DYNAMIC PROGRAMMING HEURISTIC FOR
SYSTEM OPTIMAL ROUTING IN DYNAMIC
TRAFFIC NETWORKS

Alfredo Garcia
Robert L. Smith
Department of Industrial & Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109-2117

and
Raja Sengupta
Institute for Transportation Studies
University of California
Berkeley, CA
Technical Report 95-22

November 1995

Dynamic Programming Heuristic for System Optimal Routing in
Dynamic Traffic Networks.

Alfredo Garcia, Robert L. Smith.
Industrial and Operations Engineering Department.
University of Michigan, Ann Arbor, MI. 48109
and
Raja Sengupta
Institute for Transportation Studies
University of California.

Berkeley, CA.
June 16, 1995

Abstract

We propose a heuristic procedure to compute suboptimal routings (system optimal) in
Dynamic Traffic Networks. The procedure is recursive which greatly simplifies and enhances.
implementation and performance respectively. Finally, under mild assumptions on the modeling
of congestion, the procedure is shown to compute system optimal routings. A first implementa-
tion is provided with computational results.

1. Introduction

We propose a new procedure to solve for suboptimal routings in Dynamic Traffic Networks. By
optimal. we mean “System Optimal”. i.e routings that minimize the total travel time experienced
by all platoons. Since link travel times depend upon congestion level, they are time dynamic. which
greatly increases the complexity of the problem. Nonetheless, there is a growing bodyv of work on
this problem in the literature (see [1].[2] and [3]). Various modeling and solution techniques have
been examined. The critical issue however is tractability. since the goal is to provide with a fast
and reliable way of computing the desired routings.

In view of this. and with eventual loss of optimality, we concentrate in a fast and if possible
suboptimal procedure. The motivation comes from Kaufman and Smith [4], in which the author
introduce the “time consistency™ assumption for congestion models on links. This assumption.
which turns out to be easily satisfied by many models, ensures for a forward solution of the single
platoon routing problem. We extend their ideas to the multi-platoon case and show that the
procedure here proposed also solves for svstem optimal routings, when all links in the network
satisfv the “time consistency” assumption.

2. Dynamic Programming “Efficient” Heuristic

In this section. we provide theoretical basis for the proposed new procedure. To facilitate the
analvsis, a random traveler approach is taken. This allows to study the system optimality issues,

in terms of a single random platoon to be chosen. The rational of the procedure is as follows.:
“Efficient™ means that one wants to move platoons through the network so they reach intermediate
destinations as soon as possible. However, to maintain tractability the procedure only keeps track
of efficient routings through intermediate destinations, which raises the possibility of suboptimality
since for some intermediate destinations or macronode it is not necessarily true that the efficient
routing provides the best (system-optimal) route to attain the given macronode.

One can also view the procedure as an “aggregative” one(see, for instance, Bean,Birge and Smith[6])
in which we solve the original problem, which in turn can be seen as a shortest path problem.
by aggregating to a single macronode, all different possibilities to reach in time a given set of
intermediate destinations, we fix the cost to reach that macronode by efficient routing.

2.1 Decision Network Definition

We denote m € Z*. the total number of platoons to be considered and (N, A) the traffic network,
consisting of a set of nodes N, and links (z,7) € A with 2,57 € N . We also denote (0. D), be the
origin destination pair associated with platoon p, (1 < p < m) with O,D € N.

Based on the actual network we define a decision network (macro-network) which represents
the space of all admissible routing decisions for the m platoons to be routed. A decison network is
defined to be a pair (X', A) where X C N™ is the macro-node set and A C X' x A" is the macro-arc
set. Let g; : X' — N be the projection for the i-th node in an m-tuple of nodes. Then the set A is
required to satisfy the following condition

(X.Y)eA= (g(X)g(Y) €A 1<i<m

i.c..a macro-arc must be constituted of arcs in 4. A route 7 in this decison network is any finite
sequence of macro-nodes 7 = XX, ... with the property that (X;.X;;;) € A for all j. Thus 7 is
not a route for any one platoon but rather a routing prescription for the entire network. In other
words given 7 the corresponding route for the p-th platoon is g,(Xg)g,(X1).... Observe that our
assumptions ensure (¢,(X;).g,(X;41)) € A for all j. The symbol |r| will denote the length of the
route © and it will be the number of macro-nodes in the sequence 7. We also use the symbol |.| to
denote the cardinality of a set. We also indulge in a slight abuse of notation and write Y € 7 if a
macro-node Y lies on a route 7.

