ERROR-FREE INTERPOLATION OF
PARAMETRIC SURFACES

J.G. Gan
Nanyang Technological Institute
Singapore

T.C. Woo
Dept. of Industrial & Operations Eng.
The University of Michigan
Ann Arbor, MI 48109-2117
Technical Report 89-35

December 1989

Revised February 1991

ERROR-FREE INTERPOLATION OF
PARAMETRIC SURFACES*

J.G. Gan T.C. Woot
Nanyang Technological Institute University of Michigan
Singapore 1205 Beal Ave.

Ann Arbor, MI 48109-2117

December 12, 1989
Revised: February 1991

Abstract

A Digital Differential analyzer (DDA) is a cost effective implementation for inter-
polating parametric curves and surfaces. However, the problems of register overflow
and integer round-off have prevented it from being adopted by industry. Contrary to
intuition, an increase in register capacity is shown to have no bearing on the register
overflow problem. It is shown that there is a minimum number of interpolation steps
K below which register overflow occurs. Correspondingly, it is also shown that there
exists a maximum number of interpolation steps K above which the accumulation of
integer round-off errors exceeds the acceptable limit. But, when K, > K,, conflict
arises. A solution is given to resolve the possible conflict and to yield an error-free
interpolation of curves and surfaces.

*To appear in ASME Transactions, J. of Engineering for Industry
tPlease send correspondence to T.C. Woo at the above address

1 INTRODUCTION

A numerical control (NC) machine executes according to a part program which is
converted into a set of low-level instructions. One of the instructions is to pulse the axis
motors such that the cutting tool moves, with respect to the workpiece, along a specified
path by interpolation. The available NC interpoators have been linear and circular. Under
linear interpolation, up to three linear axes move simultaneously such that a straight line
results [Milner 76, Koren 76]. The circular interpolator is a little more restrictive. Only two
linear axis motors are pulsed such that the resulting arc lies in one of the three principal
planes [Koren 81].

More recently, some of the NC machine controller manufactures are beginning to offer
spline interpolation, by first approzimating a spline with a series of line segments, as illus-
trated in Figure la. The error € of such an approximation is a function of the maximum
length of the line segments £ and the minimum radius of curvature p [Faux 79]:

¢
=%

€

Since the resolution of modern NC machines has been improved to as high as 0.1 um, it
is reasonable to expect shorter line segment lengths for spline interpolation. Indeed, the
NC machine controller manufacturers, with the aid of high-speed 32-bit microprocessors and
multi-master-bus architecture, offer linear interpolation on the linear approximation of a
spline, as shown in Figure 1b. This paper offers error-free interpolation of spline curves and
surfaces, as illustrated by Figure 1c. We say that the interpolation is error-free when the
error is no greater than ; of the available resolution of the NC machine.

€ € €
(a) Approximation (b) Interpolation (c) Error—free
of Approximation Interpolation

Figure 1 Approximation and Interpolation

[t may be asked: Why don’t the NC manufacturers approximate a curve to the resolution
of the machine, hence achieving error-free interpolation by effectively by-passing linear ap-
proximation? Clearly, the error is dominated by approximation. As attempts of non-success
are seldom reported, one can only surmise that there are difficulties. In this paper, we report
the difficulties that have prevented successful implementation of error-free interpolation of
curves and surfaces: overflow and round-off errors, as illustrated by Figure 2. We further
present a solution that overcomes these two kinds of errors, using the Digital Differential
Analyser as implementation.

y

any

Register Round-off Error-free
Overflow Errors Interpolation

Figure 2 Interpolated Surface

The Digital Differential Analyzer (DDA) scheme can be used to perform interpolation
of integral, differential, exponential, trigonometric and polynomial functions, etc. Previous
work [Mayorov 64, Sizer 68] detailed how the interpolation of these functions could be im-
plemented using hardware. Researchers [Koren 76, Milner 76, Koren 81] have introduced
software implementation of the DDA technique for NC machine controller applications such
as line and arc interpolations. In this paper we examine the use of DDA for interpolating

curves and surfaces of arbitrary degrees. We assume that a curve is represented parametri-
cally as a polynomial in u.

