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In  order to embark on the development of numerical schemes for stiff problems, we have studied 
a model of relaxing heat flow. To isolate those errors unavoidably associated with discretization, a 
method of characteristics is developed, containing three free parameters depending on the stiffness 
ratio. It is shown that such “decoupled” schemes do not take into account the interaction between 
the wave families and hence result in incorrect wave speeds. We also demonstrate that schemes 
can differ by up to two orders of magnitude in their rms errors even while maintaining second- 
order accuracy. We show that n o  method of characteristics solution can be better than second-order 
accurate. Next, we develop “coupled” schemes which account for the interactions, and here we 
obtain two additional free parameters, We demonstrate how coupling of the two wave families can 
be introduced in simple ways and how the results arc greatly enhanced by this coupling. Finally, 
numerical results for several decoupled and coupled schemes are presented, and we observe that 
dispersion relationships can be a very useful qualitative tool for analysis of numerical algorithms 
for dispersive waves. 0 1993 John Wiley & Sons, Inc. 

1. INTRODUCTION 

This paper is concerned with analyzing the method of characteristics for dispersive waves, 
represented here by a simple linear 2 X 2 system describing hyperbolic heat conduction. 
In this model, dispersive wave behavior is caused by a source term, which may be “stiff”. 
Our work is motivated by the fact that many problems of technical interest are stiff, i.e., 
the reaction or equilibration time of some nonequilibrium process is much smaller than the 
flow residence time. It is then highly inefficient to use for all the flow processes explicit 
time steps that are small enough to ensure stability of the reaction equations. One may 
use implicit schemes, which are also expensive (although the less expensive point-implicit 
schemes are often satisfactory [l]) or one may resort to split-operator methods [2], in 
which the hydrodynamic and reaction equations are solved alternately. 

Neither alternative is wholly convincing. There have been many attempts to incorpo- 
rate “source terms” rationally into numerical procedures for the solution of simplified 
(sometimes scalar) flows. These have been based sometimes on physical arguments and 
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sometimes on mathematical analysis of model problems. We wished to study the simplest 
instance of this difficulty in this paper. The model of heat conduction that we study does 
not seem to have been considered previously in this context. We believe that it captures the 
true nature of the problem rather well. It exposes the key role of coupling between different 
wave families, a concept that could not be arrived at by analyzing any scalar problem. 

The problem of hyperbolic heat conduction arises when Fourier’s law of heat flow 
proportional to temperature gradient is augmented by a term implying relaxation toward 
that condition [3,4]. This modification avoids the paradox of infinite propagation speed. 
It is also thought to be a more accurate representation of the real physics under certain 
conditions, such as thermal shock or very low temperatures (in liquid helium the waves are 
known as “second sound” [5] ) .  Solutions of the hyperbolic heat equations have appeared 
in several places, usually obtained by Laplace-transform methods. Here, as underpinning 
for our numerical analysis, we present a solution of the Riemann problem for this system 
(two rods at different temperatures brought into sudden contact) and an integral solution 
for the general initial-value problem. These were found by exploiting an analogy with 
the hodograph method of compressible flow (Riemann’s equation). Since this connection 
seems to be new, a detailed analysis is given in Appendix A. 

The main body of the paper has a fairly limited aim. We aim to develop a method 
of characteristics that will yield accurate solutions of the hyperbolic heat equations, even 
when the relaxation time 7 is much less than the time step A f .  We are content to do this, 
for the present, for smooth solutions only. This turned out to be, by itself, a sufficiently 
difficult task, and the conclusions seem to be illuminating. Because the problem is linear, 
the method of characteristics would be exact if the source term were absent. Likewise, 
the problem would be trivial if only the source term were present (we then have a simple 
ordinary differential equation with an exponential solution). Any numerical difficulties that 
arise must then be due solely to the interaction between these two trivial problems. The 
fact that difficulties do arise confirms our feeling that the mechanism we uncover may 
have general significance. 

Section I1 sets out the governing equations, and some of their more basic properties. A 
dispersion analysis reveals behavior typical of relaxation phenomena. High wave numbers 
propagate at a “frozen wave speed” and are strongly damped. Low wave numbers propagate 
at an “equilibrium wave speed” (equal to zero for this model problem) and contain both 
lightly and heavily damped modes. In later sections it turns out to be instructive to compare 
these with the dispersion relationships of the discretized equations, where we find them 
to be a good predictor of algorithm quality, and hence a useful qualitative tool to have 
at our disposal. 

Section 111 briefly describes the Riemann problem that is employed to test our schemes. 
In Sec. IV we develop various discrete versions of the characteristic equations. In every 

case, the stiffness factor 

1 At  
2 7  

k = - -  

appears in a natural manner. Two examples are studied in some detail. One is a 
straightforward discretization that corresponds in a sense to a point-implicit method. 
Inspection of the formulas inclines one to suppose that the results will not be good for 
k > 1. In fact, they were among the best we achieved for pure characteristic methods. We 
also examined a method derived from operator splitting. This looked better but performed 
worse. 
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Section V gives a sketch of some of our attempts to design methods with desirable 
properties. The sketch is brief because although some of the properties were certainly 
relevant, they correlated very poorly with overall accuracy of the schemes, as illustrated 
by a choice that suggested itself quite strongly. This was a clear hint that the problem 
was not yet properly understood. 

Section VI makes a fresh start, beginning with the general integral solution to the initial- 
value problem. We find, in fact, the exact solution for polynomial data consistent with the 
discrete values. This reveals that no method of characteristics solution is better than second- 
order accurate. The inclusion of an extra point in the stencil, however, raises the accuracy 
to third order and, perhaps even more significantly, enables greatly improved results to be 
obtained for large k.  In fact, very acceptable results are obtained for time steps of around 
100-fold greater than the relaxation time. 

This success, however, relies on elaborate analysis that would not be feasible for general 
problems. In Sec. VII we aim to confirm the insight that coupling of the characteristics 
is the essential key. We incorporate the coupling by means of simple predictor-corrector 
schemes that rely on no special analysis of the governing equations. However, we do hold 
onto the concept of conservation. Analysis shows, and experiment confirms, that these 
schemes are indeed very close to optimal. 

It. HYPERBOLIC HEAT EQUATIONS 

We need a problem simple enough to permit detailed analysis, and carrying some physical 
meaning to help in understanding the results. The problem that has been chosen leads 
to a 2 X 2 system of equations. It has dispersive wave properties resembling those of a 
reactive flow, although no reaction is actually involved. 

