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SUMMARY 
The orthogonal metal cutting process for a controlled contact tool is simulated using a limit analysis 
theorem. The basic principles are stated in the form of a primal optimization problem with an objective 
function subjected to constraints of the equilibrium equation, its static boundary conditions and a 
constitutive inequality. An Eulerian reference co-ordinate is used to describe the steady state motion of the 
workpiece relative to the tool. Based on a duality theorem, a dual functional bounds the objective functional 
of the primal problem from above by a sharp inequality. The dual formulation seeks the least upper bound 
and thus recovers the maximum of the primal functional theoretically. A finite element approximation of the 
continuous variables in the dual problem reduces it to a convex programming. Since the original dual 
problem admits discontinuous solutions in the form of bounded variation functions, care must be taken in 
the finite element approximation to account for such a possibility. This is accomplished by a combined 
smoothing and successive approximation algorithm. Convergence is robust from any initial iterate. Results 
are obtained for a wide range of control parameters including cutting depth, rake angle, rake length and 
friction. The converged solutions provide information on cutting force, chip thickness, chip stream angle and 
shear angle which agree well both in values and trend with the published data. But the available data 
represent only a small subset in the range of parameters exhaustively investigated in this paper. 

INTRODUCTION 

Manufacturing technology has been a driving force behind modern economies since the In- 
dustrial Revolution (1770). Metal forming processes, in particular, have created machinery and 
structures that permeate almost every aspect of human life today. Although manufacturing 
techniques have become more sophisticated, many processes and tool designs are still based on 
experience and intuition. Advances in computer and material sciences have greatly enhanced our 
ability to develop predictive capability and to achieve the goal of optimization for a wide variety 
of applications. 

We consider in this paper the process of orthogonal cutting that removes metal to create high 
quality, high precision surface shapes. This deceptively simple process actually involves complex 
phenomena crossing the fields of metallurgy, tribology, elasticity, plasticity, heat transfer and 
lubrication. We shall isolate the primary parameters and focus only on the effects of plasticity, 
friction and the geometric parameters. 
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Our goal is to derive a computational model that accurately predicts deformations, stresses, 
plastic strain distribution in the workpiece and the load on the tool under parameter variations 
including the cutting depth, cutting angle, degree of lubrication and material parameters of the 
workpiece. The model and the computer software must be efficient enough so that a com- 
putational project should consume much less effort and cost than an experimental test procedure. 
In fact, the software should be so efficient that a wide range of parameter variations can be 
examined to discover unexpected or less obvious optimal cutting conditions. The trend of the 
predicted results many lead to new designs of the process and tool machines. A survery of the 
literature reveals some limited successes and some shortcomings of the available methods that 
simulate this complex metal cutting process. Our approach adlds new capability to this ongoing 
effort. 

One of the numerical methods for simulating manufacturing processes is the finite element 
method based on the incremental plasticity theory. For metal cutting problems, an incremental 
analysis must be carried to the limit load condition so that the workpiece begins to flow steadily 
under a constant loading condition. In a cutting process, the workpiece moves at a constant speed 
relative to the tool and the steady state flow is maintained. To reach this condition, the 
incremental analysis computes a large amount of intermediate data which are of less concern to 
the process. Yet near the limit where the information is critical, the quality of an incremental 
solution deteriorates owing to numerical instability and ill-conditioning. Even although these 
difficulties may be remedied by ad hoc schemes, the intrinsic: wastefulness of an incremental 
method remains and adds to computing cost. The questions of accuracy, uniqueness and 
continuity of solutions remain open in the analysis of incremental methods. 

Limit analysis of plasticity23 approaches the correct limit load and the associated plastic flow 
directly. It is derived from a certain extremum principle. Its success has already been demon- 
strated by the slipline method.12 The only drawback lies in the graphic nature of the method and 
its inability to handle complex geometry and boundary conditions. We are now taking fundamental 
steps to remove these disadvantages. 

The extremum principle, which requires the stress field to satisfy the equilibrium equation, the 
static boundary conditions and the material strength limit and which permits certain stress 
discontinuity in the deforming body, leads to the lower bound thieorem.12 It predicts a load either 
lower or equal to the exact limit load that maintains the steady motion. An approximate lower 
bound solution underestimates the limit load, so it is pertinent as a guide to safe designs of 
structures. On the other hand, the extremum principle, which requires a geometrically self- 
consistent flow field and permits tangential velocity discontinuity in the interior and slipping 
along boundaries, leads to the upper bound theorem.’ * An approximate upper bound solution 
overestimates the limit load. It may serve as a guide for designing a manufacturing machine with 
capacity to spare. A duality theorem equates the least upper bound to the greatest lower bound. 
We shall present a method that, in theory, converges iteratively to the least upper bound, the 
exact limit solution. In practice, we terminate computation when an iterate is deemed close 
enough to the limit solution. 

Applications of duality theorems, the finite element method and an iterative algorithm to limit 
analysis have been presented for solutions of beam, frame, plate, torsion and flow  problem^.^^^-^ 
Analysis of the existence of a solution of the continuum problem can be found in current topics in 
functional analysis32 and calculus of  variation^.^ Convergence of an algorithm which we use for 
the discrete approximation of the original problem is given in Reference 3. 

We now extend this methodology to the class of orthogonal metal cutting problems. Although 
it is a sub-class of the plane strain problems, its complicated boundary conditions and a large and 
distinctive set of parameters merit an independent study. 
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ORTHOGONAL CUTTING PROCESS 

An orthogonal metal cutting process for a controlled contact tool is depicted in Figure 1 with 
labels illustrating the nomenclatures used in this paper. An Eulerian reference co-ordinate is used 
to describe the steady state motion of the workpiece relative to a stationary cutting tool. This 
cutting method is a common and time honoured metal removal process which produces finished 
surfaces with high quality. Its general use in all industries may give an impression that it is a 
perfected art. Yet, tool failure and product quality deterioration account for frequent and costly 
downtime for all cutting machines. Optimization of the.process and accurate estimate of tool life 
become indispensible in this age of automation. 

