THE UNIVERSITY OF MICHIGAN

Memoranduin

MAD/I: PRELIMINARY DRAFT

B. Galler

CONCOMP: Research in Conversational Use of Computers
ORA Project 07449
F. H. Westervelt, Director

supported by:
DEPARTMENT OF DEFENSE

ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 0SA-3050
ARPA ORDER NO. 716

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

November 1966

?m/zc

UL /T
/eF)

MAD/I

PRELIMINARY DRAFT*

1.0 CHARACTER SET

At present, there are 61 characters in the MAD/I language: the
10 Arabic numerals 0, 1, 2, . . . 9; the 26 letters of the alphabet
A, B, C, . . . Z (the letters and numerals together are called alpha-
numeric characters); and 25 special characters:

Name Graphic
1. Blank (Space)

2. Plus +
3. Minus _
4. Asterisk *
5. Slash /
6. Left Parenthesis (
7. Right Parenthesis)
8. Comma ,

9. Period (Decimal Point)
10, Quotation Mark "

11. Semicolon ;

12. Colon

13. Equals =
14. Greater Than >
15. Less Than <
16. Not Symbol -

*This is a tentative draft and is subject to change without notice.

Name GraEhic

17. Vertical line ("or'" symbol) |

18. Ampersand ("'and'" symbol) &
19. Percent %
20. Number Sign #
21. Commercial At-sign @
22. Dollar Sign $
23. Question Mark ?

24. Break Character (Underline)

25. Apostrophe (prime, single
quote) !

MAD/I will also accept lower-case letters (a, b, ¢, . . . z), but these
are not necessarily available to all users. It treats these letters
exactly like upper-case letters, but preserves them in lower-case form.

We expect to add other characters to this list.

2.0 IDENTIFIERS AND CONSTANTS

2.1 IDENTIFIERS
An identifier is a character or string of characters from the

set listed in Section 1.0.

2.1.1 ALPHANUMERIC IDENTIFIER

An alphanumeric identifier is formed from an alphabetic charac-
ter which may be followed by a string of alphanumeric characters.
EXAMPLES: A MAD7090 VARIABLE B3 UPPERAND LOWERcase ARRAYELEMENT
NOTE: Readers familiar with MAD (i.e., MAD for the IBM 7090) will
recognize these identifiers as the names of variables, but in MAD/I

these identifiers may have other uses as well, as in the substitution

statement A==A +B3.
Total length of an aiphanumeric identifier may not exceed 256

characters.

2.1.2 PRIME IDENTIFIER

A prime ident:fier iz formed by enclosing any character string
(excluding semicolons, parentheses, and primes) within primes.
EXAMPLES: 'IF' 'GO TO' 'GOTO' '7B3' 'A*B'

'"A + B' '@#7$*' 'FUNCTION' 'ARRAYELEMENT'

NOTE: MAD statements such as, for example, WHENEVER, TRANSFER TO, and
FUNCTION RETURN will be written in MAD/I as 'IF', 'GO TO', and 'RETURN'
respectively.

Blanks within prime identifiers will be automatically removed,
i.e., 'GO TO' and 'GOTO' are equivalent. The total length, including

primes but not blanks, may not exceed 256 characters.

2.1.3 PERIOD IDENTIFIERS

A period 1dentifier is formed by enclosing between periods
either a single alphabetic character or else two alphabetic characters
followed by an arbitrary string of alphanumeric characters.

EXAMPLES: .E. .MOD5. .MAD70900PERATOR. .plus. .EE.
NOTE: Because MAD allows only letters between periods, all MAD
operators go directly over into MAD/I without changing their appearance.

Total length including periods must not exceed 256 characters.

2.1.4 SPECIAL IDENTIFIERS

The special identifiers are the 25 special characters and some

combinations of them. Examples are:

equal to (relational cperators) =

not equal to “=
greater than or equal To = (or =>)
less than or equai to <= (or =<)
ellipsis

substitution =

2.1.5 ATTRIBUTE IDENTIFIERS

An attribute identifier 1s formed by placing a commercial "at"
sign (@) before a string of alphanumeric characters.
EXAMPLES: G@QLENGTH @HEX @HOHO @EXISTENCE
NOTE: Total length of an attribute identifier including @ may not

exceed 256 characters.

