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SUMMARY 
Time finite element methods are developed for the equations of structural dynamics. The approach employs 
the time-discontinuous Galerkin method and incorporates stabilizing terms having least-squares form. 
These enable a general convergence theorem to be proved in a norm stronger than the energy norm. Results 
are presented from finite difference analyses of the time-discontinuous Galerkin and least-squares methods 
with various temporal interpolations and commonly used finite difference methods for structural dynamics. 
These results show that, for particular interpolations, the time finite element method exhibits improved 
accuracy and stability. 

1. INTRODUCTION 

One approach towards formulating algorithms for solving partial differential equations associ- 
ated with time-dependent phenomena is to first discretize the spatial domain of the problem using 
typical finite element techniques. This results in a system of ordinary differential equations with 
time as the independent variable. Most commonly used transient dynamics algorithms are 
derived by discretizing the ordinary differential equations using traditional finite difference 
methods. Alternatively, the ordinary differential equations may be discretized usingjnite elements 
in time. For example, in Argyris and Scharpf,' Bazzi and Anderheggen,' Hoff and Pah1,3*4 Hoff et 
aE.,5 Kawahara and Hasegawa,6 Kujawski and Desai' and Zienkiewicz and co-workers,8-12 
continuous functions in time are substituted into the ordinary differential equations emanating 
from semidiscretizations, multiplied by weighting functions and integrated over time intervals. 
Many traditional ordinary differential equation algorithms were rederived in this manner as well 
as useful new algorithms for structural dynamics. 

Another approach to discretizing the temporal domain is to permit the unknown fields to be 
discontinuous with respect to time. The time-discontinuous Galerkin method was originally de- 
veloped for first-order hyperbolic equations by Reed and Hilli3 and Lesaint and Ra~iar t . '~  This 
method has been successfully applied to problems in incompressible and compressible fluid 
dynamics, heat conduction and elastodynamics; see References 15-29. 

The time-discontinuous Galerkin method leads to stable, higher-order accurate finite element 
methods. It was first shown in Delfour et a1.,I6 Johnson3' and Lesaint and Raviarti4 that the 
time-discontinuous Galerkin method leads to Astable, higher-order accurate ordinary differ- 
ential equation solvers. Furthermore, the time-discontinuous framework seems conducive to the 
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establishment of rigorous convergence proofs and error estimates; see, e.g. References 17-20,22, 

This paper extends the work presented in Hughes and Hulbert’* and Hulbert and Hughes20 to 
structural dynamics. We show that the time finite element method generates a family of 
unconditionally stable higher-order accurate algorithms for solving systems of second-order 
ordinary differential equations associated with structural dynamics. An outline of the paper 
follows. After presenting the equations of structural dynamics, two general formulations of the 
time finite element method are presented. In the single-field formulation, presented in Section 2, 
displacement is chosen as the unknown field, while in the two-field formulation, given in Section 3, 
displacement and velocity are the unknown fields. Stability and convergence are proved for both 
formulations. In Section 4, the single-field and two-field formulations are compared. Results are 
presented in Section 5 from finite difference analyses of the time finite element methods using 
various combinations of interpolations. These results are compared to those obtained for several 
commonly used time integration algorithms for structural dynamics. Conclusions are drawn in 
Section 6. 

The ordinary differential equations associated with the semidiscrete form of linear elastodyn- 
amics have the form 

23, 27, 30-39. 

Mii + CU + KU = F (1) 

U, = vo (2) 

u0 = do (3) 
where M, C and K are the respective mass, damping and stiffness matrices; u = u(t) is the vector of 
unknown nodal displacements having dimension neq; F is the prescribed load vector; vo and do 
are the initial velocity and displacement vectors, respectively. A superposed dot denotes differen- 
tiation with respect to time. M is assumed to be symmetric positive-definite while C and K are 
assumed to be symmetric positive-semidefinite. 