The experience based on statistical approach to improve the cutting process had been 
exhausted. A fundamental approach to develop a general predictive cutting theory was desired. 
Many simple cutting models were established in the mid 19th century. It was not until 1940 that 
Merchant" developed the earliest steady state orthogonal cutting model. He used a minimum 
energy hypothesis and found the relations between the shear angle and the rake angle. Applying 
the slipline theory, Lee and Shaffer17 proposed another steady state orthogonal cutting model. By 
an assumed slipline field in the workpiece adjacent to the cutter, cutting force, chip thickness, chip 
deformation, shear angle and built-up edge were predicted under different friction conditions and 
rake angles. Shawn et aLZ8 investigated the relations between shear angle and other operating 
variables. Creveling et aL8 compared several published theories with experimental data and found 
them inconclusive with certain agreements and discrepancies. 

Early studies brought certain remarkable conclusions. The shear angle was found to play an 
important role in the cutting process. Kece~ioglce'~ analysed the effects of strain rate. Kobayashi 
and Thomsen16" tested some commonly used metals and observed that the average shearing 
stress on the shear plane remained constant and was independent of normal stress and cutting 
speed (or strain rate). Eggleston et ~ 1 . l ~  investigated the shear angle relations for some materials 
and concluded that the relation between the shear angle and the rake angle was approximately 
linear. Usui and T a k e ~ a m a ~ ~  measured the stress distributions on the rake face by a photoelastic 
technique. They found that frictional stress was uniformly distributed over a wide range of 
tool-chip contact length. 

Kobayashi and Thomsen' 6b reviewed various cutting theories then concluded that the actual 
ratio of cutting depth to chip thickness would never be greater than unity. Oxley" added strain- 
hardening to the slipline method and studied the influence of friction and rake angle on the shear 
zone. Meantime, Cook et aL7 studied the kinematics of chip curl and the influence of built-up 
edge. Armarego' claimed that experimental shear angles were not in agreement with that 

Figure 1. Schematic representation of the orthogonal cutting for a controlled contact tool 
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predicted by the existing theories. A modified model of Cumming et aL9 improved certain 
correlation between analytical and experimental results. Rowe and Spick26 proposed another 
model and obtained more accurate shear angles. Bailey and Boothroyd' reviewed some previous 
work and found that the mean friction stress and the mean normal stress at the tool-chip interface 
vary independently. Sweeney30 offered a model to explain the relation between cutting force and 
shear plane. Even a brief survey of the literature will reveal the complexity of the cutting process 
and continuing efforts to improve inadequate aspects of the current theories. 

A more extensive survey was made recently by T ~ a n . ~ ~  We shall compare results with the 
established data but our study will focus on four control parameters, namely friction, tool 
geometry, rake angle and cutting depth. One parameter in the tool geometry is the tool-chip 
contact length. DeLeeuw'O and Klop~ tock '~  first explored the advantages of controlled contact 
length. Takeyama and Usui3 reported that the tool-chip contact area is a key factor and it affects 
cutting performance and tool life. Rake angle is another parameter which plays a significant role. 
Chao and Trigger6 made extensive observations concerning the influence of these parameters in 
an experimental study. Kobayashi and Shabaik' studied the effects of cutting depth which they 
related to the stability of the process. We shall re-examine all their conclusions against our own. 
The goal is to find combinations of these parameters that achieve saving in power consumption, 
increase in tool life, correct lubrication method (determine tolerable friction condition) and 
improved surface quality (operate the process away from boundary of stability). The results 
presented in this paper should point out the window of optimization for this complicated metal 
cutting process. 

We make some basic assumptions to derive a simple yet realistic model. A perfectly plastic 
workpiece (which may harden) in the sense of asymptotic yield behaviour is assumed. The von 
Mises yield criterion is used so we may compare results with others. An elastic law is not needed 
in the formulation, although the elastic deformation is not explicitly excluded. Continuous chip 
formation is assumed since the workpiece is modelled to be infinitely ductile. The effects of strain 
rate and temperature are not considered. The edge of the cutter is perpendicular to the direction 
of motion (definition of orthogonal cutting). The cutting depth is assumed small compared with 
the width of the cutting edge so the deformation is mainly in a plane strain mode. Since a 
controlled contact tool is used, a full contact of chip with the rake surface is assumed and the 
constant shear stress factor is adopted as a model of interface friction. The tool is assumed rigid. 
The tool tip has zero radius of curvature and the tool flank clearance angle is large enough such 
that there is no contact between the workpiece and the flank surface. 

PRIMAL FORMULATION 

The plane strain model shown in Figure 1 consists a workpiece of thickness H moving toward a 
stationary tool at a constant speed while a chip thickness t ,  is being cut away. A layer of large 
shear deformation occurs along the plane AB (the shear plane) inclined at an angle 4 (shear angle) 
to the horizontal line. The width of the chip is assumed to be large as compared with the cutting 
depth t ,  and the chip thickness t,. The plane strain condition made the model two dimensional. 
We use a controlled contact tool which limits the actual contact length to the artificially 
controlled contact length 1. 