X(u) = ao+autaul+...+au+...+au™
Y(u) = bo+bu+bpu’+...+bu' +... 4 bu™
Z(u) = cot+cutcul+...+eu+ ...+ cpu™

Stepping along the parameter u € [0, 1] traces the curve. A surface of two parameters, u and
v, involves keeping one of the parameters constant while stepping along the other.

X(u,v) = aoo+a10u+...+a,~0u"+...+a0w+...+a,'ju"vj+...+ammumvm
Y(u,v) = b00+blou+...+b,-ou"+...+b01v+...+b,~ju"vj+...+bmmu"‘vm
Z(u,v) = c00+c10u+...+c,-0u"+...+c01v+...+c,~ju"vj+...+cmmu"‘v'"

Rational curves and surfaces are represented and traced similarly. Pushing the technology of
DDA beyond lines and arcs offers the potential of high speed curve and surface interpolation
with inexpensive hardware for numerical controllers and for computer graphics workstations.
However, this is not without its difficulties.

The basic principle behind the DDA parametric interpolation scheme is the approxi-
mation of integration by additions. It can be viewed as a discrete version of the forward-
differencing method [Ding 87, Foley 82|, implemented using finite-capacity registers for data
storage. Each interpolation step of a polynomial of degree m consists of the following suc-
cessive addition operations:

FOR:: = 1TOmDO
(Rm=i) +~ (Rm=i)+ (Rm-it1) (1)

where (R.,-;) represents the content of register R,,_;.

Figure 3 provides a schematic of the implementation of (1) for interpolating a cubic
curve (m = 3) using four registers Rs, Rz, Ry and Roy. The output of the interpolation for a
polynomial function is in the form of overflow of the last register, Ry, in the cascade. It is
used directly to instruct the motor to move a step in an open-loop control system, or to signal
an error in the desired position in a closed-loop control system. Real-time computational
speed achievable by DDA to perform the steps outlined in (1) is attributed to the usage of
fixed-point variables and simple arithmetic operations such as increment, copy, compare and
detect-overflow.

An examination of (1) reveals two problems in the implementation of the DDA parametric
interpolator. Firstly, no register, other than Ry should be allowed to overflow because if any
of them does, the value stored is no longer valid. (An overflow results when the value stored
exceeds the capacity.) Secondly, errors due to integer round-off of register values accumulate
and propagate at an exponential rate [Kanatani 84]. These two problems were illustrated in
Figure 2.

This paper is organized as follows. Section 2 discusses the problem of register overflow
and recommends a solution to prevent it. Section 3 discusses the problem of integer round-off
error and how the error can be controlled to within tolerance. Section 4 provides an algorithm
to satisfy simultaneously the conditions for preventing register overflow and limiting round-
off error. We conclude in Section 5.

Copy

Copy Co
Fd\d, fﬁ, & Add
Overflow
Signal

. Ui

- Rg Ra Ry Rp
Figure 3 Schematic Drawing of DDA

2 REGISTER OVERFLOW

The conditions under which the registers overflow is first discussed. While intuition
suggests that overflow is related to the capacity of a register, it is shown, however, that
the register overflow problem cannot be overcome by increasing the capacities of registers.
Specifically, there exists a lower bound on the number of interpolation steps which prevents
register overflow.

2.1 Conditions for Overflow

The output from the DDA parmetric interpolator is the overflow signal from the last
register, Ry, in the cascade. None of the other registers is allowed to overflow, otherwise the
value stored would be incorrect, resulting in wrong interpolation results.

A DDA interpolates by performing successive copying of the content of register R;, de-
noted by (R;), and adding it to (R;_;), the content of register R;_;, as noted from (1). (Ri_;)
is always greater than (R;) for all ¢ > 1. Hence, it follows that the register most likely to
overflow is R;. To prevent it from overflowing, we have to ensure that

(Rl)max < 2n1
where n is the number of bits in R;. Converely, the capacity of R; must be

n > log, (R1)max-

2.2 Register Capacity

It appears that a large n will prevent R; from overflowing. But, the following lemma
shows that whether the R, register will overflow is independent of n.