2. A SINGLE-FIELD TIME FINITE ELEMENT FORMULATION 

2.1. Variational equations 

= T. Let I ,  = 
time t,, the temporal jump operator is defined by 

Consider a partition of the time domain, I = 10, T[ ,  having the form 0 = to < t, < . . . < t, 
t,[ and At, = t, - t,,-,. Assuming the function w(t) to be discontinuous at 

lw(t,>4 = w(ti+ 1 - w(t,) (4) 
where 

w(t:) = lim w(t, + E )  
&‘Of 

The following notation is used to simplify the subsequent exposition: 

(w, U)rn = s, w-udt (6) 

Let Bk denote the space of kth order polynomials. The finite element interpolation functions 
for the trial displacements are 

1 N 
Y h =  U h €  (J ( B k ( Z , ) ) ” e q  { n = l  

(7) 
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By construction, the interpolation functions are continuous within each time interval and may be 
discontinuous across the time intervals. Since the initial conditions are weakly enforced, the 
displacement weighting function space is identical to the trial displacement space. 

The statement of the time-discontinuous Galerkin method for the single-field formulation is: 
Find u " E ~ ' "  such that for all whe9"', 

bDG(wh, u"), = ZDG(W"),, n = 1,2, . . . , N (8) 

+ wh((t:-l)-Muh(t,f_l) 

+ wh(t:.l)*Kuh(t:-l) (9) 

and 
LYu" = Miih + CU" + Ku" 

Note &(Wh)l is defined from the general expression for &(Wh), by replacing uh(t;-l) and 
uh(tn-- 1) by the initial conditions vo and do, respectively. The last two terms of (9), in combination 
with the last two terms of (lo), weakly enforce the initial conditions for each time interval. As will 
be seen in the stability analysis, these jump terms are stabilizing operators and have the effect of 
'upwinding' information with respect to time. 

While stability is easily proved for the time-discontinuous Galerkin method, convergence, as 
measured in the 111 .Ill-norm defined in Section 2.2, has been proved only for B polynomials, that 
is, for linear elements in time. The time-discontinuous Galerkinbeast-squares method was 
developed to circumvent this limitation. 

The statement of the time-discontinuous GalerkinAeast-squares method for the single-field 
formulation is: 

Find uhc9'" such that for all w h € Y h ,  

where 
bG,S(wh, u"), = ~,G(W", u"), + (LYw", 

The least-squares contribution in (14) adds sufficient stability to prove convergence for 
polynomials of arbitrary-order while maintaining the accuracy of the underlying time-discontin- 
uous Galerkin method. The scalar parameter, z, has dimensions of time and is referred to as the 
intrinsic time-scale. 
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2.2. Stability and convergence analyses 

A sufficiently smooth exact solution of (1)-(3), u, satisfies 

bGIS(Wh, u)m 2GLS(Wh)n (16) 
for all wh E Y h  and n = 1,2, . . . , N. This can be easily seen from the Euler-Lagrange form of (13): 

0 = bGIS(wh, uh)n - k I , S ( w h ) n  

= ( W h  + ' cM-'9wh,  9"' - F)fn 

+ w "( t:- ) * M [uh( t,, - )] 

+ wh(t.'_l)*K[uh(t,,-l)] 

The Euler-Lagrange form illustrates weak enforcement of displacement and velocity continuity 
at the beginning of each time interval. 

For purposes of analysis, it is convenient to sum (13) over the time intervals and after 
rearranging the terms, 

+ Nfl {wh(t,*)*M[uh(t,,)] + wh(ct:)*K[uh(tn)]) 
n= 1 

+ Wh(O+)*Mvo + wh(O+).Kdo (20) 
By (16), (18) is also satisfied by substituting a sufficiently smooth exact solution, u, for uh. Thus, 

for all wh E Yh, 

where 

This is the consistency condition. Clearly the time-discontinuous Galerkin formulation ('c = 0) 
also satisfies a consistency condition. 

2.2.1. Stability. A natural measure of stability for (1)-(3) is the total energy, which, for the 
single-field formulation, is given by 

The norm associated with (18) and in which stability and convergence are proved is defined by 

lllwh11I2 = 8(wh(T- ) )  + 8(wh(0')) + Ngl 8([wh(t,)]) 
m =  1 

w 

m = l  
+ 1 {(Gh, Cwh),,, + ( 9 w h ,  'cM-19wh),n} 
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This is the stability condition. To prove (25), we need to prove a preliminary result, namely: 

Prouf 
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Combining (28) and (29) and using (19) (with z = 0) and (23) completes the proof. 0 
0 Lemma 1 follows directly from Lemma 2 using (19) and (24). 

Theorem I (Energy decay inequality). In the absence of external forces, i.e. F = 0, the total 
energy at the end of a time interval, e.g. €(u"(t,,-)), computed using the Galerkin fleast-squares 
method, (13), is bounded by the initial total energy. 

