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SUMMARY 
The effect of the substrate structure on the radiation properties of microstrip array feed networks is 
investigated with the space-domain integral equation approach. Numerical and analytical techniques are 
employed to produce efficient computer algorithms. Results for space and surface wave losses are presented 
for corner discontinuities printed on substratelsuperstrate, and two-layer substrate structures. Comparisons 
are made with the single-layer case. 

1. INTRODUCTION 

Planar integration of active devices with passive radiating elements offers many advantages such 
as reduced area and shorter interconnect lines. Unfortunately, such integration schemes suffer for 
a variety of reasons, including the availability of reliable models for passive circuits and radiating 
elements. In most monolithic array applications, the feeding structure and antenna elements 
are made of microstrip. Despite the advantages of the microstrip technology, radiation from 
discontinuities included in microstrip feed structures’-’ reduces the gain of the antenna, and 
deteriorates the array patterns. As a result, models for this loss mechanism on the array perform- 
ance should become an important part of the array design procedure. 

Microstrip arrays often have, for their protection, a cover or superstrate layer, which has also 
been reported to improve the gain of microstrip dipoles. This gain-enhancement technique, based 
on the elimination of surface waves, has been discussed extensively in the literature.x.’ As 
mentioned in this work, total elimination of the surface waves is not practicable with commercially 
available substrates; however, a moderate improvement in gain is realizable. Nonetheless, the 
presence of the superstrate, whether it is used in a planar array for improved performance or 
protection, must be considered carefully. In this planar configuration, the superstrate increases 
the substrate thickness, which may trigger higher radiation in the feed network. These higher 
losses can offset the increase in array gain and further complicate the design. Furthermore, 
superstrates reduce the operating frequency range by lowering the cut-off frequencies of the 
higher-order microstrip and surface wave modes. 

In this paper, a full-wave method of moments technique’ is employed to analyse the radiation 
properties of microstrip discontinuities often encountered in feeding networks printed on multilayer 
substrates. The space and surface wave  contribution^'^'^ are evaluated and it is demonstrated 
that the utilization of a superstrate may result in higher radiation losses and lower overall array 
gain. 

2. THEORY 

Consider the open microstrip structure having a multilayer substrate as shown in Figure l(a) or 
a superstrate shown in Figure l(b). The conductors are lossless and their thickness ( t )  is much 
smaller than a wavelength. The substrate is of thickness h ,  and is also assumed lossless. The 
electric field may be written in terms of the electric current density as shown below 
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Figure 1 .  Multilayer open microstrip geometry with and without a superstrate. (a) Microstrip discontinuity with multilayer 
substrate. (b) Microstrip discontinuity with superstrate 

E(x,y,z) = I i, [k:I + VV] * Gi(x,y,z/x’,y’,z’).J(x’,y‘)l,.=,, ds’ (i = 0,1,2) 

where ki and G,(x,y,z/x’,y’,z‘) are the wavenumber and dyadic Green’s function in region (i), and 

J(x’,y’) = Jx(x’,y’)i + J,(x’,y’))g (2) 

is the planar current density on the conducting strips. The components of the dyadic Green’s 
function used in equation (1) are expressed in terms of Sommerfeld  integral^','^ as shown below 

where 

p = V ( x  - x ‘ )2  + (y - yy 

and with Nee@), N&), f , (A) ,  and f2(A) given in Appendix A. In equations (3) and (4), f , ( A ) ,  
and f2(A) are analytic functions with discrete zeros. The contributions from these zeros give the 
power propagating in the substrate in the form of transverse electric (TE) and transverse magnetic 
(TM) surface waves, respectively. 

To obtain the electric current density over the conducting strips, the method of moments is 
ap~1 ied . I~  A rectangular region containing the microstrip discontinuity is subdivided into rectangles 
(see Figure 2) and the current is expressed as a superposition of known rooftop basis functionsih 
multiplied by unknown coefficients. 
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(b) ( 4  

Figure 2. Subdivision of (M)MIC area around corner discontinuity. (a) Typical discretization; (b) x-directed mesh; (c) y -  
directed mesh 

N, + I M x +  1 

where the pairs (n,,rn,) 
respectively. In addition, 

t i x =  I inx= I 

N,.+ I M,.+ I 

t i v =  I in . = I  

and (ny,rny) indicate the nodes in the mesh for the x- and y-current, 
the function fn,(c')  gives the longitudinal dependence of each component 

c 

while grnE(C1) gives the transverse dependence 

(9) 

In the above, I ,  = &+, - k,l,, and k,  is a scaling parameter chosen to vary between k, ,  (free space 
wavenumber) and k j  (wavenumber in the highest permittivity dielectric region). 

