THE UNIVERSITY OF MICHIGAN COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS Computer and Communication Sciences Department

Technical Report

A Conjecture on S*-semigroups of Automata

Dennis Paul Geller

with assistance from:

Department of Health, Education, and Welfare National Institutes of Health Grant No. GM-12236 Bethesda, Maryland

and

National Science Foundation Grant No. GJ-519 Washington, D.C.

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

January 1971

Engm Unic 1627

:

Introduction

In [2] Hedetniemi and Fleck define the S^* -semigroup of an automaton. It was conjectured that if A and A' are any two strong machines with the same number of states then $S^*(A)$ is isomorphically embedded in $S^*(A')$, and vice versa. In this note we prove a stronger result which settles the conjecture except in the case where exactly one of the machines is autonomous.

S*-semigroups

Let A = (S,I) be an automaton with states S and input set I; if $s \in S$, $i \in I$ then we write S if or the successor of S under input S. If S, S and S is a string of symbols from S (S, S) such that S is a triple of S; if S if S

 $U \circ V = \{(s,x,t) | \exists (s,y,r) \in U, (r,z,t) \in V \text{ such that } x=yz\}.$

Under the operation \circ the finite sets of triples form a semigroup; we call this semigroup $S^*(A)$.

Let A be a strong automaton with n states and at least two inputs, n and \bar{n} . Since A is strong, for any states s and t of A there is a string w_{st} of length at least one such that sw_{st} =t.

Let A' be any automaton with at most n states, and let ϕ be a 1-1 map from the states of A onto the states of A'; thus, unless |A'|=|A| the domain of ϕ will be a proper subset \bar{S} of the states of A. If the input set of A' is $I'=\{i'_1,i'_2,\ldots,i'_a|a=|I'|\}$ we define a map $h:\bar{S}\times I'\to I^*$ in the following manner. Let $s\in\bar{S}$ and $i'_j\in I'$ be such that $(\phi(s),i'_j,t')$ is a triple of A'; choose $t\in\bar{S}$ such that $\phi(t)=t'$ and define

$$h(s,i_{j}) = h_{s}(i_{j}) = \eta^{j} \eta w_{qt},$$

where $q = s(\eta^j \bar{\gamma})$. Clearly h_s is 1-1 for each $s \in S$; also for each $s \in S$, $i^!_j \in I^!$, the relation $\phi(sh_s(i^!_j)) = \phi(s)i^!_j$ holds. (In fact, the pair (ϕ,h) defines a generalization of the classical automata-theoretic notion of realization; this is dealt with in detail in [1]). We can also extend h to domain $\bar{S} \times (I^!)^*$ inductively by $h_s(i^!_j x^!) = h_s(i^!_j)h_t(x^!)$, where $x^! \in (I^!)^*$ and $t = sh_s(i^!_j) \in \bar{S}$.

<u>Lemma</u>. The map $h:\bar{S} \times (I')^* \to I^*$ is 1-1 for each $s \in \bar{S}$.

<u>Proof.</u> Let $j_1...j_m$ and k_1 and $k_1...m'$ be two strings from (I')* and let $h_s(j_1...j_m) = h_s(k_1...k_{m'}) = w$. Then, by definition, there are states r, $t \in \bar{S}$ such that $w = h_s(j_1)h_r(j_2...j_m) = h_s(k_1)h_t(k_2...k_{m'})$. But there is a unique positive integer ℓ such that the prefix of w having length $\ell + 1$ is the string $\eta^{\ell} \bar{h}_1$. This uniquely determines $j_1 = k_1 = i_{\ell}$, so that $r = t = si_{\ell}$. Then $h_r(j_2...j_m) = h_r(k_2...k_{m'})$, and we can repeat the above process until we arrive at m = m' and $j_{\rho} = k_{\rho}$, $\rho = 1, 2, \ldots, m$.

Note that the lemma would not simply follow if h_s was 1-1 on symbols for each $s \in \bar{S}$. Using the notation of the lemma, suppose $h_s(j_1) = a$, $h_s(k_1) = ab$, $h_r(j_2) = bc$, $h_t(k_2) = c$. Then $h_s(j_1j_2) = h_s(k_1k_2) = abc$, but $j_1j_2 \neq k_1k_2$.

<u>Theorem</u>: Let A be a strong automaton with n states and at least two inputs, and let A' be an automaton with n' \leq n states. Then $S^*(A')$ is isomorphic to a subsemigroup of $S^*(A)$.

<u>Proof</u>: We use the maps ϕ and h above to define the isomorphism.