Chip flow direction is represented by a variable q called chip stream angle. The chip, after 
passing the tool, moves as a rigid body and is no longer of concern to the present study. In the 
actual process, the chip stream produces a curl downstream. The chip stream angle q together 
with the chip thickness t 2  suffice to describe the chip geometry and to determine either forward or 
backward downstream curl. The shear angle 4 is assumed to depend on the chip geometry as 
shown in Figure 1. For a given cutting depth t , ,  chip thickness t,, rake length 1, chip stream angle 
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r j  and rake angle a, the shear angle 4 is uniquely determined by the geometrical equation 

t ,  cosy 
lsin(rj - a )  + t ,  - t,sinq 

t an4  = . 

When the chip stream angle y is equal to the rake angle u, the above equation reduces to tan4 
= t ,  cos a,/( t ,  - t ,  sin a), which is a special case of (1) used by many researchers. For most controlled 
contact tools, the chip stream angle is larger than or equal to the rake angle. In some cases, the 
controlled contact length may be greater than the actual contact length such that the chip curls 
backwards before it reaches the end of the rake surface (point E in Figure 1). The model defined in 
Figure 1 will be used in our mathematical formulations. 

An Eulerian co-ordinate system is used for the steady state plastic flow described in the model. 
Under the plane strain assumption, all variables are functions of (x, y) ,  the co-ordinates in a cross- 
sectional plane of the flow. The non-trivial equilibrium equations in the absence of body force can be 
written in matrix notation 

where D is the domain of the model which is chosen to be large enough to include all plastically 
deforming regions in the flow, outside which the flow is in rigid body motion, where V .  is the two 
dimensional divergence operator and o E RZ ' (0) is the matrix function of stress distribution, 

V . a ( x , y )  = 0 ( x , Y ) E D  (2)  

The component azz is also a function of (x, y )  and is equal to *(axx + a,,) under the plane strain 
condition. 

The static boundary conditions consist of the prescribed traction on the workpiece exerted by the 
ram, the friction force exerted by the tool and the traction free boundary condition such that 

o * n = f  - ,zs on aD, (FR (4) 

where aD, is part of the boundary of D on which the above mentioned static boundary conditions are 
applied; n is the unit outward normal vector on aD,; F ,  denotes the total horizontal cutting force 
exerted by the ram and z, is the frictional shear stress on the tool-strip interface. The stress free 
boundary condition is implied in (4). The stress distributions that satisfy (2) and (4) are called statically 
admissible. 

We assume that the workpiece has an asymptotic yield behaviour that follows the von Mises yield 
criterion expressed by 

where 11 a \ I v  denotes the von Mises yield function in the form of a ~eminorm'~' on the stress matrix 
and k is the asymptotic yield stress, a material constant. The equation (5) defines those stress states 
which are constitutively admissible. 

In the lower bound theorem, an admissible stress state is both statically and constitutively 
admissible. An extremum of such states which maximizes F ,  gives the exact limit load. The 
constrained maximization problem, 

llallv G 2k (5 )  

maximize Fh( a) 

subject to Vets = 0 in D 

o-n = f on dD, 

11 a [ I v  d 2k in D 
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is the primal (natural) formulation for the described model problem with controlled contact tool. The 
problem (6) is also called the lower bound formulation. 

The primal formulation can be discretized first by a finite elemelnt method36 and then solved by a 
method of non-linear programming.20 The extremum of the prob1e:m is unique but the corresponding 
stress distribution may or may not be. There are well-known examples in limit analysis where limit 
solutions in terms of stress distributions and velocity fields are not unique but the limit load is always 
unique. We need to bring in the velocity fields through the dual formulation. 

KINEMATIC BOUNDARY CONDITIONS AND DUAL FORMULATION 

Using the principle of virtual work, the equilibrium equation (2) can be rewritten in a weak form 

where u = (u(x, y ) ,  u(x, y)) is an arbitrary vector function in R21(D) which satisfies the prescribed 
kinematic boundary conditions on a certain boundary dD, of D, K is the set of all kinematically 
admissible funcfions which satisfy the kinematic boundary conditions and the incompressibility 
condition implied by the constitutive model. 

Integrating by parts using the divergence theorem, we may rewrite equation (7) in the form 
,. ,- 

where n is a unit outward normal vector on the boundary of D, the :symbol : denotes the inner product 
operator between two matrices and Vu is the velocity gradient in the form of a 2 x 2 matrix function 
defined in D. 

The line integral in (8) covers the enitre boundary which shall be decomposed into six segments 
according to Figure 1, such that 

6 

aD = (J aD, (9) 
i =  1 

where a D ,  (line segment JK) is the ram-workpiece contact surface with velocity (u, u )  = (ur, 0) 
(u, being the ram velocity); dD, (segment EB) is the chiptool contact surface with velocity boundary 
condition (un, u,) = (0, us) (us remains unknown); LID3 = KAC u DE u BG is the union of all traction 
free boundaries; aD, (segment CD) is the chip-top surface with velocity (u", ut) = (uc, 0) (u, being the 
unknown chip velocity); dD,  (segment GI) is the workpiece outlet boundary, which is also traction 
free but has a velocity (u, u )  = (ur, 0) since the part of the D below the tool moves mainly as a rigid 
body; d D ,  (segment IJ) is the bottom surface of the workpiece where the velocity boundary condition 
fits also the rigid body motion, (u, u )  = (ur, 0). If we treat some of the boundary velocities as 
unknowns, there is no contradiction in using them as kinematic boundary conditions. 

The line integration in (8) may be carried out piecewise in each of the segments. Non-zero 
contributions will come only from the first two segments. They are 

In the second integral, the constant friction model z, = mk, 0 d m < 1 is used where m is the friction 
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factor representing the lubrication condition, with rn = 0 for perfect lubrication and 
rn = 1 for sticking. The tangent velocity u,(s) of the chip along the rake surface remains unknown and 
becomes a part of the minimizer in the dual formulation. 