Proof. With F = 0, 

lGLs(uh) = U"(O+).MV~ + U " ( O + ) * K ~ ~  

< IUh(O+)-Mvo + uh(O+)-KdoI 

< $Uh(O+)-MU"(O+) + $vo*Mvo 

+ $uh(0+).Kuh(O+) + $do*Kdo 

= €(U"(O+)) + b(u0) (30) 
where €(uo) denotes the initial total energy. Using (18), Lemma 1, (30), and the definition of 
lllWh11I2? 

€ ( u " ( T - ) )  < €(uo) (31) 

(32) 

Since T is arbitrary, 

€(uh(tn-)) < b(uo), n = 1,2, . . . , N 
0 

Theorem 1 also holds for the time-discontinuous Galerkin method (z = 0). 

2.2.2. Convergence. Let nu E 9" denote an interpolant of u. The error, e, can be written as 

e = e " + q  (33) 
where 

e" = (u" - ~ u ) E Y "  

q = n u - u  

Theorem 2 (Error estimates). Assume z satisfies 

c,At < z < c,At 

where c1 and c2 are positive constants (c2 > c l )  and 

At  = max At,, 
n= 1.2. ...- N 

(34) 

(35) 

(37) 

Let H k  + '(I) denote the Sobolev space of functions that possesses square-integrable generalized 
derivatives of order k + 1. Assuming u~(H~+l(Z))ne4, then the interpolation error, q, satisjies: 

N c (ri, Clih, < C ( U ) 6 t Z k  (38) 
n= 1 
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N 1 (Yq, TM-~L?~), , ,  < c(u)At2k-' 
n =  1 

E(tl(T-)) + Q(rl(O+)) 

+ Nfl { &'( q(t;)) + E(q(tJ))} < c(u)AtZk-' 
n =  1 

where c(u) is independent of At. Then, 

llle1112 < c(u)AtZk-' 

The following lemmas aid in the proof of Theorem 2. 

Lemma 3 
N N -  1 

n = l  n =  1 
c (eh, Mfi)I,, + c ih(t,')-M[q(tn)] + 6h(O+)*Mq(O+) 

313 

(40) 

Proof 

+ eh(t,'- l)*Mq(tJ- 1) (44) 

Thus, 
N N - 1  

n =  1 n =  1 
c (eh, Mfi)r, + c eh(tJ).M[q(tn)] + eh(O+)*Mq(O+) 

+ eh(t;)-Mq(t;) 
N N - 1  

n = 1  n =  1 
= - 1 (ah, - [i?h(tn)].Mq(t;) + kh( T-)*Mq(T-)  

Lemma 4 

(46) 
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Proof. The proof follows the same steps used to prove Lemma 3 and so is omitted. 0 

Lemma 5 

Proof. Using the triangle inequality, 

n =  1 

+ eh(O+)-Mfi(O+) + eh(O+).Kq(O+)/ (by (19)) 
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1 + ? 8 ( e h ( T - ) ) +  28(q(T-)) (by Lemma 5 )  

The terms involving e" may be subsumed by the left-hand side. 
(38)-(41), then yield 

Il]ehll12 < c(u)At2*-' 

lllq11I2 < c(u)AtZk-' 

Also, from the interpolation estimates and (24), 

By the triangle inequality, 

Lemmas 3 and 4) 

(50) 

The interpolation estimates, 

(51) 

llle11I2 < 2111eh1112 + 2111t11112 G C(U)At2k-' (53) 
which completes the proof. 0 

It is important to emphasize that the least-squares operator is needed to bound the term, 
( 2 e h ,  q)t,,. (See (50) for the first occurrence of this term.) If the finite element space is restricted to 
linear elements, then the e" contributions produced by splitting ( Y e " ,  can be subsumed by 
the left-hand side of (50) without the use of the least-squares operator. 

