opt[ELSE < structural-change >]

The structural-change following THEN is executed if the restriction is

met; otherwise, the structural-change following ELSE is executed, if

there is one. The conditional change makes it possible to specify that
a change takes place only after another has taken place. For instance

the rule of velar softening:

(55) €D ¢ 1'|-ANT -CONT +DER| '|-CONS -BACK -LOW| .
sc |+COR +STRID| MERGEF 1,

IF < 1 INC1 |-VIOCE| > THEN < |+ANT| MERGEF 1 >,

This rule states that segments which are marked |-ANT -CONT +DER +COR
+STRID -VOICE| become |+ANT| in front of segments marked |-CONS -BACK

—LOWI only if they have undergone the rule:

(56) SD ¢ 1'|-ANT -CONT +DER| '|-cONS -BACK -LOW| 9

SC |+COR +STRID| MERGEF 1.

92

7.4 SIMPLE RULES
Simple rules are abbreviations for a series of recurrent rule
types. These rules allow modification or introduction of only one node,

The only changes they allow are ERASE, MERGEF and sister or daughter

adjunctions.

8.0k simple-rule ::= operand => operator

opt[/ < structural-description >].

8.05 operand ::= complex-symbol-reference [input-name g *
8.06 operator ::= complex-symbol-reference g *

The structural description of a simple rule must contain at least one
underline, and be such that exactly one underline is nonnull in any
analysis. The optional expression in a simple rule is called the
context of the rule., If a rule does not have a context, it is assumed

to be /< % _ % >.

ERASE. This change is characterized by the operator *, During analy-
sis, a dummy node followed by the operand replaces the underline of the

structural-description. The change erases the node which matches this

newly introduced dummy-node, The following simple rules (57) and (58)

are equivalent,

(57) ¢ =2>x <g #>.
(58) e» 9 1'c 4.

e FRAG 1,

95

MERGFF. This change takes place when the operand is a complex-symbol-

reference or an input-name and the operator is a complex-symbol-

reference. During analysis, a dummy node followed by the operand re-
places the underline., The change consists of merging the operator into
the complex symbol attached to the node which matches this newly intro-

duced dummy node, The following simple-rules (59) and (60) are equiva-

lent,

(59) ¢ = |[(ALPHA)VOICE| / <% _ '|+CONS -VOC (ALPHA)VOICE|%>.
(60) sD % 1'c '|+CONS -VOC (ALPHA)VOICE| 9.

sc | (ALPHA)VOICE|MERGEF 1.

ADJUNCTION. These operations are characterized by the operand *, The
node which is adjoined is an unlabelled node to which is attached the
complex symbol of the operator. The type of adjunction depends on the
position of the underline in the structural description. The first
applicable one of the following rules applies:
(a) There exists an element or dummy-node N on the left of, and
contiguous to, the underline; the new node is adjoined as s
left sister of W.
(b) There exists an element or dummy node N on the right of, and
contiguous to, the underline; the new node is adjoined as a
right sister of N.
(c) The underline is the last element of an angle-bracketed

structural-analysis; the new node is adjoined as the last

daughter of the element preceding the bracketed structural-
analysis.

(d) The underline is the first element of an angle-bracketed
structural-analysis; the new node is adjoined as the first
daughter of the element preceding the bracketed structural-
analysis.

(e) The simple rule is not well defined.

The two following rules arc equivalent.

(61) * = |-VOC -CONS +HIGH (ALPHA)BACK (ALPHA)ROUND |
/ <% ' |-CONS +VOC +TENSE (ALPHA)BACK| % >

(62) sD 9 1'|-CONS +VOC +TENSE (ALPHA)BACK| %
SC |-vVoc -CONS +HIGH (ALPHA)BACK (ALPHA)ROUND |

MERGEF 1,

CHAPTER 8

TYPES OF RULES

The program allows phonological rules to be input in either of
two formats: the transformational format, or the simple-rule format,
the second one being only a shorthand for the first. Each rule may be
further specified according to its type, the group to which it belongs,
the optionality and its mode of application. These specifications be-

long to the identification of the transformation.

8.02 +transformation ::= . TRANS identification . rule

0 RULE identification . simple-rule

8.07 identification ::=

optl integer] transformation-name

opt[1list[parameters]]

8.08 transformation-name ::= word

The identification of a rule must contain the name of the rule; for
instance the rule for stress placement could be named NSTRESS. The
integer preceding the name is optional and may be used for reference;
it is ignored by the program. The parameters define the group, the
optionality and the mode of application. If the group is not specified

in the identification, it is assumed to be the group of the previous

transformation, or the group specified in the implicit statement if

there is no previous transformation, or group I if there is no implicit

95

statement. If the optionality or the mode of application is not spec-
ified in the identification, it is assumed to be identical to the op-
tionality and mode of application specified in the implicit statement;
if there is no implicit statement they take the value OB for option-

ality and the value AC for repetition.

8.01 transformations ::= TRANSFORMATIONS

opt[IMPLICIT parameters]

list[transformation] CP control-program $END

8.09 parameter ::= group-number | optionality [repetition
8.10 group-number ::= I [ITI [IIT | Iv [v [VI [VII
8.11 optionality ::= OB [OP

8.12 repetition ::= AC [ACAC [AACC

The group-numbers and the control-programdefine the order ol appli-

cation of the rules and are discussed in the next chapter; in this chapter,

we describe the repetitions or modes of application, and the optionality.

8.1 MODES OF APPLICATION

The modes of application are defined here for obligatory rules.
In the next section, we describe how they are modified in case of op-
tional application.

. . . . 1
Several modes of application have been described™ for phonological

l ,
¢f. €PE. Johnson (1970, J31-J118); Anderson (1968); Harms (1966, 608);
McCawley (1968, 20-22).

Jr

rules. [n the program, we have implemented three modes which seem
adequate tor the deseription o all phonological ruless. ''his does not
preclude that other modes of application might be more justified to

. R e s . . 1 .
capture linguistically significant generalizations™ ; present evidence,

however, does not show conclusively that this is the case.
8.12 repetition ::= AC [ACAC [AACC

8.1.1 Single Application AC

If the repetition is AC, the analysis algorithm attempts to find
the first analysis of the tree with respect to the structural descrip-
tion; if it finds one, the structural change applies to the nodes in-
dexed in the analysis.

The rule of antepenultimate stress placement (1) applied to the
word /rédj5/, where /r,d,j/ are C's and /e,o/ are V's, and attaches a
stress to the first vowel, because the option ('0'C 'V) is present in
the first analysis which matches the tree (2).

(1) RULE ANTSTRESS AC.
vV => |1STRESS| /<% _ ('0O'C 'V) '0'C #>.

"I +CONS| '|-CONS "1-voC ' |-CcONS {~CONS
+VOC +VOC +CONS -VoC +VOC
-ANT | +TENSE -CONT -BACK +TENSE

-BACK +BACK

1 .
Cf. Friedman et al. (1971, 102-105), define another mode AAC for

syntax.

98

The rule of diphthongizaticn (3) applying to the same word adds
only one glide after the first vowel, giving /réjdjal

(%) RULE DIPHT AC.
* => | -VOC -CONS +HIGH (ALPHA)BACK]

/ <9 |-CONS +VOC +TENSE (ALPHA)BACK| _ %>.

8.1.2 Iterative Application ACAC

The ACAC mode specifies iterative application. The rule is re-
iterated after each application, until no analysis of the tree with re-
spect to the structural description is possible.

If the following rule of nasalization is iteratively applied to
the word /poan/ where /o,a/ are V's and /n/ is +NASAL, the vowel /a/
is nasalized on the first application, and the vowel /o/ on the second

application, since it is now followed by a segment specified +NASAL.

(4) RULE NASALIZ ACAC.

vV => |+NASAL| / <% _ '|+NASAL| %>.

'[+cons| 'T-coms | ‘|-cons [™|+cons
-voC +VOC +VOC -voC
~CONT| |-Low +TOW +NASA,

-NASAL| |-NASAL

However, after the second application, if the process is applied again,
the vowel /g/ is still followed by a segment specified]+NASAL|, the
tree is analyzable with respect to the structural description, nnd the
rule spplies an infinite number of times. Rule (%) should be modilicd

as (7) to prevent this infinite iteration.

99

("r) RULK NASALI/Z ACAC.

| +VOC -CONS -NASAL| => |+NASAL| /< _ '|+NASAL| %>

8.1.% Simultaneous Application AACC

For the repetition AACC, analysis algorithm finds all possible
analyses of the tree with respect to the structural description; the
structural changes apply to the nodes indexed in the analysis.