The second integral in (8) can be simplified by the use of the incompressibility condition and a 
certain split on stress and velocity gradient matrices. The stress matrix can be split into hydrostatic 
and deviatoric parts and the velocity gradient matrix can be split into strain rate and spin rate such 
that 

a = omI + s 
V u = & + o  

where a, is the hydrostatic stress component, I is the 2 x 2 identity matrix, S is the deviatoric stress 
matrix, E is the strain rate matrix and o is the spin rate matrix. 

Using the incompressibility condition, I : E = 0, the property of skew symmetry of o, a : o = 0 and 
the matrix splitting above, we have the identity 

a : V u  = S:& (1 1) 

Since the von Mises yield criterion is invariant to hydrostatic stress, 11 a \ I y  = 11 S 11”. The generalized 
Holder ineq~al i ty ,~~‘  when applied to ( 1  l), yields 

la:vul = IS:&( ~ ~ ‘ ~ ~ v ~ ~ E ~ ~ A  2kl lE / lA  (12) 

where I I E J J ~  = $6 is the dual von Mises norm3’‘ applied to the strain rate matrix. 
Substituting (10) and ( 1 2 )  into (8) and rearranging terms, we obtain the following inequality: 

We have established Fh(u) as an upper bound functional to the original functional Fh(o) to be 
maximized in (6). Since the inequality is sharp, the least upper bound recovers the maximum of F,. 
Since Fi is a function of u(x, y )  only, we seek a kinematically admissible u E K which minimizes F, and 
leads to the duality theorem, 

- 
min F,(u) = F t  = max Fh(a) 

where F t  is the limit cutting load to be delivered by the ram and L denotes the set of all functions 
o(x, y )  which are statically and constitutively admissible. 

Since we have used a strain rate independent yield model, the ram velocity does not affect the 
results of the cutting process. We may normalize the ram velocity by letting u,H = 1 .  The dual 
problem may now stated in the form 

U E K  U € L  

minimize F,(u) 
r ri 

subject to F h  = 2k J IlellAdA + mkJ lu,(ds 
D 0 

u,H = 1 

- + - = o  

kinematic boundary conditions 

au au 

ax ay 
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The problem (14) can be written in terms of velocity components explicitly, and the upper bound 
functional, when divided by the material constant k, can be made dimensionless. This can be easily 
accomplished by replacing the functional in (14) with 

fh = jD ax ay / m . ( ” + Z u ) 2 d A  ay ax 
-t rn j: !us/ ds 

where f h  = F,/k is the normalized upper bound functional. 
Sometimes it is convenient to write the dual formulation in terrns of a stream function instead of 

velocity components. The stream function $(x, y) which satisfies the incompressibility condition 
automatically is defined by 

In a complete analysis of the cutting process, both the velocity and the stream function need to be 
computed; we choose the velocity formulation (14) and compute the stream function afterwards using 
(1 5). 

FINITE ELEMENTS AND NUMERICAL ALGORITHM 

A finite element method is used to approximate the dual formulation. We chose the nine-node 
Lagrangian isoparametric quadrilateral element to discretize the velocity function in terms of a 
set of interpolation functions. This element has been demonstrated to give accurate results in 
many finite element approaches to flow problems.36 One of the characteristics of this element is 
that the sides of this element are allowed to fit curved boundaries more easily. This has an 
advantage in describing the chip portion of the domain. On the other hand, the velocities across 
elemental boundaries are assumed continuous. As a result, a solution with a discontinuous 
velocity field, as it may well be in cutting problems, can not be captured exactly by this element, 
but a high gradient at the velocity discontinuity will be obtained instead. The detailed derivation 
of the algebraic approximation of (14) is contained in Reference 33. We shall present the finite 
dimensional minimization problem, which approximates the dual formulation (14), after a slight 
notational fix. 

To avoid proliferation of notations, we denote the upper bound functional in a finite 
dimensional space with the same symbol, fh, except that it is now a function (instead of a 
functional) of a vector U which is the finite dimensional approximation of u(x, y). Using a penalty 
parameter ,f?, we may bring the incompressibility condition into the upper bound function such 
that 

F, , (U)  = U ‘ K , U  + mU’K,U + B U ’ K 3 U  
(16) 

= U‘KU 

where K , ,  K 2  and K ,  are the global stiffness matrices which arise from the contributions of 
plastic deformation in D, the friction boundary condition along a l l2  and the incompressibility 
condition respectively; and where K = K ,  + mK, + P K ,  is the combined global stiffness matrix. 
The matrix K (  U ,  m, ,f?) also contains other geometric and material parameters implicitly. Like the 
stiffness matrices derived from incremental plasticity theory, 1Y is symmetric and banded. It 
remains positive definite or semidefinite under limit loading conditions. This last property can not 
be said to hold for a stiffness matrix derived from the incremental theory. 

The finite dimensional approximation of (14) is a non-linear optimization problem which is 
solved by a sequence of quadratic programming. K is regarded as a constant matrix at each 
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iterative step in the sequence. It is evaluated using the known vector U from the previous step. 
The initial U is, of course, a guess. The quadratic programming problem at the nth step has the 
form 

minimize F h  ( V ,  - 
subject to Fh(Un) = U',K, ,_ ,U,  + U',B, - ,  

u,H = 1 

n = l , 2 ,  . . .  
in which the kinematic boundary conditions are absorbed into the constant matrix K and the 
constant vector B. The second constraint can be satisfied by either fixing u, and scaling H ,  or by 
fixing H and scaling u,. Once u, is fixed, other components of U are scaled relative to it. 