With the substitution of equations (7)-(10) into equation ( l ) ,  the original integral equation can 
be written in the form 
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where X,,(x,ylx',y')(~,< = x,y) are integro-differential operators given by 

a,, is the Kronecker delta, and F,, and F,, are functions of A of the following form 

In equations (11) and (12) the errors AE.,. and AE,. are introduced under the approximations made 
for the unknown current distributions in equations (7)-(10). The z derivative in equation (13) 
may be replaced by an < derivative resulting in the modified form for the operator Xs,: 

where %',,(z) is the first derivative of 2X2,(z) with respect to t .  In this manner, the first-order 
Bessel function in equation (15) is eliminated, and the p-dependence in all Sommerfeld integrals 
is in the argument of a zeroth-order Bessel function of the first kind. 

The application of Galerkin's method reduces equations (11) and (12) to a matrix equation 

where Z is the impedance matrix, I is the vector of unknown x and y current amplitudes, and V 
is the excitation vector. The impedance matrix is a square matrix containing four submatrices as 
shown below 

The elements of each submatrix are given by 
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where the pair (v,,p,)(‘ = x , y )  indicates the testing points. The terms Z,, and Zyy are called the 
direct-coupled terms because the direction of the testing field and the current component are the 
same, while the terms Z,, and Z,,, are the cross-coupled terms. 

The double inner product in equations (21)-(24) is of the form 

where S, and S’ represent the surface of the conducting strips. 

2.1. Evaluation of the impedance matrix 

The computation of the elements in the impedance matrix requires the evaluation of quadruple 
spatial integrals present in equation (25), as well as the semi-infinite Sommerfeld integrals in the 
Green’s function. The Sommerfeld integral are computed by a real-axis integration in the complex 
A-planel’ using an extraction of the singularities technique which effectively takes into account 
the contribution from the simple pole singularities of the integrand (see Figure 3). For a lossless 
substrate these poles lie on the real axis between the free space wavenumber (k, ,)  and the highest 
wavenumber of the other layers (MAX(k,,k,)). The residues of the poles correspond to radiated 
power in the form of TM and T E  modes propagating within the substrate layer. For the grounded 
substrate configuration, the TMo surface wave mode has no cut-off frequency. 

For simplicity in the computation, the semi-infinite Sommerfeld integrals are divided into two 
regions. A combination of numerical and analytical techniques is employed to evaluate the integrals 
in each region separately. The first region extends from 0 to the parameter A and the second 
from [A-a).  The parameter A is chosen to satisfy the condition 

A, = tanh (-hi) A 1 

where the index (i) refers to the electrically thinnest dielectric layer which is adjacent to the 
microstrip structure. When A is greater than A ,  simplifications made in the integrand of the 
Sornmerfeld integral result in improved accuracy and reduced numerical and computational effort. 

In view of the above, the elements of the impedance matrix may be written as 

2.1.1. Evaluation of Z?,. 
by the following expression: 

Considering equations (16), (25),  and (26), Z$,(n,m,v,p) is given 

i 
Figure 3. Real axis integration of Sommerfeld integral 
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where Z,,(A) and %,,(A) are integral operators given by 

The real-axis evaluation of the Sommerfeld integrals with simple pole singularities is given in 
Reference 17. As mentioned, the double inner products contain quadruple integrals which would 
result in unacceptable numerical error and excessive CPU time, if the integrations were performed 
numerically. This difficulty has been overcome by reducing the integrals to convergent series. 
Along these lines, the Bessel function and its derivatives may be written in integral form as 

I Cn 
@(x-x') c0s4~jACv-y') s in4  d,+ J , ) ( ~ P )  = .L J 27F -" 

Employing these relations the quadruple integrals can be reduced to quickly converging series as 
shown in Appendix B. The series are of the form 

where E,( = x,y(E # tJ), and p = v(Sy, - [,J2 + (( 
stantial savings of CPU time over numerical integration. 

- ( rnc)2 .  These summations result in a sub- 
pc 

2.1.2. Evaluation of q,. The contribution for the interval from (A,=)  can be written 
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where 

a2 q) = c [ (kf6,, + &) f a  + Zf4 Jo(AP) (40) 

When A is chosen according to equation (26), simplifications may be made in the integrand of 
the Green's function resulting in the expressions 

(41) XC-) = X ( = )  - X(A) 
5, s, 55 

where 

and 

In equations (42) and (43), f(A), h,,, and h,, are constants given by 

with 

for the case of a superstratehbstrate configuration. When the superstrate is not present E,,, and 
er2 are replaced by the quantities E ~ ) ,  and E,~,  respectively. 

