
Math. Meth. in the Appl. Sci. 2 (1980) 327-346 
A M S  subject classification: 47A50,47A55,47A40,47A70 

Nonselfadjoint Operators in Diffraction 
and Scattering *) 

A. G .  R a m ,  Ann Arbor, MI 

Communicated by R. P. Gilbert 

Contents 

1. Introduction 
2. When do the eigenvectors of T and A form a basis of H? 
3. When do T and A have no root vectors? 
4. What can be said about the location and properties of the complex poles? 
5. How to calculate the poles of the Green function? 
Do the poles depend continuously on the boundary of the obstacle? 
Appendix 1. Losses in open resonators 
Appendix 2. An example on complex scaling 
Appendix 3. Variational principles for eigenvalues of compact nonselfadjoint operators 
Bibliographical note 
Unsolved problems 
References 

0 1 Introduction 

Consider the following problem 

(1) ( A  + k 3 u  = o inQ,  

(2) a u l a N  = f o n K  

(3) Ixl(au/alxl- iku) -, 0 as [ X I +  03, 

where $2 is an unbounded domain with a smooth closed compact surface K 
r E c2. 

If we look for a solution in the form 
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where 

If the boundary condition is of the form 

(7) u = f on r, 
then the integral equation for g takes the form 

where 

If one wishes to solve equations (8), ( 5 )  by means of expansions in root vectors, 
one must prove that the root vectors of operators A and T form a basis of 
H = L2(r).  Both operators are compact and nonselfadjoint. Apriori it is not 
clear why these operators have eigenvectors: e.g. Volterra operator has no 
eigenvectors. In applications it is more convenient to use only eigenvectors, 
because calculations with the root vectors are more complicated. This leads to the 
following question: when does a nonselfadjoint operator have no root vectors? 
Here and below we use the word root vectors meaning associated root vectors. 
The definition is: if Ag = Ag, g # 0, then g is an eigenvector; if equation 
Ahl - Ahl = g is solvable, then hl is an associated vector (or root vector); the 
set (9, hl,  . . . hs) is called a Jordan chain with the length s + 1, if (A - A)  g = 0 ,  
(A - A) h, = g, (A - A) h k  = hk- , ,  2 < k < s, vectors hl ,  . . . h, are called root 
vectors. An isolated eigenvalue A is called a normal eigenvalue if its algebraic 
multiplicity is finite and the Hilbert space H can be decomposed into the direct 
sum of subspaces H = LA i RA, where LA is the root subspace of A and RA is an 
invariant subspace for A in which (A - A 0 - l  exists. The root subspace LA is the 
linear span of all eigen and root vectors of A corresponding A. It is well known 
that A is a normal eigenvalue iff the projector P = -(2ni)-' (A - z 0 - l  dz 

is finite-dimensional [l]. If I is a normal eigenvalue of A then (A - z 0 - l  = R,  
has a simple pole at A iff the length of the Jordan chain is equal to 1. It means 
that the eigensubspace of A corresponding to A coincides with the root subspace 
of A corresponding to A. From the definition given above it follows that the pole 
1 is simple iff (A - A 0 2  f = 0 =) (A - ,lo f = 0. In physical literature there is a 
great interest in equations of type (6), (8) and in their counterparts in the 
electromagnetic wave scattering theory [2]. Engineers used the singularity and 
eigenmode expansion methods for solution of exterior boundary value problems 
[3], [4]. What they call eigenmode expansion method (EEM) is actually an old 
Picard's method for solution of selfadjoint integral equations of the first kind. 
They suppose that the operator T defined by (9) has eigenvectors. 

] z -A]=e  

(10) T h  = IJj, i = 1, 2, .-., 111 I >  IA2l > 
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has njot root vectors and the set of his eigenvectors {A} forms a Ftiesz basis of 
H = L2(r) .  We remind the reader that {A} is a Riesz basis of H (or basis 
equivalent to an orthonormal basis {hi} of H) if a bounded invertible linear 
operator B exists such that Bhj = 4. We call an operator B invertible if B-' is 
bounded and defined on H. Under such an assumption engineers solve equation 
(8) using the formula 

(11) 9 = E l;'(k)Cftfi>fi. 
j =1  

The following questions are open and of interest to mathematicians: 
1) when do the eigenvectors of T and A form a basis of H? 
2) when there do not exist root vectors of T and A? 
These questions are far from trivial. In fact for the basic equation of the theory 
of lazers 

(12) 

nothing is known about the existence and properties of its eigen functions until 
now. Fortunately the situation is much better for the operators A and Tand later 
we give some reasons for this statement. 

The singularity expansion method (SEW consists in the following. Given 
the nonstationary problem: 

1 

- 1  
1 exp{i(x - r)2)fCv)dY = M x ) ,  -1 < x  < 1 ,  

utt = Au, t 2 0, x E 52 E R3, 
(13) { au/aN = 0, on r, 

and assuming 

(14) 

we obtain: 

U(0,X) = 0, U,(O,X) = f W ,  

m 

u(x, k) = 1 exp(ikt)u(x, t )d i  
O 

A V  + k2u = -f, av/aN= o o n r ,  
(15) [(a u/alxl- iku)  = o(lxl-'). 