Finally, we need a stopping criterion for the sequence SO it terminates in a finite number of steps 
with an acceptable solution. This practical convergence criterion is determined by a compromise 
of computing cost, accuracy requirement, ease of implementation and the law of diminishing 
return. We define two error measures 

- 1  

II un- u n - 1  IIm IF, - Fir11 E ,  = 7 E ,  = I 

l lun-1 Ilm IF,- 1 I 
and set the terminating criterion as E ,  < This criterion produced highly 
accurate solutions on an Apollo class microcomputer with an efficiency of one hour run time or 
less for each cutting condition. Generally, the time required for each case is much shorter. An 
approximate solution here includes the limit load, cutting force components, chip thickness, chip 
stream angle, chip ratio, velocity, stream function and plastic strain rate distribution. A given set 
of cutting conditions consists of a cutting depth, a rake length, rake angle and a friction factor. 
The extensive results for wide range parametric variations as well as posterior analysis and 
comparison will be presented in the next section. 

A question should be asked in connection with any scientific software development. Does the 
program converge for all cases and with what initial guess? The algorithm was first developed by 
Liu and YangIs and subsequently applied to different problems in limit analysis. The algorithm 
converged every time with arbitrary and even deliberately constructed adverse initial iterates. 
This 100 per cent success rate prompted Yang and his co-worker to launch a theoretical study on 
convergence. They found that the blessing lies in a well known theorem in convex analysis.25 The 
details of the algorithm and some recent refinements can be found in Reference 3. 

and E, < 

RESULTS AND ANALYSIS 

The material parameter k in the von Mises yield criterion appears homogeneously in the problem 
and is eliminated by normalizing the cutting forces with it. Eight other parameters, not all 
independent, define the cutting condition and response. They are: cutting depth t , ,  chip thickness 
t,, shear angle Cp, friction factor rn, rake angle a, rake length 1, stream angle 9 and horizontal 
cutting force F,, as shown in Figure 1. For a given cutting condition, the cutting depth t , ,  rake 
angle a, rake length 1 and friction factor rn are given. These are called the control parameters. The 
other four are part of the solution to be computed by the software. But the approximation by the 
finite element method requires the boundaries of the domain including the chip geometry be 
known a priori, but it is not. The remedy we provide treats the unknown parameters in chip 
geometry as the variables to be included in the overall solution procedure. 
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The boundary of the domain depends on five parameters, t ,  , 1  ,, LX, u] and 1. The upper bound of 
F ,  is a function of the other seven parameters (implicit) and the velocity vector U as the relation 
in (17) suggests. The shear angle 4 is given in equation (1) in terms of t , ,  t,, a, u] and 1. When the 
values of the four control parameters are given, we need only the values oft ,  and u] to start the 
computation. They are given estimated initial values and then updated iteratively until a 
minimum value of fh is reached. The converged values of t,, u] and 4 corresponding to the 
minimum F, finalize the chip geometry for a given cutting condition. In addition to t, and y ~ ,  the 
velocity vector U is also initially assumed and updated in the iterations. We shall change the four 
control parameters sequentially in small steps so that the converged values to t , ,  u] and U in the 
previous case of simulation can be used as the initial estimate lo start the next simulation. This 
method accelerates the convergence of the subsequent cases and greatly increases the efficiency of 
the parametric computation. The auxiliary variables like stream lines, strain rate distribution, 
reaction forces on the tool and the built-up edge are computied posteriorly after a converged 
solution is obtained. 

Cutting machines with a controlled contact tool have been iin use for a long time and certain 
practical information as rules of thumb is available. The tool-chip contact area is the source of 
friction drag; thus the contact length 1 is a major factor which affects the chip deformation and 
cutting forces. A cutting condition, as discussed earlier, is defined by four parameters t ,  , 1, a and 
m. Among them, a and m are independently assigned. Since t, and 1 always appear in their ratio in 
the model problem, the ratio, t l / l ,  defined as a new parameter., facilitates some convenience. In 
fact, both t l / l  and its reciprocal, l / t l ,  have been used in the l i t c r a t~ re . "*~~  In this study, t l / l  is 
chosen as a parameter. Hence, a cutting condition is controlled b y  three parameters t,/l, a and m. 

A grid of the finite element model is shown in Figure 2 with 170 elements and 754 nodes. A finer 
mesh is constructed near the tool tip where the highest strain rates are expected. The mesh 
becomes sparser away from the tool tip as the motion approaches that of a rigid body in the far 
field of the workpiece. 

We shall reiterate here an implicit assumption. The controlled contact tools behave just like 
natural contact tools for small values of t l / l .  Therefore the choice of t l / l  should be large enough 
to make sure that the chip will be fully in contact with the tool. 'Three cutting depths, (O.lH, 0.2H 
and 0 . 3 H )  and four friction factors (0.0,0.5,0.75 and 1.0) are chosen for the parametric variation 
with the rake length fixed at  0 2 H .  The rake angle varies from 101" to 80" with increments of 10". A 
total number of 96 cases is simulated. The results will be presented graphically and the influence 
of cutting depthfrake length, rake angle and friction on cutting forces, chip geometry, velocity 
field and reaction forces on the tool will be discussed. 