A. Derivation of Governing Equations 

Consider the flow of heat in a uniform conducting bar. Conservation of energy can be 
stated as 

1 
k 6 ,  + -qx  = 0 

where 6 = temperature, q = heat flow per unit area, and k = heat capacity per unit 
volume. 

Usually one now invokes Fourier’s law, that heat flow is proportional to the temperature 
gradient 

q = - c o x ,  (2 .2)  

to obtain the heat equation 
c 

6,  = -6 ,  . (2.3) k 
This is, of course, the prototype of all parabolic partial differential equations, in which 
information propagates with infinite speed. To avoid this unrealistic result, alternative 



462 ROE AND ARORA 

models are sometimes adopted [3,4,6] of which the simplest is to replace Eq. (2.2) with 

rql + c6, = -4, (2.4) 

where r is a relaxation time. The pair of equations (2.1) and (2.4) form a nonhomogeneous 
hyperbolic system for which the characteristic speeds are given by ( c / r k ) ” 2 .  For simplicity, 
we will adopt units in which both c and k have the value 1.0, leading to the system 

which we will call the hyperbolic heat equations. Maxwell introduced the concept 
of a relaxation time, and these equations are sometimes referred to in the literature 
as the Maxwell-Cattaneo equations. Several investigators have applied this concept to 
the problem of heat conduction (see [7] and its references) and there has been a 
resurgence of interest in these equations in the last five years (see [8,9] and references 
therein). 

B. Dispersion Analysis 

To see the dispersive character of Eqs. (2.5) and (2.6), consider solutions of the form 

Substituting Eq. (2.7) into Eqs. (2.5) and (2.6) gives 

i o T  - i6Q = 0 ,  

r i w Q  - i [ T  + Q = 0 ,  

and these equations can be solved for T and Q only if 

r w 2  - l2 = i w ,  

which is the dispersion relationship for Eqs. (2.5) and (2.6). For an initial-value problem, 
6 is a real wave number, and w may be written as 

w = W R  + iw l ,  

where wR is a frequency and wI is a damping rate. Substituting Eq. (2.9) into Eq. (2.8) 
gives the pair of equations 

(2.9) 

wR(1 - 2 7 0 ~ )  = 0 ,  

2 l2 - 0 1  wR - w; = 

(2.10) 

(2.1 1) 
r 

If W R  # 0, then from Eq. (2.10) 

1 
W I  = - 

27 
(2.12) 
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and from Eq. (2.11) 

(2.13) 

The quantity ( w R / ( )  is a wave speed, which we call a ( ( ) .  Then 

(2.14) 

For very high wave numbers (, the propagation speed is the characteristic speed 
, which could also be called the frozen wave speed. For lower wave numbers, the 7-112 

propagation speed is reduced, becoming zero when ( = ; T - ” ~ .  This could be interpreted 
as a vanishing equilibrium wave speed. For all wave numbers in the range [;r-”’,w], 
the waves are damped like e-t‘2T. 

For wave numbers less than : T - “ ~ ,  we have wR = 0, and the waves do not propagate. 
After the typical time t = r ,  they are damped like e - w t T ,  with 

(2.15) 

In  Fig. 1 (upper), we plot the wave speed a ( ( )  against the nondimensional wave number 
r“’(, while in the lower, we plot the damping rate e-w‘T against the nondimensional 
wave number. 

When ( = 0, the solution does not depend on x, and the problem reduces to 6, = 0, 
rqr + q = 0. Since these have solutions corresponding to W ~ T  = 0, 1, respectively, both 
branches of Eq. (2.15) are relevant. The upper branch makes second-order contact with 
the dispersion relationship for the regular heat equation, which is 

W I T  = ( 2 7 ,  (2.16) 

shown as a dotted line in Fig. 1 (lower). 

C. Characteristic and Jump Relationships 

Introduce characteristic coordinates f ,  7 defined by 

f = t + 7 l I 2 x ,  

7 = t - 7 1 1 2 x .  

Then Eqs. (2.5) and (2.6) transform to 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

which are the characteristic equations. Unfortunately, it is not possible to integrate these 
equations and obtain Riemann invariants, as can be done with linear homogeneous 
problems. Thus a numerical method of characteristics is no longer an exact method. 
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0 0.5 1 

- T i (  . 

FIG. 1. 
parabolic heat equations. 

Analytic dispersion diagrams (wave speed and damping rate) for the hyperbolic and 

As usual, the solution will admit discontinuities that lie along characteristic paths. It 
is easy to show that the jump relationships are those of the homogeneous problem, i.e., 
across a jump lying in the 5 direction 

A 9  = r'I2Aq (2.21) 

and across a jump lying in the q direction 

A 9  = -r ' l2Aq,  (2.22) 
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111. A RIEMANN PROBLEM FOR THE HYPERBOLIC HEAT EQUATIONS 

A natural problem to pose in connection with the hyperbolic model of heat conduction is 
that of two semi-infinite rods having temperatures O L , 6 ~  brought into contact at t = 0. 
The solution will be of the form shown in Fig. 2. 

The problem is to find 6 ,  q in the region POQ. There is an analytic solution for q, which 
is (see Appendix B and article 12 of [lo]) 

where 10 is the modified Bessel function of order zero. This can be written in a similarity 
form as 

showing that solutions for different r are not really independent, but affinely related. 
There appears to be no closed-form solution for 6 ,  but a solution that is sufficiently 

accurate for testing the numerical results can be found by numerically integrating Eq. (2.6), 
knowing q and q,  analytically, using Gaussian quadrature formulas. 

The character of the solution can be appreciated from Fig. 3.  For t / r  small, the solution 
is typically hyperbolic and strongly discontinuous, but the jumps in the solution decay like 
exp(-t/2r) (which is also the rate at which all high wave numbers decay). 

As time increases, the solution assumes a more typically parabolic character. The region 
of space within which significant variations occur grows, not linearly, but like t”’. In fact, 
for large times, the expression given by Eq. (3.1) simplifies to 

which is the classical fundamental solution to the heat equation. 

t = --7-tt x = 7-41 

P 2 Q 
t f 

\ Lx 
0 

FIG. 2. Schematic of the problem. 
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t = 10 
t = 9  
t = 8  
t = 7  
t = 6  
t = 5  
t = 4  
t = 3  
t = P  
t = 1  

X 
FIG. 3. 
by Eq. (3.1). 

Exact solution to the Riemann problem for the heat flow q, with the smooth region given 

IV. A NUMERICAL METHOD OF CHARACTERISTICS 

In this section we develop and analyze the numerical method of characteristics for the 
hyperbolic heat equations. We begin with a simple treatment that apparently does not take 
into account the potential stiffness of the problem. 