Lemma 2.1 Whether register R, overflows is independent of its capacity n.

Proof: Let a; be the initial value for register R;. The content of R, after j integration steps
is given by

1G+1)

jG+YG+2) L G+DE+2)E+3)
2!

3 4l

(R1) =1 +jaz + az + as+... (2)

The values of the a’s, their derivations given in Appendix I, are:
g

512n

Qs = KS*D((15+...)
o = 4!2"(4
¢ = RLp Mt

e (as +
Qs = —————K3*D as)

2127 303

“@ = FLp® E)

_ n Qaq as
= gpa-gtg)

where D = unit distance moved due to a single output pulse from DDA,

and K = total number of steps to interpolate a curve. Substituting the values of
the a’s into (2), we have

n a5

(Ry) = K*D{a1+K(2]—1) K2(3] ~3+1)+ K3()+ gt
= 2"« f(a;,j,K,D) (3)
where
(00,3, K, D) = s {on + (27 = 1) + 2537 = 3 +1) + 25(..)
+i1‘;i4(...)+...}. (4)

R, overflows when (R;) > 2". From (3), it follows that in order to prevent R, from
overflowing, f(a,j, K,D) < 1, or

1

as
XD — (32 =3+ 1)+

{al + K?

(2 -1)+ +-——(J+...} (5)

il g
< lfor all j € [0, K].

K

Since f(.) is independent of n, whether R, register will overflow is independent of n. This
completes the proof. =

2.3 Analysis of Overflow

The proof of Lemma 2.1 shows that the overflowing of a register is a function of K, the

number of steps for interpolating a curve the coefficients of the curve a;, as well as D, the
resolution of the machine tool. D and a; are fixed. It is, therefore, interesting to investigate
the lower bound on K so as to avoid the register overflow problem. Determination of such
a lower bound for interpolating a polynomial funciton of any degree m is in order.

7

Lemma 2.2 There exists a minimum number of interpolation steps K, above which register
overflow does not occur.

Proof: It suffices to consider the condition to prevent register R; from overflowing as given
by (5), reproduced below.

S+ 05— 1)+ 2305 =34)+ 25 ()4 25)

<1 forallj €0, K] (5)

K

From (5), we seek a relation between K and the given variables D and a;. Since each of
the terms can be bounded as follows:

I{(2J —1) < 2ay if ag >0

> 2a, otherwise

as . . .

%(3]2 —3j+1)<3a3 ifaz>0
> 3az otherwise

and so on for all j € [0, K], we have

POS(ay) + 2 POS(az) + ... + m POS(am) < K x D
NEG(a;) +2 NEG(a;) + ...+ m NEG(ap) > =K * D

where
POS(z)=z ifz>0
| =0 otherwise

and

NEG(z)=—-z ifz<0

=0 otherwise

A tight condition for bounding K is
K> —115 MAX {[POS(a;) +2P0OS(az) + ...+ mPOS(an)],
—[NEG(a;) + 2NEG(az) + ... + mNEG(a,)]} (6)
Let K, denote the term on the right of (6), we have

K, = %MAX { [f; iPOS(a,-)] , [- fj iNEG(a,-)] } (7)

1=1 1=1
whichtis bounded. This completes the proof that there exists a minimum number of steps
K, above which no register overflow occurs. =

8

3 INTEGER ROUND-OFF

The source and propagation of round-off errors are now discussed. With the aid of

numerical experiments, the control of such errors to within the tolerance limits is then
established in Section 3.2.

3.1 Source and Propagation of Errors

Since the registers have finite capacities, there are representation errors. As integers
are stored and the fractional parts are lost, there are the round-off errors at initialization.
During each interpolation step, these round-off errors accumulate and propagate.

Let ¢; be the integer round-off error in register R; when the register is initialized. After
K steps, the error in Ry register is given by

K(K+1)...(K+m-1)

m!