Figure 2. Finite element mesh ( 1  70 elements and 754 nodes) for 0: = lo", t ,  = 0.3 and m = 0.5 



ORTHOGONAL METAL CUTTING PROCESSES 375 

The cutting forces can be resolved into different orthogonal components. The resultant R 
acting on the workpiece and R on the tool are equal in magnitude but opposite in direction, so 
that R = - R’. They can be obtained by taking either the workpiece or the tool as a free body. 
The resultant force can be decomposed into normal and tangential components, N and T, with 
respect to the cutting surface as illustrated in Figure 3. It can also be resolved into horizontal and 
vertical components, F,, F, respectively. These components satisfy the following relations: 

Tsin a + N cos a = Fh 

Tcosa - Nsina = F, 

F ,  (its least upper bound) and Tare  obtained directly from simulation. Thus F ,  and N can be 
calculated from (18) to give 

1 
N = -- cos a ( F ,  - Tsin a )  

1 

F ,  = -f_ ( T -  F,sina) 

Furthermore, R can also be decomposed into components F ,  and F ,  respectively tangent and 
cos a 

Figure 3. Resolution of resultant forces in orthogonal cutting 

Figure 4. Composite cutting force circle 
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normal to the shear plane (see dashed lines in Figure 4). All the above force components can be 
put together to form a diagram in a single circle, called the composite cutting force circle, first 
suggested by Merchant.'la From Figure 4, it is evident that 

cos(u + 4) sin4 
F, = F, cos 4 - F, sin 4 = F h  - T- 

cos u cos u 

C O S ~  sin(u - 4) 
F ,  = F V c o s ~  - Fhs in4  = T- - F h -  

cos a cos a 

The various components of the resultant force R given above will be shown in the composite 
cutting force circle, which is a convenient vehicle to discuss the physical phenomena implied by 
the numerical results. 

The influence of t l / l  on cutting force components varies with friction conditions. In Figure 5, 
the force components F,, F,, T and N are plotted against t l / l  for different friction factors. For 
convenience of discussion, the friction factors in the range 0 < nz < 1 define intermediate friction 
conditions. The friction conditions corresponding to m = 0 and m = 1 are called frictionless and 
sticking conditions respectively. 

For the frictionless condition, it is shown in Figures 5(a) and 5(b) that F,,  F, and N are 
proportional to tl / l .  F, is positive and F, is negative for all cases. Two composite cutting circles of 
the same rake angle but different t l / l  ratios are sown together in Figure 6(a). It is evident that zero 
friction force T requires the coincidence of N and R. It also follows that R will always be 
perpendicular to the rake surface. The magnitude of N is proportional to t l / l  as a computed 
result. By rotating the c1 angle in Figure 6(a), the cutting force components for different rake 
angles are obtained. It shows that both F ,  and F ,  are proportional to N ,  so they are proportional 
to t l / l  as well. From the same figure, one realizes that F, is idways positive and F ,  is always 
negative for all rake angles between 0" and 90". 

The cutting force components for the intermediate friction range are shown in Figures 5(c)--(f) 
which are similar to Rao, Cumming and Thomsen's theoretical predictions and experimental 
 observation^.'^ The magnitudes of F ,  and N increase and F ,  decreases almost linearly as t l / l  
increases for the intermediate friction range. This is similar to the frictionless case except that T is 
now a constant. Since T is not zero, the proportionality no longer exists but the linearity is mostly 
preserved. 

Different from the frictionless case, however, F ,  is not always negative for the intermediate 
friction range. At small values of t l / l  and small rake angle, F ,  turns positive while F, remains 
positive for all cases. This change of sign of F, can be understood from the composite cutting force 
circles in which two cutting conditions of t l / l  = 0.5 and t1// = 1.5 at u = 30" are plotted in 
Figure 6(b). The force components of each case are represented by a small circle with solid lines 
and a large circle with dotted lines respectively. For both cutting conditions the tangential force 
components T and T have the same magnitude and direction since the rake length and friction 
condition are unchanged. Increase of t l / l  causes only increase of the normal component from N 
to N'. Increase of N changes the direction of the resultant R from downward to upward. 
Therefore F , ,  which is the vertical component of R, changes its sign from positive to negative. 
Figure 6(b) also indicates the trend caused by friction and depth of cut. For high friction and 
small depth of cut, the resultant force is downward because it rnust overcome the upward friction 
force. For low friction and large depth of cut the resultant force is upward because it must tear 
and lift the cut material off the workpiece. 

The non-linear relations between the force components and t 1/1  become more pronounced 
under the sticking condition as shown in Figures 5(g), (h). The rates of increase of F,, F, and N 
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Figure 6. Composite cutting force circle for different ‘cutting conditions 
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with respect to t,/l are much higher than that for other friction conditions but the increasing rates 
slow down a bit at higher t l / l .  The higher increasing rates are the result of the relatively larger 
amount of energy dissipated in friction than in plastic deformation. The plastic deformation in a 
chip is homogeneous under frictionless conditions and is linearly proportional to t J l .  The plastic 
deformation in the chip under large friction becomes quite inhomogeneous, thus resulting in non- 
linear relations for the cutting force components. 

Now we shall examine the influence of rake angle on the cutting force components. The force 
components F h ,  F,, T and N are plotted against rake angle in Figure 7 for four friction factors. 
Under non-sticking conditions m = 00,0.5 and 0.75, both F h  and N decrease from large positive 
values to small positive values and F,  decreases from a small value (positive or negative) to large 
negative values as the rake angle increases. At small rake angles, the tool behaves more like a 
bulldozer blade pushing the material, so F ,  and N are large and F,  is small and downward. At 
large rake angles, it behaves like a chisel blade tearing and lifting the material, so Fh and N are 
small but F ,  is large and upward. To minimize the cutting forces, 90" is the optimal rake angle for 
all non-sticking conditions. This theoretical result is of course impractical since it requires a tool 
of infinitesimal thickness and thus infinite strength. A practical compromise balances tool 
strength and cutting forces. 