2.2 Travel time function definition

For cach 7 and X' € 7 we define the function ¢7(.X') to be the arrival time of the p-th platoon at X
under the routing prescription 7. For a route 7 = XX, ... the following is true

L. {7(Xy) is the trip starting time of platoon p.

2. ,;(\I-H)= f;(;\',') + T(I;‘I;‘H)(ﬂr(lx'i)a- - -117;7("\'1')1 P1s---Pm)-,
where p, is the size of platoon p, 1; = ¢,(X;) and T(‘I.,‘I;+l)(.) is the travel time function
1 ,l.z'+])

associated with the directed link (N

3.0 < 1) <ocforall 2,y € A

2.3 The random traveller

Let €2 denote the set of platoons. Then we assume that each platoon is identified with a unique
number in the set {1.....m} and define a random variable Z : @ — R with a probability distribution
Pz : R — [0, 1] such that

L Pz(Z=p)=7%>0, 1<p<m,
i.e., each platoon can be picked as the random platoon with positive probability.

m

2. Z”,'p =1
p=1

Based on the random variable Z we define for any route 7 and macro-node X € 7 the random
variable T] : R — R with the probability distribution

P(Tx(p) = 1;(X)) = .

2.4 The consistency assumption

Let (X,Y) € A and 7,7’ be two routes to X from some origin node X,. Then we assume the

following property.
E[T}] < E[Tx] = E[Ty] < E[T7).

An immediate consequence of this assumption is that if an optimal route exists it must be an
acyclic route. The precise definition of a cyclic route is as below.

™ is a cyclic route to a macro-node X if for m = Xo... X5 _1 there exists i, jwith 0 <@ < j <
|| — 1 such that X; = Xj.

In the subsequent develpment is will be assumed that X, denotes the macro-node from which
all trips originate. For any node X € X" we assume Iy denotes the set of routes from X, to X. We
assume that X,,(X..A) are such that all nodes in A" are reachable from X,, i.e. Ilx is non-empty
for all X. We also define the projection function Ay(7) to be the prefix of length & of the route 7.

An optimal route in a set Wy is any route 7 € Iy such that

E[T}] = min E[T}].

Tellx

Proposition 2..1 Ifan optimal route exists then there also exists an optimal route that is acvclic.

Proof: Let there exist #° = Xg... X[, € Iy such that 7 is cyclic. Then pick 7. with

i < jsuch that X7 = X7. Then from 7, ,)(.) > 0 we get l‘;‘(X[) < t,’,"(Xj*) for all platoons p

which implies that E[T§.] < E[Tf.]. Consider the route 7' = Ai(7*)X;,, ... X7. _,. Then by the

consistency assumption E[ZI‘/’\'-I.Jr] < L‘[T}:+]. Repeated application of the consistency assumption
1+1 141

gives

BT) < El.),

which implies that 7’ is also an optimal route.

We now use this argument for the following inductive construction. Assume that all optimal
routes are cyclic. Pick some optimal 7 € IIx. We know |1*| < o0. Set 7y = 7* and generate a
sequence < 7, > in the following manner. Given an optimal 7, = X' .. ./Ylfrn|_l, since it is cyclic,
there exists ¢, 7, 1 < j with X" = XT. Thus as before construct 7,4, =)\z-(7rn)X;‘+1 oo X[p -1+ By
the prior argument 7,4, is also optimal and hence by hypothesis it is cyclic. Moreover |7, 41| < |7,]

and the construction can continue. Since |7o| < oc this implies that for n > |7, |7, = 0. This is
absurd. Thus there exists some optimal route that is acyclic. [

In the subsequent development we use Ilx to denote the set of all acyclic routes from X, to .
Since each route is of finite length and A’ is finite, Ilx (the set of acyclic routes) is also finite. This
together with the fact that 7, ,) < oo implies that for any X € A" an optimal route exists. Note
that by existence we understand that the minimum exists and is finite.

2.5 Efficient Routes

Definition 2..2 For all X € X such that X is reachable from X, define II§. C II, to be the set of
all m = Xy... X521 € Iy such that

1. /\ln{—2(7‘—) € Hi\’m-z

r=m

2 E[T§] = min min E[T3] + ;%ppm;,m(tf e P P)

Then II5 is the set of all effcient routes to the node X.