If rule (8) of antepenultimate stress placement applies to the
word /rédyé/ simultaneously, both vowels /é/ and /6/ receive stress
because there are two possible analyses of the tree, one corresponding
to the presence of the option ('0'C 'V) and the other to its absence.

If rule (9) of diphthongization is changed to apply simulta-
neously, in the word /rédyﬁ/, both vowels are diphthongized, giving
/réydyﬁw/.

(8) RULE ANTSTRESS AACC.

vV = |1STRESS| /<% _ ('0'C 'V) 'O'C # >.

(9) RULE DIPHT AACC.

¥ => |_-VOC -CONS +HIGH (ALPHA)BACK|

/<% '|-CONS +VOC +TENSE (ALPHA)BRACK| _ %>.

8.2 OPTIONALITY

In contrast to obligatory application, where the rule applies
whenever one or more analyses have been found with respect to the
structural description, application of a rule is optional if a choice

is made to decide whether or not a rule applies even when some analyses

100

of the tree have been found. There appears to be many possible defini-
tions for optionality depending on the mode of application. We have
implemented one type of optionality for each of the modes of applica-
tion. The optionality in the identification of a rule indicates wheth-

er a rule is optional (OP) or obligatory (OB).

8.12 optionality ::= OB [OP

8.2.1 Single Application

In the case AC there is only one choice: whether or not the
rule applies when the tree has an analysis with respect to the struc-
tural description.

I'or instance, if Lhe word /rédyé/ undergoes o single, optionnl
application of rule (1) of antepenultimate stress placement, the out-
put of the rule can be either /ré&yé/ if the rule applies or /rédya/

if it does not apply.

8.2.2 Iterative Application

In the case ACAC, the number of iterations of the rule is the
object of the choice; therefore an optional iterative rule may apply
zero times, one time, two times, etc.; the maximum number ol itera-
tions is the number of iterations in the corresponding obligatory
transformation.

For instance, if the word /poan/ undergoes an iterative optional

npplication of the nasnlization rule (7), the iterntion may ntop ot

L.OL

its initial stage, leaving the word unchanged /poan/, or after the
first application giving the phonetic form /pogn/, or after the second
application (which in this case is the last possible application)

giving the phonetic form /pSan/.

8.2.% Simultaneous Application

In the case AACC, the choice between applying or not applying the
changes to any one of the analyses of the tree with respect to the
structural description is carried individually for each of the analy-
ses. For example, suppose that the first line of the diphthongization

rule (3) is changed to

RULE DIPHT AACC OFP.

so that it calls for optional simultaneous application. If applied to
tree (9), two analyses are found: the change corresponding to the
[irst one would add a glide after the vowel /é/, and the second after
the vowel /6/. The two choices between adding and not adding the
glide are made independently, so that there are four possible out-
comes: /rédjd/ (no change), /rejdjo/ and /redjow/ (one change), and

/rejdjow/ (two changes).

8.3 FORMAL DEFINITION OF THE MODES OF APPLICATION

8.3.1 Invocation and Application of Rules

Given a subtree and a rule, we say that the subtree is tested

102

for this rule, or alternatively, that the rule is invoked for the sub-
tree if the procedure which determines the analyzability of the sub-
tree with respect to the structural description is entered. After one
or several analyses of the subtree have been found, the rule is said
to have applied to the subtree if the procedure which applies the

ctructural changes of the rule is entered at least once.

8.%.2 Formal Definition

In the formal definitions of the modes AC, ACAC, and AACC the
step O applies only when the rule is optional and must be ignored
when the rule is obligatory:

AC 0. decide whether to continue or to stop.

1. invoke the rule for the first analysis.
2. apply if the analysis is successful.

ACAC 0. decide whether to continue or to stop.

1 invoke the rule for the first analysis.

2. apply if the analysis is successful.

3. reiterate steps 0,1, and 2 until the analysis is un-

successful.

AACC 0. decide whether to do step 3 or go directly to step L.

1. invoke the rule for all possible analyses.

2. take the first analysis, if any, as the current analy-
sis.

3. apply to current analysis, if any.

4. take the next analysis, if any, as the current analysis.

5. reiterate steps 0,3, and 4 until all analyses have been
taken as current analysis.

CHAPTIR 9

RULE ORDERING

A phonological grammar consists primarily of a set of rules. It
must also indicate the subtrees to which these rules apply and in
which order Lhey apply.

There is no gencral consensus on how the rules should be ordered.
For this reason we have introduced a notation for describing different
types of ordering. The ordering, thus, becomes part of the phonologi-
cal grammar. We do not maintain that a universal ordering may not
someday be discovered. Our position is only that the linguist should
be able to experiment with different types of ordering and to define
his own ordering‘in the absence of a recognized universal scheme.

The ordering is tormally deseribed in the control-propram in

which the user may:

a. group rules into ordered sets and apply rules either individ-
ually or by rule sets.

b. specify the subtrees to which a rule or a rule set is to
apply.

c. specify the order in which the rules and rule sets are con-
sidered.

d. allow the order of application to depend on which rules have
previously applied.

The control language uses the mechanism already defined for the appli-

103

10k

cation of rules. For instance, the fact that a transformation indexes
nodes in the tree and therefore defines subtrees allows the use of
transformations in the control program to define the subtrees to which

rules and rule sets are to apply.

9.1 SUBTREES
Rules do not necessarily apply to the whole tree under deriva-

tion. The control-program can specify the subtrees to which the rules

apply by listing in a directing-node-definition the nodes which may

head these permissible subtrees.

9.02 directing-node-definition ::=

@ (clist[complex-element])

1
For instance, control program (1)~ specifies that the transformation

with name Tl applies to all subtrees which are headed by nodes label-

led either N or V.
(1) cp (d(n, v) TI.

The basic order of application of a rule is from bottom-to-top: Any

subtree headed by a node which matches one of the complex-elements

of the directing-node-definition is a permissible subtree. If there

lControl—programs are represented here preceded by the prefix CP and
followed by a stop as they appear in the program. It must be under-
stood that the control-program does not formally contain a prefix,
nor a final stop (which are part of transformations).

is more than one permissible subtree in the tree under derivation, the
subtrees arce Lested, bepinning with the least cmbedded subtrecs. A
permissible subtree, therefore, is tested for a rule only if it does
not contain another permissible subtree, or if all the permissible
subtrees it contains have already been tested. For example, control-
program (1), in a grammar which contains only the transformation T1,
specifies that the subtrees of tree (2) headed by the nodes (13), (11),

(7), (8), (5), and (4) are tested in this order for transformation T1.

Peter s come ing surprises me

9.2 INSTRUCTIONS

A control-program is a series of instructions to the program which
specifies the transformations for which the subtrees defined in the

directing-node-definitions are tested.

9.01 control-program ::=

sclist[opt[directing-node-definition] instruction]

106

9.02 instruction ::= transformation-element

| control-element [sclist[instruction]

In the next sections we describe the control-elements which define oth-

er types of ordering and trace the evolution of a tree in a derivation.

9.05 control-element ::= IN-instruction [IF-instruction

I RPT-instruction [STOP-instruction

| TRACE-instruction

In this section we describe the basic ordering, i.e., the ordering

without control-elements. The rules may be individually ordered, in

which case the control program specifies the transformation-name of

the rule, or in groups, in which case the control program specifies

the group-number of the group.

9.04 transformation-element ::= transformation-name

| group-number

A rule may belong to only one group.

In the first case we consider all the transformation-elements are

transformation-names and are preceded by a directing-node-definition.

In this case each rule applies bottom-to-top to the subtrees defined
by the directing nodes. The rules are linearly ordered as they appear

in the control program. For example, consider control program (3) and

tree (2).

107

(5) Ccr@(n,v)rLs @ (N1 @ (N, VNP VP @ (N, V)L

Tl applies bottom-to-top to the tree (2), i.e., the subtrees (13),
, (7), (8), (5), and (4) are tested in this order for transforma-
Tl. After this, rule T2 applies bottom-to-top to tree (2), i.e.,
subtrees (13), (8), (5), and (L) are tested in this order for
sformation T2, and then for rule T3 and finally for rule ThL.

If no directing-node-definition precedes an instruction, the di-

ing nodes for this instruction are taken to be the directing nodes

he previous instruction, or the directing-node-statement @(S) if

e are no previous instructions. For example, control-programs (L)

(5) are equivalent.

(4) CP@(N,V)T1; T2; T3; Th.