A. Simplest Discretization or the Point-Implicit Method 

Given, as in Fig. 4, a point P and two characteristic lines PA and PB, we make the 
obvious discretization of Eqs. (2.19) and (2.20) as 

where we have taken the value of the source term along each characteristic to be an 
average of values at the ends. Solving these equations, we have 

where we have written 
1 A t  
2 r '  

k = - -  (4.5) 
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P 

FIG. 4. Stencil for the method of characteristics. 

Henceforward, we refer to k as the stiffness parameter. Because of the geometry of the 
characteristic mesh, note that we also have 

Now let us rewrite Eqs. (4.3) and (4.4) as follows: 

Here, we have introduced three general functions of k which appear as coefficients in 
Eqs. (4.7) and (4.8). This is the general form for a solution to the hyperbolic heat equations 
by the method of characteristics. Different functions X ,  Y , Z  might arise from various ways 
of evaluating the integrals. For our simple discretization [or the point implicit (PI) method], 
we have 

X z l - k ,  

Y = ( 1  + k ) - ' ,  

Z ~ ( 1  - k ) ( l  + k ) - ' .  

(4.9a) 

(4.9b) 

(4.9c) 

This scheme has been applied to practical problems in [ll], although in that case the 
question of stiffness did not arise, the values of k being well below unity. For stiff problems 
the method does not, at first, inspire confidence. Consider the coefficient Z ( k ) .  This would 
arise if we solved the ordinary differential equation 

by the trapezium rule, giving 

1 - k  
l + k  

q" = (() 40. 

For k > 1 the numerical solution does not resemble the exact solution, and one is 
inclined to suspect similar trouble here. 
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B. Operator Splitting 

Stiff problems are in practice often broken into two parts. In one, we solve the ho- 
mogeneous problem 

61 + q x  = 0 ,  (4.10) 

7qt + ex = 0 .  (4.1 1) 

In the other, we solve for the damping due to the source term as 

(4.12) q:+' = q:e . 
Let us call the damping operation LI and the solution to the homogeneous problem by 

the method of characteristics L2. To get second-order accuracy, we must use one of the 
sequence of operations L1L2L2L1 or L2L1L1L2 [2]. For the sequence LlL2L2L1, 

At17 

= 6 , ~ + 3 / 4 ,  

= q:+3/4 e - k  

In short, if we combine all the stages, we get Eqs. (4.7) and (4.8) with coefficients 

~ ( k )  = e - k ,  (4.13a) 

~ ( k )  = e - k ,  (4.13b) 

~ ( k )  = e - 2 k .  (4 .13~)  

This looks more promising, because the coefficients seem to reflect appropriate decay 
rates. Indeed Z ( k )  = e-2k corresponds to the decay rate of the ordinary differential 
equation, and X ( k )  = Y ( k )  = K k  corresponds to the decay rate of the characteristic 
discontinuities [see, for example, Eq. (B2)]. 

C. Some Numerical Results 

We ran three groups of experiments for the Riemann problem described in Sec. 111. 
As boundary conditions we have supplied the analytical solution along both limiting 
characteristics. Thus we do not attempt to capture the discontinuities, and our tests relate 
purely to the smooth part of the solution. In the first group, our final time was tF,  = 
107, with time steps k = 0.5,0.25,0.125,0.0625, results being plotted at t / 7  = 3,6,10. 
Similarly, in the second and third groups, the final time fF2,1 = 1007, IOOOT, time steps k = 
[5,2.5,1.25,0.625] and [50,25,12.5,6.25], results being plotted at r /7  = [30,60,100] and 
[300,600, lOOO], respectively. All three are shown on the same picture, where we plot the 
L2 errors in q or 6 versus k on log-log scales. Each value of t / 7  plotted in our numerical 



CHARACTERISTIC-BASED SCHEMES FOR DISPERSIVE WAVES. I.. . . 469 

experiments has been assigned a particular line and symbol type, all of which are tabulated 
in Table I .  

The results for the PI scheme are shown in Figs. 5(a) and 5(b), while those for the 
operator-splitting (OPS) scheme are shown in Figs. 6(a) and 6(b), for errors in q and 8, 
respectively. Errors in 8 are computed by comparison with an accurate solution obtained 
by integration of Eq. 2.6 using Gaussian quadrature formulas. In all cases, the errors are 
normalized so that In(&) = 0 indicates an error of the same size as the solution. We see 
that all our solutions are quite consistently giving slopes of 2 (as seen by comparison with 
the solid line), indicating second-order accuracy, for k less than about 2. 

Surprisingly enough, although the point-implicit method looks as though it should break 
down for k > 1, it continues to give useful answers for values of k up to about 25 or so, 
whereas operator splitting, which contains no obvious signs of trouble, does not produce 
useful answers beyond k = 2. To understand these results, and possibly to improve on 
them, we looked for combinations of X ( k ) ,  Y ( k ) ,  and Z ( k )  that would enforce a variety 
of apparently desirable properties. 

V. CONSTRAINTS ON THE DISCRETE SOLUTION 

In this section, we derive various conditions that can be enforced by choosing X ( k ) ,  Y ( k ) ,  
Z ( k ) .  

A. Conservation 

Multiplying Eq. (2.6) by the integrating factor e‘“ leads to the “conservative” form of the 
hyperbolic heat equations, 

TABLE I. 
numerical experiments. They correspond to different times at which the solution errors in q and 6 
have been plotted versus the stiffness factor k.  This is the key for all the error plots in 
this paper, the exception being when a legend appears alongside a figure. 

This table describes the symbols and line styles used for graphing results of our 

I 

t l s  = 3 

t/‘ = 10 

t / s  = 6 

t / s  = 30 

t / s  = 60 

t / s  = 100 

t / s  = 300 

t / s  = 600 

t / s  = 1000 
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In( k) 
-2 

-4 

-6 

-8 

- 10 
In1 IEe I I, 

-16 - 1 4  i 
- 3 - 2 - 1 0  1 2  3 4 

( b) w> 
FIG. 5. (a) L,  norm of the solution error in y versus the stiffness factor k for the PI (point-implicit) 
schemc. The solid line has a slope of 2. (b)  L2 norm of the solution error in 0 versus the stiffness 
factor k for the PI (point-implicit) scheme. The solid line has a slope of 2. (See Table I for a key 
to lines and symbols.) 

showing that 8 and qe‘’‘ can be regarded as conserved quantities. In fact, a similar device 
can be used for any set of linear equations 

U; + (A * u), = P . U, 
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-12 - 
-14 - 

