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Decentralized scheduling is the problem of allocating resources to alternative possible
uses over time, where competing uses are represented by autonomous agents. Market mech-
anisms use prices derived through distributed bidding protocols to determine schedules.
We investigate the existence of equilibrium prices for some general classes of scheduling
problems, the quality of equilibrium solutions, and the behavior of an ascending auction
mechanism and bidding protocol. To remedy the potential nonexistence of price equilibria
due to complementarities in preference, we introduce additional markets in combinations
of basic goods. Finally, we consider direct revelation mechanisms, and compare to the
market-based approach.Journal of Economic LiteratureClassification Numbers: C62,
C70, D44.

1. INTRODUCTION

Allocating resources with and for distributed computing systems presents par-
ticular challenges attributable to the decentralized nature of the computation.
Consider, for instance, the problem of scheduling network access for programs
representing various users on the Internet. In such an environment, system mod-
ules (user programs) represent independent entities (users) with conflicting and
competing scheduling requirements, who may possess localized information rel-
evant to their needs (such as the value they place on a particular schedule). To
recognize this independence, we treat the modules asagents, ascribing each of
them autonomy to decide how to deploy resources under their control in service
of their interests. We assume that the agents communicate via messages in which
they may convey some of their private information.

The challenges for a decentralized solution to the scheduling problem then
include: How do we manage message passing, reach closure, and determine the
final schedule? Further, since the value of alternatives depends on the information

* To appear inGames and Economic Behavior. Revised and extended version of “Some economics
of market-based distributed scheduling”, presented at theEighteenth International Conference on
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held privately by the agents,how do we elicit messages that contain the information
needed to formulate a desirable schedule?

The first problem is fundamental in distributed computing systems, due to the
asynchrony of communication. Imagine that Bob, based on what he currently
knows, announces “I want to use the conference room at 11 am”. Later, Bob’s
boss Alice announces “I want to hold a manager’s meeting to discuss merit raises
at 11 am in the conference room”. If Bob were permitted to send another message,
he might announce: “but any time before 2 pm is acceptable for me”. This new
message might change what Ted wants to announce, and so forth. A distributed
system to solve a scheduling problem based on message-passing needs to specify
which messages are admissible (have a well-formed syntax), when they may be
sent, and when closure (if ever) will be reached and a schedule formulated.

The second problem is the subject of the theory of mechanism design. Given
agents’ private information about resources and preferences, and some social
welfare critera, some schedules can be considered more desirable than others.
Then the problem is to design amechanism: to choose rules for formulating a
schedule based on received messages, and possibly for exchanging other resources
(e.g., money), that will induce the agents to reveal the private information needed
to determine the socially more desirable schedules.

Within this setting, a decentralized scheduling method can be analyzed accord-
ing to how well it exhibits the following properties:

� Self-interested agents can make effective decisions with local (private) infor-
mation, without knowing the private information and strategies of other agents.

� The method requires minimal communication overhead.

� The method reaches closure in reasonable time and at reasonable computa-
tional expense.

� Solutions do not waste resources. If there is some way to make some agent(s)
better off without harming others, it should be done. A solution that cannot be
improved in this way is calledPareto optimal.

(As suggested above, it might sometimes be appropriate to adopt some stronger
optimality criteria, based on a judgment about social value of the various agents.)
The four criteria above bring together central concerns of distributed computation
and mechanism design.

Straightforward distributed scheduling policies—such as first-come first-served,
shortest-job-first, priority-first, and combinations thereof—do not generally pos-
sess these properties. For example, queue-position schemes are insensitive to
relative value based on thesubstanceof the task being performed. On the other
hand, priority-based schemes beg the question of how to set priorities so that de-
sirable results follow. If self-interested agents are free to set their own priorities,
then without some incentive to the contrary, they will specify maximum priority
for whatever they are interested in.
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Citing such limitations, several have proposed that distributed resource alloca-
tion problems be solved via market mechanisms [6], an approach we have called
market-oriented programming(MOP) [39]. In MOP, we define agent activities in
terms of resources required and produced, reducing an agent’s decision problem
to evaluating the tradeoffs of acquiring different resources. These tradeoffs are
represented in terms of market prices, which define a common scale of value
across the various resources. The problem for designers of computational markets
is to specify the configuration of resources traded (formally designatedgoodsin
the market), and the mechanism by which agent interactions determine prices.