2.1.6 ATTRIBUTE NOTATION

The following notation 1s used to indicate the attributes of
a constant or variable. All predefined attribute names are attribute
identifiers and begin with @.

The attribute specifications, separated by commas, are enclosed
in parentheses and follow the occurrence of a constant or variable. The
attribute applies to all subsequent occurrences of the variable, but
only to the initial occurrence of the constant. If an attribute has
a single value, 1t 1s written with a substitution operator, ==,
separating it from the attribute name, e.g., @LENGTH==6. If an attri-
bute has more than one value, these values are enclosed in parentheses
following the substitution operator, e€.g., GALIGN==(2,4). Although
these may look iike executable substitutions, they are effective only

during translation (or '"compile time'").

-5 -

To declare an attribute for several variables simultaneously,
the @ sign 1s changed to a prime identifier, and this 1s followed by
the list of variables. A value for the attribute, or a set of values
enclosed in parentheses, may be inserted after the prime identifier.
Thus, one can write:

'Boolean' P,Q,R

'"LENGTH' 6,V,W,Y,X
An empty list of variables establishes the attribute as the default
case for all variables.

The following are legal, predefined attributes:

Name Abbreviations (if any) Meaning

@PACKED ep packed decimal mode

@BOOLEAN @B Boolean mode

@INTEGER el integer mode

@FLOATING eF floating-point mode

@CHARACTER ec character mode

@ENTRYNAMEVAR @ENV entry name variable

@HEX ex hexadecimal constant
@RIGHTJUSTIFIED @RJ causes character constant to be

right justified

@NULLS @N causes nulls (zeros) to be
inserted for the preceding or
trailing fill characters of a
character constant

@FILL==x @FL== X 1S a one-byte character
constant (e.g., "*")which will
be inserted for the preceding
or trailing fill characters of
a character constant

@LENGTH==x @L==x specifies the length in bytes
(1.e., x bytes long)

Name Abbreviations (1f any) Meaning

@ALIGN==(x,Yy) @A==(x,Yy) produces alignment on the xth
byte after a yth byte boundary,
i.e., as though CNOP x,y pre-
c.ded 1n assembly code)

@MODE==x @MD==x assigns mode x
@BYTE @BT same as @LENGTH==
@HALFWORD @H same as @LENGTH==2,

@ALIGN==(0,2)

@WORD ew same as @LENGTH==4,
@ALIGN==(0,4)

@DOUBLEWORD @D same as QLENGTH==8,
@ALIGN==(0,8)

@EXTERNAL @QEXT variable is external

@HERE @HR for variables declared external,

this attribute designates that
they are defined in this program

2.2 CONSTANTS
There is no maximum length restriction on constants. Constants
may be modified by attributes. (See Section 1.1.6 for description of

attributes.)

2.2.1 INTEGER CONSTANTS

An integer constant is a string of decimal digits containing no
decimal point, comma, or scale factor. It may be modified by @LENGTH
or GALIGN.

EXAMPLES: 12345 99 2000 (@LENGTH==5)

NOTE: Integer constants are stored in binary form. A negative integer
constant is stored in 2's complement form. The length of an integer
constant will be assumed to be a full word, i.e., four bytes, unless
otherwise modified. The value of the length attribute is always given

as a number of bytes.

2.2.2 PACKED DECIMAL CONSTANTS

A packed decimal constant is a string of decimal digits contain-
ing no decimal point or scale factor and modified with @PACKED.
EXAMPLES: 25(@PACKED, @LENGTH==8) 1984 (@ALIGN==(3,8), @PACKED)
43(@PACKED) -267(@P)

NOTE: A packed decimal constant is stored in the packed decimal format.
If no length is given, it will be assigned only as much storage as
needed. It will be aligned on any available byte boundary unless other-

wise specified.

2.2.3 FLOATING-POINT CONSTANTS

A floating-point constant is a string of decimal digits
containing a decimal point or an exponent or both. The exponent 1is
written as the letter E followed by a decimal integer, possibly signed,
indicating the power-of-ten scale factor.