If G(x, y, k) is the Green function for this problem, then 

(16) 

From (14), (16) we obtain 

(17) 

For the sake of simplicity we assume thatfe  C,"(Q). The function G(x, y, k) can 
be continued analytically on the whole complex plane k. It is analytic in the 
upper half plane Im k 2 0 and meromorphic in the lower half-plane Im k < 0. 
For details see [ 5 ] ,  [6]. Suppose that 

u = 1 G(x, Y,  k)fdy. 
n 

u(x,t) = -!- 7 uexp(-ikt)dk. 
27c - m  
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A 

Then we can move down the contour of integration in (17) 

(19) u(x, t )  = --icfmv(x,k)exp(-ikt)dk, 0 < c < b. 
1 

2.1c -if--  

From this it follows that 

(20) 

where 

(21) 

u(x, t )  = exp ( - c t )  w(x, t), 0 < c c b, 

1 
w(x,t) = - 7 u(x, -ic + y)exp(-iyt)dy. 

2~ - m  

From (18) it follows that v E L2(R) and w E L2(R). Suppose that the poles kj of 
v(x, k) satisfy the inequality 

(22) 

where F(x) is a continuous positive function, 

Im kj < -F(]Re kjl) ,  

(23) F(x) > 0, F(-X) = F(x),  F(x) -.* +m ~ S X  -+ 03. 

If (18) holds in the domain 

(24) I m k  > -F()RekI),  

then by moving the contour of integration in (17) we get the asymptotic 
expansion (singularity expansion): 

(25) u(x, t) = e-ikjruj(x) + o(e-I'mkn17. 
j =1  

This leads to the following questions: 
3) What can be said about location of the poles kj? When does (18) hold? When 
does (18) hold in the domain (22)? 
4) What can be said about the properties of the poles {kj}? How to calculate these 
poles? Do these poles depend continuously on the boundary? 
5)  To what extent does the set of poles {kj}, Im kj c 0 determine the shape of the 
obstacle? 

These questions are discussed in this paper. They are of interest in 
applications and difficult from the mathematical point of view. 

All of the results concerning operators A and T can be obtained for the 
analogous integral operators in the electromagnetic wave scattering theory. In 
what follows formula (1.6) will denote formula (6) in 0 1. We use autonomous 
numeration throughout the sections. 
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0 2 When Do the Eigenvectors of T and A Form a Basis of H? 

1. Bases with Brackets. Tests for Completeness and Basisness 

Let (hj} be an orthonormal basis of H ,  ml < m2 ... a sequence of 
integers, ml -+ m as I -+ m, and let HI be the linear span of the vectors h,,, h,,+l, 
. . . h,,,,, - 1. Let {fi} be a complete minimal system in H, and FI be the linear span 
of vectors f,,. . . . fm,+, -l. By basisness we mean the property of a system of 
vectors or subspaces to form a basis of H. 

Definition 1 If a linear, bounded, invertible operator B exists such that BHl = 
FI then the system {A} is called a Riesz bask of H with brackets (notation: 
( f i )  E Rb(H)). If mj = j then {f i}  E R(W) and is called a Riesz basis of H. 

Remark 1. It is known [l], that K} E Rb(H) iff Cl If 1' < f IPJ1' < C2 I f 12, 
where: I - [is the norm in H, C2 2 Cl > 0 are constants, PI is the projector on Fl, 
f E H i s  an arbitrary element of H. Projector PI is defined by the direct decompo- 
sition H = Fl -k GI,  where GI is the union of the subspaces 4 for j # 1. 

Definition 2 Denote by QI the orthoprojector on H,. I f  C I PI - QI l2 < 03 then 

the system {fi} is called a Bari basis with brackets (notation {fi} E Bb(H)). 

Definition 3 A linear closed densely defined operator L on a Hilbert space N is 
called an operator with discrete spectrum i f f  its spectrum a (L)  consists only of 
normal eigenvalues Aj, ) A 1  I < 1A2 I < . . . IAj I < . . . , lA j  I -+ 00 as j + m. 

Remark 2. If L is a normal operator with discrete spectrum, 0 g a(L) ,  then L-' 
is compact. 

In what follows we assume for the sake of simplificity that L is a 
selfadljoint operator with a discrete spectrum {Aj} ,  0 g a(L), 

(1) Aj = c jp  + O ( j m ) ,  as j -+ 03,p > 0, c > 0 ,  p1  < p.  

Consider the operator 

(2) A = L + Q  

where! Q is a (nonselfadjoint) linear operator, 

I= 0 

m 

I =  0 

(3) IL-"Qf I < C u  I f  1 ,  v f  ~ l i ,  a < 1, D(Q)  3 D W ) .  

Since 

(4) (L + Q - ~ n - l  = {I+ (L  - A Q - ~ L ~ L - ~ Q } - ~ ( L  - n0- l  
for A g a(L)  

it is clear, that 

(5)  
It is clear that 

A ga(A) if I(L - AI)-'Lu1 < C;'. 

(6)  I(L - AI)-'Lu1< S U P I A ~  - A l - l l A j l u .  
i 
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If lIj  - I I 2 lIj  rC,q, where q > 1 is arbitrary, then (5 )  holds. Hence we have 
proved the main part of the following lemma. 