(5) CP@(N,V)TL; @(N,V)T2; @(N,V)T3; @(N,V)Th.

convention applies also to instructions which are control-ele-

S. That is, if a control-element is not preceded by a directing-

-definition it is assumed to have the directing nodes of the pre-
.8 instruction. However, if an instruction follows a right angular

ket and is not preceded by a directing-node-definition, the di-

ing nodes of this instruction are assumed to be, not those of the
ious instruction, but rather the directing nodes of the instruc-
| preceding the corresponding left angular brackets. For instance

control-programs (6) and (7) are equivalent:

108

(6) CcP @(S,NP,VP,N,V) T1; T2; <@ (N,V)T3; Th >; T5; T6.

(7) cp @(S,NP,VP,N,V) T1; T2; @(N,V)T3; Th; @(S,NP, VP, N,V)T5; T6.

If an instruction is a group-number, it is equivalent to the sclist

of the members of the group. For example, if the group of transforma-
tions Tl, T2, T3, T4, and TS5 has the number II, the control program (8)

is equivalent to control program (9).

(8) cP@(N,v) II.

(9) CcP @(N,V) Tl; T2; T3; Th; TS.

In particular, the directing nodes are the same for all the members of

the group.

9.2.1 IN-instruction

The IN-instruction restricts application of rules so that they ap-

ply to a single subtree, instead of applying bottom-to-top throughout a

tree.

IN-instruction ::= IN transformation-name (integer)

DO < control-program >

The directing transformation of an IN-instruction is the transformation
whose name follows the prefix IN of the IN-instruction. It specifies
the single subtree to which the rules appearing in Lhe DO-range, i.co.,

between the angular brackets following the prefix DO, are restricted.

The directing transformation is invoked first; if it does not apply,

109

tLhe instructions in the DO-ranpe are skipped; il it applies, it indexes
some nodes in Lhe tree. 'The subtree Lo which the rules in the DO-ranpe
are restricted is the subtree which is headed by the node indexed by
the integer following the transformation-name in the IN-instruction.
For example, let us consider the transformation (10) and the control-

program (11).

(10) TRANS DIR. SD (NP < % 2%x> VP < 9 2%>),

(11) cP @NP,VP) 1IN DIR(2) DO<@(N)T1; @(V)T2; (@(N,V)T3>.

If the tree for which the directing transformation DIR is invoked is
tree (12), the last daughter of the node NP is indexed with the inte-
ger 2 and the subtree (13) is the only subtree to which rules T1, T2,
and T3 may apply. Actually, rule T2 is not invoked since subtree (13)

is not headed by a node labelled V.

(12) NP
A
the boy

(13) N

boy

The directing transformation of an IN-instruction is invoked as an or-
dinary transformation: 1if it is not within the DO-range of another IN-in-
struction, it applies bottom-to-top and if it is within the DO-range of an-

other IN-instruction, it may apply only to the subtree of this instruction.

110

Example 1

In this example, there are two types of rules: stress rules T1, T2,
T3, 15, T6, T7 which apply from bottom-to-top to all subtrees headed by
one of the labelled nodes N, V, NP and VP, and word level rules T, T8,

T9, T10 which apply only to subtrees that are marked | +WORD] .

Directing transformation

TRANS CYCLE AC. 8D 1x.

Control program

CP @(N,V,NP,VP) IN CYCLE(1l) DO

< Tl; T2; T3; < @ (*|+WORD|)T4 >; T5; T6; T7; @(*|+WORD|)

T8; T9; T10 >.

Tree
NE@- - - | +WORD| /vp\@< - | +WORD|
x\v/ Ty v

® " @

N// V{/////// N
@ @ ©

1@
Peter S come ing surprises me

The transformstion CYCLE matches the head node of each subtree for

which it i1s invoked. Therefore the subtree defined by CYCLI is always

the tree it is invoked f(or.

subtree
subtree
subtree

subtree

etCeene

Example 2

11

rules T1, 12, T3, T9, T6 and T7 are invoked.

idem

idem

rules T1, T2, T3, T4, TS5, T6, T7, T8, T9, T1O are
invoked since the head node of (10) matches the node
(VP) of the directing-node-definition @(N,V,NP,VP)

and the node of the directing definition (J(*|+WORD|)

The same ordering is defined in this example, but this time using

boundary markers instead of node markers to define a "word."

Directing transformations

1'RANS

CYCLHK

TRANS WORD

Control program

AC. 8D 1%,

AC. SD 1* < ## % ## >.

CP @(N,V,NP,VP) IN CYCLE(1)DO <

<Tl; T2; T3; 1IN WORD(1)DO < T4 >; T5; T6; T7;

IN WORD(1) DO < T8; T9; T10 >>.

Tree

VAL®,

#H Peler S

112

S
1@

come ing # # #surprises me # #

The mechanism of application is similar to the previous. Transformation

CYCLE matches the head of each subtree for whichit is invoked, thus defin-

ing the next lowest permissible subtree. Transformation WORD applies only

to subtrees which are bounded by two boundary markers ## on each side.

subtree (13)

subtree (12)
subtree (11)

subtree (10)

etec....

rules T1, T2, T3 are invoked.

transformation WORD is invoked but does not apply
and therefore the rule T4 is skipped.

rules T5, T6, and T7 are invoked

transformation WORD is invoked and does not apply,
rules T8, T9 and T1O are skipped.

idem

idem

this time when the transformation WORD is invoked it
applies. It defines the subtree it was invoked for.

Rules T1 to T10 apply in this order to the subtree (10).

y.0.0 IPF-instruction

[F-instruction allows conditional invocation.

9,07 IF-instruction ::= IF dinstruction THEN instruction

optl ELSE instruction]

The instruction following the prefix IF 1is carried out first. If one
of the rules involved in this instruction has applied, then the in-
struction following the prefix THEN is carried out and the instruction
following the prefix ELSE, if any is skipped; otherwise the instruction
following the prefix THEN is skipped and the instruction following the

prefix FLSE, if any, is carried out.

Example 1

Control program

@(N,V) IF TL THEN T2.

Tree (2
Transformation Tl is invoked for each of the subtrees (13), (11),

(7), (8), (5) and (4). If one of these invocations is successful,

transformation T2 is invoked for each of the same subtrees.

Example 2
In this example, the rule STRESSPLACEMENT introduces a main stress
I+STRESS| in one of the segments. Everytime this rule applies, all

other segments which are marked for stress must increase their stress

114

by one unit, that is, the transformation STRESSADJ must be invoked.

RULE STRESSPLACEMENT AC.

V = [+STRESS| /<% _ ('0'C 'V) '0O'C #>.

TRANS STRESSADJ AACC.

SD 1'|(ALPHA)STRESS|, WHERE ALPHA VNE -.

SC IF < ALPHA VEQ + > THEN <|1STRESS| MERGEF 1 >

ELSE <|(ALPHA+1)STRESS| MERGEF 1 >.

Control program

CP@(N,V,NP,VP) 1IN CYCLE(1) DO < IF STRESSPLACEMENT

THEN STRESSADJUST >.

Tree N

'[FCONS
-voC
-CONT

+VOC
-HIGH
-STRESS

The transformation CYCLE defines the tree on which the transformations

STRESSPLACEMENT and STRESSADJ will be invoked. The transformation

STRESSPLACEMENT is invoked and inserts the feature specification
| +STRESS| in the complex-symbol of node (6). The transformation
STRESSADJ is then invoked and changes the feature specification

| +STRESS| to |1STRESS| in node (6) and the feature specification

PSTRESS| to | 3STRESS| in node (8).

gLy RD=-nsbruction

RPI'-instruction allows repetitive invocation of a transformation,
a group of transformations, or a control-program. There are two forms
for the RPT-instruction: the first form does not have any upper bound
on the number of repetitions, the second specifies an upperbound by an
integer following the prefix RPT. The repeat instruction indicates
that the instructions in the RPT range are to be iterated until either
the upper bound, if any, is reached or until none of the transforma-

tions in the RPT range applies. For example the control program

CP RPT 5 < Tl; T2; III >

repeats the sequence: invoke transformation Tl, invoke transformation
T2, invoke every transformation in group III, until either none of them

apply or five iterations of the sequence have occurred.

9.08 RPT-instruction ::= RPT opt[integer] control-program

9.2.4 STOP-instruction

9.09 STOP-instruction ::= STOP

The STOP-instruction terminates the execution of a control pro-
gram, and may appear at any point in the control program. A STOP-in-
struction is assumed before the terminal period of the control pro-
gram. Therefore, a STOP-instruction need not appear within a control

program. The STOP-instruction forces an output of the final tree and

116

lists the transformations which have applied in order of application.