3. A TWO-FIELD TIME FINITE ELEMENT FORMULATION 

3.1. Variational equations 

two-field formulation are: 
trial displacement and displacement weighting functions 

With Bk defined as in the previous section, the finite element interpolation functions for the 
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trial velocity and velocity weighting functions 

The statement of the time-discontinuous Galerkin method for the two-field formulation is: 
F i n d U h = { u : , u ~ } E 9 ~ x 9 ~  such that forall W " = ( W : , W ~ ) E ~ ~ X ~ ' ! ~ ,  

BDG(Wh, U"), = LD,(W"),, n = 1,2, . . . , N  

BDG(Wh, u"), =I (w!, 2 iUh) rn  + (w:, K2zUh)rn 

(56) 
where 

+ w$(t,+_,)-Mu$(t,t,) 

+ w:(tJ-l)*Ku:(t;-l), (58) 

+ w ~ ( O f ) - M v o  + w:(O+)*Kdo (59) 

(60) 

(61) 

n = 2,3, . . . , N 

LDG(W")i = Cwi, F)r i  

and 
2 1 U h  = MU! + CU! + Ku: 

g 2 U "  = u! - u i  
As with the single-field formulation, stability can be proved for the two-field version of the 

time-discontinuous Galerkin formulation, but convergence has been proved only for k < 1 and 
1<1.  

The statement of the time-discontinuous Galerkinbeast-squares method for the two-field 
formulation is: 

Find U" = {u:, U ; } E ~ :  x 9; such that for all W" = {w;, wi) €9: x 9% 

BGLs(Wh, U"), = LGLs(W"),,, n = 1,2, . . . , N (62) 
where 

BGLs(Wh, u")n = BDGW", U")n 

+ (21Wh,T1M-121Uh)rn 

+ (ZiP,W", ~iP,K92U")r, (63) 

(64) LGLS(Wh)n = LDG(wh)n + ( 2 1 w h ,  TIM-lF)In 
and z1 and z2 are intrinsic time-scale parameters. 

3.2. Stability and convergence analyses 

The stability and convergence proofs for the two-field formulation are similar to those for the 
single-field formulation. Hence, the steps presented in the two-field formulation proofs are those 
which differ from the steps taken in Section 2.2. 
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+ wi(0'). Mv, + w:(O+)- Kd, (69) 

By (65), (67) is also satisfied by substituting a sufficiently smooth exact solution, U, for U". 
Thus, for all W"EEY; x Y;, 

B,LS(Wh, E) = 0 (70) 

where 

This is the consistency condition for the two-field formulation. 

E = U " - - U  

3.2.1. Stability. The total energy for the two-field formulation is given as: 

&(Wh) = 4w;a.M~; + $w: *Kw: (72) 
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The norm associated with (67) is defined by: 
N- 1 

Lemma 6 (Stability condition) 

BGLS(Wh, w = lIlWh11l2 (74) 

Proof. The proof of the stability condition for the two-field formulation is similar to that for 
0 Lemma 1 and so is omitted. 

Theorem 3 (Energy decay inequality). In  the absence of external forces, i.e. F = 0, the total 
energy at the end of a time interval, e.g. (a(Uh(tm-)), computed using the Galerkinlleast-squares 
method, (62), is bounded by the initial total energy. That is, 

&(Uh(tn-)) < &(U,), n = 1,2, . . . , N (75) 
where &(U,) i s  the initial total energy. 

Proof. The same steps to prove stability for the single-field formulation are taken to prove 
0 stability for the two-field case and thus are omitted. 

3.2.2. Convergence. Let I lU = {nu, Ilu) €9; x 9; denote an interpolant of U. Then, 

E = E h + H  

where 
Eh = (Uh - F I U ) E ~ ;  XY" 

H z I I U - U  

In components, 

E = ( e l , e 2 ) ,  Eh={eZ,eh,l and H={rll ,r12) 

Theorem 4 (Error estimates). Assume z1 and z2 satisfy: 

c l A t  < z1 < czAt  

c,At < z2 < c2At 

where c1 and c2 are positive constants (c2 > cl). 
Assuming U E ( I l k +  (I))"e4 x (H" ' (I))"c., then the interpolation error, H, satisjies: 

N t: (rl2 9 Cq2)r, c(U)At2' + 
n =  1 

N 

n =  1 
t: ( 1 2 ,  ri"Mq21rn < C(U)At2'+' 

(77) 

(78) 

(79) 
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+ Ngl (d(q(t;)) + €(q(t:))} d c ( U ) A ~ ~ ~ ~ ( ~ ~ + ~ , ~ ~ ~ ~ )  
n =  1 

where c(U) is independent of At. Then, 

IIIEJJJZ < c(U)Atmin(zk+1,2*+1) 

The next three lemmas aid in the proof of Theorem 4. They are given without proof since the 
steps needed to prove them are identical to those in the proofs of Lemmas 3-5. 