-2 

-4 

-6 

-8 

- 10 

-12 

-14 

1nll412 

-16 

/ 
/ 

where A , P  are constant matrices. The result is 

(e-''u), + (e-"A . u), = 0 ,  

where e-" is a matrix exponential that here takes a very simple form. 
To ensure conservation in this sense, it is clearly sufficient to take 

Also, clearly, this does not guarantee good schemes, since the PI scheme (nonconservative) 
outperforms the OPS scheme (conservative). 
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B. Constraints from the Discrete Dispersion Relationship 

Let us write Eq. (2.7) in discrete form as 

(:); = %[ (i) exp[i(wnAt -  AX)] (5.4) 

Using this, we get from Eqs. (4.7) and (4.8) that 

exp(iwAt) - cos([Ax) -irl”X(k) sin((Ax) 
detl -ir-”’Y(k) sin(6A.x) exp(ioAt) - Z ( k )  cos([Ax) / = 0  

or 

exp(2ioAt) - [ I  + Z ( k ) ]  exp(iwAt) cos([Ax) + Z ( k )  cos2((Ax) + 
X(k)Y(k) sin2([Ax) = 0 

so that 

exp(ioAt) = 

2 

and this is the discrete dispersion relationship for the method of characteristics. 
Note that we can only resolve wave numbers for which (Ax 5 zn-. The factor 2 arises 

because the stencil for the method of characteristics decouples odd and even points. For 
this maximum frequency, we have 

1 I 

exp(iwAt) = %i[X(k)Y(k)]1’2 

and hence, if XY is positive, 

which gives the wave speed a( tmax)  = +Ax/At = +r-’/’. If XY is negative we find 

Thus, for any method of characteristics, the highest wave number observable on the 
mesh is either stationary or propagated at the frozen speed. This is a feature we cannot 
control. Figure 7 shows the discrete dispersion plots for the PI scheme for several values 
of k.  Each plot is terminated at the right by a symbol located at the maximum wave 
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I 

0 0.5 1 2co 

-0.2' I 

FIG. 7. 
0.5,1.25,2.5,5.0, 12.5,50. 

Propagating speeds and damping ratios for the PI (point-implicit) method. k = 0.25, 

number for that value of k, derived from 
I 
in = S m a x A X  

A t  = [  - 
lnax 112 

n 112 
7 Smax = - 4k 

In the upper plot (wave speed), we see these symbols either on the axis or on the upper 
and lower limits. The diagram as a whole closely follows the analytical behavior (Fig. 1). 
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In the lower plot (damping) there is only good agreement for the upper lobe at large k 
but moderate agreement everywhere else. 

In Fig. 8, which shows the discrete dispersion plots for the OPS scheme, the situation 
is reversed. Damping levels are very good for small k,  but wave speeds are poor. In 
particular, waves that should not propagate, do propagate, and at the grid speed Ax/At.  
Provisionally, we conclude that the wave speed is more important than the damping. 

The problem of false wave propagation can be dealt with, to a large extent, by enforcing 
that transition between propagating and stationary waves occurs at the proper wave number. 
From Eq. ( 5 . 3 ,  the bifurcation occurs for 

I ' I  

I I I 
0 0.5 1 2co 

- 41 

. . .. - 

-0.2 O 2  

FIG. 8. 
0.5,1.25,2.5,5.0,12.5,50. 

Propagating speeds and damping ratios for the OPS (operator split) scheme. k = 0.25, 
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Since bifurcation should actually take place at (Ax = ;T-”~AX = k (see Sec. ILB), we 
should enforce the condition 

The actual wave numbers at which the schemes discussed so far bifurcate is plotted in 
Fig. 12. 

There are a number of other conditions derivable from Eq. (5.5). For example, 

ensures that the maximum wave number has the correct damping. Note that any condition 
deriving from Eq. (5.5) will only refer to the product XY, not X or Y individually. 

In addition, we could stipulate that the scheme is derivable from some pair of 
characteristic equations, i.e., that Eqs. ( 4 . 7 )  and (4.8) can be combined to give an equation 
in which q A , 6 A  (or qe,6B) do not appear. This condition is 

Z ( k )  = X ( k ) Y ( k ) .  (5.9) 

I t  also ensures that all propagating modes decay at the same rate. We attempted to design 
schemes by imposing some pair of constraints. For example, by imposing conservation 
[Eq. (5.3)J, and correct bifurcation [Eq. (5.6)J, we have the CB (conservative-bifurcative) 
scheme given by 

Z ( k )  = e - 2 k ,  (5.10) 

(1 - e-2k)2 
X ( k ) Y ( k )  = 

4 tan2 k ’ 
(5.11) 

For this scheme, X ( k )  = Y ( k )  = [ X ( k )  . Y ( k ) ] * ’ 2  = (1 - e-2k ) / (2  tan k ) ,  and we set 
X ( k )  = Y ( k )  = 0 for k 2 7r/2. 

This combination looked promising and was immediately implemented. The results for 
its dispersive behavior are shown in Fig. 9 and its error norms are plotted in Fig. 10. As 
is evident from these pictures, the preliminary appearance was misleading. A variety of 
other schemes based on similar heuristics were constructed and led to further discouraging 
results (Fig. 11). In Fig. 12, we plot the bifurcation wave number versus k for the PI, OPS, 
CB and TOPT schemes. And for ease of reference, we tabulate the coefficients X,  Y and 2 
[Eqs. ( 4 . 7 )  and (4 .8)J  that define these schemes in Table 11. The lack of correlation between 
expectations based on desirable properties included and numerical results achieved led us 
to the conclusion that there was more to the problem that met the eye. We will show in the 
next section that the method of characteristics, in its pure form, is not entirely appropriate 
for dispersive wave problems. 
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Version 

PI 
OPS 

CB 
TOPT 

0 0.5 1 203 

- T+( . 

X ( k )  Y ( k )  Z ( k )  
1-1. 

1+k 1+k 
- 1 - I - k  

exP( - k) .XP(-k) exp( -2k) 

exp(-2k) 

exp( - 2 k )  

(0 if k > 5 )  1-ex -2k 1-ex  -2k)  
2taPn((k) ( O  if ” 4 )  2taPn((t) 

l -exp(-Zk]  1 -exp(  -2k)  
‘IL “I. 

FIG. 9. 
k = 0.25,0.5, 1.25,2.5,5.0, 12.5,50. 