Lemma 1 Suppose that L is a selfadjoint operator with a discrete spectrum, Q is a 
linear operator, A = L + Q, and (3) holds. Then a(A) c K, where 

and a ( A )  is discrete. 
Proof .  It remains to prove the last statement of Lemma 1. The statement 
follows immediately from the compactness of ( L  - I 0 - l  and boundedness of 
the operator {I + (L - LI)-'L"L-'Q}-' in (4). 

Remark  3. Estimates of type (6) were used earlier by Kacnelson [18], 131. We 
made no use of assumption ( 1 )  so far. 

We write A E R(H)  if the root system of A{fi} E R(H). 
Theorem 1 ( [18])  Under the assumptions (1),  (3)  A E Rb(H) i fp(1 - a )  = 1 ,  and 

Remark  4. We write A E Rb(H) (Bb(H)) if the root vectors of A form a Riesz 
(Bari) basis of H with brackets. 

Remark 5 .  Actually for Theorem 1 to be true it is sufficient to use the following 
estimate instead of (1):  Lj 2 cjp (see [18]). 

Remark  6. Under some additional assumptions M. S. Agranovich proved that 
the series in root vectors of A converges rapidly (see Appendix in [3]). 

Remark  7. Completeness of the root system of a linear operator A in a Hilbert 
space H can be proved by means of the following theorems. 

Theorem 2 ( [ I ] )  If L is a selfadjoint operator on a Hilbert space H with a discrete 
spectrum, 0 a(L) ,  Q is a linear operator D(Q)  3 D(L) ,  L -' Q is compact and 
p(L-'QL-')  c m, then the system of root vectors of A = L + Q is complete 
in H. 

Remark  8. The symbolp(A) < 00 means that A is compact and Cs: c m, 

Theorem 3 ( [ l ] )  The system of root vectors of a compact dissipative operator A 
with nuclear imaginary component is complete in H iflim inf ns,,(A) = 0. 

Remark  9. A linear operator A is called dissipative if Im(AJ fl 2 0 

v f E D(A) .  A compact linear operator is called nuclear if C s,,(A) < 00. 

Theorem 4 ( [ i l l )  If A 2 0 is compact, B is dissipative and nuclear then the root 
system of A + B is complete in H. 

Theorem 5 ([43]) I f ( l ) ,  (3) holdp, < p - 1 andp(1 - a )  2 2 then A E R ( H ) .  

A E Bb(H) i fp (1  - a )  > 1.  

m 

where s,, = A,, {(A *A)l"} are the s-values of A.  1 

n-m 

0 

1 
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Example 1 ([ll]). Operator (1.9) can be split into the sum T = To + T,, where 
Tog = (4s~r,)-~gCV) dy, To > 0, and T, = T - To is nuclear and dissipative. 

The last statements is easy to verify (see 1111 for details). Thus from Theorem 4 it 
follows that the root system of operator (1.9) is complete in H = L*(r). Actually 
this system forms a Riesz basis as we shall prove later. 

r 

2. Elliptic Pseudo-differential Operators (PDO) on r 
In order to explain how to prove that the root systems of operators A 

(formula (1.6)) and T (formula (1.9)) form a Riesz basis of H we start with the 
operator T. It is clear that 

T = To + Ti 

where To, Ti are defined in Example 1. It is easy to verify that To is an elliptic 
pseudo-differential operator on Tof order - 1 and T, is a PDO of order y < - 1 
(in fact y = -3). Suppose that Ker To = (0). Then L = T,' exists, L is a 
selfadjoint operator with discrete spectrum. If Ker T = {0}, then 

(8) 
where Q = - ( I  + LT,)-'LT,L, IL-"QI < Cfor  a = 2 + y < 1 

because ord L T I L  = 2 + y < 1. Condition (1) is valid for PDO under very 
general assumptions [20]. Therefore one can apply Theorem 1 and obtain 

Proposition 1 The root system of operator T defined by formula (1.9) forms a 
Riesz basis of H = L2(r)  with brackets. 

Remark 10. It is easy to verify that ker To = (0). ker T = (0) if K' is not an 
eigenvalue of the interior Dirichlet problem. 

Remark 11. One can find e.g. in [21] how to calculate the order of an elliptic 
PDO . 
Remark 12. It is possible (and in a way more reasonable) to choose To = 0.5 
(T + T*), because in this case Ti will be of the order - 03 for real k > 0 since the 

kernel of T, is 

Consider now the operator A defined by formula (1.6). 
It is easy to verify that A is a pseudo-differential elliptic operator, and 

ordA = -1. If A0 = 0.5 (A + A * ) ,  A ,  = A - Ao, then ordAo = - 1, ordA, 
< - 1. If kerAo = (0}, and kerA = (0) one can use the arguments similar to 
ones used above and obtain the analogue of Proposition 1 for the operator A .  If 
kerAo # (0) then dim kerAo < w and kerAo C C". This statement follows 
from the apriori estimates for elliptic PDO 1211. Thus, one can add a finite 
dimerwional operator P to A ,  and subtract this operator from A, .  Since kerAo C 
C" operator P can be chosen so that ord(Ao + P) = ordAo = - 1 (ordP = 
-m), and ker(Ao + P) = (0). Hence, one can assume that ker A. = (0). If 

(To + TI)-' = ( I  + LTj)- 'L = L + Q, 

sin kr,, 

'tY 
E C" (ord T, = - 3 for complex K) . 
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kerAo = {O}then A;' exists and has a discrete spectrum. Since ordAl < ordAo 
the operator A ; 'Al is compact in H. From this argument and the formula A = 
Ao(I + A ;'A1) it follows that the root subspace N of A corresponding to I = 0 
is finite-dimensional. Therefore one cari split H into a direct sum H = N 4 M ,  
where N and M are invariant subspaces of A and kerA IM = {0}, A l M  denoting 
the restriction of A to M. Hence, one can assume that kerA = (0). This 
completes the proof of the following proposition. 