Lemma 7 

n = l  n = l  

Lemma 8 

Lemma 9 
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(by Lemmas 7 and 8) 

1 
4 

+ -(Y1Eh, Z , M - ' . Y ~ E ~ ) ~ ,  + (-Y1H, rlM-lYIH)In 

(92) 
1 + 8(Eh( T - ) )  + 21(H(T-)) (by Lemma 9) 

The terms involving Eh may be subsumed by the left-hand side. The interpolation estimates, 
(82)-(87), then yield 

(93) lllEh1112 < C(U)Atmin(2k+  1,21+ 1) 

Also, from the interpolation estimates and (73), 



TIME FEMS FOR STRUCTURAL DYNAMICS 321 

By the triangle inequality: 

lllE1112 d 2111Eh1112 + 2111H1112 < c(U)Atmi"(2k+1*2f+1) (95) 
which completes the proof. 0 

The least-squares operators are needed to bound l(,Y1Eh7 q2)r,I and I(Y2Eh, Kql)r,( in (92). 
Without the least-squares operators, convergence has been proved only for linear displacement 
and velocity interpolations. 

4. COMPARISON OF SINGLE-FIELD AND TWO-FIELD FORMULATIONS 

As measured in the 111 .Ill-norms, the convergence rates proved for the single-field (two-field) 
formulation are sharp (in the sense that the interpolation error contributions and the error 
contributions emanating from eh(Eh) have the same rates of convergence). If the velocity field 
interpolation is chosen to be one order less than that of the displacement field (i.e. l = k - l), then 
the two-field formulation reduces to that of the single-field. However, it is computationally 
convenient to choose equal-order interpolations for the velocity and displacement fields. 

The analyses indicate that the intrinsic time-scale parameters, z, z1 and z2, are proportional to 
At ,  but these analyses are not sufficient to define the proportionality cpnstants. Practical 
definitions of the time-scale parameters are given by 

z = tl = t2 = *At (96) 
If variable time steps are used, then At is to be interpreted as a local value. That is, in (96), At 
should be replaced by At,,. 

5. FINITE DIFFERENCE ANALYSES 

Stability properties and error estimates derived in Sections 2 and 3 are based on functional 
analysis techniques typical of most finite element analyses. In contrast, for semidiscrete formula- 
tions, classical finite difference techniques usually are used to derive stability and error measures. 
In this section, we present results from finite difference analyses of the time finite element 
methods. Particular emphasis is placed on the temporal accuracy and dissipative properties of the 
proposed methods. These results are compared with finite difference analysis results of several 
commonly used semidiscrete methods. For the single-field formulation? linear ( P  1) and quadratic 
( P 2 )  interpolations are analysed. Four combinations of interpolations are studied within the two- 
field formulation: constant displacement and velocity (PO-PO), linear displacement and constant 
velocity ( P  l-PO), linear displacement and velocity ( P  l-P l)? and quadratic displacement and 
linear velocity (P2-P 1). Both the time-discontinuous Galerkin and the Galerkinbeast-squares 
methods are investigated. 

5.1. Model problem and analytical measures 

To study the finite element formulations from a finite difference perspective? we start with the 
time finite element method for ordinary differential equations to assess the temporal behaviour of 
the algorithms. It suffices to consider the undamped? single-degree-of-freedom model problem: 

(97) 

d(0) = do (98) 

d(0) = vo (99) 

d + (wn)'d = 0 
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See Chapters 8 and 9 of Hughes4' for an explication of the steps taken to obtain (97)-(99) from 

For purposes of analysis, it is convenient to express the values at the end of a time interval, e.g. 
dh(tn-) and uh(tn-), in terms of the values at the end of the previous time interval. This can be 
written in the form: 

(1143). 

where A is the ampliJication matrix of dimension 2 x 2. The analytical measures of interest are the 
spectral radius, local truncation error and numerical dissipation and dispersion. The spectral 
radius, p(A), is defined by 

P(A) = maxl&(A), &(A)( (101) 
where ,Ii( A) denotes the ith eigenvalue of A. Calculating the displacement-diference stencil from 
(100) results in 

d h ( t i + l )  - 2A,dh( t ; )  + A,dh(tn--l) = 0 (102) 
where 

A ,  = 4 trace A 

A ,  = det A ( 104) 

( 105) 