EXAMPLES: 3.141592 <217E-2 -5000E4 S000E+4
NOTE: Unless otherwise specified, the constant will be given the same
length and alignment as the normal mode for floating-point constants

and variables (''long'" unless specified otherwise).

2.2.4 CHARACTER CONSTANTS

A character constant is represented by enclosing the character
string in quotation marks. To represent a quotation mark within the
constant, two adjacent quotation marks must be used. Character
constants may be modified with @RIGHTJUSTIFIED, @ALIGN, @QFILL, or @NULLS.
EXAMPLES: '"ABCDEFG'" (@GLENGTH==14) "doN'T"'"ME"' (@ALIGN==(1,2)).

NOTE: The default justification is to the left, with blanks (as fill

characters) added to the right as necessary. If no length is specified,

the length 1s assumed to be the length of the characger constant. If
a length 1s specified and is too short, characters will be truncated
from the right-hand end of the character constant, regardless of

justification.

2.2.,5 HEXADECIMAL CONSTANTS

A hexadecimal constant is a string of hexadecimal digits
(0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F) enclosed by quotation marks. Hexa-
decimal constants must be modified with @HEX and may be modified with
@LENGTH and @ALIGN.

EXAMPLES: "ACE" (@QHEX) '""10C" (@HEX, @LENGTH==3) ''abadabadaba''(@X)
NOTE: If no length is specified, the smallest amount of storage that
will accommodate the constant will be chosen. Alignment is to an

arbitrary byte boundary unless otherwise specified.

2.2.6 BOOLEAN CONSTANTS

A Boolean constant is a 1 (for true) or a 0 (for false)
modified with @BOOLEAN.
EXAMPLES: 0 (@BOOLEAN) 1 (@BOOLEAN)
NOTE: @BOOLEAN can be abbreviated as @B, The above examples could
then be shortened to 0(@B) and 1(@B), respectively. Optionally, the
prime identifiers 'F' (for O(@BOOLEAN)) and 'T' (for 1(@BOOLEAN)) may

be used.

2.2.7 ENTRY NAMES
Entry names mark points of entry, i.e., beginnings of state-
ments to which sequencing control may be transferred. Some entry names

may be singled out as available for external reference, also, by being

-9 -

listed in a function declaration (with optional parameter lists).
EXAMPLES: GCD OKAY here HERE

NOTE: Entry names are identifiers and must be followed by a colon when
they appear as the entry name of a statement. A colon is implied after

the entry name in the fixed-field card format (see below).

2.2.8 ENTRY NAME VARIABLES

A variable having the attribute GENTRYNAMEVAR may assume
values that indicate entry names. Thus the statements
NAME (@ENV) ==L

'GO TO' NAME

L: X==Y
are compatible, and the 'GO TO' statement causes the statement named L

to be executed next.

2.2.9 FUNCTION EVALUATION

An entry name or entry name variable followed by a period
implies that the statement named is to be invoked at that time. If a
list of parameters in parentheses follows, they are used for initializa-
tion at the time of transfer to the statement named. A transfer of
control to an entry name may be invoked in three ways, each of which
may involve parameter initialization.

(1) An entry name (with period and with an optional parameter

list) may be imbedded in an expression.

EXAMPLE: X==Y+GCD. (M,N)

- 10 -

(2) An entry name may be ''called,'" establishing a new return
point and ''save area."
EXAMPLE: 'CALL' SORT. (A,N)
Note: The period 1s required; the parameter list and the identifier
'"CALL' are optional.
(3) An entry name may be "transferred to," without changing
the current "return point'" or ''save area.'
EXAMPLE: 'GO TO' L
'GO TO' L.(M,Q)
Note: The identifier 'GO TO' is required, and the period is required
if the optional parameter list is present, otherwise the period is

optional.

2.2.10 RETURN

Successive ''calls'" on function entry names, as in (1) and (2)
in Section 2.2.9, establish a last-in-first-out chain of 'return
points.'" Execution of a 'RETURN' statement transfers control to the
most recent return point and removes it from the chain. The corres-
ponding '"'save area' is also reinstated. If S is a parameter with
@ENV attribute, then the statement

'RETURN TO' S

transfers control to the entry name associated with S by the most
recent parameter initialization. The '"return' chain is restored to
the state 1t was in at the time the entry name was defined, even if
this implies removing several return points from the chain. The corres-

ponding ‘'save area' 1s also reinstated.