Proposition 2 The root system of operator A defined by formula (1.6) forms a 
Riesz basis of H with brackets. 

9 3 When Do T and A Have no Root Vectors? 

1. A simple sufficient condition was given in [ll]: in order that T (or A )  
has no root vectors it is sufficient that T is normal'. This condition T* T = TT* 
can be written explicitly [l l]  and it is a condition concerning the surface r. In 
[ll] is was verified that for operator T this condition is satisfied if Tis sphere. 
For linear antenna this condition is also satisfied [i l l .  Of course, this condition is 
not necessary. In a finite-dimensional Hilbert space H every linear operator A 
without root vectors is similar to a normal operator. Indeed, if A has no root 
vectors thenits eigenvectors uj} form a basis of H .  If {hi} is an orthonormal basis 
of H, Af i  = I j f i  a n d 4  = Chi, then C - ' A  Chj = Ijhj .  It means that operator 
C-'A c is normal. 

In infinite-dimensional Hilbert space H this is not true: there exist 
compact operators whose eigenvectors span H but these operators are not similar 
to a normal operator (an example is given in [24]). 

2. In [23] the following observation was formulated: the eigensubspace 
and the root subspace of a compact operator T, corresponding to the number I ,  
coincide iff 1) I is a simple pole of the resolvent ( T  - Lo-', or iff 2) (T  - no2 f 
= 0 =) ( T  - I I )  f = 0, or iff 3) the operator T - I I  does not have zeros in the 
subspace R(T - 11), where R(A)  denotes the range of A .  

9 4 What Can Be Said About the Location and Properties of the 
Complex Poles? 



Nonselfadjoint Operators in Diffraction and Scattering 335 

where N is the unit of the outer normal to r a t  the point t, and p satisfies the 
eauation 
( 5 )  / A + A / L = ~ -  aG0 

aN ' 
where: A is defined by formula (1.6). Operator A = A (k) is an entire function of 
k and A(k) is compact in H = L2(r)  for any k since Tis smooth. It is invertible 
for Im k > 0. Hence, (I  + A(k))-'  is meromorphic and is defined on the whole 
complex plane k. Since aG,,/aN for x g r is an element of H which is an entire 
function of k, one can see from (3, that /L = 2 ( 1  + A(k))-'aG,,/aN is 
meroimorphic. From this argument and formula (4) it follows that G(x, y, k) is 
meromorphic in k. 

In 0 1 we emphasized that the location and properties of the complex 
poles of G are of interest in applications. By the properties of the poles we mean 
mostly whether the poles are simple or not. 
Proposition 1 The set of the poles of G coincide with the set of the zeros of 
functions A,(k), n = 1 , 2 , 3  . . . , where &(k) are the eigenvalues of the operator 
T(k) defined by formula (1.9). 

Proof .  Let z be a pole of G ,  

+ ... . R(X>Y) 
(k - 2)' 

(6) G = 

From (4), (6),  (2) after multiplying (4) by (k - z)' and taking k = z we obtain 

Since R (x, y )  is a degenerate kernel it follows from (7) that a function f ( t )  6 0 
exists such that 

(8) Go(s, t, z)f(t)dt = 0, s E r. 
r 

It means that An(z)  = 0 for some n. 
Conversely, let equation (8) has a nontrivial solution. The function 

(9) ~ ( x )  = J Go(x, t, z ) f ( t )  d t  

is a solution of the exterior Dirichlet problem 

(10) 
and 

(1 1) 
If z is not a pole of G ,  Imz # 0, then u = 0 in Band  in D .  It means that f = 0 
according to the jump relation. This is a contradiction. If z is not a pole of G and 
Im z =: 0, then u = 0 in SZ and u # 0 in D only if z2 is an eigenvalue of the interi- 
or Dirichlet problem for the Laplace operator. But such an eigenvalue is a (real) 
pole of G(x, y, k). Again, we obtain a contradiction. This completes the proof. 

r 

(A + z2>u = o in SZ, u I r  = 0, 

u satisfies the asymptotic condition at  infinity. 
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Remark 1. It is possible to find other functions whose zeros are poles of G [12]. 
2. Not much is known about the location of the complex poles of G: 

1) It is proved in [33], I191 that the complex poles kj of G (only Dirichlet 
boundary condition was considered) satisfy the following inequality: 
(12) Imkj < a - blnIkjI, b > 0 .  

2) In [7] it was proved that a strip - E < Im k c 0, E. > 0 is free of the 
poles of the resolvent kernel of the Schrtidinger operator with a finite potential 
q(x)  E C' for the exterior Dirichlet problem. This result shows that there exists a 
function F(x) with the properties (1.23) such that the complex poles of the 
resolvent kernel of the Schrtidinger operator with q(x)  E Ck satisfy inequality 
(1 -22) for the exterior Dirichlet problem. 