The local truncation error, Y ( t ) ,  is defined by 

Y ( t , - )  =: At-'(d(t ,  + A t )  - 2A,d( t , )  + A,d( t ,  - A t ) )  

where d is the exact solution to (97)-(99). Provided that the eigenvalues of A remain complex 
(A,,,(A) = A k iB, B # 0), the solution of (102) can be written as: 

dh( t ; )  = exp( - ch&jht,)(c1 cos(&jht,) + c, sin(&jht,)) ( 106) 

in which 

where g h  is the algorithmic damping ratio, c;ih is the approximate frequency and the coefficients c1 
and c, are determined from the initial conditions. The algorithmic damping ratio provides a 
measure of the numerical dissipation while the relative frequency error, calculated using 

is a measure of numerical dispersion. The relative frequency error may also be expressed as: 

where R = A t o h  and fi = At&jh. For details on the derivation of the above analytical measures 
see Hughes4' and H i l b e ~ ~ '  



TIME FEMS FOR STRUCTURAL DYNAMICS 323 

5.2. Local truncation errors 

In a local truncation error expression, the power of the lowest-order term with respect to At 
defines the convergence rate of the associated algorithm. The coefficient of this lowest-order term 
provides a measure of relative error magnitudes for comparing different algorithms. 

Table I lists the lowest-order terms in the local truncation errors of the time-discontinuous 
Galerkin method using the six interpolation combinations described above. As is typical of time 
finite element methods, the convergence rates are odd powers of At. The PO-PO, P 1-PO and P 1 
elements exhibit first-order accuracy, while third-order accuracy is achieved by the P 1-P 1, 
P2-P 1 and P 2  elements. The displacement-difference stencils are identical for the time-discontin- 
uous Galerkin formulation using P1-PO and P1 elements; thus, their local truncation error 
expressions are also identical. Similarly, the local truncation errors of P2-Pl and P 2  are 
identical. These equivalences are not surprising since, in the two-field formulation, the compati- 
bility equation (61) is equivalent to calculating velocity from the displacement field in the single- 
field formulation, provided 1 = k - 1. The PO-PO element, while convergent, is equivalent to the 
backward Euler method, which is a poor algorithm for accurately computing transient response. 
Also, owing to their low rates of convergence, the P 1-PO and P 1 elements are inappropriate 
methods for solving structural dynamics problems. In contrast, the three methods that exhibit 
third-order accuracy are useful transient solvers. We note that commonly used structural 
dynamics algorithms are second-order accurate. 

Table I1 lists the lowest-order terms in the local truncation errors of the GalerkinAeast-squares 
method using the same six interpolation combinations. Compared to these error measures, the 
error estimates obtained from the convergence analyses of Sections 2 and 3 are pessimistic for the 
model problem. Comparing the results in Tables I1 and I, note that the addition of the least- 
squares terms does not degrade the convergence rate but does increase the error coefficient. If 
z1 = z2, then the error coefficient for P 1-P 1 is twice that of P2-P 1. In addition, if z1 = z, then the 
error coefficients of P2-P 1 and P 2  are identical, as are the error coefficients for P 1-PO and P 1. 

Table I. Local truncation errors for the time-discontinuous Galerkin method 
~~ ~ 

Interpolation Error rate Error coefficient 

Constant displacement, (PO-PO) At 1 
Constant velocity 

Linear displacement, (Pl-PO) At 112 
Constant velocity 

Linear displacement, ( P l - P I )  At3 1/36 
Linear velocity 

Quadratic displacement, (P2-P 1) At3 1/72 
Linear velocity 

Linear displacement ( P I )  
(single-field formulation) 

At 112 

Quadratic displacement (P2)  At3 1/72 
(single-field formulation) 
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Table 11. Local truncation errors for the GaierkinAeast-squares method 

Interpolation Error rate Error coefficient 

PO-PO At 1 + (41 + 2,)  

1 
2 

P 1-PO At - + 41 

PI-P1 
1 1  

36 18 18(1 + 2(t1 + 4,) + 44,4,) 
4: + 2; + 2212,(41 + t,) 

At3 -+- (21  +4, )+  

P2-Pl At3  

1 
2 

P1 At - + 4  

P 2  At3 
1 4(1 + 34) -+ 

72 18(1 + 24) 