Proposition 2..3 Efficient routes have the following properties.
1. II5 is non-empty for all X.
2. 7= Xg... Xjz-y € 1§ then Ag(m) € II§, for all &k such that 0 <k < |x| - 1.

3. 1f ron’ € 1T then E[T]] = E[T;/'

Proof: The proofs of parts (2) and (3) are immediate from the definition of effcient routing.
Therefore we prove only the first part i.e., that the definition of efficient routing is not vacuous.
For any X € X’ the minimum in the definition of efficient routing is over the set

S(IX)={rX:7meIl} . (X', X)e A}

Thus if II5; =.0 then either S(.X')is empty or S(.X)is non-empty and no minimum exists over the set
S(X). Consider the case S(X) # (). We show later that this must indeed be true. Since I}, C Iy
and [ITy/] < . we get |II%,| < oc. Moreover A" < x implies that |[{X': (X'.X) € A}| < x. From
these facts |S(.X')| < oc. Moreover S(.X') non-empty implies that there exists X’ such that Il
is non-empty which in turn implies that there exists some 7 € II%, such that E[Tf,] < oc. Since
Teg() < o forall (z,y) € A. we get E[TF*] < oc. From this fact and |S(X)] < oo we get that
the minimum over S(X') exists and is finite.

We now show that S(.X) is indeed non-empty. Pick any 7 = X...X;_; € IIx. Obviously
My, = {X,} #0. Let I # 0. Then S(X4,) # 0 because {7 X;1, : 7 € II§ } C S(X,4). Then by
the prior argument I, # 0. By induction II% # 0. [

Theorem 2..4 There exists an optimal route to Xp that is also efficient.

Proof:
Let 77 = X¢ ... X7 _; € ILx, be an optimal route. We show by induction that there exists an

optimal route (not necessarily 7*) that is also efficient.

T x

Induction hypothesis: For all k,0 < k < |7|-1 there exists an optimal route & = A (7).X7 ;. X
such that Ay(7) € HEX;.

The base case is £ = 0. In this case we choose © = 7~ itself, since 7~ € II5;, = {Xo}.
Assume w.l.o.g. that the induction hypothesis is true at some k but not at k 4+ 1. Pick 7 as
in the hypothesis. Then A;,(7) ¢ H}:+ . By the definition of efficient routing there exists some

7 € 1. 7" # Aey1(T) such that
k41
' T
E[Tx;+1] < E[T £+1]'
Consider now the route @ = 7'.X,... X .,_,. By the consistency assumption
EIT},)< E[T},]

k42

j=lrt -1

and by applying the consistency assumption repeatedly to the sequence < Xy, >;Z} we get

E[T}. 1< E[T},]

k+3

Trx

for all j. In particular for j = — 1 we get

E[T5. 1< E[TR. .]

|m*|=-1 |=*]-1

which implies that # is an optimal route. Since Ay (%) = 7' € He,;+1 is also true, 7 satisfies the
induction hypothesis for k£ + 1. By induction the hypothesis is true for all .

In particular if we choose k = |7*| — 1 then we have an optimal route & such that Ajz.._,(7) €
1. = Il . Thus 7 is both an optimal and an efficient route to Xp. This proves that within

|m*]—1

the class of efficient routes there exists an optimal route.

Theorem 2..5 Under Strong consistency assumption. all optimal routes are efficient.
Proof: We show the contrapositive. Assume 7 = XoX;...Xp_oXp_1Xp ¢ IlI§ . then there are
two possibilities :

(1) Xy...Xp_y € I, _ . and then by definition. for any 7' € Il . we have:

E[T},)> EITF,]

D
hence. it is certainly not optimal.
(2) Xy...Xp_y ¢ 1§, _ , then we go backwards, and again we have two cases :

(2.1) Xo...Xp_s €15, _,, then let Ap_,(7") € 1T for some 7', it follows that:

E(T},] > E[TE,] and we set

D-1"

T = /\D—l('/T/)/YD
By strong consistency, it follows that :

E[T},) > E[T},]

(B2}

(2.2) Xo...Xp_o ¢ I, _,, we go backwards and again have two posibilities :
(22.1) Xo...Xp_g € I, _,, thenlet Ap_o(7") € 115 _, . for some 7', it follows that:
E[T;, 1> E[TE,] and we set

Xp-_2

T =)‘D—E(‘,W/)‘XD—VYD
By strong consistency, it follows that :
E[T:, 1> E[T},_|]