Propagating speeds and damping ratios for the CB (conservative-bifurcative) scheme. 
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-2 

-4 

-6 

-8 

-10 

-12 

-14 

lnllE*llz 

-16 
- 3 - 2 - 1 0  1 2  3 4 

In(k) 

VI. COUPLED METHOD OF CHARACTERISTICS 

A. Derivation of an Optimum Scheme 

We begin with the stencil shown in Fig. 13. In Appendix A, we obtain by integration 
around this circuit the integral equations (A10) and (All) ,  which are repeated here for 
convenience: 
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0 

FIG. 1 1 .  
schemes at t / r  = 10. The solid line has a slope of 2. 

L2 norm of the solution error in 0 versus the stiffness factor k for several decoupled 

q p  = i e -k (qA + 9 s )  - (6.2) 

where SZ is the Riemann function (defined in Appendix A). 

TOPT 

OPS 

Limiting Hyperbola 

CB / PDE 

PI 

FIG. 12. 
method of characteristics for the PI, OPS, CB, and TOPT schemes. 

Splitting into damped and propagating modes according to the analytic solution, or the 
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P 

FIG. 13. Stencil for the coupled method of characteristics. 

To create a numerical method we have to evaluate the integrals. In these, the functions, 
R and R, are of course known exactly, but the functions 8, q, 8,, and qx have to be 
approximated using the available information. We will represent them as polynomials as 
follows: 

where we have assumed a quadratic variation in u, and u is either q or 8. 
Note that since R and R, are even functions, only the even parts of u and u, will 

contribute to the integrals. Substitution of Eqs. (6.3) and (6.4) into Eqs. (6.1) and (6.2) 
leads to 

where 

L ,  = 1 xPRdx, 
A 

J p  = IA x P R , d x .  
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These integrals have been worked out in Appendix C,  from which we extract the ones 
relevant here, which are, for p = 0 , 2 ,  

LO = 2 ~ ' / ~ ( 1  - e - 2 k ) ,  

L2 = 8r3l2[(1 + k)e -2k  - ( 1  - k ) ] ,  
Jo  = 2r-1/2(e-k - 

J2 = 4r1I2[ (2k  + l )e-2k + 2k2e-k  - 1 3 .  

Inserting these into Eqs. (6.5) and (6.6) gives 

In each of the above equations, the terms in the top line make reference only to the 
values at P ,  A, and B, and give the appearance of a method of characteristics solution. 
These terms give the scheme that would result from integrating (6.1) and (6.2), assuming a 
linear variation between A and B.  However, the truncated equations cannot be decomposed 
into a pair of characteristic equations because they fail to satisfy Eq. (5.9). Thus some 
coupling of the characteristics is already involved. We will refer to Eqs. (6.7) and (6.8) 
as the optimum (OPT) scheme, because it gives the closest approximation possible to the 
exact solution [Eqs. (6.1) and (6.2)] with the data available in Fig. 13. Also, we call the 
scheme obtained by dropping the coupling terms from the optimum scheme the truncated 
optimum (TOPT) scheme. The discrete dispersion diagrams for the TOPT scheme are 
shown in Fig. 14. It may be observed they have broadly similar characteristics to those of 
the OPS scheme (Fig. 8) in that the damping levels are largely correct, but that many of 
the wave numbers that should not propagate actually do so. It is interesting to note that 
the errors measured in the TOPT scheme (Fig. 15) are also very similar to those measured 
for the OPS scheme (Fig. 6). This confirms our hypothesis that dispersion diagrams are 
a useful indicator of algorithm quality. 

The second difference terms are in each case of order k A x 2 .  An analysis of the truncation 
error indicates that their inclusion yields a scheme with third-order accuracy, whereas a 
scheme that excludes them is second-order at best. 

(6.7) and (6.8) in the form 
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-0.2 1 1 

FIG. 14. 
k = 0.25,0.5,1.25,2.5,5.0,12.5,50. 

Propagating speeds and damping ratios for the TOPT (truncated optimum) scheme. 

The coefficients Rg, S O ,  Tg, R,, S,,  and T,  are tabulated in Table 111. Their polynomial 
expansions for small k are given in Table IV, while their asymptotic behavior is tabulated 
in Table V. 

It is also convenient to write them as 

1 

- 112 

(6.10) 
1 

qf' = Z 2 ( q A  + q B )  + Y-((BA - 6 B )  + WqM, 2 
where X = S e ,  Y = S, ,  Z = R, + 2T,, U = Rg + 2T0, V = -2Tg, and W = -2T,. 
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FIG. 15. (a) L,  norm of the solution error in q versus the stiffness factor k for the TOPT (truncated 
optimum) scheme. The solid line has a slope of 2. (b) L z  norm of the solution error in 8 versus 
the stiffness factor k for the TOPT (truncatcd optimum) scheme. The solid line has a slope of 2. 
(See Table I for a key to lines and symbols.) 

B. Dispersion Analysis of the Coupled Schemes 

We begin with the discrete form of Eq. (2.7) given by Eq. (5.4). Using the general form of 
the coupled schemes given by Eqs. (6.9) and (6.10), and following the procedure outlined 
in Sec. V.B., we get the determinant condition as 

1 = o .  exp(iwAt) - U cos(5Ax) - V - iT112X(k) sin(5Ax) de t l  -i7-11*Y(k) sin(5Ax) exp(iwAt) - Z ( k )  cos(5Ax) - W 
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TABLE 111. Coefficients Re,  So, To,  R, ,  S,, and T, for the coupled schemes. 
Version Definition for Coupled Schemes 

TABLE IV. 
that terms are retained until the first erroneous term, after which we use the symbol e. 

Polynomial expansion of the coefficients of the coupled schemes about k = 0. Note 

Polynomial Expansion 
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TABLE V. Asymptotic behavior of the coefficients for the coupled schemes. 
Asymptotic Behaviour of Coupled Schemes Coefficients 

This gives us the dispersion relation for coupled schemes as 

exp(iwAt) = i [ - B  2 -1, (6.11) 

where 

B = - [V + W + (U + Z )  COS((AX)], 

C = (UZ - X U )  COS*([AX) + (UW + V Z )  COS(~AX) + ( X Y  + V W ) .  