Note: t = t / A t ,  ti = rJAt 

5.3. Spectral radii 

Spectral radius plots are useful to observe the dissipative properties of an algorithm over the 
entire frequency domain. Of particular interest is the spectral radius magnitude at the high end of 
the frequency spectrum. It is desirable for structural dynamics algorithms to attenuate high 
frequency response because high frequency behaviour is typically the result of spatial discretiz- 
ation and does not represent physical behaviour of the structure. Ideally, the high frequency 
behaviour should be annihilated in one time step, i.e. 

pm = lim p = 0 
n- m 

We refer to this desirable attribute as ‘asymptotic annihilation’ of the high frequency response. 
Simultaneously, dissipation should be small in the low frequency regime so that the physical 
response is not overdamped. Low frequency dissipation is best measured by the algorithmic 
damping ratio; see Section 5.4. 

Figure 1 depicts spectral radii for the time-discontinuous Galerkin method obtained using the 
six different interpolations. Also shown are the spectral radii for the Hilbe-Hughes-Taylor a 
method (HHT-a method) and the Houbolt algorithm. The HHT-a method is a good second-order 
accurate semidiscrete algorithm which attenuates high frequency response.41 -44 All results were 
computed using a = - 0.3. The Houbolt method4’ is the only three-step linear multistep 
algorithm that attains asymptotic annihilation. (See Hughes4’ for a discussion of linear multistep 
methods for second-order equations.) The spectral radii of the P 1 single-field formulation and the 
P 1-PO two-field formulation are the same since the displacement-difference stencils are identical; 
likewise the P2 and P2-Pl spectral radii are identical, Differences between the first-order and 
third-order accurate algorithms may be easily observed in the low frequency region. Note the 
PO-PO and P I-P 1 elements possess the asymptotic annihilation property. From an accuracy 
standpoint, P 1-P 1 is preferred since it is a third-order accurate method while PO-PO is only first- 
order accurate and hence too dissipative in the low frequency region. The P1 and P1-PO 
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Figure 1. Spectral radii for time-discontinuous Galerkin methods 

elements are not useful for transient dynamics since they exhibit first-order accuracy yet do not 
dampen high frequency response. While the spectral radii for these methods initially decrease, the 
roots of their characteristic polynomials bifurcate when R = 4-0; the roots remain real-valued for 
frequencies above this limit. (See Hilber41 -43 for details about the effects of root bifurcations 
within the context of semidiscrete algorithms.) The P2 and P2-Pl elements are third-order 
accurate but do not dampen the high frequencies due to root bifurcations when R = 3.1 and 
CI = 10-8. Thus, while the time-discontinuous Galerkin method using P1-P1 elements is an 
effective algorithm from the perspective of stability and accuracy (its roots do not bifurcate), P2 
and P2-P 1 elements need the additional dissipation engendered by the least-squares terms to 
render viable algorithms for structural dynamics. 

Figure 2 depicts the spectral radii of the Galerkin/least-squares method for the six inter- 
polation combinations (z = z1 = z2 = 1/2At) and the spectral radii of the HHT-a and Houbolt 
algorithms. All six interpolation combinations exhibit the asymptotic annihilation property. 
While the roots of Pl-PO, P1, P2-Pl and P 2  still bifurcate, the addition of the least-squares 
terms ensures that their spectral radii are zero in the high frequency limit. 

Figure 3 compares the spectral radii of the time-discontinuous Galerkin and Galerkinbeast- 
squares methods for each of the six interpolation combinations. The influence of the least-squares 
operators on the spectral radii may be readily observed from these plots. 

5.4. Numerical dissipation and dispersion 

The algorithmic damping associated with the time-discontinuous Galerkin method for the six 
interpolation combinations is shown in Figure 4 (top figure) as a function of the frequency 
parameter, R. Also included are the algorithmic damping curves for the HHT-a and Houbolt 
algorithms. The Houbolt algorithm is generally considered to be too dissipative in the low 
frequency regime; thus, PO-PO, P1-PO and P1 are clearly too dissipative to be of practical 
interest. The algorithmic damping curves of P1-P1 and HHT-a are nearly identical when 
C I , <  0.37~. It is observed that the P2-Pl and P2 elements have very little dissipation in the low 
frequency domain. 
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Figure 2. Spectral radii for Galerkinpeast-squares methods. (Top: single-field formulation; Bottom: two-field formula- 
tion) 