9.2.5 TRACE-instruction

9.10 TRACE-instruction ::= TREE

Everytime the TRACE-instruction TREE appears in the control program,
it causes the tree to output. For example, the control program (14)

causes a tree to be output after every invocation of rule T7.

(14) cp @(N,NP,V,VP) IN CYCLE(1l) DO
< Tl; T2; T3; < @(*|+WORD|)Tk >; T5; T6; T7; TREE;

@ (*|+WORD|) T8; T9; T10 >.

119

A warning message is issued when a strong possibility of error
exists. It has the same general form as the error message where

WARNING replaces ERROR. For example:

WARNING. NUMNAM. FEATURE HIGH ADDED AS INHERENT

10.3 PROGRAM STRUCTURE

The program is built up of subroutines. Figure 1 is a simplified
schematic description of the different subroutines and gives a basic
representation of the program structure. Arrows point from calling
subroutine to called subroutine. TableI is a brief description of each
of the subroutines shown in Figure 1. These descriptions are incom-
plete and serve only to identify the subroutine mentioned in Figure 1.

This schematic representation shows that MAIN is the controlling
program. MAIN consists almost entirely of subroutine calls. A run
begins with a call to the input subroutine for grammars (GRAMIN).
GRAMIN in turn calls subroutines INIT, which initializes the program,
PHONIN, which reads the conversion lexicon, RULEIN, which reads the re-
dundancy rules, and finally TRANIN, which reads the transformations.
Control then returns to MAIN which calls FTRIN for tree input, and then
calls CONTRL. The subroutine CONTRL first interprets the user's con-
trol program and applies the transformations: ANTEST tests the analyz-
ability ol the subtree and CHANGE carries the structural change if the

analysis is successful. The subroutine TROUT prints the final tree.

The process repeats with new inputs.

120

*2an3onI9s wexdoad OT1BUWLYDS

LN0Y¥L

dOWHETH TNYSEY
LSLSHY

ADNVHD

THINOD

d0sd

LSHINY

NI¥ LA

‘T 2andta

Il

[an

[ty

NIdO NINVHO NILSH¥
NIXO
NINVEL NTEINY NINOHd
LINT
NTNvED

NIV

121

TABLE T

Note: 'The aclual structure ol the program has been greatly simplilied
by the omission ol' subroutines called from one routine only. Also
omitted are output programs, which exist for almost every part of a
grammar.

Routine Role

1.1 Main program

MATIN Reads the user's directions for the current run and
carries them out.

1.2 Free-field input-output

FREAD Free-field read. Returns a word or special character
for each call.
FROUT Free-field write. Outputs a designated area of
storage.
1.5 Trees
TROUT Outputs a tabular tree.
FTRIN Inputs a linear tree specification.

1.4 Grammar input

INIT Initializes everything.

GRAMIN Reads in a transformational grammar.

PHONIN Reads in a conversion lexicon.

RULEIN Reads in redundancy rules.

CPIN Reads in the control program.

CHANIN Reads in a structural change.

CXIN Reads in a structural description or a complex symbol.
RESTIN Reads in a restriction.

1.5 Analysis

ANTEST Evaluates a structural description against a subtree.

1.6 Restrictions

RESTST Test a restriction.

122

TABLE I (Concluded)

Routine Role

1.7 Structural change

CHANGE Performs the structural change.
ELEMOP Does the operations.

1.8 Complex symbol operations

REDRUL Applies the redundancy rules to expand a complex
symbol.

CSOP Tests complex symbols, performs complex symbol opera-
tions.

1.9 Control program

CONTRL Interprets the control program.

APPENDIX A

TWO EXAMPLES OF GRAMMAR AND DERIVATION

123

124

EXAMPIE 1: PHONOLOGICAL RULES

For this example, we have transcribed some of the phonological rules

of The Sound Pattern of English that appear in the derivation of the

words courage and courageous.

PHONLEX1CON

FEATURES
CONS VOC HIGH BACK LOW ANT ROUND TENSE STRESS RED COR VOICED
STRID CONT DER A N WORD.

VARIABLE
00 | =CONS +VOC -HIGH +BACK =-LOW =-ANT +ROUND|,

| =CONS +VOC =HIGH +BACK +LOW =-ANT +ROUND|,

| =CONS +VOC -HIGH -BACK +LOW =ANT =ROUND|,

| =CONS +VOC =-HIGH -BACK ~-LOW =ANT =ROUND|,

| =CONS +VOC =-HIGH =-BACK =-LOW =-ANT ~-ROUND -TENSE =-STRESS

+RED]|,

| +CONS +VOC =ANT +COR +VOICED -STRID +CONT|,

| +CONS ~VOC +ANT «COR =-VOICED +STRID +CONT|,

| *CONS =VOC =ANT =-COR =-VOICED =-STRID =-CONT]|,

| +CONS =VOC =-ANT =COR +VOICED =-STRID =-CONT]|,

| +CONS -VOC =ANT =-COR +VOICED =-STRID =-CONT +DER|,

| =CONS +vOC]|,

- v .

X

o
[I B B B B N]

O<OOXRNID mMMmP»O

PHONUNIT
UH = |-CONS +VOC =-HIGH +BACK =-LOW =-AHT -ROUND|,
00=00, 0=0, A=A, EH=EH, E=E,
Y = |-CONS -VOC +HIGH =-BACK =-ROUND|,
W = |-CONS -VOC +HIGH +BACK +ROUND|,
J = |[+CONS -VOC -ANT +COR +VOICED +STRID =CONT|,
R=R, S=§, K=K, G=G.

DIACRITIC
: = |+TENSE|,
' = |1STRESS],
* = |2STRESS|,
* = |3STRESS]|.
$ENDLEX

TRANSFORMAT | ONS

IMPLICIT AACC.

" PHONOLOGI CAL RULES "
" THE RULES ARE REFERENCED BY THEIR INSET AND PAGE IN SPE "
" FOR INSTANCE, (36)77 REFERS TO RULE (36) ON PAGE 77 OF SPE,. "

"REDUNDANCY RULES"
RULE REDVOWL 1V, V => |-STRESS ~-TENSE|.

"VELAR SOFTENING "
TRANS VELSOFT 1., SN % 1'|-ANT =CONT +DER| '|=-CONS =-BACK =-LOW| 3.
SC |+COR +STRID| MERGEF 1 ,
IF <1 INC1 |-VOICED|> THEN <|+ANT| MERGEF 1>.

"MAIN STRESS -VERSION(36)77, MODIFIED (45)82 *
RULE MSTR AC. V ®> |+STRESS| /<2%/<% _ '0'C ('|=CONS +VOC -TENSE| ('C))
3¢ 4(+ '0'C) '|-CONS +VOC -TENSEI '0'C),
WHERE (NUL 3 | 2 INC1 |+A]l | 2 INC1 |+N|) & (NUL & | 2 INC1 |+A[)>.

126

"AUXILIARY REDUCTION - SIMPLIFIED FORM (20-1)240 "
RULE AUXRED AC. V => |-STRESSI
/<% _| (ALPHA)STRESS| ('C) '|(BETA)STRESS| %,
. WHERE (BETA VLT 4) & (ALPHA VGT BETA)>.

“TENSING, PART (B) OF RULE (23-tv)2y2 "
RULE TENSING 1II. | -CONS +VOC =-HIGH| => |+TENSE|
/<% _ 'C ("J(ALPHA)VOC (ALPHA)CONS =-ANT|)
'|=-CONS -BACK ~LOW =-STRESS| (+) 'V %,

"DIPHTONGIZATION - (31)243 "
RULE DIPHT. * s> |-CONS -VOC +HIGH (ALPHA)BACK (ALPHA)ROUND|
/<% '1-CONS +VOC (ALPHA)BACK +TENSE|l _ %>.

“VOWEL SHIFT (34)187 "
TRANS VOSHIFT . '
SD % 1'|-CONS +VOC +TENSE| % .
SC IF<1 INC1 |(ALPHA)HIGH -LOW|> THENC|(-ALPHA)HIGH| MERGEF 1> ,
1F<1 INC1 |-HIGH (BETA)LOW|> THENS|(~BETA)LOW| MERGEF 1> .,

"ROUNDING ADJUSTMENT - MODIFIED FROM (34)2u44 "
RULE RADJ. |+VOC -CONS (ALPHA)ROUND +BACK| => |(-ALPHA)ROUND|
/<z'(_I:TENSEI, | (BETA)LOW (BETA)ROUND +TENSE|,
_'V) ('C %)».