KK +1) , K(K+1)(K +2)

€0 + K€1 + 2' (3] 3'

€3 + R €m (8)
where m is the degree of the curve. This well-known problem of exponential growth of
cumulative error with the number of incremental steps illustrates the major weakness of

conventional incremental approach [Kanatani 84).

Since every 2" in Ry corresponds to a single output pulse, the number of pulses { erro-
neously sent out due to the initial register round-off errors is given by

K(K+1 K(K+1)(K+2
(oD, KELDED

K(K+1)...(K +m-1)
m!

(=[e0+Ke +

en]"27")

We discuss in the next section the control of (.

3.2 Controlling Round-off Errors

In Appendix I, the derivation of the initial value, ¢;, to be stored in register R; shows
that a; is a function of the coefficient of the curve a’s, number of interpolation steps K, and
the register size n. Since ¢; is the error due to the integer round-off of o, ¢; is also a function
of ¢’s, K and n. From (9), we deduce that (is also a function of a’s, as well as K and n.

Erﬁgra

= n= 16
300+ n=t
n=32
200+
n=64
100+
n=128
0
-100 : : ; : : : : D K

10t 10* 10° 104 10°® 10® 107 10°® 10°
Figure 4 Round-off Errors

Consider a specific cubic function
z(u) = 100u + 100u? + 100u> (10)

Figure 4 shows the number of erroneous pulses { verses the number of interpolation steps
K for registers of sizes 8-bit, 16-bit, 32-bit, 64-bit and 128-bit. The plots suggest that there is
an upper limit to the number of steps that can be used for DDA interpolator with different
register capacities. In the case of interpolating the function (10), the upper limits for A
are approximately 14, 75, 4073, 6760830 and some value greater than 10° when the sizes
of the registers are respectively 8-bit, 16-bit, 32-bit, 64-bit and 128-bit. We seek a
theoretical upper limit for K.

Lemma 3.1 There ezists a mazimum number of interpolation steps K, above which the
accumulation of integer round-off errors ezceeds the acceptable limit.

Proof: Suppose -12- is the acceptable number of erroneous pulses (. Since € is due to integer
round-off, it may assume any value between 0 and % In the worst case, every € is 7. By
substituting } into every ¢, and bounding to 3, the condition given by (9) becomes

L+ gy KESD KEADE+2) - KK+ (K+m-1)

‘)'l
~ 31 31 m! <

10

Dividing both sides by K gives

K+1 K'4+3K+2 Km-1 4 mlmtl) gm-2 -1 n_
+++3++++2s++(m)<(21)

1
M 3] ! K

Rearranging in decreasing order of K yields

m-1 m(m+l) m-—2 l l l | (271 _l)m'
K +——-———2 K +...+(...)K+(1+2+3+...+m)m.<—K , Or
- +1) (...) 1 1 1, m! (2" — 1)m!
K™ 1N ﬁ(l__ R S — 4.4+ —=
1+ sk T T gomen +(1+2+3+ +m)Km_1] <% (11)

Since K is usually very large (in the order of 10°) compared to m (the degree of the
curve), we can safely assume that the first term in (11) is much greater that the second
term, and so on. The terms within the square brackets in (11) sum to less than 2. The
condition to restrict round-off error to 0.5 of an output pulse can therefore be simplified
to

n o _ |
K™ < (2" = 1)m!
2
Therefore, the maximum number of integration steps K, is given by taking the mth root,
2 — Dym!\ /™
K, = ((——Qﬁ> . (12)

Since n, the number of bits, and m, the degree of the curve, are bounded, K, is finite.
]

In order to limit the number of erroneous pulses, care must be taken to ensure that the
number of interpolation steps used is lower than K,. If this upper limit is too low, overflow
(as discussed in Section 2) can still occur. This is the subject of the next section.