Substitution of (41) into (36)-(39) gives 

The quantity containing X g )  can be handled in exactly the same manner as Z'&. The derivatives 
present in the double inner product involving Xk;) can be eliminated through integration by parts, 
resulting in the expressions 
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and 

In equations (50) and (51), pA-C; are functions of 5 and 5 given by 

2.2. Numerical considerations 

2.2.1. Formation of the impedance matrix. As mentioned in the previous section, the discretiz- 
ation of the entire (M)MIC surface enclosing the microstrip discontinuity (Figure 2) has been 
performed. The reason for this approach is two-fold. On one hand, it allows the maximum 
utilization of symmetry inherently present in the open microstrip problem as will be discussed 
shortly. Secondly, when the discretization is performed in this manner, other circuit elements 
printed on the same substrate may be analysed without the re-evaluation of the impedance matrix 
elements. For the desired microstrip element, a simple routine correctly fills the impedance matrix 
from these pre-existing elements according to the discontinuity shape and the known boundary 
conditions. Therefore, if a design is to be made on a specific substrate (such as GaAs or alumina), 
impedance matrix elements can be pre-computed and stored in libraries, and re-used indefinitely 
for the synthesis of the desired performance. However, i t  must be noted that for very large 
problems, solving the matrix can be as time-consuming as generating the matrix elements. 

The mesh of Figure 2 shows a total of (NjMi ) ,  (i = x , y )  node points resulting in a total of 
(N,M,)2 + (N,,M,.)’ interactions for the direct terms (Zx.,.,Z,.,.) and (N,M,N, .M,)  interactions for 
the cross-coupled terms (Z\..r,Z.,.,,). Fortunately, this number can be reduced significantly by 
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symmetry and reciprocity. From equations (21)-(25) it can be shown that the spatial dependence 
in the direct terms is an even function of the quantities ( x  - x ’ )  and (y - y ’ ) .  Furthermore, the 
cross-coupled interactions are odd functions of these quantities. Therefore, elements may be 
catalogued according to these properties, resulting in large reductions in computational effort. 
The number of elements computed for the particular submatrix Z,  is reduced to NjM,,(i,j  = x , y )  
which is the square root of the previously given numbers. This is not true for shielded microstrip 
where the position of the cavity or waveguide wall is reflected in the spatial dependence of the 
Green’s function. In this case, the interactions between subsections are not solely dependent on 
their relative position to each other, but also on their exact position in the cavity. 

A three-dimensional view of the impedance matrix is shown in Figure 4. The matrix is toeplitz 
and diagonally dominant with the diagonal elements being the largest contribution by an order of 
magnitude. The large values of elements off the diagonal results from interactions of adjacent 
cells and their location in the impedance matrix depends on the ordering of the nodes. 

2.2.2. Convergence with respect to the parameter A. The choice of the parameter A in equation 
(26), influences both the accuracy and numerical convergence of the network parameters. The 
CPU time increase linearly with A for the calculation of Z$<, while it is independent of A in the 
computation of Z2L.  Furthermore, the computer time for the computation of Z$< is significantly 
greater than the time required for Z&. Therefore, the value of A must be chosen as small as 
possible, while still achieving numerical convergence. Figures 5 and 6 show the convergence of 
the phase of Si2 and the radiated power as a function of A .  Table I shows the correspondence 
between the quantity A, defined in equation (26), and the parameter shown in the graph. As 
shown, the network parameters show no sensitivity to increasing A, above 0.95. Below A, = 0.9, 
the accuracy of the phase of S , ,  and the radiation loss gradually deteriorate until the estimated 
values become completely unacceptable at A, = 0.7. 