" E- ELISION"
RULE EELI, |=CONS =HIGH =BACK =LOW| => « /<% _ (+ %)>.

"“"VOWEL REDUCTION"
RULE EHRED. |-CONS +VOC -STRESS =-TENSE| => EH,

"TRANSFORMATION DEFINING THE CYCLE"
TRANS CYCLE AC 111.SD 1+ ,
"TRANSFORMATION ADJUSTING THE STRESS AFTER A MAIN STRESS RULE"
TRANS ADST. SD % 1'|(ALPHA)STRESS| %, WHERE ALPHA VNE - .
SC IFCALPHA VEQ +> THENC | 1STRESS| MERGEF 1>
ELSEC | (ALPHA+1)STRESS| MERGEF 1>.

"CONTROL PROGRAM DETERMINING THE ORDERING"
CP @(+|+WORD|) IV ; @Q(N,A) IN CYCLE(1) DO
<<@(+*|+WORD|)VELSOFT>; 1F MSTR THEN ADST; TREE; AUXRED;
Q(*|+WORD|) 11>,
$END $MAIN FTRIN TRAN ,

"' THE UNDERLYING FORM OF THE WORDS COURAGE AND COURAGEOUS ARE INPUT.

N|+N +WORD| <'K '00 'R 'A 'GD 'E >.
Al+A +WORD|KNJ+Nj< 'K '00 'R 'A 'GD 'E > + 'O 'S>.

Ly

TREE READ BY FTRIN

1N 2 K
3 00
b R
S A
6 G
7 E
NODE 1N
| +N +WORD|
K OORAGE
| +DER]|
6 G
sanaw TRANSFORMAT I ONS LA LA
SCAN CALLED AT L Q
SCAN CALLED AT 5

v
ANTEST CALLED FOR 1"REDVOWL "(AACC) ,SD= 2, RESTRICTION= 0. TOP= 1:N
ANTEST RETURNS w## 3w«

CHANGE. HAVE CSEXCH FOR MERGEF IN 3
CHANGE. HAVE CSEXCH FOR MERGEF IN 5
CHANGE. HAVE CSEXCH FOR MERGEF IN 7
SCAN CALLED AT 6 H

SCAN CALLED AT 12 ¢

SCAN CALLED AT 13 IN

SCAN CALLED AT 14 CYCLE

SCAN CALLED AT 15 (

SCAN CALLED AT 16

SCAN CALLED AT 17)

SCAN CALLED AT 18 DO

SCAN CALLED AT 19

<
ANTEST CALLED FOR 11"CYCLE “(AC) ,SD= 12, RESTRICTION= 0. TOP= 1
ANTEST RETURNS ew 1we

.
=

SCAN CALLED AT 20 <
SCAN CALLED AT 24 @
SCAN CALLED AT 25 VELSOFT

ANTEST CALLED FOR 2"VELSOFT “(AACC) ,SD= 3, RESTRICTION= 0, TOP= 1:N
ANTEST RETURNS ## lew

CHANGE. HAVE CSEXCH FOR MERGEF IN 6
SCAN CALLED AT 26 >

SCAN CALLED AT 12 (¢

SCAN CALLED AT 27 ;

SCAN CALLED AT 28 \F

SCAN CALLED AT 29 MSTR

S
ANTEST CALLED FOR 3"MSTR “(AC) ,SD= 4, RESTRICTION= 3, TOP= 1:N
ANTEST RETURNS ##]lee

CHANGE. HAVE CSEXCH FOR MERGEF IN 3
SCAN CALLED AT 30 THEN
SCAN CALLED AT 31 ADST

ANTEST CALLED FOR 12"ADST "(AACC) ,SD= 13, RESTRICTION= 8. TOP= 1:N
ANTEST RETURNS ## 1w«

CHANGE. HAVE CSEXCH FOR MERGEF IN 3
SCAN CALLED AT 32 ;
SCAN CALLED AT 33 TREE

TREE READ BY FTRIN
1N 2 K

3 oo
R
A
J
E

~NoOwnE

NODE 1N
| +N +WORD|

K 00' RAUJE

| =TENSE|
3 00'
| -TENSE -STRESS|
5 A
| +DER|
6 J
| =-TENSE -STRESS|
7E
SCAN CALLED AT 34 H
SCAN CALLED AT 35 AUXRED
ANTEST CALLED FOR L"AUXRED "(AC)
SCAN CALLED AT 36 H
SCAN CALLED AT 40 Q

SCAN CALLED AT 41 1

ANTEST CALLED FOR S"TENSING "(AACC)
ANTEST CALLED FOR 6'"'DIPHT "(AACC)
ANTEST CALLED FOR 7"VOSHIFT "(AACC)
ANTEST CALLED FOR 8"RADJ "(AACC)
ANTEST RETURNS ## 1we

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 9"EELI "(AACC)
ANTEST RETURNS #+ 1w«

CHANGE. CALL ELEMOP FOR ERASE

0
ANTEST CALLED FOR 10" EHRED "(AACC)

ANTEST RETURNS ## lws

CHANGE. HAVE CSEXCH FOR MERGEF IN
SCAN CALLED AT 42

SCAN CALLED AT 12 @

SCAN CALLED AT 43 .

,SD= 5,

,SD= 6,
,SD= 7,
,SD= 8,
,SD= 9,

3
,SD= 10,

7
,SD= 11,

5

RESTRICTION=

RESTRICTION=
RESTRICTION=
RESTRICTION=
RESTRICTION=

RESTRICTION=

RESTRICTION=

TOP=

TOP=
TOP=
TOP=
TOP=

TOP=

TOP=

1:N

TRANSFORMATIONS WHICH HAVE APPLIED ARE

1 1 REDVOWL
2 11 CYCLE

5 2 VFLSOFT
4 3 MSTR

5 12 ADST

) 8 RADJ

7 9 EELI

3 10 EHRED

TREE READ BY FTRIN

1 H 2 K
3 UH!
L R
5 EN
b J
HODE 1N
| +N +WORD|

K UH' R EH J

' | =TENSE|
3 UH
| +DER]

TREE READ BY FTRIN

1A 2 N 3K
4 00
5R
6 A
7G
8 E
9 +
10 0
11 S
NODE 1A
| +A +WORD|
NODE 2 N
| +N|

KOORAGES+O0S

| +DER|
717G
teenw TRANSFORMAT I ONS LA AL
SCAN CALLED AT 4 Q
SCAN CALLED AT 5 v

ANTEST CALLED FOR
ANTEST RETURNS ##* Lee

1"REDVOWL "(AACC)

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
SCAN CALLED AT 6 H

SCAN CALLED AT 12 @

SCAN CALLED AT 13 IN

SCAN CALLED AT 14 CYCLE

SCAN CALLED AT 15 (

SCAN CALLED AT 16

SCAN CALLED AT 17)

SCAN CALLED AT 18 DO

SCAN CALLED AT 19 <

ANTEST CALLED FOR 11"CYCLE “(AC)
ANTEST RETURNS ## lee

SCAN CALLED AT 20 <

SCAN CALLED AT 24 @

SCAN CALLED AT 25 VELSOFT
SCAN CALLED AT 26 >

SCAN CALLED AT 12 Q

SCAN CALLED AT 27 H

SCAN CALLED AT 28 IF

SCAN CALLED AT 29 MSTR

ANTEST CALLED FOR 3"MSTR "(AC)

ANTEST RETURNS ## 1#«

CHANGE. HAVE CSEXCH FOR MERGEF IN
SCAN CALLED AT 30 THEN

SCAN CALLED AT 31 ANST

ANTEST CALLED FOR 12"ADST "(AACC)

ANTEST RETURNS ## 1ew

CHANGE. HAVE CSEXCH FOR MERGEF IN
SCAN CALLED AT 32 ;
SCAN CALLED AT 33 TREE

130

+»SD=

4
6
8
10

'SD. 120

'SD.
L

2. RESTRICTION=

RESTRICTION=

4. RESTRICTION=

+,SD= 13, RESTRICTION=

4

0. TOP=

0. TOPs=

3. TOP=

8. TOP=

1

2

A

2:N

N

2:N

TREE READ BY FTRIN

1A 2N
9 +
10 0
11 s
NODE 1A
|+A +WORD|
NODE 2 N
| +N|

oOoNOWVNE W
moO>»0O X

KOO' RAGE +0S

| -TENSE -STRESS|

| -TENSE -STRESS|

| -TENSE -STRESS|

| =TENSE|
4 o0’
6 A

| +DER|
76
8 E
10 0

SCAN CALLED AT
SCAN CALLED AT
ANTEST CALLED FOR
SCAN CALLED AT
SCAN CALLED AT
SCAN CALLED AT
SCAN CALLED AT
SCAN CALLED AT
ANTEST CALLED FOR
ANTEST RETURNS ««
SCAN CALLED AT
SCAN CALLED AT
SCAN CALLED AT
ANTEST CALLED FOR