Since we have incorporated the middle point into our stencil, we have doubled the wave 
number resolution capability to [Ax 9 n-. At this maximum frequency either 

exp(iwAht) = (V - U )  (6.12) 

or 

exp(iwAt) = (W - Z ) .  (6.13) 

Using w = O R  + iw ,  in Eqs. (6.12) and (6.13) leads to 

sin(wRAt)e-WfA' = S [ V  - U ]  or S [ W  - Z ] .  (6.14) 

Since 

u,v ,w , z  E 8 (6.15) 

we find that 

S [ V  - U ]  = 3 [ W  - Z ]  = 0 V k (6.16) 

at this highest wave number. Using Eq. (6.14), we conclude that 

W R  = 0 V k at emax. (6.17) 

meaning that the highest wave number is always stationary. Therefore the additional 
accuracy obtained at small wave numbers by incorporating M into the stencil carries this 
penalty at high wave numbers. Since our numerical tests involve only smooth solutions, 
this penalty has little effect here, as evidenced by our numerical results [Figs. 16(a) and 
16(b)]. It does matter when discontinuities are captured, and we will report on this topic 
in the future. 
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FIG. 16. (a) L ,  norm of the solution error in q versus the stiffness factor k for the OPT (optimum) 
scheme. The solid line has a slope of 3. (b) L 2  norm of the solution error in 8 versus the stiffness 
factor k for the OPT (optimum) scheme. The solid line has a slope of 3. (See Table I for a key 
to lines and symbols.) 

We plot the wave speed and damping rate diagrams for the OPT scheme in Fig. 17. In 
the upper plot we find that in the region of propagating waves we have a close agreement 
with the analytical behavior for [ A x  5 n-/2 but in the range n / 2  5 ( A x  5 n- we diverge 
from this agreement, reaching our predicted null wave speed at the highest frequencies. If 
we follow the upper lobe of the lower plot we find an identical range of agreement and 
disagreement. However, for large k, the lower lobe is disturbing in that frequencies that 
should be strongly damped are in fact being lightly damped. Once again, we can see the 
strong correlation between the dispersion diagrams and the solution errors. 
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I I r 

-0.2' I 

FIG. 17. 
1.25,2.5,5.0, 12.5,50. 

Propagating spccds and damping ratios for the OPT (optimum) scheme. k = 0.25,0.5, 

VII. SIMPLIFIED COUPLED SCHEMES 

Equations (6.1) and (6.2) show that the exact solution at P depends on data from the 
whole of the initial line AB.  Adding information from the central point M raises the order 
of accuracy to three. Dropping that information, even while retaining the integral formulas 
[Eqs. (6.1) and (6 .2)] ,  results in an undistinguished scheme. From these facts we form 
the hypothesis that the pure method of characteristics (stencil APB) is suboptimal because 
it neglects the interaction between wave families caused by the source term. To test the 
hypothesis, we ask whether good schemes will result from incorporating the coupling 
without relying on the availability of an exact solution to the initial value problem. A 
variety of two-step integration schemes can be devised, which utilize the stencil shown in 
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P 

FIG. 18. Stencil for the simple coupled schemes. 

Fig. 18. These incorporate coupling by first using some simple method of characteristics on 
AMF and MBG to obtain solutions at F and G, and then using this additional information 
at F and G to better integrate the source term along the characteristics. We implemented 
Simpson's rule, the trapezium rule, and the midpoint rule approximations, each of which 
yield explicit solutions for O p ,  qp .  

One property we would like to have, from our experience with hyperbolic systems, is 
conservation. Schemes possessing this trait are discussed next. 

A. Conservative Coupled Schemes 

We start with the characteristic equations [Eqs. (2.19) and (2.20)], which we repeat here 
for convenience: 

Now, integrating by parts, we get 

This equation is still exact, but now we must approximate O ( t )  by a polynomial. Integrals 
on the right-hand side of Eqs. (7.3) and (7.4) are of the form 

1 '  s, = - r p + I  /-At er"tp dt . 
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Dividing this integral into two parts, we define 

l o  
s p . 2  = - r p + I  I-,,, e t i rrp  d t .  

These are easily evaluated as 

-2k = e-' - e , 

S1.I = (1 + 2k)e-2k - (1 + k ) e - k ,  

S2,1 = [2(1 + k )  + k2]e-' - 2[1 + 2k + 2k2]e-2k,  

 SO,^ = 1 - e - k ,  

S 1 , 2  = (1 + k)e-k - 1, 

S2,2 = 2 - [2(1 + k )  + k2]e-', 

Letting 8 ( t )  vary quadratically along the characteristics, we get 

along the t characteristic and 

along the 7 characteristic. In terms of S p ,  1 ,  S p , 2 ,  we get the right-hand side of Eqs. (7.3) 
and (7.4) to be 

and 

respectively, where, if the PI version of the method of characteristics is used to evaluate 
the solution at F and G,  



CHARACTERISTIC-BASED SCHEMES FOR DISPERSIVE WAVES. 1.. . . 489 

To facilitate comparison with other schemes, this can be rearranged as the rather 
cumbersome explicit, one-step formula 

L 

(6, - 26M + 6 B ) ,  1 1 - k - (1 + k)eP2" 
3k - 2 + ( 2  + k)e -2k  

(7.5) 

We shall call this the predictor-corrector (Simpson) or PC(S) scheme. For small k, the 
coefficients in the PC(Sj and OPT schemes agree to sufficient terms that the truncation 
error remains third order. There is very close agreement between the two, as can be seen 
from the dispersion (Fig. 19) and error (Fig. 20) plots. 

A comment, however. is in order here. It was found that when the first step in the 
two-stage schemes was taken to be operator splitting, we got a much degraded result with 
respect to other coupled scheme solutions. Rephrased, we find that operator splitting is 
not good for large k, whether by itself, in conjunction with, or as part of another scheme. 

Now, if we let 6( t>  vary piecewise linearly along the characteristics, we get the 
right-hand side of Eqs. (7.3) and (7.4) as 

which results in the predictor-corrector (trapezium) or PC(T) scheme, given by 

L -1 

The results are plotted in Figs. 21 and 22. The dispersion characteristics are. very similar 
to those of the other coupled schemes (Fig. 21).  The accuracy attained is second-order, 
as can be observed from Figs. 22(a) and 22(b). It appears to give satisfactory results up 
to fairly large k. 
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0 0.5 1 2 0 3  

-0.2 x 
FIG. 19. 
schernc. k = 0.25,0.5,1.25,2.5,5.0, 12.5,50. 

Propagating specds and damping ratios for the PC(S) [ predictor-corrector (Simpson)] 

However, if we let 8( t )  be a constant along the characteristic, the constant value being 
that at the midpoint, we obtain the predictor-corrector (midpoint) or PC(M) scheme given 
by 
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491 

the solution error in q versus the stiffness factor k for the C(S) 
[ predictor-corrector (Simpson)] scheme. The solid line has a slope of 3. (b) L z  norm of the solution 
error in t9 versus the stiffness factor k for the PC(S) [ predictor-corrector (Simpson)] scheme. The 
solid line has a slope of 3 .  (See Table I for a key to lines and symbols.) 

