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SUMMARY 
Most commonly used second-order-accurate, dissipative time integration algorithms for structural 
dynamics possess a spurious root. For an algorithm to be accurate, it has been suggested that the spurious 
root must be small and ideally be zero in the low-frequency limit. In the paper we show that good 
accuracy can be achieved even if the spurious root does not tend towards zero in the low-frequency limit. 
This permits more flexibility in the design of time integration algorithms. As an example, we present an 
algorithm that has greater accuracy than several other dissipative algorithms even though for all 
frequencies its spurious root is non-zero. We also show that the degraded performance of the Bazzi-p 
algorithm is not due to its non-zero spurious root. 

1. INTRODUCTION 

For many structural dynamics problems, it is desirable to integrate the equations of motion 
using a time integration algorithm that possesses numerical dissipation. Numerical dissipation 
helps control the non-physical high-frequency oscillations that are artefacts of standard finite- 
element modelling of the spatial domain. While numerically dissipative algorithms exist within 
the Newmark family of algorithms, it is well known that these dissipative methods are only 
first-order-accurate. To circumvent this loss of accuracy, numerous time integration methods 
have been developed that retain the basic algorithmic structure of the Newmark scheme and 
exhibit second-order accuracy and numerical dissipation, e.g. the a! method of Hilber, Hughes 
and Taylor (HHT-cY),’-~ the a! method of Wood, Bossak and Zienkiewicz (WBZ-U),~ the p 
method of Bazzi and Anderheggen ( P ) , ~  the 81 method of Hoff and Pahl (81)’.’ and the 
generalized-a, method recently developed by the authors. All of the above algorithms are 
unconditionally stable for linear problems and are clearly consistent since they are at least first- 
order-accurate. The basic difference between these algorithms and the Newmark algorithm is 
that the Newmark method is effectively a two-stage (or two-level) algorithm while the second- 
order-accurate dissipative algorithms are three-stage methods (see Reference 10 for the 
definition of a p-stage method). Three-stage methods have additional freedom, compared with 
two-stage methods, that enables high-frequency dissipation to  be achieved without sacrificing 
accuracy. However, along with this additional freedom the three-stage methods have a so- 
called spurious root. The spurious root has a strictly real value whereas for underdamped 
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systems the roots of the exact equation are complex. Therefore, the influence of the spurious 
root on the numerical solution must remain small if a three-stage algorithm is to maintain 
accuracy. The most direct approach towards minimizing the spurious root influence is to use 
an algorithm with a small spurious root or a spurious root that tends towards zero in the low- 
frequency limit. For algorithms used to solve first-order differential equations, Crandall " 
suggested monitoring of oscillatory solutions and time-step restrictions to bound the error 
induced by unstable spurious roots. In the analysis that follows, we show that the influence 
of the spurious root in three-stage methods does not depend exclusively on its magnitude. Thus 
an alternative approach exists to minimize the spurious root influence. 

2. ANALYSIS 

To study the effect of the spurious root, it suffices to consider the single-degree-of-freedom 
model problem: 

ii + 2EwU + ozu  = 0 
~ ( 0 )  = do 
U(0) = uo 

where u is the displacement E is the damping ratio, w is the undamped natural frequency, a 
superposed dot denotes differentiation with respect to time, and do and uo are the initial 
displacement and velocity, respectively. Three-stage methods for solving (1)-(3) may be 
written in the form 

I = A2Xn (4) 

where X f =  (d , , ,AtunrAtzan)  in which d,,, u,, and an are the respective approximations to 
u(t,,), U(t,,) and ii(t,), At  = tn+l - t, is the time step, n is the time step number and A1 and 
A2 are defined by a particular time integration algorithm. Multiplying both sides of (4) by A i ', 

Xn+1= AX, ( 5 )  

in which A is the 3 x 3 amplification matrix. Assuming the eigenvalues of A are distinct, the 
discrete displacement response expression in (5) may be written as 

d n  = CIA; + ~ 2 x 4  + C 3 X g  (6) 
in which the Cis are determined from initial conditions and X i  denotes the ith eigenvalue of 
A. Since algorithmic accuracy is of concern, we assume that the principal roots remain 
complex conjugate within the Nyquist sampling range, i.e. At/ T < 0.5, where T is the period 
of vibration. In (6), the roots are arranged such that A3 is the spurious root. 

The solution of (1)-(3) may be written in a form similar to (6): 

where c? = do, c; = (UO + Ewdo)/wd, XS = exp(- EwAt + iwA t )  and Xe2 = exp(- EwAt - iwdAt), 
in which a d  = ,/(1 - E2)w and i = ,/-1. 