34
35

36
40
bl
b2
12

1w
20
24
25

AUXRED
4" AUXRED

V=

11"CYCLE
*
<

@
VELSOF

2"VELSOFT "(AACC)

ANTEST RETURNS ## 1we
CHANGE. HAVE CSEXCH FOR MERGEF

SCAN CALLED AT
SCAN CALLED AT
SCAN CALLED AT
SCAN CALLED AT
SCAN CALLED AT
ANTEST CALLED FOR

26
12
27
28
29

>
Q

’

IF

MSTR
3"MSTR

ANTEST RETURNS ¢ l1ee
CHANGE. HAVE CSEXCH FOR ?EEGEF
HEN

SCAN CALLED AT
SCAN CALLED AT
ANTEST CALLED FOR

30
31

ADST
12"ADST

ANTEST RETURNS #* 2w«
CHANGE. HAVE CSEXCH FOR MERGEF
CHANGE. HAVE CSEXCH FOR MERGEF

SCAN CALLED AT
SCAN CALLED AT

32
33

’
TREE

“(AC)

“(AC)

T

IN

“(AC)
IN

"(AACC)

IN
IN

P51

+SD=

’ SD=

»SD=

’SD-

L
6

5. RESTRICTION=

12, RESTRICTION=

3. RESTRICTION=

4, RESTRICTION=

13, RESTRICTION=

“.

0.

0.

3.

TOP=

TOP=

TOP=

TOP=

ToP=

1:A

1

>

1:A

TREE READ BY FTRIN
2 N

1A 3K
4 00w
5 R
6 A'
74J
8 E
9 +
100
11 §
NODE 1A
|+A +WORD|
NODE 2 N
| +N|
K 00« R A' JE+0S
| -TENSE|
4 00w
| =TENSE]|
6 A'
| +DER|
74J
| -TENSE -STRESS|
8 E
| =TENSE -STRESS|
10 0
SCAN CALLED AT 34 H
SCAN CALLED AT 35 AUXRED

ANTEST CALLED FOR L'AUXRED "(AC)
ANTEST RETURNS ## le«

CHANGE. HAVE CSEXCH FOR MERGEF IN
SCAN CALLED AT 36 ;

SCAN CALLED AT 4o ¢

SCAN CALLED AT 41 1

ANTEST CALLED FOR S"TENSING "(AACC)
ANTEST RETURNS w# l1wuw

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 6"DIPHT "(AACC)
ANTEST RETURNS ## lew

CHANGE. CALL ELEMOP FOR ARISE 12
ANTEST CALLED FOR 7"VOSHIFT "(AACC)
ANTEST RETURNS ## lew

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 8"RADJ "(AACC)
ANTEST RETURNS ## 2+#e

CHANGE. HAVE CSEXCH FOR MERGEF N
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 9"EELI "(AACC)
ANTEST RETURNS ## 1w«

CHANGE. CALL ELEMOP FOR ERASE 0
ANTEST CALLED FOR 10" EHRED "(AACC)
ANTEST RETURNS w#w 2#w

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
SCAN CALLED AT b2 >

SCAN CALLED AT 12 @

SCAN CALLED AT 43 .

132

,SD= 5,

,S0= 6.

,SD= 7,

,SD= 8,

,SD= 9,

,SD= 10.

8
,SD= 11,

N
10

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

TOP=

TOP=

TOP=

TOP=

TOP=

TOP=

TOP=

1:A

1:A

1:A

1:A

TRANSFORMATIONS WHICH HAVE APPLIED ARE

1 1 REDVOWL
2 11 CYCLE
3 3 MSTR
L 12 ADST
5 11 CYCLE
1) 2 VELSOFT
7 35 MSTR
3 12 ADST
9 L AUXRED
10 5 TENSING
11 6 DIPHT
12 7 VOSHIFT
13 8 RADJ
14 9 EELLI
15 10 EHRED
TREE READ BY FTRIN
1 A 2 N 3 K
L EH
5 R
6 Es!
12 Y
7 J
9 +
10 EH
11 S
"HODE 1 A
| +A +WORD]|
NODE 2 N
| +N]|

K EH R E:' Y J + EH S

| +DER]|

134

EXAMPIE 2: MARKEDNESS CONVENTIONS
For this example, we have transcribed the complete set of marking
conventions relative to vowels and consonants described in The Sound

Pattern of English (pp. 4O4-L4OT).

EXAMPLE

" MARKING CONVENTION RULES
" THE RULES PRESENTED HERE ARE TRANSCRIPTIONS OF THE MARKING
" RULES DESCRIBED IN SPE, PAGES 404 TO 407,
" THE RULES HAVE BEEN SIMPLIFIED WHEN THEY WERE SIMPLIFIABLE.
" SOME OF THE RULES HAVE BEEN DECOMPOSED INTO TWO SUBRULES.

PHONLEX
FEATURES

CONS VOC SEG LOW HIGH BACK ROUND SON LATERAL TENSE
NASAL VOICE ANT COR CONT DELRE STRID .

VARIABLE

V = |-CONS +VOC]|,
I'VOCI.

C = |+CONS| |
PHONUNI T
=] -SEG|,

U=|+SEG -CONS +VOC

=LOW +HIGH +BACK +ROUND |,

N=|+SEG +CONS -VOC +NASAL -LOW =-HIGH -BACK +VOICE +ANT +COR
-DELRE -STRID|,

S=|+SEG +CONS -VOC

+DELRE +STRID],

T=|+SEG +CONS -VOC -NASAL =-LOW -HIGH =BACK =VOICE +ANT +COR
-DELRE =STRID].

$ENDLEX
TRANSFORMATIONS
IMPLICIT AACC.
RULE R1 1.
"CONSONANTAL"
RULE R2A AC I1I.

RULE R2B AC.
"VOCALIC"

RULE R3A AC.
RULE R3B AC.

RULE R4 111,

1 (U)SEG| =)

1 CU)CONS |
/<% ¢ ('|=-SEG|,
1 (U)CONS | =>

1(ulvoc| =)
j(u)vocy =)
/<% (_|+CONS|,

|+voC| =)

-NASAL -LOW =HIGH -BACK -VOICE +ANT +COR

1(=U)SEG]|.

=>](U)CONS |

'v) _, _l=vocl|) %>.
| (-U)CONS| /<% _|+VOoC| %>.

l(uivoct /<% 'C _ %.
| (=u)voc]
('v,'1-SEGI) _) %>.
| +SON|.

=CONT
+CONT
=CONT

136

CONVENTIONS FOR THE VOWELS

|+VOC -CONS| => |=-ANT =STRID +CONT +VOICE -LATERAL|.

+VOC “BACK “ROUND (U)LOW| => 1(UlLOW| .,

+V0C (U)LOW| =>

+VOC +LOW|
+VOC (U)HIGH]

+VOC +LOW (U)BACK]|

RULE RS.

" Lowll

RULE RG6A. |-CONS
RULE R6B. |-CONS
"H 1 GH"

RULE R7. |-CONS
RULE R8. |-CONS
“RULE R9 1S REDUNDANT"
1] BACK"

RULE R10. |-CONS
AROUND"

RULE R11A.|-CONS
RULE R11B.|=CONS
“TENSE"

ﬁULE R12. |-CONS
“NASAL"

RULE R13. |+CONS
RULE R1l4. |+CONS
RULE R15. |+CONS
[1] Low"

RULE R16. |+CONS
RULE R17. |+CONS
11} HI GH"

RULE R18A.|+CONS
RULE R18B. |+CONS
"RULE R19 IS REDU
"BACK"

RULE R20A. | +CONS
RULE R20B.|+CONS
"vo I CE"

RULE R21A.|+CONS
RULE R21B.|+CONS
"ANTERIOR"

RULE R22A.|+CONS
RULE R22B.|+CONS
"CORONAL"

RULE R23A. | +CONS

+VOC +BACK ~LOW (U)ROUND|

I(=U)LOW].

.> "H'GH'.
=> |(U)HIGH].

=> |(U)BACK].

+VOC (U)ROUND|=> |(=U)ROUND]|.

+V0C (U)TENSE|=>

I (U)TENSE] .