3) In [19] a study of the poles kj = iaj, aj < 0 was carried out. It was 
proved that there exist infinitely many of such poles, and the number of poles 
with I aj I < Q was estimated asymptotically for Q -+ 00. 

4) The resolvent kernel of the Laplace operator of the exterior boundary 
value problem with the third boundary condition can have a pole k = 0. In this 
case the solution of the corresponding nonstationary problem for the wave 
equation does not necessarily decay as t -+ 03. An example is given in [34] where 
the problem 

(13) ut = A u  in 0 = (1x1 2 R, t 2 0 }, 
(14) ~ ( x ,  0) = 0, u~(x= 0) = f ( r ) ,  
(15) a d a r  + ~ - l u  = 0, for r  = I X ~ =  R, t 2 o 
was considered. The solution can be found in the form 

(16) u = C u,rn(r, t )  Y , ~ ( W ) ,  
n, m 

where ynm are the spherical harmonics. From the explicit formula for u,, it can 
be seen that uoo(r, t) does not decay as t -, OD iff@) 2 0 and is finite. Another 
example is given in [32]. 

5) In [22] a criterion is given for an operator function [I + A (k)]  -' to 
have only simple poles. If z is a pole of this function, I + A (k) = I + A (z )  + 
(k - z)Al + . . . then z is a simple pole iff 

(17) 
Unfortunately in order to apply this criterion in practice it is necessary to have 
such information about I + A ( z )  and A t ,  which is usually unavailable. 

H = R (I + A (2)) 4 Al ker {I + A ( z ) } .  

0 5 How to Calculate the Poles of the Green Function? Do the Poles Depend 
Continuously on the Boundary of the Obstacle? 

1. A general method for calculation the poles of Green functions in 
diffraction and scattering was given in [12], [13]. The poi& coincide with the 
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numbers kj for which I + A ( k )  is not invertible (see equation (4.5)). Let { f j }  be 
an orthonormal basis in H = L 2 ( Q  (or just a complete minimal system), 

n 

1 
(1) Pn = C C j f i -  

Substituting (1) in (4.5) and multiplying in H byf;: one obtains the system for 
unknown cj: 

n 

(2) 2 bJk)  cj = 0, bg 3 ( [ I  + A (k)]f i ,  f;:) - 
i= 1 

Here (. , .) denotes the scalar product in N. System (2) has a nontrivial solution iff 
( 3 )  det [bii(k)] = 0. 
The left-hand side of this equation is an entire function of k.  Let kg) ,  m = 1,2,  
3, . . . be its roots. In [13] the following proposition is proved. 

Propmosition 1 The limits lim k(,") = k,,, ex&t and are the poles of the Green 
n-w 

function G(x,y, k )  of the exteriorDirichletproblem. Everypole of G(x, y, k )  can 
be obtained in such a way. 

Remark 1. The same approach is valid for various boundary conditions 
(Neu~rnann and third boundary conditions included), and for the potential 
scattering by a finite potential [12]. 

Remark 2. This approach is a variant of the general projection method. 

Sketch of the proof .  First we show that k g )  -P k,,, as n -, 01. In the complex 
plane we choose a circle KR of arbitrary radius R .  Suppose that the points k, , . . . , 
k, foir which I + A ( k )  is not invertible lie inside KR and the remaining points 
k,,, lie: outside KR. Denote by E > 0 a small number, by De,R = {k:  Ik - kj 1 2 E ,  
Ik I < R }. We assume that the circles Ik - kj I < E ,  1 < j < s do not overlap. The 
operator [I + A(k)] - '  is uniformly bounded on DzR: 

Equation (2) can be written as 
(4) ll[I + A(k1l-l 11 < M, k E D ~ R ,  M = M&,R. 

(5) Pn + PnA(k)Pn = 0, 
where P,  is the projector on the span of f l ,  . . . , f,. Since P, -+ I, where -+ 

denotes strong convergence of the operators on H ,  and A ( k )  is compact, we 
conclude that 11 A ( k )  - P,A(k) 11 -, 0 as n 00. Therefore 11 I + A ( k )  - 
[I + P,A(k)] 11 + 0 as n -, 00. It means that for n sufficiently large operators 
I + P,A(k) are invertible in DzR, because I + A ( k )  is invertible in De,R. 
Therefore all roots of equation (3) for n sufficiently large lie in the union of the 
circles 

(6) Ik - kjl Q E, Ikl Q 
Since E > 0 is arbitrarily small, this means that uniformly in the domain I k I < R 
the limits exist: 
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(7) lim k("' J = kj . 

Conversely, let kja I kj I < R be an arbitrary pole of G(x,y, k) .  Then operator 
Z + A (kj)  is not invertible. Suppose that in the circle I kj - k I < E there are no 
numbers k g )  and no points ki for i # j .  Then ll[Z + A (k)] -' 11 QM for Ik - kj I = 
E and for n sufficiently large I[Z + PnA (k)]  -' 1 < M, . Since there are no numbers 
k z )  inside the circles Ik - kj I < E ,  the operator I + P,A(k)  is invertible for Ik - 
kj I Q E and [I + P,A (k)] -' is an analytic operator function for I k - kj I Q E .  
From the maximum modulus principle we obtain a uniform (with respect to n )  
estimate ll[I + P,,A(k)]-' 11 ,< M, for I k - kj I Q E.  But from this estimate we 
conclude that the operator [Z + A(k)]- '  exists for 1 k - kj I Q E ,  which is a 
contradiction. This completes the proof. 