Assuming that a scheduling problem must be decentralized,markets can provide
several advantages:

� Markets are naturally decentralized. Agents make their own decisions about
how to bid based on the prices and their own relative valuations of the goods.
� Communication is limited to the exchange ofbidsandpricesbetween agents

and the market mechanism. In particular settings, it can be shown that price
systems minimize the dimensionality of messages required to determine Pareto
optimal allocations [13].
� Since agents must back their representations with exchange offers, some

mechanisms can elicit the information necessary to achieve Pareto and global
optima (or come within some tolerance of optimal) in some well-characterized
situations.

Of course, all of these benefits do not automatically accrue as a result of
setting up a market-like environment. Although the First and Second Welfare
Theorems [20] guarantee strong performance for some market mechanisms, these
results are formally restricted to rather special environments. Scheduling prob-
lems often exhibit complementarities and nonconvexities, which violate the ideal
conditions for the welfare theorems or for particular market protocols.

Prior work applying market-inspired mechanisms to scheduling [1, 12, 19, 36,
37] and other distributed resource allocation problems [6, 16, 34, 46] has produced
promising empirical results. Understanding the scope of these methods, and
developing a general design methodology for computational markets, however,
requires an analytical characterization of their properties. In our own MOP work,
we have adopted the framework of general equilibrium theory [20], and have
found that our computational markets behave predictably when conditions of
the theory are met [24, 39, 41]. We have also applied the approach to discrete
optimization problems—where the conditions guaranteeing desirable outcomes
are not satisfied—and have found (not surprisingly) that the methods sometimes
work, and other times break down [38, 40].

Since scheduling problems very often involve discrete (indivisible) resource
units, we have undertaken to analyze directly the behavior of computational market
mechanisms for such problems. We start by defining a general class of discrete
allocation problems, and characterizing some distinctions particularly meaningful
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in the scheduling domain. We show how some recent results in economic theory
apply to the scheduling problem, and report our own extensions and analysis.

In the next section, we motivate the work with a concrete example of a simple
factory scheduling problem. In Section 3, we provide a formal economic model
of a general version of the problem, and in Section 4 we relate some equilibrium
and optimality properties associated with the problem. In Section 5, we briefly
describe a general framework for auction protocols, and describe and analyze one
such protocol in Section 6. To address limitations of the basic market formulation,
we present an extended combinatorial market in Section 7, and a direct revelation
mechanism in Section 8. Finally, we consider future work in Section 9.

2. A FACTORY SCHEDULING ECONOMY

Consider a factory with an unscheduled day shift. There are eight one-hour
time slots, labeled 9:00 to 16:00 according to their respective end times. Slots
can be allocated for the production of customer orders. The factory has areserve
price for each time slot, representing the minimum price that the factory is willing
to accept in exchange for that time slot.

Assume each customer agent has one job it wants completed. An agent’s job is
defined by its duration (length), its deadline, and the value (expressed in dollars)
the agent places on the job. An agent is willing to spend up to this value to
complete its job. To do so, the agent must acquire a number of slots no less than
the length (not necessarily contiguous), no later than the deadline. The agent gets
no value if its job cannot be completed before its deadline. The global value of
a solution is the sum of values of the agents holding the goods, which is the sum
of the reserve price for each time slot that was not sold, plus the value associated
with each customer agent that meets its job deadline.

Example 2.1. The agents are shown in Figure 1.1 Since the sum of lengths
exceeds available factory time, it is not possible for all of the agents to produce
their orders. The allocation depicted in Figure 1 represents a global optimum.

Given an assignment of prices to goods, we can define an agent’s optimal choice
as a set of slots that complete the job at the minimum cost, or the empty set if the
the job could not not be completed for less than its value. The reader can verify
that at the prices shown in Figure 1, each agent makes a locally optimal choice in
the globally optimal allocation.