Figure 4. Impedance matrix 
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Figur.: 5. Convergence of the phase of S,,  as a function of the parameter A for a microstrip corner discontinuity 

( w  = 56 mil (1.42 mm), h,  = 56 mil (1.42 mm), c,] = 2) 
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Table I. Choice of A microstrip corner discontinuity of Figures 5 and 6 

A (10 GHz) 
All 

A, = tanh(-*.H) 

20 
24.8 
32.3 
39.6 
56.5 
80.6 

0.867 
1 -098 
1.472 
1.832 
2.647 
3.800 

0-7 
0.8 
0.9 
0.95 
0.99 
0.999 

2.3. Computation of network parameters and radiated fields 

The solution of the matrix equation yields the current on the microstrip conducting strips as 
shown in Figure 7 for a corner discontinuity. This current clearly shows the formation of standing 
waves and the edge effect. In this simulation 500 basis functions were used, and the computer run 
required 870.8 CPU seconds on an IBM RS 6000. The matrix inversion used 6.7 per cent of the 
total run-time. From the current distribution the network parameters may be computed as shown 
in Reference 7. The radiated fields may be obtained from the integral equation. This is done by 
applying a saddle-point integration technique as given in Reference 13. 

3. NUMERICAL RESULTS 

As discussed extensively in the literature,x the efficiency of a printed antenna depends on the 
shape and size of the antenna and on the electric size and consistency of the dielectric substrate. 
An extensive studyx.y has shown that the use of an appropriate combination of substrate and 
superstrate layers can improve the radiation performance by eliminating the surface waves. In 
monolithic array applications, where the individual antennas are fed by extensive feeding networks, 
an improvement in the radiation efficiency of the antennas by this technique will increase the 
parasitic radiation. As a result, the techniques for surface wave suppression have to be re- 
evaluated. 

In this paper, substratelsuperstrate and two-layer substrate combinations made of duroid 
(E, = 2.2) and GaAs (E, = 13), materials widely used in circuits, are considered and the effect of 
parasitic radiation is computed. Specifically, total radiation losses, and the percentages of surface 
wave and space wave power are evaluated as functions of the frequency and are compared to the 
single-layer substrate case. 

Substrate-superstrate configurution 
Figure 8 shows the total radiated power as a function of frequency for a right-angle bend printed 
on a 40 mil (1.02 mm) duroid substrate with and without a 16 mil (0406 mm) GaAs cover. 
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0.30 

13 
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Figure 7. Current on microstrip corner excited by gap generators: e,, = 2, h ,  = 56 mil (1.42 mm), w = 56 mil (1.42 mm) 
( N x  + N ,  = 500, 8704 CPU seconds). (a) x-directed current on corner; (b) y-directed Furrent on corner 

Single Layer (w=20 mil) 

Substrate-Supersnate (w=U) mil) 

The comparison shows clearly the effects of the superstrate from 10 GHz to 20 GHz. In the 
lower half of the frequency band, the superstrate tends to reduce losses slightly. However, at 
higher frequencies, the total radiated power has increased by 67 per cent owing to the presence 
of the cover. As Figures 9 and 10 indicate, this excess radiated power comes from the 
enhancement of space wave radiation which is very desirable in antennas. In monolithic arrays 
printed on single layer dielectric substrate a careful design of the feeding network could provide 
parasitic radiation much lower than the primary radiation from the array. The replacement of 
the single layer by a substratehperstrate configuration for array efficiency improvement could 
increase the power radiated by all the discontinuities included in the feeding structure substan- 



14 W. P. HAROKOPUS, JR.  AND P. B. KATEHI 

0.20 
0.15 - 

- 

............................ ......,...... (...... + ..... , , , I o.M , 
10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 

Frequency (GHz) 

Figure 9. Radiation loss for a microstrip corner discontinuity with a superstrate (h ,  = 16 mil (0.406 mm), h,  = 40 mil 
(1.02 mm), E,, = 13, E , ~  = 2) 
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Figure 10. Radiation loss for a microstrip corner discontinuity on a single layer ( h ,  = 40 mil (1.02 mm), E,, = 2) 

tially. As a result, the level of the total parasitic radiation could become unacceptably high and 
could deteriorate the array pattern substantially. 

In this case, two different comparisons are performed. At first the total power radiated by a 
right-angle bend printed on a 56 mil duroid is compared to the same bend printed on 40 mil 
duroid/l6 mil GaAs substrate and shows a 20 per cent increase at the upper end of the frequency 
band mainly coming from the enhancement of the space wave radiation (see Figures 11 and 
12). Much higher radiated power is observed when the geometry of the single-layer bend is 
modified to preserve the 100 s1 input/output port characteristic impedance of the two-layer 
case. The excess loss in this case is due to the effects of electrically thick substrates which have 
been reported in Reference 1. 

Two-layer substrate 

0.50 

one layer (w=u, mil) 

0.20 - 

0.00 I I 

8. 12. 16. 20. 