One more iteration yields :

EIT;,) > (T3]
(2.2.2) Xo...Xp_3 ¢ Il ,We go backwards ...
This inner loop will eventually reach the limiting situation :
(2.2...1) XoX; € I, thenlet Ay(x') € I, , for some 7', it follows that: E[T] > E[T%]

and we set
T = /\3(71',))(3 .o .AX'D_l‘XD

By strong consistency, it follows that :
E[T},) > E[T}]
Now iterating as above, we have :
E[T},) > E[T],]
(2.2..2) XoX, ¢ I, . thenlet A,(7’) € I, . for some 7', it follows that: E[T§] > E[T}]

and we set
71', = /\1(7TI)AX'3 e .YD_PXVD

By strong consistency. it follows that :

E[T}) > E[T})
Now iterating as above. we have :

E[T},) > EITE,]

We finally conclude that = ¢ T .

3. Implementation of the Dynamic Programming ” Efficient” Heuris-
tic.

In this section, we provide an algorithm to solve for an efficient routing. We leave behind the
random traveler scheme, and in order to fully specify the mechanics of the algorithm. we use more
notation :

3.1 More Notation

o We define L, ;(.): Zt — Z*to be the dynamic load function for link (i.j) € A, i.e evaluated
at some time epoch it yields the total number of vehicles currently on the link.

o Welet [;;(.): Z* — Z* be the link impedance funtion, i.e for a given number of vehicles
in the network it provides the travel time to be experienced if the link is to be entered. The
relation between this entities is the following :

Ti()=TLijoLi;(.) (1,5) € A

o Let the m-tuple X = (2;,2.,..,2,,) be amacronode, as defined in the previous section, where
r, € N, 1 < p<m,ie a feasible distribution of platoons across the network, for instance pla-
toon 1 located at node z, platoon 2 located at node z, etc... Finally let f(z,, ..., 2,,) be the
total trip time experienced for platoons leaving origins X, = (O}, 0a, ..., 0,,) to intermediate
destinations X = (21,2, ..,2,,) through an Efficient routing, as defined above.

We restate the definition of Efficient routings as follows :

m
!

fIX) = W,rg;g;_,{fm)+P§ﬂpm;,m(h ot i P}

st (XL X)eA

Then. I is the argument of the above minimization problem. Now, suppose that the macronode
X" = (a7 2%, 2),) is the attained by the argmin of the definition above, then the time updating
goes as follows:

fr(}{) = t;w(—'\w) + TLr;.;r,‘)(fl(AY-)* o -tm(A\-*)v Prs--Pm)-

To complete the formulation we clearly have f(0;.0,.....,0,,) = 0 and our problem is to find
f(D.Ds....D,,) .

One last set of equations to fullv describe the recursion is the way dyvnamic loadings on links are
updated. Then. the loadings on the links reached by an efficient routing are updated as follows :

Lizs o)(1) = Lizg e (1) + pp 3 1(X7) << 1,(X)

This last equation simply states the fact that to whatever the number of vehicles in link (2}, 2,) €
A1 < p < m. we add the size of the platoon entering the link, namely p,, and since the platoon
will take p, ‘T(.,.;“,p,(tl(;\") o (X)) p1a .. ppy) time units to traverse the link, this addition must
be carried out for time periods ¢,(X™) < ¢,(X).

Figure 1: Network 1

3.2 Example.

We try to illustrate the notation with the following example. Consider the network on figure 1. Sup-
pose that we have four platoons to consider, each of these leaving a different node to the node located
in the "diagonal™ respectively. Since the order in which we write the macronode m-tuple is arbitrary
we set for instance. the order defined by node labels. Then our macronode origin is the four-tuple
(0,.045.045.04) = (1.2.3.4) and the macronode destination is (D, D4, D3, Dy) = (4,3,2.1). So it
follows that our problem is to find f(4,3.2,1) with the boundary condition f(1,2,3,4)=0.

The first iteration will examine one step macronodes reachables from (0, 0,.03.04) such as :
(2.-1.1.2). that is. the platoon leaving node 1 is routed to node 2 , the platoon leaving node 2 is
routed to node | . the platoon leaving node 3 is routed to node 1. and the platoon leaving node
1is routed to node 2. There are then a total of 2* of such macronodes. The first iteration of the
procedure is trivial.