3. FORMAL MODEL OF THE SCHEDULING ECONOMY

1An interactive online demonstration of the ascending auction (Section 6) applied to this example
can be found athttp://auction.eecs.umich.edu/demos/factory.html .
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Time Span = 1 day

Reserve Price = $3/hr

Agent 4
value = $14.5
length = 4hr
deadline = 16:00

Agent 2
value = $16
length = 2hr
deadline = 11:00

Agent 1
value = $10
length = 2hr
deadline = 12:00

Agent 3
value = $6
length = 1hr
deadline = 11:00

$6.25 9:00

$6.25 10:00

$6.25 11:00

$3.25 12:00

$3.25 13:00

$3.25 14:00

$3.25 15:00

$3.25 16:00

Factory

FIG. 1. A factory scheduling economy. Lines connecting the agents to time slots represent one
feasible allocation.

We define a general discrete resource allocation problem in terms of the follow-
ing elements:

� G, a set ofn discrete goods,
� A, a set ofm agents, and? representing the seller or null agent,
� pricesp = hp1; : : : ; pni.

We assume that agents have quasilinear utility functions, meaning that their
valuations can be measured in terms of a common numeraire, which for conve-
nience can be taken to be “money”. Therefore, we can directly compare the utility
of different agents, and meaningfully treat the sum as a measure of global value.
Agentj gets utilityvj(X) +Mj for holding the set of goodsX ,X � G, andMj

units of money.
Let Hj(p) denote the maximum surplus value achievable by agentj at prices

p. That is,

Hj(p) � max
X�G

"
vj(X)�

X
i2X

pi

#
:

Note that for some prices, an agent may maximize its surplus with the empty set.
A solutionis a mappingf : G! A[ f?g, indicating which agent, if any, gets

each good. LetFj � fijf(i) = jg denote the set of goods allocated to agentj,
andF? � fijf(i) = ?g the set of unallocated goods inf .

The seller of goodi has utility equal to itsreserve valueqi if the good is
unallocated, or the money it receives for the good if it is allocated. Intuitively, the
reserve value denotes the value to the owner, or the “system”, of not allocating the
good to any agent. Different time slots could potentially have different reserve
values; for instance, a factory may have a higher reserve price for evening hours
to cover overtime expenses.
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The global valueof a solution,v(f), is the sum of the agent values achieved
and the reserve value of goods not used by agents,2

v(f) �
X
i2F?

qi +

mX
j=1

vj(Fj):

We measure the system value of a solutionex post, that is, conditional on knowing
all agents’ valuations. A solution isoptimalif no other solution has higher value.

In the remainder of this article,we present market schemes and auction protocols
for this very general resource allocation problem. However, the theoretical results
and examples we present focus on particular subclasses of scheduling problems
where each agent has one job to complete. For these problems, we associate each
agentj with a job length�j , and1 � Kj � n deadlinesd1j < � � � < d

Kj

j and

value levelsv1j > � � � > v
Kj

j . The valuevj(X) of a set of goodsX is vkj if dkj is
the earliest deadline such thatX includes at least�j time slots no later thandkj .
For convenience we represent the time slots as integers, starting from one. Note
that although the domain ofvj(�) comprises allO(2n) possible time-slot bundles,
for the scheduling problem this value function can be encoded compactly in terms
of O(Kj) deadlines and values.

If �j = 1 for all j, we call the scheduling problemsingle unit. Problems
violating this constraint aremultiple unit. If each agentj has a single deadline
(Kj = 1), we call the problemfixed deadline. If Kj > 1 for somej (i.e.,
j accrues greater value for finishing the job sooner), then we call the problem
variable deadline.

4. PRICE EQUILIBRIA

Definition 4.1. [price equilibrium] A solutionf is in equilibriumat prices
p iff

1. For all agentsj, vj(Fj)�
P

i2Fj
pi = Hj(p).

2. For alli, pi � qi.
3. For alli 2 F?, pi = qi.

Intuitively, this definition states that in equilibrium, each agent (including the
seller) gets an allocation that maximizes its utility given the current prices. Equi-
libria sometimes exist, and are generally not unique. Consider Example 2.1. The
solution shown, with only agent 3 receiving no goods, is in equilibrium at the

2Because all agents have utility that is linear in money, the total value obtained from money is
constant and hence can be ignored.
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set of prices suggested, with slots 9:00, 10:00, and 11:00 each having a price of
$6.25, and all other slots having a price of $3.25. The same solution is also in
equilibrium with respective prices of $6.50 and $3.35, and many other combina-
tions. The equilibrium solution has value $40.50, which is optimal. Indeed it had
to be, as demonstrated by the following result.