Remark 3. The method gives a uniform approximation to the complex poles in 
any compact domain of the complex plane k. 

2. In this section we show that in any compact domain of the complex 
plane the complex poles depend continuously on the boundary in the following 
sense. Consider a parametrized equation of the boundary 

n-rw 

(8) Xj = xj(t1, f 2 ) ,  1 < j  G 3, 0 < t,, t2  < 1 

where xi E C 2 .  
Assume that a boundary re obeys the following equation 

(9) x ~ ( E )  = xj(t19 t 2 )  + EYj(t1, f 2 ) ,  1 G i ,< 3 - 
Where y j  E C2. Let G(G3 be the Green function of the exterior Dirichlet problem 
in Q, 8Q = r(Q, aQ, = r3. Let k,(k,(e)) be the poles of G(G&). 

Proposition 2 Zf E + 0 then kj(E) -+ kj uniformly for I kj I < R, where R > 0 is an 
arbitrary large fuced number. 

P r o o f .  Denote by A = {0 Q t,, t2 Q l}. Then kj, lkjl Q R are the points of the 
complex plane k at which the operator Z + A (k) defined by formula (4.5) is not 
invertible. Operator Z + A(k, E )  is not invertible at the points kj(&).  Here the 
operator A (k, E )  is the counterpart of A (k) for re. Both operators can be written 
in the form 

where J(t ,  E )  dt, dt2 is the element d t  of the area of re; for E = 0 we obtain the 
operator A (k) .  Since xj, yj E C2 the function J(t ,  E )  is continuous (actually J(t, E )  

E C') 
(11) limJ(t, E )  = J ( t )  as E + 0. 

Thus, 

(12) llA(k, E )  - A ( k )  I [+ 0 as E + 0, Ikl Q R. 
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Now we can use the arguments given in the proof of Proposition 1. The role of n 
is played by E .  Consider the union K, of the circles Ik - kj I < 6, where 6 > 0 is 
an arbitrary small fixed number, I kj I < R, 1 < j < s and the circles do not 
overlap. By DR.6 we denote KR\Kd, KR = {k: I k I < R } .  

In DR, operator I + A ( k )  is invertible. Because of condition (12) for E 
sufficiently small the operator I + A (k, E )  is also invertible in DR, ,. This means 
that kj(&) E K,  for an E sufficiently small. Since 6 > 0 is arbitrarily small the 
proof of Proposition 2 is complete. 

Remark 4. It is possible to estimate kj(&) - kj. In a general setting this type of 
perturbation theory was studied in [40], [41]. 

Appendix 1. Losses in Open Resonators [14] 

Diffraction losses for the n-th mode in an open confocal resonators can 
be calculated by the formula 

(1) a,, = 1 - IAJZ, n = 0,1,2 ...) 
where A, are the eigenvalues of the following operator 

(2) A f =  A f ,  Af = -jexp{-ib(x,u)}f(u)du, 

and S c R2 is a central-symmetric domain, b > 0. It is easy verify that A is 
normal. Thus I A,, I = s,, where s,, = A, {(A *A)”2} are the s-numbers of A .  From 
the result, given in [36] it follows, that 

b 
2 x  s 

(3) sn(Si )  < sn (s2) if S1 c S2 - 
From this we obtain the following inequalities 

(4) 
where: a,,(anj) are the losses for the mirrors S,(S;), S, 3 S 3 S;. In [14] the 
following formula was also obtained: 

a,, < a,, < a,,;, n = 0, 1, 2, .. ., 

where: L, is a n-dimensional subspace of H = L2(S) .  The following conjecture 
was discussed in [14]: among all central-symmetric mirrors S with a fixed area IS1 
the circle has minimal diffraction losses. 

Appendix 2. An Example on Complex Scaling 

In connection with spectral properties of the Schrodinger operator 
recently the complex scaling technique has attracted much attention [16]. The 
main idea is to consider solutions of the Schrodinger equation for complex values 
of r = 1x1. 
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This idea was used by the author as early as 1963 in order to prove the 
absense of positive discrete spectrum of the Laplace operator of the Dirichlet 
problem in some infinite domains with infinite boundaries [I 51. The arguments 
given in [15] are not elementary. Here we use the same idea as in [15] and give a 
very simple proof of the following (known) proposition. 

Proposition 1 Let D C R3 be a bounded domain with a smooth closed connected 
boundary E SZ = R'W, 

(1) (A + k2)u = 0 in SZ, k2 > 0, 
(2) 24 EL2(Q), 
(3) uIr = 0. 

Then u(x) = 0 in a. 
Proof .  By the Green formula we have 

a u  g+ = exp (ikr,) 
(4) U ( X )  = - jg+pdt ,  p = - 

r a" 4xr ,  
(From (2) it follows, that V u  E L2(Q) and hence a sequence r, -, 00 exists such 
that 

(5 )  

Therefore the integral over the large sphere in the Green formula tends to zero.) 
Let x = r w ,  where w is a unit vector, and let z = r exp (i 0). The function u(x) = 
u(rw)  is considered as a function of the complex variable z. Since 

j ( 1 ~ 1 ~  + Iau/azq2)ds -, o as n -, QO. 

kl=m 

it is clear, that Go is analytic in z = rexp (id) for lz I 2 R, where R is sufficiently 
large, such that if r > R then the inequality holds: 

(7) r2 > 2rd  + d2, d = max Itl. 