Comparing (6) and (7), it can be seen that the influence of the spurious root on the 
displacement response is dictated not only by the magnitude of the spurious root but also by 
c3. Also, one may conclude that an algorithm can be spectrally accurate but still produce 
inaccurate solutions. That is, X1 and XZ may be quite similar to the roots of the exact solution 
(spectral accuracy), but errors in c1 and cz could result in poor solutions. 
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A numerical study of the Cis  was conducted for the HHT-a, WBZ-a, p,  61 and generalized-a 
algorithms. Also included was the trapezoidal rule algorithm since it has no spurious root 
and thus can be used as a baseline for comparison. In the low-frequency limit ( A t / T +  0), 
the spurious root is 0, 0, a/(a - l), (1 - p  - p z  -p3)/2, 0 and (1 -2poo)/(2 - p = )  for the 
trapezoidal, HHT-a, WBZ-a, p,  81 and generalized-a algorithms. respectively. Thus. the 
spurious root is non-zero for the dissipative forms of the WBZ-a, p and generalized-a 
methods. 

Given A, the C i s  may be computed given do, UO, dl and dz (see Reference 2). The following 
values were chosen for the model problem parameters: w = 27r, 5‘ = 0, do = 1 and uo = 1. The 
undamped case was chosen because the p method is only first-order-accurate when physical 
damping is present. Specific values of algorithmic parameters were chosen such that the 
spectral radius in the high-frequency limit was 0.8 for all algorithms except the trapezoidal 
rule, for which the spectral radius is unity for all frequencies. 

Figures 1-3 show the variation in the Cis  as a function of A?/T.  The coefficients c1 and cz 
are normalized with respect to C T  and cS, respectively. As expected, the values of trapezoidal 
rule coefficients are nearly the same as the exact values; more precisely, for the trapezoidal 
rule, c1 = c; and c3 = c4 = 0. Among the numerically dissipative algorithms, coefficient errors 
are smallest for the generalized-a method within the temporally resolved frequency region of 
engineering interest (At/  T < 0.1, i.e. at least ten time steps per period). Since the spurious root 
influence on the solution from one time step to the next is given by c3h3 (recall (6)), a fairer 
comparison of the spurious root influence is shown in Figure 4 which shows the variation in 
~ 3 x 3 .  With the exception of the p method, the value of c3A3 is similar for all dissipative 
algorithms shown. Of particular importance is the magnitude of ~ 3 x 3 ,  compared to the errors 
of c1 and CZ, the c3A3 error is particularly small. Therefore, the spurious root, even if non-zero, 
contributes little to the total error of the algorithms studied. 

In Reference 7, the p method was noted to have poor performance even when physical 
damping was absent; it was suggested that its non-zero spurious root is the cause of the large 
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Figure 1 .  Variation in CI coefficient of discrete displacement response expression 
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errors. From Figures 2 and 4, it can be seen that the substantial error in c2 is more responsible 
for the inaccurate computations obtained with the p method. To test this assertion, the model 
problem was solved using the generalized-a and p methods; the model parameters given 
previously were employed and A t = 0 - 1 .  The generalized-a method was chosen as the 
dissipative baseline algorithm because we have found it has the smallest error among the 
dissipative algorithm of this study. Also, a 'modified' p method was constructed by replacing 
cz of the p method with cz of the generalized-a method; the other values in the discrete 
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response expression (6) of the p method were not changed. While the modified p method has 
no direct three-stage counterpart, it provides a useful test of the relative influence of the c2 and 
spurious root error contributions. The displacement errors of these three algorithms are shown 
in Figure 5 .  Note that the error of the modified p method is nearly the same as the generalized- 
Q method. Thus, the poor performance of the p method is attributed to the error in c2 rather 
than its non-zero spurious root. 

At/T 
Figure 4. Variation in c3X3 of discrete displacement response expression 
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Figure 5 .  Displacement error time histories of generalized-a, p and modified p algorithms 



596 G. M. HULBERT AND J .  CHUNG 

0.18 

0.15 

0.12 

0.09 

0.06 

0.03 

HHT-a -- 
Generalized-a! - 

Trapezoidal rule ---- 

‘0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

t 

0 

Figure 6. Displacement error time histories of trapezoidal, HHT-a, WBZ-a 81 and generalized-a algorithms 

To further substantiate the unimportance of a non-zero spurious root in the low-frequency 
limit, displacement errors are compared in Figure 6 for the trapezoidal, HHT-a, WBZ-a, 81 
and generalized-a algorithms (the model problem employed is the same as described in the 
preceding paragraph). It may be seen that the error of the generalized-a method is closer to 
that of the trapezoidal rule than the other algorithms for which the spurious root is zero in 
the low-frequency limit; this is the expected result based upon the Ci errors shown in Figures 
1, 2 and 4. 

3. CLOSING REMARKS 

When designing time integration methods to solve structural dynamics problems, it is essential 
to assess the influence of spurious roots that are present in three-stage (and higher-stage) 
algorithms. While algorithms can be designed such that the spurious root is zero in the low- 
frequency limit, we have found that this design condition is too restrictive and not necessary 
to minimize undesirable spurious root behaviour. An alternative design requirement is to 
ensure that the c3 coefficient that multiplies the spurious root is small and tends to zero in the 
low-frequency limit. The generalized-a method is one such algorithm that possesses a non-zero 
spurious root yet exhibits better performance than other numerically dissipative algorithms 
studied in this paper. A more detailed discussion and comparison of the generalized-a method 
may be found in Reference 9. 
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