11

4 COMBINED SOLUTION

Lemma 2.2 asserts that, to prevent overflow, the number of interpolation steps K must
exceed a lower bound

K>K, = %MAX { [iiPOS(a,-)} , [—}m:iNEG(a,-)H (7)

1=1 =1

and Lemma 3.1 states that, to prevent round-off errors, K must not exceed an upper bound

n 1/m
K <K, = ((—2;21-@) (12)

For error-free interpolation, both conditions must be satisfied simultaneously, i.e., K; < K <

K,:)
20 =)mh\'™
F<(55)

The necessary number of bits n to ensure no overflow and no more than { = % of an
erroneous pulse is given by

%MAX { [fj iPOS(a;)] : [— i iNEG(a;)

i=1]

1=1

n>1—logm! +mlog [%MAX { [fj iPOS(a,-)} , [- 3 iNEG(a,-)] }] (13)

1=1 =1

since 2" > 1. If ¢ is %, then the “1” on the right hand side of (13) is replaced by gq.

.21,

With condition (13), we are ready to summarize our findings in a procedural form.

PROCEDURE DDA - CURVE

Step 1 {Determine the minimum K that ensures no register overflow problem}

K — 1 « MAX{Y iPOS(ai.), Y iPOS(ay), Y iPOS(ais),

i=1 i=1 i=1
m

- Y iNEG(aiz),~ Y iNEG(ay), - Y iNEG(ai)}
i= i= i=1
Step 2 {F:'nd‘n} 1
n — [1—logm! + mlog K
Step 3 {Calculate initial register values}
FOR each azis DO
(Ro) «~ ROUND (2*/D * (ag— D * TRUNC (ao/D)))
(R[) - ROUND (2"/(K *D) * (al —az/K +03/K2))

12

(R;) «— ROUND (2! 2*/(K* x D) x (a3 — 3a3/K))
(R3) « 3! 2" /(K3 x D) * a3
ENDDO
Step 4 {Position motor}
Move motor to position (D * TRUNC (aog/D))
Step 5 {Generating Output Pulses}
Fori:=1TO K DO
Wait for a system clock pulse
FOR each azis DO
(Rz) « (Rz) + (Rs)
(R1) « (B1) + (Ra)
(Ro) < (Ro) + (R1)
IF R, overflows THEN
Send an output pulse to motor
ENDDO
ENDDO
ENDDO {ELSE}
ENDPROCEDURE

PROCEDURE DDA - Surface
Approzimate surface by a set of constant parametric curves
For each curve DO
Call DDA-Curve
ENDPROCEDURE

It may be noted that Procedure DDA-curve has two phases: a preprocessing phase (in-
volving Steps 1 to 3 that need to be done only once for a given curve) and the actuation
phase (Step 5 which is repetitive and arithmetically simple). The preprocessing phase can
be done in software and the actuation phase implemented in hardware.

The interpolated surface in Figure 2 was generated entirely by software. The bicubic
equations used for generating the surfaces plotted are as follows:

z(u,w) = 100 + 50 u 4+ 100 «? 4+ 100 «°
+ 0 w 4 5 ww + 50 ww - 100 wdw
+ 50 w? — 50 ww? + 0 wlw? — 200 wiw?
-5 w + 50 ww® + 0 Www® + 100 wdu?

13

y(u,w) = 50 + 100 v+ 50 u?
+ 0 w 4 50 ww + 50 ww
+ 200 w? — 50 ww? 4+ 0 ww?
- 50 w® + 100 ww® + 50 w?w®

z(u,w) = 100 + 50 v+ 100 o?
+ 0 w 4+ 50 ww + 50 wlw
+ 50 w? - 50 ww? + 0 wlw?
-5 w + 50 ww® + 0 wll

5 SUMMARY

The DDA has been shown to be an efficient scheme for interpolating not only lines [Milner
76] and arcs [Koren 81], but also parametric curves and surfaces of arbitrary complexity.
However, because of the complexity, the two sources of errors, overflow and round-off, can

no longer be overlooked.

It is shown in this paper that overflow has nothing to do with the register size n. It is
also shown the round off error is a function of n (as well as m, the degree of the curve or
surface). To overcome both sources of error, the choice of n is rationalized as the simultaneous

50
200
100
100

100
100
200
100

satisfaction of two constraints on the number of interpolation steps K.

14

u
u
U
uTw

w
w

w W W w

[S- I ¥

u
u
u

w
w
w

[N)
[F IS

10.