Theorem 4.1. For the general discrete resource allocation problem, if there
exists ap such thatf is in equilibrium atp, thenf is an optimal solution.

Proof. Bikhchandani and Mamer [3] and Gul and Stacchetti [11] provide
proofs for an exchange economy without reserve prices. A slight extension
accounts for reserve prices.

Let f be in equilibrium at pricesp, and letf 0 be an alternative solution. By the
definition of solution value, we have

v(f) =

mX
j=1

vj(Fj) +
X
i2F?

qi:

Since in equilibrium the price of unallocated goods is equal to the reserve value,

v(f) =

mX
j=1

vj(Fj) +
X
i2F?

pi

=

mX
j=1

vj(Fj) +
X
i2G

pi �
X

i2GnF?

pi:

For all goods, equilibrium prices must be at least as high as reserve values.
Therefore,

v(f 0) �

mX
j=1

vj(F
0
j) +

X
i2F 0

?

pi

=

mX
j=1

vj(F
0
j) +

X
i2G

pi �
X

i2GnF 0

?

pi:

Let P =
P

i2G pi. Rearranging the above expressions, we have

v(f) =

mX
j=1

0
@vj(Fj)�X

i2Fj

pi

1
A+ P;

v(f 0) �

mX
j=1

0
@vj(F 0

j)�
X
i2F 0

j

pi

1
A+ P:
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TABLE 1.
A problem with no equilibrium. Adapted from a demonstration [22] that price equilibria

may not exist in the FCC market for radio spectrum.

Name Job Length Deadline Value

Agent 1 2 2 $3
Agent 2 1 2 $2

By the definition of equilibrium,Fj maximizes the term inside the parentheses, for

each agentj. Thus, we must have thatv(f) � v(f 0).

This result confirms the usual consequence of competitive equilibrium: that no
further gains from trade are possible and so the result is Pareto optimal. Since
we assume that agent values are expressible in price units, Pareto optimality
corresponds to global optimality.

Example 4.1. There are two agents as described in Table 1, and the reserve
price of each good is zero.

The optimal solution,f(1) = f(2) = 1, is not in equilibrium at any prices, and
indeed no equilibrium exists in this case. Ifp were in equilibrium, thenp1 � $2
andp2 � $2, otherwise agent 2 would demand one of the goods. But if these
inequalities hold then agent 1 would not demand the two time slots it requires.

In this example, the nonexistence of equilibrium prices is due tocomplemen-
tarities in agent preferences. Agent 1 considers the two time slots complementary
in that it values one iff it has the other. Complementarities cannot arise in the
single-unit scheduling problem.

Lemma 4.1. For all instances of the single-unit scheduling problem, there
exists a unique price equilibriump� such that for any other price equilibriump,
p�i � pi, for all i.

Proof. An exchange economy characterized by quasilinear utilities for single
goods always has a unique minimum equilibrium price vector in the sense de-

scribed [33]. The single-unit scheduling problem is a special case.

Theorem 4.2. Any optimal solution to the single-unit scheduling problem
(fixed or variable deadline) is supported by a price equilibrium.

Proof. By Lemma 4.1, the single-unit scheduling problem always has at least
one price equilibriump. By Theorem 4.1,p supports an optimal solution. Sincep
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supports an optimal solution, it can be shown that all optimal solutions must be sup-

ported byp [3, 11].

Together, Theorems 4.1 and 4.2 establish that a solution to the single-unit
scheduling problem is optimal iff it is supported by a price equilibrium. Exam-
ple 4.1 demonstrates that relaxing the single-unit restriction immediately leads to
the possibility that an equilibrium will not exist. For the general setting, Mil-
grom [23] shows that a single complementarity is sufficient to prevent a price
equilibrium. In the scheduling case, it is easy to show that whenever there is one
agentj with �j � 2 and valuation for some deadline exceeding the corresponding
reserve prices, we can construct an example without an equilibrium, using�j � 1
additional agents with single-unit jobs.