To illustrate the updating procedure, let us assume all platoons consist of one vehicle . all link
travel times are constant and equal to 10 time units, and that all platoons leave their origins at
time zero except for the platoon leaving node 4 at two time units. Then :

14(1,2.3.4) =2

6(1.2,3.4)=0 [=1.2.3

ta(2.4.1.2) = 4 (1. 2.3.0) 4+ 1 7140)(0) = 12
(2.4 1.2)= 1, (1.2.3.4)+ 1+ 7,4,(0) = 10

Now. if we further assume that to reach (D,.D,. Ds, Dy) the efficient intermediate destination
m-tuple is (2.4.1.2) . the updating is as follows :

L(l,'l)(t) = 1 0 S t <]0

L(qyg)(t) =1 2 S t <].2

(3112)

(1234) (4321)

Figure 2: Decision Network for example.

3.3 Implementation

The example given in section 1, shows that to solve for efficient routing requires a lot of updating
and possibly a lot of memory depending upon the size of the problem considered. For instance, the
number of macronodes reachable from the origin in that example is exponential on the number of
platoons to route. It is required then to avoid unnecessary updating, loadings and times along non-
efficient paths. and it is vital to reduce the requirements of memory. For the latter concern. we will
then consider one platoon at a time. i.e a different decision tree. In our example there will be then
only two reachable macronodes from (O;.0+.03.04). These are (2.2,3.4) and (3.2.3.4). since we
first consider the platoon leaving node 1 . From each of these we then have macronodes (2.1.3.4)
and (2.4.3.4).and (3.1.3.4)and (3.4, 3,4). respectively. These are obtained by considering routing
choices for the platoon leaving node 2. For the former concern we will use a heuristic function that
will help in the forward solving to prune paths that are not efficient.

3.3.1 The Algorithm

We briefly explain the use of a heuristic function in solving for the efficient routing. We define :

o : N x N — Rt the euclidean geographical distance between nodes in the network. e.g
d(ry. Dy) is the distance between nodes ry and D;.

e We now define a heuristic function. that vields a lower bound on a system-optimal routing
total trip time from any macronode to the destination macronode as follows :

m d(,’E 7D)
Mer o) = 1P ST S PEED

r=1

where M AXSPEFED is the maximum speed allowed in the network.

We now define the order in which platoons are to be considered, that is, how to expand the decision
tree. Since the intention is to use the procedure on real-time and the dynamic routing problem has
no fixed horizon. rolling horizon procedures are to be considered. In view of this, we are mainly
interested in svstem-optimal routing decisions for the first (in time) platoons in the network.

Hence, the sequence according to which we expand the network is deduced from the times platoons
enter the network.
The algorithm then is the following :

1. Perform best first search to get a first feasible routing with related total trip time. Initialize
a pointer at the macronode origin.

2. From pointer say (zy.2s,...2,,) on :

e Fathom all reachable macronodes (27, 2%,...2/) from pointer that satisfy :
pr et o) (tp(X')) + A(X') > Total Trip Time
p=1 :

Expand all dangling macronodes (if accrued total trip time surpasses the current total
trip time, then fathom).

e Since by the previous step we have identified a part of the efficient routing, update all
the entities.

1. If pointer is at (D, D, ... D,,) stop. Else, update pointer and go to step 2 .

On the appendix, we give further detailed information on the computer code developed.

4. Computational Experiment

In order to test the validity of the procedure we compared its performance, in a problem with
known optimal solution. For that. we use the same network as in Kaufman et al. [4](the same as in
figure 1). where an optimal solution to the system-optimal dynamic routing problem was computed.
Their model is richer in that thev allow for platoon splitting but considerably limited to "small”
examples. To test the size of problems that could be solved with the procedure, we enlarged that
network. into networks 2 and 3. All the detailed information is given in the appendix.

Comparison w.r.t Optimal Solution

Routing time(min) c.p.u(sec) Ratio
Network 1 1816.2 | 2 | 1.0003

(C'omparison w.r.t Random Routings

Routing time(min) c.p.u(sec) Ratio
Network 1 6930 22 0.71
Network 2 9631.5 26 0.73
Network 3 1949%8.5 74 0.79

For network 1. Kaufman et al. were constrained to solve the problem to a very short time span.
In contrast. our procedure is not constraint by time spans and it could solve until full clearance
of the network.Best vet, when compared up to a common time span, the "efficient” routing came
0.003% short of optimality.It required 25 c.p.u seconds to solve it, whereas Kaufman et al. required
more than 6 c.p.u minutes. For networks 2 and 3, the comparison is made to the average total trip
time of a sample of 200 routings picked at random. In the table, the percentage value represents
how good it was when compared to this average. It is interesting to note that under increasing
congestion the procedure seems to perform better. One possible explanation is that under heavy
congestion this assumption is more likely to hold.