CUONVENTIONS FOR THE CONSONANTS

=VOC (U)NASAL|=>
-VOC -NASAL| =>
=VOC +NASAL| =>

=VOC (U)LOW| =>
-VOC +LOW| =

=VOC "ANT “BACK (U)HI

=VOC (U)HIGH]
NDANT"

-VOC TANT =-LOW (U)BACK|
I (U)BACK] .

-VOC -SON (U)VOICE]|

-VOC (U)BACK| =>

| (=U)NASALI.
| =SON| .,
|+SON =-CONT =-STRID|.

| (=U)LOW|,
| =HIGH] .,

=> |(=U)VOICE].

-=VOoC (U)VOICE|=> [(U)VOICE].

=VOC +HIGH +COR (ALPHA)CONT (U)ANT|

=VOC (U)ANT|
=VOC ~-ANT (U)COR|

=> | (U)ANT|.

=> | (=U)COR|

/<%0 _I+NASAL|, _|+BACK|)%>.

RULE R23B,|+CONS
“CONTINUANT"

RULE R24A. | +CONS
RULE R24B. | +CONS
"DELAYED RELEASE"
RULE R25. |+CONS
RULE R26A. | +CONS
RULE R26B.|+CONS
"STRIDENT"

RULE R27A.|+CONS

-VOC (U)COR| =>
-vocC
=VOC (U)CONT|
=-vocC
-voC
-voc

+CONT|

-vocC

I (U)COR] .

=> |+DELRE].
~ANT +COR (U)DELRE| => |(U)DELRE].
(U)DELRE|=> |(=-U)DELRE]|.

(U)STRID|=> |(-U)STRID|
/<% (_I+SON|, _|=-ANT =COR|,

_|=DELRE|

RULE R27B.]+CONS -vVOC (U)STRID|=> |(U)STRID]|.

CP @(N) 1 ; RPT <
$END $MAIN FTRIN

> ;
TRAN,

) .

=>| (U)ROUND| .

GH| => |(=U)HIGH|.
=> |(U)HIGH]| .

=> |(-U)BACK]|.

=)

| (=U)ANT].

(U)CONT| => |(U)CONT| /<% '|=SEG| _ '|+CONS| %>.
=> | (=U)CONTI.

NC'Il 'ISEG] '|SEG VOC +COR| '|SEG +BACK| '|SEG NASAL| '||>.

L5371

TREE READ BY FT?IN

1N

NOWVMEWN
- - . e

3° | SEG|

4! |VOC SEG +COR|

5! | SEG BACK|

6 ' | SEG NASAL|
(X122 TRANSFORMAT | ONS LA AL 2
SCAN CALLED AT L Q
SCAN CALLED AT 5 |
ANTEST CALLED FOR 1"Rr1 “(AACC)
ANTEST RETURNS #« Gew
CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE, HAVE CSEXCH FOR MERGEF IN
CHANGE., HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN

CHANGE.
CHANGE.

HAVE CSEXCH FOR MERGEF IN
HAVE CSEXCH FOR MERGEF IN

SCAN CALLED AT 6 H

SCAN CALLED AT 7 RPT

SCAN CALLED AT 8 <

SCAN CALLED AT 9 1

ANTEST CALLED FOR 2"R2A "(AC)

ANTEST RETURNS ## 1ew

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 3"R28B "(AC)
ANTEST CALLED FOR L¥R3A “(AC)

ANTEST RETURNS #w 1we

CHANGE.

HAVE CSEXCH FOR MERGEF IN

ANTEST CALLED FOR 5"R38 “(AC)
ANTEST RETURNS #e¢ lwe

CHANGE. HAVE CSEXCH FOR MERGEF IN
SCAN CALLED AT 10 >

SCAN CALLED AT b (¢

SCAN CALLED AT 8 <

SCAN CALLED AT 9 I

ANTEST CALLED FOR 2"R2A “(AC)

ANTEST RETURNS #«]1ew

CHANGE.,

HAVE CSEXCH FOR MERGEF IN

ANTEST CALLED FOR 3"'R28 “(AC)

,SD=

NOWVMIEWN

+,SD=

,SD=
+,SD=

,SD=

. SD=

'SD-

2.

RESTRICTION=

RESTRICTION=

RESTRICTION=
RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

0.

3.
0'

TOP=

TOP=

TOP=
TOP=

TOP=

TOP=

TOP=

1:N

1:N

1:N

ANTEST CALLED FOR 4"R3A "(AC
ANTEST RETURNS *+¢ les

CHANGE. HAVE CSEXCH FOR MERGEF IN

ANTEST CALLED FOR 5"R38B "(AC
SCAN CALLED AT 10 >
SCAN CALLED AT b Q
SCAN CALLED AT 8 <
SCAN CALLED AT 9 (N
ANTEST CALLED FOR 2"R2A "(AC

ANTEST CALLED FOR 3"R28 "(AC

ANTEST RETURNS #+ lwe

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR L"R3A "(AC

ANTEST CALLED FOR 5"R38 "(AC

ANTEST RETURNS #w lw«

CHANGE. HAVE CSEXCH FOR MERGEF IN

SCAN CALLED AT 10 >
SCAN CALLED AT b Q
SCAN CALLED AT 8 <
SCAN CALLED AT 9

B
ANTEST CALLED FOR 2"R2A "(AC
ANTEST RETURNS ## lwe
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 3"R28B "(AC
ANTEST CALLED FOR L"R3A "(AC

ANTEST RETURNS ## lee
CHANGE. HAVE CSEXCH FOR MERGEF IN

ANTEST CALLED FOR 5"R38 "(AC
SCAN CALLED AT 10 >

SCAN CALLED AT 4 Q

SCAN CALLED AT 8 <

SCAN CALLED AT 9

1
ANTEST CALLED FOR 2"R2A "(AC
ANTEST CALLED FOR 3“R28B "(AC
ANTEST RETURNS *# 1we
CHANGE. HAVE CSEXCH FOR MERGEF IN

ANTEST CALLED FOR L"R3A "(AC
ANTEST CALLED FOR 5"R38 "(AC
SCAN CALLED AT 10 >
SCAN CALLED AT b @
SCAN CALLED AT 8 <
SCAN CALLED AT 9 "
ANTEST CALLED FOR 2"R2A "(AC
ANTEST CALLED FOR 3"R2B "(AC
ANTEST CALLED FOR 4"R3A "(AC
ANTEST CALLED FOR 5"R38 “(AC

SCAN CALLED AT 10 >
SCAN CALLED AT 4 @
SCAN CALLED AT 11 :

-

N N

,SD=

+»SD=

,SD=

+SD=

+SD=
+,SD=

+SD=

+SD=
,SD.

+»SD=

’SD-
’ SD=

,SD-
+SD=

+SD=
,SD-
+SD=
+SD=

owVE W

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=
RESTRICTION=

RESTRICTION=

RESTRICTIONs
RESTRICTION=

RESTRICTION=

RESTRICTION=
RESTRICTION=

RESTRICTION=
RESTRICTION=

RESTRICTION=
RESTRICTION=
RESTRICTION=
RESTRICTION=

. TOP=

TOP=

TOPs=
TOP=

TOP=
TOP=

TOP=

TOP=
ToP=

TOP=

ToP=
TOP=

TOP=
TOP=

TOP=
TOP=
TOP=
TOPs=

-
o o
zz

[y
zz

[y
o o
-3

-
o oo
22

-
oo oo
ZZ

1:N
1:N
1:N
1:N

SCAN CALLED AT 12 L

ANTEST CALLED FOR 6"R4 "(AACC)
ANTEST RETURNS ew 29+

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 7"R5 "(AACC)
ANTEST RETURNS #e¢ 22w

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 8'"'R6A "(AACC)
ANTEST RETURNS ##]1sw

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 9"R68B "(AACC)
ANTEST RETURNS #+ 1e¢e

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 10"R7 "(AACC)
ANTEST RETURNS #« lww

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 11"R8 "(AACC)
ANTEST RETURNS ## 1w

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 12"R10 "(AACC)
ANTEST RETURNS ## 1w«

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 13"R11A "(AACC)
ANTEST RETURNS #*# lew

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 14"R11B "(AACC)
ANTEST RETURNS #w lew

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 15"R12 “(AACC)
ANTEST RETURNS ## 2%«

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 16"R13 "(AACC)
ANTEST RETURNS ## 3ew

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 17"R14 "(AACC)
ANTEST RETURNS w## 2w«

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE., HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 18"R1S "(AACC)
ANTEST RETURNS o« 1w

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 19'"R16 "(AACC)
ANTEST RETURNS w## 3aw

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 20"R17 "(AACC)
ANTEST CALLED FOR 21"R18A "(AACC)
ANTEST RETURNS ## 3we

CHANGE, HAVE CSEXCH FOR MERGEF IN
CHANGE., HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 22"R188 "(AACC)

139

+»SD=

»SD=

+SD=

,SD=

+sSD=

+»SD=

+,SD=

+SD=

+SD=
+SD=

,SD=

10.