Frequency(GH2) 
Figure 11. Total radiation loss for a microstrip corner discontinuity with a two-layer substrate ( h ,  = 16 mil (0.406 mm). 

h, = 40 mil (1.02 mm), E,, = 13, E,* = 2) and with a single layer substrate ( h ,  = 56 mil (1.42 mm), E,, = 2) 
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Figure 12. Radiation loss for a microstrip corner discontinuity with a two-layer substrate ( h ,  = 16 mil (0.406 mm), 
h, = 40 mil (1.02 mm), E,, = 13, E , ~  = 2) 

In both of the above cases, the frequency range was chosen so that only one mode is excited in 
the substrate. Furthermore, the presence of the superstrate or of a second layer with a higher 
dielectric constant tends to reduce the power of the excited surface wave and increase the power 
radiated into space waves. These effects have to be taken into account when techniques for 
enhancement of the radiation efficiency are applied in arrays fed by extensive feeding networks. 

4. CONCLUSION 

Radiation losses for microstrip corner discontinuities printed on substrates with one and two 
dielectric layers, and/or a superstrate are presented. The losses were evaluated with a space- 
domain integral equation approach and were separated into space and surface wave components. 
It was found that a superstrate, often used for protection or gain enhancement of antenna elements, 
may increase the loss of the microstrip feed network considerably. This would result in lower 
overall gain. Therefore, a tradeoff exists between the enhancement of radiation from the antennas 
and the undesirable radiation in the feed network. 

Another comparison between a corner discontinuity on a single layer of duroid, and on a two- 
layer structure (GaAsIduroid) having the same total thickness, showed that the radiation losses 
were comparable when the conducting strips had the same width. However, it was found that the 
loss was influenced by the strip width. Specifically, when the width in the single-layer case was 
increased to create the same characteristic impedance as the two-layer case, the loss was substan- 
tially higher. 

APPENDIX A 

This appendix contains the functions included in the expression of the Green's function in equations 
(3)-(4). The functions are given below for three different substrate configurations. 

0 Substrate-superstrate configuration 
The functions for the substrate-superstrate geometry of Figure l(a) in the region (0 < Z < h , )  
are given by 
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with ui = Vk: - h2. The expressions f l ( h )  and f2(A) are the characteristic equations for surface 
wave modes given by 

f , ( h )  = uO[uI cosh(julhl) + u2coth(ju2h,) sinh(julhl)] 

+ uI[uI sinh(ju,h,) + u2 coth(ju2hl) cosh(ju,h,)] 

+ E, Iuo[e,2uI coth(ju2h2) cosh(ju,h,) + erIu2 sinh(ju,hl)] 

(A51 

(A61 

f 2 ( X )  = U ~ [ E , ~ U ~  sinh(ju,h,) coth(ju2h2) + er1u2 cosh(julh,)] 

Two-layer substrate 
The functions for the two-layer case in Figure l(b) for the region (2 > 0) are given by 

N,,(h) = [uI  cosh(ju,h,) + u2sinh(ju,h,) coth(ju,h,)] A 

[uI cosh(julhl) + u2coth(u2h2) sinh(julhl)] 

(A71 

(A81 

N&) = jerlu6[er2uI cosh(ju,h,) coth(ju2h2) + erIu2 sinh(ju,hl)] 

- ju:[ul sinh(julh,) + u2 coth(ju2h2) cosh(ju,h,)] 

[erZul coth(ju2h2) sinh(julhl) + erIuZ cosh(juIh,)] 

% 55. - 3  - 2s =e-i%: (A9) 

Single-layer substrate 
The expressions for the single-layer case may be obtained from equations (A5)-(A8). After 
some simplification they can be written as 

N&) = sinh(ju,h,)h 

X&) = j[(l - E,) sinh ju lh  cosh julh] h2 

f l ( A )  = u,,sinh j u l h  + u I  cosh ju,h 

f,(A) = E,.uocosh ju,h + u I  sinh julh 

APPENDIX B 

The quadruple integrals (25) for direct coupled x-x interactions can be written 

and for cross coupled x-y terms 

Employing the integral representation for the first-order Bessel function in equations (31 )-(32), 
the above may be simplified to the expressions 



RADIATION LOSSES IN MICROSTRIP ANTENNA FEED NETWORKS 17 

1 f-71 

%(A cos(+))9l(A sin(+))Q(A cos(+))Q(-A sin(+)) d+ 

The quantities 3 and Q are convergent series having the form 

where 

considering the integral representation for the zeroth-order Bessel function these expressions can 
be re-written as a summation of derivatives of the zeroth-order Bessel function appearing in the 
main text (equations (33)-(35)). 
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