(7.10) 
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FIG. 21. 
scheme. k = 0.25,0.5,1.25,2.5,5.0,12.5,50. 

Propagating speeds and damping ratios for the PC(T) [ predictor-corrector (trapezium)] 

Its results are shown in Figs. 23 and 24. For large k ,  it  is unstable as is seen by the 
damping rate being greater than unity (Figure 23). We can see from Figs. 24(a) and 24(b) 
that we do tolerably well only for small k,  i.e., k < 2 or so. After that, we see the results 
deteriorate very rapidly as the coefficients approach incorrect values, especially T,, which 
grows with k when it should decay. 

The coefficients Rg, S g ,  To,  R,. S,, and T, for all the three predictor-corrector schemes 
are tabulated in Table Ill. Their polynomial expansions for small k are given in Table IV, 
while the asymptotic behavior of their coefficients is tabulated in Table V. As we had 
done for the decoupled schemes, we plot the bifurcation wave number versus k for the 
coupled schemes [OPT, PC(S), PC(T) and PC(M)] in Fig. 25. 
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FIG. (a) L ,  norm of the solution error in q versus the stiffness factor k for the PC(T) 
[ predictor-corrector (trapezium)] scheme. The solid line has a slope of 2. (b) L2 norm of the solution 
error in 0 versus the stiffness factor k for the PC(T) [ predictor-corrector (trapezium)] scheme. The 
solid line has a slope of 2. (See Table I for a key to lines and symbols.) 

VIII. CONCLUSIONS 

The hyperbolic heat equations have been studied as a model problem in which dispersive 
wave behavior is caused by a source term that may also create stiffness. Analysis of these 
equations reveals that waves above a certain critical wave number should propagate, with 
a speed less than or equal to a frozen wave speed that represents the high wave number 
limit. Waves below the critical wave number are purely damped, as in regular parabolic 
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FIG. 23. 
scheme. k = 0.25,0.5,1.25,2.5,5.0: 12.5, SO. 

Propagating speeds and damping ratios for the PC(M) [ predictor-corrector (midpoint)] 

heat conduction. We have studied schemes for the numerical solution of these equations, 
restricting our attention to the simplest requirements, accurate computation of smooth flow 
using a characteristic mesh that follows the frozen wave speeds. 

We find that all methods that obtain their data only from the characteristic directions 
share certain defects. For non-stiff problems they are at best second-order accurate. For 
stiff problems, the highest wave numbers that can be resolved on any given mesh are either 
propagated at the frozen wave speed or else remain stationary and are wrongly damped. 
In numerical experiments those schemes that exhibited propagation errors did much worse 
that those that had damping errors. In particular, the method of operator splitting, which is 
very popular for analogous problems in practice, performed very badly. The best scheme 
we found was a form of the point-implicit method. 
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For the hyperbolic heat equations an exact solution is available in integral form for 
the general initial-value problem. Using numerical quadrature on this integral suggested 
the inclusion of information from the grid point that lies between the characteristics. For 
non-stiff problems, the inclusion of this point upgrades the truncation error to third order. 
For stiff problems, it allows time steps to be taken that are two orders of magnitude greater 
than the relaxation time. We conjecture that the essential function of this extra point is to 
introduce a coupling between the two families of waves. Strong evidence for this is that 
a simple predictor-corrector method that incorporates this coupling without exploiting the 
exact solution performs almost as well as a scheme based on elaborate analysis. 
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0 0.5 1 2 0 0  

FIG. 25. 
characteristics for thc OPT, PC(S), PC(T), and PC(M) schemes. 

Splitting into damped and propagating modes according to the coupled method of 

For all of our schemes, we present diagrams for the discrete dispersion relationships. 
Compdring these with the dispersion diagrams for the partial differential equations yields 
useful qualitative insights that correlate well with the outcome of numerical experiments. 

Currently, we are attempting to use the outcome of this study to guide our further 
efforts. In one direction, we continue to use the hyperbolic heat equations as a model, 
but we seek to solve them on a noncharacteristic grid, and to capture discontinuities by 
incorporating modern ideas on nonlinear filtering to remove the anomalous behavior at 
high wave numbers. We are also pursuing the use of characteristic grids, but for more 
complex systems of equations. In both cases, the preliminary results are encouraging, and 
we hope to present useful developments in due course. 

This work was supported in part by a University Consortium Agreement (NCA2-521) with 
NASA Amcs Research Center. The authors are gratcful to Dr. Helen Yee and Dr. Steve 
Deiwert for their support and encouragement. 

APPENDIX A: ANALYTICAL PROPERTIES OF THE 
HYPERBOLIC HEAT EQUATIONS 

In Sec. 1I.A the governing equations (2.5) and (2.6). viz., 

8, + qx = 0 ,  

Tq, + 8, = -9. 
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were derived. Their more basic and useful properties, especially those affording analogies 
with reactive flow, were obtained in Secs. 1I.B and 1I.C. Here, further properties are given. 

It is easy to eliminate either 8 or q from Eqs. (Al) and (A2). In either case, the remaining 
variable satisfies 

TU,, - u,, + u, = 0 ,  

where u is either q or 8, which is a version of the telegraph equation. In characteristic 
coordinates, Eq. (A3) is 

(A3) 

1 
47 

U l T  + -(u, + UT) = 0 ,  

which is a special case of Riemann's equation, introduced and intensively studied by him 
as part of his pioneering work on nonlinear compressible flow. It normally arises when 
the compressible flow equations are linearized by the hodograph transformation, and then 
the spatial coordinates have to be found as functions of the velocities. Equation (A4) is a 
simple example that arises in the special case y = 1. The analytical solution of Eq. (A4) 
is described in detail by von Mises (101; part of the account is repeated here for the light 
it sheds on numerical treatments. More general second-order hyperbolic equations can be 
investigated analytically by similar methods [ 121; the simple feature of this equation is 
that its Riemann function (defined below) is available in closed form. 

Assume that we have available a function n(l, 7) that satisfies the adjoint equation 

1 
47 

a,, - -(a, + a,) = 0 ,  

and use this to define two further functions 

It can then be verified that 

x,  + Y ,  = 0 

and hence that 

{ ( X d v  - Y d l )  = 0 

In) 47 9 

47 I n ) .  

around any closed circuit. The idea is to choose the circuit, and the boundary conditions 
on a, in such a way as to simplify Eq. (A6) as much as possible. 

Suppose we choose the circuit shown in Fig. 26; P is the point at which a solution is 
sought, PA, PB, OA, OB are characteristics and data is available along the lines OA, OB. 
Then 

L p X d 7  + l p Y d l  = I O A X d 7  + I o B Y d l .  (A7) 
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0 

FIG. 26. Riemann's solution. 