For intermediate friction, F ,  is positive at small rake angles and negative at large rake angles. 
The direction of F ,  changes from downward to upward at a certain angle. We shall use two 
composite cutting force circles for t l / l  = 1.5, m = 0.75 at LY = 80" and 10" as shown in Figure 6(c), 
(d) to explain this phenomenon. The component F ,  is obtained by subtracting the vertical 
component of T from the vertical component of N is equation (18). Comparing the two circles, we 
realize that the vertical component of N is smaller than that of T a t  small rake angles while N is 
much larger than T. This condition is reversed at large rake angles. Therefore F ,  tends to be 
positive at small rake angles and negative at large rake angles. The critical rake angle, at which F ,  
changes its direction, is a function of m and tl/l. At this critical rake angle the mode of cutting 
changes from pushing to tearing. 

Under the sticking condition, both F h  and F,  change monotonically, but N first decreases then 
increases dramatically. A minimum value of N exists between 40" and 45". Also different from 
other friction conditions, the magnitudes of F,  and N are very large at large rake angles. 
Figures6(e) and (f) show two composite cutting force circles for the cutting conditions of t l / l  
= 1.5 at LY = 10" and 80" respectively. For the sticking condition, a larger F h  compared to other 
friction conditions is expected. On the rake surface (with fixed 1 and m), the friction force is fixed. 
As a result, the extra horizontal force F ,  can be balanced only with increased N .  At small rake 
angles, the direction normal to the rake surface almost coincides with the horizontal direction. 
Consequently, a small N is enough to balance the extra F h .  At large rake angles, the direction 
normal to the rake surface is almost vertical, therefore a larger N is needed to balance the extra 
F h .  From the non-linear trigonometric relation, a large rake angle requires a higher N to provide 
sufficient horizontal force component. Thus, very large values of N are found at large rake angles. 
F ,  is the sum of vertical components of T and N .  As N increases, F,  will increase accordingly. The 
dramatic increase of N usually causes the breaking of tools. The rake angle corresponding to 
minimum N value shown in Figure 7(h) provides an optimal cutting condition from the tool 
strength requirement viewpoint. 

The influence of friction on cutting force components can be observed in Figure 8. Since a 
constant shear friction model is assumed, T will always be proportional to m. Other force 
components Fh, F, and N are functions of m as well. As m increases, F h  increases monotonically. 
But F ,  and N increase monotonically only for small rake angle. At large rake angles, F,  increases 
and then decreases while N decreases and then increases, 
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Figures6(g)-(n), illustrate this trend. For fixed rake angle and t l / l ,  larger F h  is needed to 
overcome higher friction. So F ,  increases with rn, as indicated by the numerical results. In 
Figures 6(g)-(n), we observe that the angle between F ,  and T(a1so the angle between F ,  and N )  is 
equal to the rake angle. For small rake angles (Figures 6(g)-(j)), f he increase of F h  and T has to be 
compensated by the increase of both F ,  and N .  So, the value of F ,  increases from negative to 
positive and N increases from small value to large value, as rn increases. The angles between F ,  
and T and between F ,  and N are large for large rake angles (Figures 6(k)-(m)). But the angles 
between F ,  and N and between F h  and Tare small. However F ,  and N are perpendicular to F h  
and T respectively. Thus the increase of F ,  is compensated by the increase of T. Because the 
increasing rate of T with respect to rn is greater than that of F ,  under non-sticking conditions, the 
magnitudes of F ,  and N decrease as rn increases. Since F ,  is negative and N is positive, the value of 
F ,  increases and the value of N decreases. 

For frictions close to sticking condition and at large rake angle, the increasing rate of T with 
respect to rn is smaller than that of F,, as shown in Figure 6(n). Since F ,  and N are perpendicular 
to Fh and T respectively, very large magnitudes of F ,  and N are needed to compensate the high 
increasing rate of F,.  Consequently, F ,  decreases and N increases dramatically at sticking 
conditions and large rake angles as shown in Figures 7(e), (f). 

The influence of the ratio t l / l  on chip stream angle and chip thickness also varies with different 
friction conditions. The chip stream angle and chip thickness are plotted against t l / l  for different 
friction conditions in Figure 9. Under frictionless conditions (]Figures 9(a), (b)), the value of t l / l  
does not affect the chip stream angle and chip thickness. The chip stream angle is the same as the 
rake angle and the chip thickness is the same as the cutting depth for all such cases. The 
undeformed material transforms into the deformed chip after passing the primary shear zone. 
Thereafter, the deformed chip flows as a rigid body. Only in the frictional cases, is the chip 
thickness further increased by the friction force imparted on tlhe chip by the tool along the rake 
surface. Then the large shear deformation in the chip and the friction force cause the chip to bend 
toward the tool. The large shear deformation also produces a chip thickness which is greater than 
the cutting depth, as mentioned earlier, and was reported by Kobayashi and Thomsen.16b 

For a low friction factor ( rn  = 0.5), the chip stream angle is greater than the rake angle when 
t , / l  is large and the rake angle is small, as shown in Figure 9(c). The chip thickness is greater than 
the cutting depth for all cases. A larger t l / l  value corresponds to a larger chip ratio (cutting 
depth/chip thickness). The results shown in Figure 9(d) agree closely with that observed by Lo 
et al.19 Increased friction ( r n  = 0.75 and m = 1.0) produces more severe shear deformation. The 
results in Figures 9(e)-(h) show that the chip bends more toward the tool and this phenomenon 
occurs in a wider t l / l  range. The chip thickness also increases more than that under low friction 
conditions. 

For the sticking case shown in Figure 9(g), the chip bends away from the tool, which indicates a 
feature of backward chip curl. In such a case, the control contact length is greater than the natural 
contact length. No numerical method simulating natural contact length has, as yet, been 
presented in the literature. A prediction of the condition leading to backward curl can be made 
from the current analysis. For a complete analysis of backward curl, a modification of the 
boundary condition along the rake surface allowing the separation is still needed. 