REFERENCES

. Ding, Q. and B.J. Davis, “Surface Engineering Geometry for Computer-Aided Design

and Manufacture,” Ellis Horwood, UK, 1987.

Faux, I.D. and M. Pratt, “Computational Geometry for Design and Manufacture,”

Halsted Press, NY, 1979.

. Foley, J.D., and A. VanDam, “Fundamentals of Interactive Computer Graphics,”

Addison-Wesley, Reading, MA, 1982.

Kanatani, K., “Errors of the Incremental Method for Curves,” Comp Vis Grap I Porc,
Vol. 26, pp. 130-133, 1984.

. Koren, Y., “Interpolator for a Computer Numerical Control System,” IEEE Trans. on

Computers, Vol. C-25, No. 1, pp. 32-37, Jan. 1976.

. Koren, Y., and O. Masory, “Reference-Pulses Circular Interpolators for CNC Systems,”

Trans. ASME, J. Eng. Ind., Vol. 103, No. 1, pp. 131-136, Feb. 1981.
Mayorov, F.V., “Digital Differential Analyzers,” Iliffe Books, London, England, 1964.

Milner, D.A., “Some Aspects of Computer Numerical Control with Reference to Inter-
polation,” Trans. ASME, J. Eng. Ind., pp. 883-889, Aug. 1976.

Press, W.H., B.P. Falnnery, S.A. Teukolsky and W.T. Vetterling, “Numerical Recipes-
The Art of Scientific Computing,” Cambridge U. Press, Cambridge, England, 1986.

Sizer, T.R., “The Digital Differential Analyser,” Chapman & Hall, London, England,
1968.

15

APPENDIX I
Calculation of Initial Register Values

Consider the DDA interpolation of a parametric curve

X(u) =ao+ au + agu® + ... + apu™ (A1)

successive addition of the contents of the registers are accumulated in Ry. Now, suppose a
total of K steps is necessary to complete the curve, then after the completion of K steps,
the content of register R, is given by

(Ro) = a0+Ka1+5(_K2!+_1)a2 K(K+:1)3(K+2)a3+ K(K+1)(Ii!+ 2)(K +3)

K(K +1)(K +2)(K +3)(K +4)
5!

where «; is the initial value of R;.

Qy

as +

Rearranging, we have

(Ro) = ao+{a1+%+%§+%+%5-+...}f(
a (142) [(172) +(2°3) + (3°1)]

{gr+—gr—0a+ 0 ag+ ... }K?

1+2+3 1°2) + (1°3) + (1"4) + (2°3) + (24) + (34 .
N %+(+4'+), + {172) +(173) + ()5'() +(2%4) + ()]a5+...}1\3
ay (14+42+43+4) .
DRR L= RN T (A2)

By comparing (A1) and (A2), and bearing in mind the relationship that 2" in the register
Ry corresponds to one unit distance (D) due to a single pulse from the DDA in the linear
distance, we obtain

(n+2+32+34+32+..)
Akl oY)
(c2toa+Fast+ias+..) 1-2
2o K*xD = a,
(cs+2aat+Tas+..) 13 _
4 3!2,,* K°xD = as
§a4+42';;r:+-~-!K4 xD = ay

(ast) g5 4 D = g

512n

16

Solving for a;,a,,as, and so on, we find the values to be

512n

as = m(a5+...)
_oar

ay = K“*D(a4)
o3

Q3 = ————I{S*Dag
o8)

Qo = ——-K2*Da2—Ka3
A .

“ = o pe-g gt

The value of ap can be obtained by observing that the initial position is ao ideally.
However, due to the fact that the position can only be in multiples of D, the actual initial
position is only TRUNC(ao/D)* D, where TRUNC is a truncating operation where only the
integral part of a real number is kept and the fractional part discarded. The balance of ao
which is not translated into initial-position command is stored in register Ry as ap. The
value of ag can be computed by using the following equation:

_ ao— D'TRUNC(%)

D * 2"

(o7}

In the case of a rational curve, the determination of the initial values for the registers in
numerator and denominator are performed separately.

17