11.

12,

13.

14,

15.

16.

17.

18.

19,

20.

21.
22,

23.

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=
RESTRICTION=

RESTRICTION=

0‘
0.

TOP=

TOP=

TOP=

TOP=

ToP=

TOP=

TOP=

TOP=

TOP=

TOP=

TOP=

TOP=

TOP=

TOP=

TOP=
TOP=

ToP=

1:N

1:N

140

ANTEST CALLED FOR 23"R20A "(AACC)
ANTEST RETURNS #¢ 3we

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE, HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 24'"R20B "(AACC)
ANTEST CALLED FOR 25"R21A "(AACC)
ANTEST RETURNS we 2we

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 26"R21B "(AACC)
ANTEST RETURNS #¢ 1we

CHANGE, HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 27"R22A "(AACC)
ANTEST CALLED FOR 28"R228B "(AACC)
ANTEST RETURNS w¢ 3we

CHANGE. HAVE CSEXCH FOR MERGEF 1IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 29"R23A "(AACC)
ANTEST CALLED FOR 30"R238B "“(AACC)
ANTEST RETURNS we 2#e

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF 1IN
ANTEST CALLED FOR 31"R24A "(AACC)
ANTEST RETURNS ## 1ww

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 32"R24B "(AACC)
ANTEST RETURNS o« 1lwe

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 33"R25 "(AACC)
ANTEST RETURNS ## 1lwe

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 34'"R26A "(AACC)
ANTEST CALLED FOR 35'"R268 "(AACC)
ANTEST RETURNS o¢ 2we

CHANGE. HAVE CSEXCH FOR MERGEF IN
CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 36"R27A "(AACC)
ANTEST RETURNS ¢+ lee

CHANGE. HAVE CSEXCH FOR MERGEF IN
ANTEST CALLED FOR 37"R27B "(AACC)
ANTEST RETURNS w## 1ee

CHANGE. HAVE CSEXCH FOR MERGEF IN
SCAN CALLED AT 13 .

,SD=

,SD=
,SD=

'SD.
,SD'
+SD=

'SD.
+SD=

+SD=
,SD=
+SD=

,SD'
+»SD=

,SD-

+»SD=
3

25,
26‘

27.
28.
29.

30.
31.

32.

33.

34,

35.
36.

RESTRICTION=

RESTRICTION=
RESTRICTION=

RESTRICTION=
RESTRICTION=
RESTRICTION=

RESTRICTION=
RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=

RESTRICTION=
RESTRICTION=

RESTRICTION=

RESTRICTION=

TOP=

TOP=

. TOP=

TOP=
TOP=
TOP=

TOP=
TOP=

TOP=

ToPs

TOP=

TOP=
TOP=

TOP=

TOP=

-
v o
22

e
o oo
z=2

1:N

1:N

1:N

1:N

1:N

]

TRANSFORMATIONS WHICH HAVE APPLIED ARE

1 1 Rl

2 2 R2A
3 L R3A
4 5 R3B
5 2 R2A
6 L R3A
7 3 R28B
8 5 R3B
9 2 R2A
10 4L R3A
11 3 R2R
12 6 R4
13 7 RS
14 8 R6A
15 9 R6B
16 10 R7
17 11 RS
18 12 R10
19 13 R11A
20 14 R118B
21 15 R12
22 16 R13
23 17 R1l4
24 18 R15
25 19 R16
26 21 RI18A
27 23 R20A
28 25 R21A
29 26 R21B
30 28 R22B
31 30 R238B
32 31 R2LA
33 32 R2u4B
34 33 R25
35 35 R268B
36 36 R27A
37 37 R278B

TREE READ BY FTRIN
1N

NOUVEUWN
«eZC{U =

¢ STUN#

APPENDIX B

COMPLETE SYNTAX FOR PHONOLOGICAL GRAMMAR

142

1l
.

sweu-ToquAs-xsTdwodo [ToquAs-XsTdwod

| ll By

90U I3 Jo I~ TOqQUAS - X3 TAWOD

spou-Awump

= [+ [# =:: Toqufks-Kiepunoq

S =!! ToquAs-3dusquss

Toquis-Arepunoq [ToquAs-sousjuss [pxom =:: 3pou

90usI9Isa-ToquAs-xaTdwod spou-Awump [[ToquAs-xe [duoo Jado spou =:: apou-xsTdwoo
[< [@213]9STT >]3do apou-xsduwioo =:: CEPGY

[seTna-sasuymfasns Jado [

cNZ¢ [suotrzewxogsueiy Jado

UOOTXST-UOTSI2AUOD]ado

..
e o

JeuurIg-Ted T30 Tououd

c0°T

TO°T

T0°0

144

aWRU-2POU

sweu-anduTt

2WBU-3aPOU apou-Aumnp

[< sTsATeue-TeJanyonays > [/ Jado

I

apou-Auump

[xa3squt ¢]ado Iogoqur , =:: dTyS-papunoq

dms

[UOT3OTI3SaI

20TOUYD

HHHHM

drys-pepunoq [% =:: drys

([STsATeue-TeIn3ona}s]9sSTO) =:: 20TOYD
SWBU-TOqUAS-XoTdWoo | ToqWAS-Xo[duwoo =:: oWeU-apoU
] x [@epou =:: juawLTe

[[ToquAs-xaTdwoo]3do jueuwWRTo =:: JUeWeo-XoTdWoo
[-]ado]J3do JuowWeTe-XoTAWOD =:: oJN300I3S

[198squtT Jado [ean3donags [x98squr Jado =:: wWIsq

¢]ado

[wxsq]ast

STSATeUB-TRBINIONILS

T

=!: SISATeUB-TBJINIONILS

u0T4dTJI0S9pP-T8INIONIS

ot°e
602
80°2
10°2
90°2
go-e
f0°e
¢o°e
20°e

T0°¢C

145

aNA [IoA] #OA [bEIA [&IA [IIA =:: UOTjelod-onTBA

ISONN] IsaN [©asoN | BESO [TONIN [TONI =:: UOT3elod-xo[dWoo-KIieutq
xgwoan [xewoa [mwoaN [Woa [®AN [DI =:: UOT4eTeL-9843-KiBUTq

TANN [TON [WMIN [WL =:: UOTaelai-Ateun

aTqeTIRA [

J989quT [ToquASs-XoTdwoo

J989quT [USTS =:: anleAa-d

=i:! JOQRBRUFISSP-TOqUWAS-XaTduoD

spou-Aumnp [epou

[

I9899UT =:: J03BUZISep-apou

anTeA-d UOTIABT3JI-SNTRA

sutea-d |

JI038USTSOP-TOQUAS -Xx2TdWOD UOT3BT8I-Xo [AUOO-AIBUT]

I93aqutT |

J03BUSTSODP=3POU UOT}EToI-9913-AIBUTQ JO99qUT =:: UOT}TPUOO-LIRUTQ
JI989qUT UOT4B[oJI-AJIBUN =:: UOT31DPUOO-AIBUn
UoT3Tpuocd-AIeutrq [UOTRTPUCO-AIBUN =:: UOTLIPUOD

[UOT3TPUOD JUOTABUTQUODUBSTOO] =:: UOTJ0TJ3SoL

TT1°¢
0T°¢
60°¢
80°¢

Lo¢

70 ¢
co°¢
co¢

T0¢

146

2Jan3esJ-quUsdaYuT

pIom

pIOM =:: OoTQBIJEA

- [+ =:: uZts

[ae8¥oqut udts]Jgdo oTQeTIBA =:: XT1Jaad-as32quT

oTqeTIBA [-]Jado =:: XTJoad-uzTs

XtJoad-xe89qur [xX1Joad-ulTs =:: XTJoad

¥ [(xt3sad) [L [aeFequr [UBtSs =:: onTer

[[uoTyeorjyroads-sangesI]9sIT]ado _ =

aangesJ-jusaayur [anTea]ido uoT3®eOTJToads~aanqes]

Il

ToquAs -xa Tdwod

601
80
L0*%
901
6o

HO* %

c0'h

TO %

147

JIAOW =:: Jo0jerado-xaTdwod-Areussq K0°C

JIAVS [JAFOYIN [JASYWH =:: Jojetado-xaTduod-A<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>