The influence of the rake angle on the chip stream angle and the chip thickness are shown in 
Figure 10 for different friction factors rn. Similar to tl/l, the rake angle does not affect the chip 
stream angle and chip thickness under frictionless conditions (Figures 10(a), (b)). The reason has 
already been given. For low frictions, the chip bends toward the tool when the rake angle is small, 
as shown in Figure lO(c). The chip thickness is always greater than the cutting depth for all rake 
angles as shown in Figure 10(d). The chip thickness increases as the rake angle decreases. This 
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agrees with the experiments of Carroll 111 and Strenkowski," as it is obvious now that the pushing 
mode appears at small rake angle and the tearing mode appears at large rake angle. As the friction 
increases (see Figures lO(a)-(h)), this phenomenon becomes more pronounced and occurs in a 
wider rake angle range. 

The trend of friction effect on chip stream angle and chip thickness can be observed from 
Figure 11. These figures illustrate the changes of chip thickness and chip stream angle due to 
different frictions. Greater chip thickness and larger chip stream angle are produced under higher 
friction for the same cutting depth and rake angle. Since higher friction causes more plastic 
deformation, the chip distorts more severely. 

Velocity fields and the corresponding stream line diagrams for typical cutting conditions are 
shown in Figures 12 and 13. They are computed from the finite element mesh shown in Figure 2. 
The contours of effective plastic strain rate normalized with respect to its maximum value are 
shown in Figure 14. From these plots, the primary shear zones (shear plane) are visible at the 
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Figure 12. Velocity field for a = loo, t ,  = 0 3  and rn = 0.5 
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Figure 13. Streamline diagram for a = loo, t ,  = 0.3 and rn = 0.5 

14. Effective strain rate contours for a = lo", t ,  = 0.3 and rn = 0.5 
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bases of the chips for all cutting conditions while the secondary shear zones appear along the 
chiptool interface for small rake angles and intermediate frictions as well as sticking conditions. 
The maximum effective plastic strain rate decreases as the rake angle increases. The predicted 
effective plastic strain rates are similar to that presented by Stevenson and Oxley'' and Carroll 
111 and Strenkow~ki.~ The contours (Figure 14) also show the onset of a built-up edge (a 
stagnation region in the workpiece). For intermediate friction and the sticking conditions, a small 
region of low effective strain rate appears just above the cutting edge. This region seems to be a 
possible location for the formation of a built-up edge and it tends to occur at the cutting 
conditions of small rake angle, high friction and large cutting depth. 

SUMMARY AND CONCLUSIONS 

A software based on limit analysis has been developed and applied to a general class of 
orthogonal metal cutting problems. The minimization algorithm efficiently produced detailed 
results in terms of the cutting forces, chip geometry, velocity field, strain rate distribution, stream 
lines and the built-up edge for a wide range of cutting conditions. After comparing these results 
with published data obtained by other methods in limited ranges of parameters, good agreement 
has been confirmed. In a much wider range of parameters computed, the new results also point to 
the trends of the cutting process. 

The relations between the variables and the four control parameters are illustrated in the 
figures presented. The composite cutting force circle alone provides an understanding at a glance 
of the changes of cutting force components under different cutting conditions. Based on the new 
results and analysis, we infer the following relations. 

0 Relation between cutting force components and t l / l :  
1. Under frictionless conditions, the relations between F,, F,, N and t l / l  are linear. 
2. For intermediate friction conditions, relations between F,,  F,, N and tl/Z are nearly 

linear. 
3. Under sticking conditions the rates of increase of F,, F,,  N with respect to t l / l  are higher 

than those under all other friction conditions but the increasing rates slow down at higher 
values of tl / l .  

0 Relation between cutting force components and rake angle: 
1. For all friction except sticking conditions, the values of F,, F,, N decrease and the slopes 

increase monotonically as the rake angle increases. 
2. Under sticking conditions, F,,  F ,  still decrease monotonically as the rake angle increases, 

but N decreases first then increases abruptly as the rake angle increases. The slopes of the 
F,-a and N-a curves both increase, while the slope of the F,-a curve decreases as the rake 
angle increases. 

3. An optimal rake angle producing the smallest F ,  is found in the range from 40" to 45" for 
all cutting depths under the sticking conditions. 

0 Relations of chip stream angle, chip thickness and t l / l :  
1. Under frictionless conditions, the chip stream angle is the same as the rake angle and the 

chip thicknes is the same as the cutting thickness. 
2. For frictional cases, the chip bends toward the tool after passing the chiptool interface at 

high t l / l  and small rake angle, while the chip thickness is greater than the cutting depth. 
3. As the friction increases, this forward chip bending phenomenon becomes more pro- 

nounced and occurs in a wider range of the parameters. 
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For a better understanding of the metal cutting process, visualization of velocity field, strain 
rate contours, stream lines and built-up edge is most helpful. To limit the length of the paper, only 
one set of velocity field, the stream lines and the strain rate distribution is presented for a typical 
cutting condition. The strain rate contours show a dominant zone and a secondary shear zone of 
plastic deformation. A primary shear zone appears in all cutting conditions. A secondary shear 
zone appears for small rake angles and greater friction factors including sticking. A built-up edge 
tends to be established at the cutting conditions of small rake angle, high friction and large cutting 
depth. 

The computational results presented in this paper are only i1 few samples of what the software 
can deliver. The large number of parameters made it impossible to cover all cases in a technical 
paper, although we have computed the extreme and middle cases. The graphs use linear 
interpolation for all other cases. For accurate simulation of a specific cutting condition, the 
software will be made available to researchers whose goal is to optimize a particular cutting 
process. The new software presents a tool for simulating and analysing the cutting process and for 
optimizing the cutting conditions and tool-machine designs. 
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