- 11 -

3.0 EXPRESSION AND STATEMENT STRUCTURE

3.1 ARITHMETIC EXPRESSIONS

Constants, variables, and function references are arithmetic
expressions. Arithmetic expressions are combined by means of the
special identifiers, */+-, and period identifiers, .P., .ABS., etc.
Parentheses are used, as in ordinary mathematics, to indicate the
order in which computations are made.

If E and F are any arithmetic expressions, and I and J are
integer expressions, then the following are also arithmetic expressions:
+E, -E, .ABS.E, E +F, E-F, E*F, E/F, (E), .N.I, 1.A.J, I.V.J, I.EV.J,

I.RS.J, and I.LS.J.

3.1.1 ARITHMETIC OPERATORS

Identifier Function Precedence
== substitution (FACTOR) A
+ addition)

) H

- subtraction)

* multiplication)
) I
/ division)
- arithmetic negation (UNARY) J
**(or .P.) exponentiation (FACTOR) K
V. bitwise inclusive ''or'")
) L
.EV. bitwise exclusive '"or')
A, bitwise 'and" M
.N. bitwise negation)
)
.LS. left shift)
) N
.RS. right shift)
)
.ABS. absolute value (UNARY))

+ arithmetic plus (UNARY) P

- 12 -

NOTE: Precedence determines the order in which operations are performed
unless otherwise grouped by parentheses. The operations with higher
relative precedence are performed before those with lower precedence.

If operators have the same precedence, usually the one appearing left-
most in the expressicn will be done before an operator with the same
precedence to its right. The exceptions to this rule are the so-called
"factor" operators which are carried on from right to left. Relative
precedence of the predefined operators is A < B < C <D <E < F <G <
H<I<J<K<L<M=<N <P (see Section 3.2.1 for precedence letters

not yet encountered) .

3.2 BOOLEAN EXPRESSIONS

Boolean constants, Boolean variables, and Boolean-valued
functions are Boolean expressions.

If H and F are arithmetic expressions, then H=F, Hn=F, H<F,
H<=F (or H=<F), H»F, and H>=F (or H=>F) are Boolean expressions.

If M and P are Boolean expressions, then M.EQV.P, M.THEN.P,

M\P, M.EXOR.P, M&P,—M, and (M) are Boolean expressions.

3.2.1 BOOLEAN OPERATORS

Identifier Function Precedence
.EQV. equivalence B
.THEN. implication C

| inclusive "or'")

)
)

.EXOR. exclusive '"or'"

& nand" E

- 13 -

Identifier Function Precedence
- negation F
= compare equal)
)
- = compare unequal)
)
> compare greater than)
) G
>= (or =>) compare greater than or)
equal)
)
< compare less than)
)
<= (or =<) compare less than or equal)

4.0 STATEMENT FORMAT

4.1 FREE-FORM CONVENTIONS

NOTE: Free-form will be used on remote consoles. It may also be used
on cards when the model 029 keypunch character set is punched.
Line numbers will be used (for line updating) on remote

consoles.

4.1.1 COLON AND SEMICOLON CONVENTIONS

An entry name is followed by a colon. Semicolons are used as
punctuation between statements.
NOTE: A statement continues until explicitly ended by a semicolon.
Hence, a statement may be as long or as short as one would like and
may continue for any number of lines. Conversely, more than one
statement can be written per line. In fixed-field form, colons and

semicolons may be omitted if desired.

4.2 FIXED-FIELD CONVENTIONS FOR PUNCHED CARDS

Columns 2 through 71 of the card are available for writing

statements. If any character, other than a semicolon or blank, is

- 14 -

punched in Column 72, the statement is continued on the next card.
Column 72 is not used, and Column 2 of the next card follows immedi-
ately after Column 71.

Entry names must start in Column 1 and are ended by the first
blank.

NOTE: Punching a semicolon in Column 72 or leaving it blank has the
same effect, i.e., a blank in Column 72 is an implied semicolon.

The continuation punch in Column 72 has only the function of indicating
continuation and is not otherwise used.