Algorithmic damping for the Galerkinpeast-squares, HHT-a and Houbolt algorithms is shown 
in Figure 4 (bottom figure), with z = zi = z2 = 1/2At. The effect of the least-squares operators is 
to add dissipation to the time-discontinuous Galerkin formulations; consequently, the algorit- 
hmic damping increases. Algorithmic damping curves for PO-PO, P1-PO and P1 are omitted 
since these elements are already too dissipative without the least-squares terms. The least-squares 
terms result in algorithmic damping ratios greater than that of the HHT-a method for all 
elements. However, when IR < 0.10n, there is little difference between the algorithmic damping 



TIME FEMS FOR STRUCTURAL DYNAMICS 

PO-PO 

327 

p1-p0 

C 

Q 

P 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

4 

1 .0 

0.8 

0.6 

0.4 

0.2 

0 
.01 .1 1 10 100 1000 .O1 .1 1 10 100 1000 

P1-P1 P'-P1 

0.6 

0.4 
\ '\ 0.2 ~~~~ 0 . O 1  .1 1 10 100 1000 

P1 

P 

1 .o 
0.8 

0.6 

0.4 

0.2 

0 
.01 .1 1 10 100 1000 

P2 

~:~~~ 0.6 

0.4 

0.2 

0 
.01 .1 1 10 100 1000 

P 

" . - ~ ~  0.6 

0.4 

0.2 

0 

\r 

.01 .I 1 10 100 1000 

R/(2T) Q / ( 2 x )  

Figure 3. Spectral radii for time-discontinuous Galerkin and Galerkinfieast-squares methods. (TDG = time-discontin- 
uous Galerkin method; GLS E Galerkin/least-squares method) 

ratios of the HHT-a method and the Pl-P1, P2-Pl and P2 elements. It is important to recall 
that, unlike the HHT-a algorithm, P1-P1, P2-Pl and P2 achieve asymptotic annihilation of high 
frequency response. 

Relative frequency error in the low frequency domain is shown in Figure 5 for the time- 
discontinuous Galerkin, Galerkinpeast-squares, trapezoidal rule, HHT-a and Houbolt al- 
gorithms. D a h l q u i ~ t ~ ~  proved that, for unconditionally stable linear multistep methods, the 
trapezoidal rule exhibits the smallest frequency error; thus frequency errors for the HHT-a and 
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Figure 4. Algorithmic damping ratios for time finite element methods. (Top: time-discontinuous Galerkin method; 
Bottom: Galerkinpeast-squares method) 

Houbolt algorithms are greater than that of the trapezoidal rule. Time-discontinuous Galerkin 
and GalerkinJeast-squares formulations do not result in linear multistep algorithms and thus can 
generate unconditionally stable algorithms which have less numerical dispersion than the 
trapezoidal rule. The results in Figure 5 demonstrate the superior numerical dispersion character- 
istics of the P1-P1, P2-Pl and P 2  elements. While the frequency errors of PO-PO, PI-PO and P1 
are comparable to those of the semidiscrete formulations, these time finite element methods are 
not effective time integration schemes owing to poor accuracy and algorithmic damping charac- 
teristics. 
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Figure 5. Relative frequency errors for time finite element methods. (Top: time-discontinuous Galerkin method; Bottom: 
Galerkinfleast-squares method) 

6. CONCLUSIONS 
A new time finite element formulation of structural dynamics was presented. The methods are 
based upon using the time-discontinuous Galerkin method; stabilizing terms having least-squares 
form are included. Stability and convergence of single-field and two-field formulations were 
proved. Finite difference analyses of the time finite element methods were performed using 
various temporal interpolations; the results show the methods possess advantages over com- 
monly used structural dynamics algorithms. In particular, the GalerkinAeast-squares formula- 
tions achieve high-order accuracy and asymptotically annihilate undesirable high frequency 
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response without introducing excessive algorithmic damping in the low frequency regime. In 
addition, the proposed methods exhibit little numerical dispersion. 

Time-discontinuous Galerkin methods typically lead to systems of coupled equations which 
are larger than those emanating from standard semidiscrete methods. To approach economic 
competitiveness with existing algorithms, predictor-multicorrector, explicit or implicit-explicit 
algorithms need to be developed; the challenge is to develop a more economical algorithm that 
inherits the desirable accuracy and stability properties of the underlying fully coupled methods. 
This is the subject of a subsequent publication. 
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