10

References

[1] Carey.M. Optimal time Varving flows on Congested Networks . Operations Research 35 (1987)
1 58-69

[2] Friesz T.L, J. Luque, R.L.Tobin, and B. Wie. Dynamic Network Traffic Assignment considered
as a Continuous Time Optimal Control Problem. Operations Research 37 (1989) 6 893-901

[3] Janson B.N., Dynamic Traffic Assignment for Urban Road Networks . Transportation Research
B 25B 2/3 143-161

[4] Kaufman D.E, and R.L. Smith . Fastest Paths in Time Dependent Networks for IVHS Appli-
cation .JVHS Journal 1 1 1-11

[5] Kaufman D.E , R.L Smith and J. Nonis. A Mixed Integer Linear Programming Model for
Dynamic Traffic Assignment.ITS report, University of Michigan.

(6] Bean,J.C, Birge, J and Smith R.L. Aggregation in Dynamic Progranlmillg. Operations Research
35 (1987) 1 58-69

11

5. Appendix 1

In this section we provide detailed information on the computer implementation of the procedure.
Because of time constraints this implementation is not efficient at all, and needs further improve-
ment. To avoid confusion, in the following we will assumme that the efficient routing is optimal.
so that no distinctions apply.

5.1 General Setting
The following definitions are used throughout the code.

¢ MEMORY(Total memory requirement),MAXs(Number of entries in link impedance func-
tions).
MAXPLAT(maximum number of plattons departing from any node).
MAXSPEED (maximum speed allowed in the network).
HORIZON(number of time periods to be considered).
PERIOD(time equivalence of one period unit).

struct_node{} contains all information referenced by nodes.

struct_link{} all information for links.

struct liste_link{} information on network topology.

e struct_macronode{} information for macronodes as defined above.

The details of each structure contents is carefully explained in the code. As an illustration :

struct node{

int code: /* Code number for node */

int Nbpred; /* total number of sucessors */

int platoon: /* total number of plattons departing */
int destination MAXPLAT]: /* Array with codes for destinations */

int size] MAXPLAT]; /* Sizes of plattons leaving node */

double departurel]MAXPLAT]; /*departure times for plattoons leaving */
double *distance; /* pointer to array of geographical dist. */
struct liste_link *pred_link: /* pointer to list of outward links */

}:

Pointers to array of each of these structures are then defined; e.g. *tabnode for the array of
struct_node{}.

*tablink and *tab_mnode. While the size of the node and link arrays are fixed(we will denote
NDbN. total number of nodes and NbL. total number of links) the size of the macronode array is
chosen to be the constant MEMORY as defined above. This is due to the fact that we do not
know in advance how much pruning will be necessary to find the efficient routing. However, we
consider that this step can be improved by using the c-command realloc() in order to ask for just
about the memory requirements, as we prune the macro-network.

12

5.2 Input Data

All the data that defines the problem setting must be provide through two input files, namely:node_data
and link_data. We give instances of these files, in the exemple given in the paper. Nodes and links

are listed in increasing code number. The codes are arbitrarily chosen.

For node_data:

/* Total number of nodes */

121 /* node code-number of sucessors-number of platoons departing*/
3 /* destination(s) code(s) for platoons departing */

1 /* Total number of vehicles in platoon(s)*/

0 /* platoon(s) departure(s) time(s) */

22 /* code sucessor node—code link joining them */

37 /* code sucessor node—code link joining them */

015530 /* Geographical distance between this node and others*/

221 /* node code-number of sucessors—-number of platoons departing */
4 /* destinations for platoons departing */

/* ... iterate */

For link_data :

8 ' /* Total number of links */

102 /* link code—current link loading—freeflow travel time */
00101.3 160.7 222.2 /* link impedance function (defined for MAXs) */

20 1.768 /* link code—current link loading—freeflow travel time */

0 24.2 55.1 85.2 116.8 /* link impedance function (defined for MAXs) */
/* ... iterate */

5.3 Subroutines

We give a list and a brief explanation of subroutines used.