The correct choice of R is [lo] 

I t  can be verified that this does indeed satisfy Eq. (A5), and that furthermore 

n(51,771) = 1 ,  

5 - 51 

Therefore along r ]  = 71, R, - R/47 = 0, and along 5 = l1, R, - R/47 = 0. Now, 
armed with this information, we can integrate the left-hand side of Eq. (A7) to give 

Next, we attempt the same with the right-hand side. We can write 

or we can rewrite the integrand 
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If u is chosen to satisfy u,, + u/(47) = 0 on OA [and u l  + u/(47) = 0 on OBI, then 
the right-hand side gives 

leading to 

or 

It will be shown in Appendix B that this is actually the solution for q in the Riemann 
problem proposed there. Now let us  consider the circuit shown in Fig. 27. We will apply 
Eq. (A6) to PAB, which results in 

[ B p X d v + / , p Y d l + / , B ( X d v -  Y d l ) = O ,  

so that, if u is either 0 or q 

where the integral term is given by 

or, since 

a a  a 
at a5 a 7  + - 3  

- - _ -  

we get 

[nu, - uRr + ( u R / T ) ] ~ x  

Now, in the case where u = 0 we set i f r  = 8, = - q x ,  giving 

dx . 

and if u = q, we set u,  = qr = - ( l / ~ )  (q  + Ox), giving 
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P 

FIG. 27. Stencil for the method of characteristics. 

Up to this point, these integral equations are still exact. 

II. APPENDIX B: EXACT RIEMANN SOLUTIONS FOR 
THE HYPERBOLIC HEAT EQUATIONS 

We consider two semi-infinite rods, each in a different uniform state, placed end to end 
at t = 0. There are two cases: in case I the rods are at different temperatures, and there 
is no heat flow; in case I1 the temperatures are the same but different amounts of heat are 
flowing in each rod. We shall limit ourselves to discussing case I, since both q and 8 satisfy 
the same equation, given earlier as Eiq. (A4). Arbitrary initial data can be accommodated 
by superposing the two cases. The solution always features three regions (see Fig. 28): 
in region L we have 

8 = e L ,  

In region R we have 
q = 0 .  

8 = O R ,  

q = 0 .  

A 8  = P A q .  
Across S' we have from Eq. (2.21) 

So just behind S',  q = q', where 
4' = 7-"*(8+ - O R ) .  (B1) 

Now consider the 
resulting in 

characteristic just behind S+,  and substitute Eq. (Bl) into Eq. (2.19), 
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FIG. 28. Regions of solution. 

The solution to this is 

where the constant of integration comes from solving the homogeneous problem at t = 0. 
Because of Eq. (Bl), 

By applying similar arguments to S - ,  we find 

and 

In region M ,  the heat equations have to be solved under these boundary conditions. This 
has already been done in Appendix A. We repeat the results. 

Efficient polynomial approximations to ZO(Z) are available in [ 131, providing seven- or 
eight-figure accuracy, over the whole ran e of arguments. For very large arguments, the 
asymptotic expansion lo(z) = eZ(27rz) - 118 can be used to give the result 

In numerical work, the solution for x = 0 is particularly important, for example in 
Godunov's method. Then we have 
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The integrated heat flow across x = 0 during the interval 0 I t I A t  can also be found; 
the necessary integral is formula ( I  1.3.12) of [ 131, giving 

No closed-form analytic solution for 8 has been found. Instead, we numerically integrate 
Eq. 2.6, which we repeat here for convenience: 

7ql + ex = -4 .  

We know q ( x , t )  analytically [derived in Appendix A as Eq. (A9)]; hence qr is easily 
found to be 

Hence, we can integrate 8, numerically. It was found that the best numerical results 
were obtained by using Gaussian quadratures, and this is what we are using at present to 
compute the "exact" solution for 8 .  

For large times, an asymptotic expression, derivable from Eqs. (B3) and (2.6) is 

1 I 8 ( x , t )  = y(8, + 8,) + ? ( O R  - 8,) erf 

On x = 0, we always have 

e(o,t)  = : (eL + O R ) .  

APPENDIX C: EVALUATION OF INTEGRALS L, AND J, 

In Sec. VI.A., we had defined 
r B  

L,  = I x P R d x ,  
A 

where 
2 112 

= et12'L( t 2  - 7x  ) , 
4 7 2  

I0 being the modified Bessel function of order zero. 
This leads to the integral between the characteristics (as shown in Fig. 29) given by 

Putting 

7 II2x ( =  -- 
t 
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we get 

L P = (- -&)p+1ef1279,(k)  7 

where 

= I-: t P 4 ( k / G ) d t  

and still remains to be evaluated. Now, to integrate from A to B,  we need to set t = - A t ,  
which results in 

L,  = (2k7112)P+1e-k 9 , ( k ) .  (C2)  

Also, we had defined in Sec. V1.A 

J ,  = x P R f d x ,  
A 

where 

Thus 

Now, if we differentiate Eq. ( C l )  with respect to time, we get 

The left-hand side of Eq. (C4)  can be obtained via the chain rule on Eq. (C2)  as 

Thus we get the second part of Eq. (C3)  as 

2 112 

dIo(12 - 7 x  ) 
d x  472 - f i 7 ' R  I x p  d t  

ef127 

1/71" 

d9,(k) + [ 1 + (- I ) P ]  , 1 - ( p  + 1)9,(k) - k- 
dk 

= (2k7112)Pe -k7-  112 
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FIG. 29. Stencil for the integrals L ,  and J ,  

which results in the following expression for .I, 

d 9 p ( k )  + [ I  + ( -1)PI  . (C5) 1 J ,  = ( 2 k ~ * / ~ ) ~ e - ~ r - ” ~  [ k  - ( p  + 1)]9,,(k) - k -  [ dk 

Now, we have L,  and J ,  as functions of 9 , ( k )  in Eqs. (C2) and ((25). The solution to 
the integral 9 , ( k )  is given in [13] to be 

We need to evaluate these integrals for p = 0 and p = 2, which turn out to be 

( k  - I)ek + ( k  + 
k 3  9 2  = [ 

Substituting these in Eqs. (C2)  and (C5),  we get 

L~ = 27’”(1 - e - 2 k ) ,  

L2 = 8r3I2[(1 + k ) C Z k  - (1 - k ) ] ,  
Jo  = 2r-1/2[e-k - e - 2 k ]  

52 = 4 ~ ’ ” [ ( 1  + 2k)e-2k + 2k2ePk - I ] .  
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