Let b' = {(s', x', t')} be a singleton in $S^*(A')$ and set $g(b') = \{(s,h_s(x'),t) \mid \phi(s) = s'\}.$

Note that this implies that $\phi(t) = t'$. Also, since h_s is 1-1 for each $s \in \overline{S}$, $g(b_1') = g(b_2')$ if and only if $b_1' = b_2'$; i.e., g is 1-1. Let $b_1' = \{(s_1', x_1', r')\}$ and $b_2' = \{(r', x_2', t_2')\}$. Let $b_1 = \{(s_1, x_1, r)\} = g(b_1')$ $b_2 = \{(r, x_2, t_2)\} = g(b_2')$. Then $b_1 \circ b_2 = \{(s_1, h_{s_1}(x_1'x_2'), t_2)\}$ is a singleton of $S^*(A)$ and, as $\phi(s_1) = s_1'$, $\phi(t_2) = t_2'$, $b_1 \circ b_2 = g(b_1' \circ b_2')$. Thus $g(b_1') \circ g(b_2') = g(b_1' \circ b_2')$. On the other hand, if $b_1' = \{(s_1', x_1', t_1')\}$, $b_2' = \{(s_2', x_2', t_2')\}$, $g(b_1') = \{(s_1, x_1, t_1)\}$, $g(b_2') = \{(s_2, x_2, t_2)\}$ and $t_1' \neq s_2'$ then $t_1 \neq s_2$, so that $b_1' \circ b_2' = \phi$ and $g(b_1') \circ g(b_2') = \phi$.

Now let V' be any element of $S^*(A')$; V' is a finite set of triples of A'. Extend g to g^* by $g^*(V') = \{g(b')|b_{\epsilon}V'\}$. Let $S^*_{A'}(A)$ be $\{g^*(V')|V'_{\epsilon}S^*(A')\}$.

Now, if
$$V_{1}^{\prime}, V_{2}^{\prime} \in S^{*}(A^{\prime})$$
,

 $g^{*}(V_{1}^{\prime}) \circ g^{*}(V_{2}^{\prime}) = [U\{g(b_{1}^{\prime})|b_{1}^{\prime} \in V_{1}^{\prime}\}] \circ [U\{g(d_{1}^{\prime})|d_{1}^{\prime} \in V_{2}^{\prime}\}]$
 $= \bigcup \{g(b_{1}^{\prime}) \circ g(d_{1}^{\prime})|b_{1}^{\prime} \in V_{1}^{\prime}, d_{1}^{\prime} \in V_{2}^{\prime}\}$
 $= \bigcup \{g(b_{1}^{\prime} \circ d_{1}^{\prime})|b_{1}^{\prime} \in V_{1}^{\prime}, d_{1}^{\prime} \in V_{2}^{\prime}\}$
 $= \bigcup \{g(f_{k}^{\prime})|f_{k}^{\prime} \in V_{1}^{\prime} \circ V_{2}^{\prime}\}$
 $= g^{*}(V_{1}^{\prime} \circ V_{2}^{\prime}).$

Thus $S^*_{A^!}(A)$ is a subsemigroup of $S^*(A)$, and g^* is a homomorphism. We wish to show that g^* is 1-1. Suppose $g^*(V_1^!) = g^*(V_2^!)$. Choose a triple $b_1^! \in V_1^!$, and let $\{b\} = g(\{b_1^!\})$. Then there is a triple $b_2^! \in V_2^!$ such that $\{b\} = g(\{b_2^!\})$. If b = (s, w, t), $b_1^! = (\phi(s), x_1^!, \phi(t))$ and

 $b_2' = (\phi(s), x_2', \phi(t)),$ where $w = h_s(x_1') = h_s(x_2').$ Then, by the lemma, $x_1' = x_2'$, so $b_1' = b_2'$ and $V_1' \subseteq V_2'$. The symmetric argument gives $V_1' = V_2'$ so that g^* is 1-1, and hence g^* is an isomorphism between $S^*(A')$ and $S^*_{A'}(A)$.

In particular, if A and A' are both strong n-state automata,

$$S^*(A) \stackrel{\sim}{=} S^*_{A}(A') < S^*(A') \stackrel{\sim}{=} S^*_{A'}(A) < S^*(A),$$

where $S_1 < S_2$ indicates that S_1 is a proper subsemigroup S_2 . To complete our partial solution to the conjecture, we need only note that any two strong, autonomous, n-state automata are isomorphic, and hence have isomorphic S^* -semigroups. To completely settle the conjecture it only remains to decide whether the S^* -semigroup of the unique autonomous, strong, n-state automaton can isomorphically contain the S^* -semigroup of every other strong, n-state automaton.

REFERENCES

- 1. Geller, D.P., to appear.
- Hedetniemi, S.T. and A.C. Fleck, "S-semigroups of Automata," Technical Report No. 6, THEMIS Project, University of Iowa, 1970.