The first blank after an entry name is an implied colon. There
must be at least one blank (or a colon) between an entry name and the
following statement.

With a few substitutions, the fixed-field conventions may be
used in punching programs on a model 026 keypunch. The substitutions
are:

029 026
" $

.G.

\Y2

A

.L.

v

.GE.

A
i

.LE.
= .NE.
| .OR.
& .AND.

@ 'AT !

- 15 -

5.0 COMPARISON OF MAD AND MAD/I STATEMENTS

MAD MAD/I

Declaration Statements

DIMENSION List "DIMENSION' List
EQUIVALENCE List 'EQUIVALENCE' List
ERASABLE List)

) 'EXTERNAL' List
PROGRAM COMMON List)
NORMAL MODE IS . . . (See NOTE below)
INTEGER List "INTEGER' List

'"FLOATING LONG' List

FLOATING POINT List
'"FLOATING SHORT' List

~~

BOOLEAN List 'BOOLEAN' List
STATEMENT LABEL List)
) "ENTRYNAMEVAR' List
FUNCTION NAME List)
FORMAT VARIABLE List (no equivalent)
NOTE: Remark (R in Column 11). List items are separated by commas.

If the first non-blank character in
a statement is an asterisk (*), the

following text, up to but not including

the next semicolon, is treated as a

remark.
Computational Statements
MAD MAD/T
V=E V==E
TRANSFER TO S 'GO TO' S

WHENEVER B, STATEMENT "IF' B, STATEMENT;

MAD MAD/I

Computational Statements

WHENEVER B1 'IF' B1,
OR WHENEVER B2 'OR IF' B2:
OTHERWISE 'OR ELSE';
END OF CONDITIONAL '"ENDIF!';
THROUGH S, FOR V = E1,E2,B '"FOR' V==E1,E2,B,STATEMENT
S STATEMENT
THROUGH S, FOR V = E1,E2,B 'FOR' V==E1,E2,B;
S 'ENDFOR' ;
THROUGH S, FOR VALUES OF '"FOR' V==(E1,E2,...),
V=E1,E2,..... STATEMENT
S STATEMENT
THROUGH S, FOR VALUES OF '"FOR' V==(E1,E2,...);
V=E1,E2,...
S "ENDFOR' ;
CONTINUE (Empty statement);
PAUSE NO. 'SUSPEND' (operator) ;
END OF PROGRAM '"END'

NOTE: Overlapping of 'FOR's and 'IF's is not permitted. More generally,
any construction that can be included in the scope of another con-

struction must be completely included.

Function-related Statements

EXTERNAL)
) FUNCTION 'FUNCTION'
INTERNAL)
ENTRY TO F F: (as entry name)
END OF FUNCTION 'END' (see NOTE below) or
'END' entry name
FUNCTION RETURN '"RETURN' or 'RETURN TO' entry
ERROR RETURN '"ERROR RETURN'

NOTE: The end of a function may be noted
'END' Entry name

where Entry name is an entry name of the function. If the function is
ended in this way, even when normally more than one compound statement
ends at this point, only the one 'END' Entry name is required (see
Section 6.0 for an example).

Entry names (and their parameter lists) intended to be
referenced externally are listed in the 'FUNCTION' statement, as 1in
the following example.

'"FUNCTION' (F,G(X,Y)), H(W,X),K

where F and G are entry names with parameters X and Y, H is an entry
name with parameters W and X, and K is an entry name with no parameters.

If no entry names (and no parameters) occur, the program is a
"main'" program, to be executed first, starting with the first
executable statement. If a list of entry names is present, this effect
of being a '"main" program can also be achieved by including the prime
identifier 'MAIN' in the list, without a parameter list.

A "one-1line definition'" is written using only the 'FUNCTION'
statement:

'"FUNCTION' REM(A,B) == A - (A/B)*B;

-18 -

General 1/0

Unformatted:

READ DATA
READ AND PRINT DATA
READ COMMENT $__ §
PRINT BCD RESULTS List
PRINT RESULTS List

PRINT OCTAL RESULTS List

Formatted:

PRINT FORMAT Format, List
PRINT ON LINE FORMAT Format, List
PUNCH FORMAT Format, List
READ FORMAT Format, List

LOOK AT FORMAT Format, List

'READ!
'READ AND PRINT'
'"PRINT CHARACTERS' " "

'PRINT CHARACTERS' List

'"PRINT' List
'PRINT HEX' List

'"PRINT FORMAT' Format, List
(no equivalent)

'"PUNCH FORMAT' Format, List

'READ FORMAT' Format, List

'LOOK AT' Format, List

Note: The occurrence of 'c' o in a PRINT CHARACTERS 1list causes o to

be interpreted as carriage control at that point. Double spacing will
be used by default.