Thus for Izi > R the function I/z2 - 22 It lcos a + ltI2 is analytic if we fix some 
branch of the radical. From (3) it follows that 

t d  

f l ( Z )  9 

exp (i kz) (8) u = 
Z 

where fl is analytic in Iz I > R and 
(9) fi = O(1) forlzl> r .  

Exactly the same arguments lead to the formulas: 
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where f2 ( z )  is analytic in lz I > R and 

(12) f i  = 0(1) for IzI > R. 

eik e-ikz 

Z Z 

Hence 
(13) U(Z) = -fi = - f2(z )  for l z l >  R. 

Formula (12) is contradictory unless u = 0. To prove that we use a known 
uniqueness lemma for analytic functions (see also Bibliographical notes). 

Lemma Let D be a domain on the complex plane z, C be its boundary. Let D 
contain the halfplane Re z > a. Let f ( z )  be analytic in D, continuous in D + C 
and 

(14) 
where A = const > 0, and R is an arbitrary large fwed number, 

(15) In If(z) I < -h(lZI), Z E C, 
where h( t )  > 0 is a continuous function such that 

(16) J t-’h(t)dt = 01. 

Therrf(z) 3 0 in D. 

In I f ( z )  I < A It1 for l z l  > R, z E D ,  

w 

1 

In our casef(z) = u(z), D can be chosen so that C coincides outside of 
t some large circle with the rays arg z = 3 x/4, arg z = 5 x/4, h ( t )  = const + - 

so that (16) is satisfied. We have 

(since Ifi I < C, we have In I f i  I < C2). 

6 
h I ~ ( z ) I < k l z I -  l n I z ( +  In I f l I<Alz l ,  Z E D ,  

Similar estimate holds on the ray argz = 57d4. From the preceding lemma it 
follows that u(z)  = 0. Thus.u(r, w) = 0 for r > R. By the unique continuation 
theorem we conclude that u = 0 in 0. 

Appendix 3. Variational Principles for Eigenvalues of Compact 
Nonselfadjoint Operators 

Let T be a linear compact operator on a Hilbert space H, Aj be its 
eigenvalues, lA1 I 2 [ A 2  I 2 . . . , rj(tj) be the moduli of the real (imaginary) parts of 
the eigenvalues, rl 2 r2 2 . . . (tl 2 t2 2 . . .). Let Lj, Mi. Nj be the eigenspaces 
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of Tcorresponding to Aj, rj, tj respectively. Note that rj is not necessarily equal to 
I Re Aj I. We can set a one to one correspondence between rj and I Re Aj I, and Mi 
and Lj,  putting Mi = Ljo wherej(i) is so chosen, that (Re Aj(i)  I = ri. The same is 

j 
true for Lj and Nj. Let Lj = C 4 Lk and f i j ,  Rj q e  defined similarly, 4 means 

the direct sum, it means the direct complement to I j  in H. 

Theorem The following formulas hold: 

k = l  

Here (x, y )  denotes the scalar product in H .  

Proof .  We prove formula (1) f o r j  = 1. The proof of other statements of the 
Theorem are similar. F o r j  = 1 formula (1) can be written as 

(4) 

For a fixed x we write Tx = Ax + z ,  where z E x *, x * is the subspace of all 
vectors orthogonal to x and A is a number. Thus (Tx, y )  = A + (z, y). Let us 
represent y in the form y = p x  + u, u E x I. From the condition (x, y )  = 1 it 
follows that p = Ix I - 2 .  Thus (Tx, y )  = A + (z, u).  We have 

(5 )  

Formula (5) implies (4). 
If j > 1 then max min = m-ax IA I = ) A j  I. Formulas (2), (3) are treated simi- 

Remark 1. If T,,is compact and IIT - T,,ll+ 0 as n + a, then AJT,,) + A,(r>, 
v j .  This fact permits an approximate calculation of the spectrum of T using in 
(1) - (3) the operator T,, instead of T. In particular one can take n-dimensional 
operator T,, (dimrange T,, = n) .  

Al = max min ] (Tx ,y )  I. 
QY) = 1 

x& y& 

i f z  = 0, 
Y& UE* J. i'" 0 ' i f z  # O .  
min ) ( T x , ~ )  1 = mi'n I A + (z, u )  I = 

(X>Y)==l 

X € q *  yEH X d j ! ,  
lady. (x,y)=l T x = ~  

Bibliographical Notes 

Sect ion 1. Questions discussed here are of interest for engineers and 
physicists [2] - [4], [32]. They attracted considerable attention of mathematicians 
in recent years [l], [19], [3], Appendix. Our knowledge of the spectral structure 
of nonselfadjoint operators is very limited. For example, it is not known how to 
investigate this structure of the equation (1.12). If a nonselfadjoint operator is a 
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weak: perturbation (in the sense defined in section 2) of a selfadjoint operator 
some information is available (see A. Marcus [17], V. Kacnelson [18], M. 
Agranovich [3]). For dissipative operators there exist some theorems about 
completeness of their root systems [l], [ll]. No answer to question 5 )  is known. 