¢ lecture_node() and lecture_link() read and fill with the input data the array of structures
pointed by*tabnodeand*tablink respectively. verification() prints to the standard output
the contents of these structures to check for consistency.

e init_structures() utilizes the information now pointed by *tabnodeand*tablink to ade-
uately initialize pointers between entries of the array of structures(that is, the network
topology).

The subroutine init_tab_mnode() initializes the array of structures pointed by *tab_mnode(
the macronetwork). It is here that when demanding too much memory, the execution can be
aborted. There is a special message for these error.

o graph_search(root) performs a best first depth search on the macronetwork from the
macronode indexed by root in the macronode array(pointed by tab_mnode). The integer
variable counter serves to index free space in *tab_mnode to write on as it goes through
a macropath. Since the first entry on *tab_mnode (i.e tab_mnode[0]) is the macro-origin,
Root takes on the initial value of 0, and counter is set initially to be one. Since the proce-
dure graph_search(root) is to be used extensively when pruning, the real numbers valuel
and value2 denote respectively, the total routing time through the macronode reached by

13

the procedure and the best total routing time found so far. Then, when pruning one can stop
the depth search when valuel exceeds value2 or adequately update.

¢ check_optimality() is the pruning procedure. It traverses the macronetwork (i.e *tab_mnode).
fixing optimal routing decisions from the macro-origin and on, by calling repeatedly graph_search(root).
In this case, the integer variable counter2, index the last optimal routing decision on the
macronetwork. The procedure returns 1 if an optimal routing has been identified.

With these procedures then the core of the code is :

optimality = 0; /* setting initial values for basic variables */
counter = 1:

root = 0:

counter?2 = 0;

graph search(root); /* First Depth Search for a feasible routing */
value2 = valuel: /* First Routing total cost is stored in value2 */

for(i=0;optimality '= 1;i+4) /* pruning sequentially to optimality */

{

optimality = check_optimality();

}

5.4 Output

The pruning procedure check_optimality marks as it goes through the macronodes reached by
the efficient routing (i.e it modifies tab_mnode[].optimality). So the print_solution() procedure
goes through the macronetwork reconstructing the efficient path. We recompute the travel times
accrued along the path have more information on its qualitative features.(Otherwise, one simply
has the optimal routing cost stored in value2).

14

6. Appendix 2
In this appendix we provide all the information on the networks considered.

6.1 Links

We use four different types of links, to be denoted A, B, C', D respectively. The following table gives
the link impedance funtion for each link type(it is defined in 1.5 minute time units).

Link Impedance Function

Number of Vehicles
Time Units | s =0 s=1 s=2 s=3 s=4/ freeflow time
Type A 0 0 1013 160.7 222.2)
Type B 0 24.2 55.1 852 116.8 1.768
Type C 0 0 1181 198.7 279.5 2.348
Type D 0 22.9 543 843 1158 1.808

6.2 Network 1

This is the same network solved in Kaufman et al.[5].It is a four node network with sixty platoons
departing along six time periods.In figure 3. the different codes assigned to links and nodes are
shown.For further information, the input files are annexed and can be interpreted according to the
guidelines given in appendix 1. We now list links codes according to types :

o Type A :1,2
o Type B :3.7
e Type C 1.8

.6

Ut

e Type D:

6.3 Network 2

This is ten node network with fifty platoons departing along one time period.In figure 4. the different
codes assigned to links and nodes are shown.For further information. the input files are annexed
and can be interpreted according to the guidelines given in appendix 1. We now list links codes
according to types :

Type A :1.2.9,17,22,24

Type B :3.7.13,19.23,26

Type C :4.8.10.11.12.18

Type D :5.6.14,15.20.21.16.25

15

6.4 Network 3

This is twelve node network with eighty four platoons departing along one time period.In figure 5.
the different codes assigned to links and nodes are shown.For further information, the input files
are annexed and can be interpreted according to the guidelines given in appendix 1. We now list
links codes according to types :

o Type A :1,2,9,17,22,24,27,28,29,30, 31,32, 33, 34, 35, 36
o Type B :3,7.13,19.23,26
o Type C :4.8.10,11,12,18

o Type D :5.6.14,15.20,21.16.25

16

Figure 3: Network 1.

10

12

14

16

24

Figure 4: Network 2.

18

27

28

31

32

33

34

Figure 5: Network 3.

19