Tape Statements

WRITE BINARY TAPE
WRITE BCD TAPE

READ BINARY TAPE (These will be implemented as
READ BCD TAPE subroutines.)

END OF FILE TAPE

BACKSPACE FILE

R N N N N A W N

BACKSPACE RECORD

- 19 -

Miscellaneous Statements

Recursion.

SET LIST TO Vv 'SET LIST' V

SAVE DATA List 'SAVE' List

RESTORE DATA List 'RESTORE!' List

SAVE RETURN) These are accomplished by putting
) 'EXIT' as one item on a 'SAVE'

RESTORE RETURN) or 'RESTORE' list.

Presetting:

VECTOR VALUES V = List 'PRESET' V==List

VECTOR VALUES V(I),...V(J) = '"PRESET' V(I),...V(J)= Constant

Constant

PARAMETER List 'PARAMETER' List

SYMBOL TABLE VECTOR V 'SYMBOL TABLE' V

FULL SYMBOL TABLE VECTOR V 'SYMBOL TABLE' V

Output Control:

LISTING ON (New forms will be developed.)

LISTING OFF
REFERENCES ON
REFERENCES OFF

Operator Definition

The DEFINE OPERATOR and MODE STRUCTURE statements will have
appropriate counterparts. The definition scheme has not been settled
yet, however. In addition, there will be a facility for defining

certain types of new statements.

5.1 NESTED STATEMENTS

Several statement types will have values assigned to them. For

example, the value of an assignment statement V == E is the value of E.

- 20 -

Any such sratement can be enclosed in parentheses and used wherever an

expression of the same mode as 1ts value 1s legitimately used.

6.0 EXAMPLE MAD/I PROGRAM July 19, 1966
*This program 1s written as 1t might appear in fixed-field 1
card format. Labels start in Column 1 and are ended by the 2
first blank. Columns 2 through 71 are available for state- 3

ments. A blank in Coiumn 72 is an implied semicolon.

'"FUNCTION' GCD

'INTEGER'

GCD 'RESTORE' Z,Y

'IF' Y:Z
'SAVE' 'EXIT', Z,Y

X==GCD. (0)

'"RESTORE' 'EXIT'
'RETURN' X

'OR IF' REM. (Z,Y)==0
'RETURN' Y

"ENDC'

'"SAVE' 'EXIT', REM.(Z,Y),Y

X==GCD. (0)

'RESTORE" 'EXIT!

'"RETURN' X

"FUNCTION' REM(A,B)==A-(A/B)*B

'END' GCD

MO5 21:46 July 19, 1966

100 * Same Program [On Remote Console] ;

110 'FUNCTION' GCD;

120 'INTEGER'; * NO LIST AFTER 'INTEGER' IMPLIES THE NORMAL MODE
130 IS INTEGER

140 GCD: 'RESTORE' Z,Y:

150 'IF' Y Z;

160 "SAVE' 'EXIT', Z,Y;
170 X==GCD. (0) ;

180 '"RESTORE' 'EXIT';
190 '"RETURN' X;

200 'OR IF'REM. (Z,Y)==0;

210 '"RETURN' Y;

220 'ENDC';

230 'SAVE' 'EXIT',REM.(Z,Y),Y;

240 X==GCD. (0);

250 'RESTORE' 'EXIT';

260 'RETURN' X;

270 'FUNCTION' REM(A,B);

280 REM: 'RETURN' A-(A/B)*B;

290 *THIS ILLUSTRATES THE USE OF 'END' GCD TO END MORE THAN ONE FUNCTION
DEFINITION;

300 'END' GCD;

IIIIIIIIIIIIIIIIIII

IRIEITAL T

3 9015 03127 2852