Sec t ion  2. Properties of the bases of a Hilbert space are described in [l] 
in the form convenient for our purpose. A rigorous study of the spectral 
properties of the integral operators arising in diffraction theory was initiated in 
[12], [ll], [13]. Questions put forward by B. Kacenelenbaum were stimulating 
for these studies. M. S. Agranovich [3] has made further contribution to this 
theory. Essential to his results were the results due to A. Markus [17] and V. 
Kacnelson [18]. The theory of pseudo-differential operators is now well 
developed. A summary of main results of this theory is given in [20], [21], [3], 
[38]. On the basis property without brackets see [43]. 

M. S. Agranovich [3] applied the theory of pseudo-differential operators 
to the integral equations of diffraction theory. 

Sec t ion  3. References are given in the section. 
Sec t ion  4. The questions discussed here are of interest in applications. 

Proposition 1 was proved in [29]. A part of it was proved in [12]. The scheme for 
the :study of analytic continuation of the resolvent kernel of the Schrodinger 
operator was given in [ 5 ] ,  [6], [25], [26]. Analytic properties of the scattering 
matrix for acoustic wave scattering by an obstacle was studied in [39]. 
Eigenfunction expansion theorems for nonselfadjoint Schrodinger operator are 
proved in [8], [91 and the properties of the resolvent in the complex plane of the 
spectral parameter k were used in the proofs. In [19] a study of the purely 
imaginary poles of the Green function of the exterior Dirichlet and the Neumann 
problem is given. The known criteria for a pole of an operator-valued function to 
be simple, including criterion (4.17) unfortunately are difficult to apply: so far 
no applications of these criteria appear to be known. 

In [27] it is proved that for the complex poles of the Green function of the 
exterior NeumaM problem for a convex domain in R3 with a smooth boundary 
which has a positive Gaussian curvature, the function F(x)  in formula (4.22) can 
be taken as F(x)  = E Ix y3, for some small E > 0. In [28] it was shown how to 
pose correctly the problem of finding root vectors corresponding to the complex 
poles of the Green functions. 

In I421 the analytic continuation of the resolvent of some general 
differential operators is studied. 

There is an example in [37] which shows that a root system of a 
nonselfadjoint operator may form a basis of H,  but some other root system of 
the same operator may not form a basis of H. 

In the literature the radiation condition in the form 

is often used for Im k < 0, i.e. for exponentially increasing solutions of the 
probmlem (4.10). It is assumed in such cases that the solution of the boundary 
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value problem satisfying the radiation condition in unique. This is false. A simple 
example k the function u = g +  * f - g -  * f, where g+, 9-l are defined by 
f~rmulas (31, (9) of Appendix 2, f E C,O is arbitrary, * denotes convolution. It is 
clear that ( A  + k3 u = 0 in R3 and u satisfies the radiation condition for Im k c 
0, but u d 0. The right asymptotic condition for exponentially increasing 
solutions is given in [28], where it is proved that for Imz c 0 the solution of the 
problem (4.10) has, in a neighborhood of infinity the following form 

u = r-‘exp(izr) Cfi(a)r-/ r = 1x1, a = x [ x [ - ’ ,  and the series converges ab- 

solutely and uniformly for sufficiently large r. 
Section 5 .  The simple method for calculation of the complex poles is 

given in [12], [13]. It is essentially a variant of the projection method and the 
arguments show that the complex poles depend continuously on the boundary. 
The same arguments prove the continuous dependence of these poles on the 
parameters if the kernel depends continuously on these parameters. 

The results of Appendix 3 was proved in [29]. In [30], [31] it was shown 
rigorously that the solution of the exterior Dirichlet boundary value problem is 
the limit of the solutions of the potential scattering problem when the potential 
goes to infinity in D and is equal to 0 in 52. Here as usually D = R3\52, 52 is the 
exterior domain. In [lo] [35] behavior as t + 00 of the solution of the wave 
equation in exterior domain was studied in case when the resolvent kernel of the 
corresponding stationary problem cannot be analytically continued through the 
continuous spectrum. 

It is possible to conclude from formula (12) in Appendix 2 that u(z)  = 0 
without making use of Lemma of this Appendix. Indeed, since fi , f2 are analytic 
and bounded in some neighborhood of infinity they behave asymptotically as 
C,z -,, n 2 0. If z = iy in formula (12) of Appendix 2 and y -, + 00, then the 
left-hand side of this formula goes to zero, while the right-hand side goes to 
infinity unless fl = fi = 0. This simple argument was pointed out by B. A. 
Taylor. In [15], where the boundary of the domain was infinite it was necessary 
to use Lemma from Appendix 2. It is interesting to mention that exactly the same 
arguments prove the following proposition. 

Proposition 1 Let u be a solution of the problem (1) - (2) of Appendix 2. Then 
u ’= 0. 

Note that no assumptions about boundary values of u are made in this 
proposition. 

OD 

j= 0 

Unsolved Problems 

1. To what extent do the complex poles of the Green function determine the 
obstacle? 
2. It is true that the complex pole of the Green function for the exterior Dirichlet 
problem are simple? 
3. Does the order of a complex pole coincide with the order of zero of the 
corresponding eigenvalue? (see Proposition 1 in 9 4). 
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