In addition to the single-unit restriction of Theorem 4.2, we can identify a
few other conditions that guarantee the existence of equilibrium. If all agents
have additive preferences over goods then an equilibrium exists.3 Additivity of
preference is one sufficient condition forgross substitutability—if the price for
one good goes up, demand does not go down for any other good—which in turn
guarantees the existence of equilibrium [14]. Bikhchandaniand Mamer [3] present
some other technical conditions for existence of equilibrium, which do not seem
to be immediately expressible in scheduling terms.

Finally, note that in an equilibrium for the scheduling economy, prices for
differently allocated time slots must be nonincreasing with their time indices.

Theorem 4.3. Letf be a solution for the scheduling economy, in equilibrium
at pricesp. If i 2 Fj for anyj, thenpi0 � pi for all i0 < i, i0 62 Fj . If i; i00 2 Fj ,
i < i00, butpi < pi00 , then the price vector̂p = h: : : ; pi�1; pi00 ; : : : ; pi00�1; pi; : : :i

is also an equilibrium.

Proof. First, ifpi0 < pi, then agentj could obtain greater surplus by replacingi
with i0. Second, swapping the prices clearly does not affectj’s surplus. Moreover,
it does not open any opportunities for improvement by other agents, since the cost
of obtaining any number of slots by a deadline in the[i; i00] interval can only have in-

creased.

5. AUCTION PROTOCOLS

We use the termprotocol to refer to amechanism, along with agentbidding
policies. The mechanisms we consider are generically calledauctions. McAfee
and McMillan provide the following definition [21]:

3Note that preferences are not additive in the multiple-unit scheduling problem. However, equilib-
rium would exist if agents had additive preferences for completing multiple single-unit jobs.
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An auction is a market institution with an explicit set of rules determining resource
allocation and prices on the basis of bids from the market participants.

This definition includes the well known English open-outcry and first-price sealed
bid auctions—commonly used to sell art and to award procurement contracts,
respectively—as well as a broad range of other mechanisms, including fixed pric-
ing, Dutch auctions, Vickrey auctions, commodities markets, and the ascending,
combinatorial, and Generalized Vickrey auction schemes described in Sections 6
through 8.

In order to place some structure on the space of possibilities,and also to provide a
common interface to agents, we define a somewhat restricted, but still very general
auction mechanism.

1. Agents send bids to the mechanism to indicate their willingness to exchange
goods.

2. The auction may postprice quotesto provide summarized information about
the status of the price-determination process.

Steps 1 and 2 may be iterated.
3. The auction determines an allocation and notifies the agents as to who pur-

chases what from whom at what price.

The above sequence may be performed once or repeated any number of times.
Auctions can be differentiated across many parameters including,but not limited

to, those concerning: matching algorithm, price determination algorithm, event
timing, bid restrictions, and intermediate price revelation [25, 30, 45]. One
of the most important distinctions is whether an individual auction allocates a
single resource, or several at once. The latter type, calledcombinatorial auctions
(Section 7), accept bids referring to combinations of basic goods.

We have implemented the Michigan Internet AuctionBot4 [44], a configurable
auction server that implements a broad class of mechanisms, defined by a paramet-
ric characterization of auction design space. The AuctionBot provides interfaces
for human and software agents to create and participate in auctions. Currently the
AuctionBot supports the major classical (single-resource) auction types, including
the mechanism for the ascending auction protocol described in Section 6.

In order to predict auction outcomes, we must consider the agents’ presumed
bidding policies, which in turn we might base on some model of their beliefs
and preferences. In some auction contexts we are able to determine analytically
that a particular bidding policy is part of a Bayesian-Nash equilibrium, or even
the dominant strategy. In other settings we rely on experimentation and rules of
thumb based on economic principles to determine reasonable bidding policies.5

4http://auction.eecs.umich.edu
5Our analysis is from the standard noncooperative perspective, which assumes that agents do not

directly coordinate their bidding.Collusion has been an issue in the FCC spectrum auctions; anti-
collusion measures are considered in that context, for example, by Milgrom [23].
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The auction mechanisms we discuss are decentralized in the sense that each
agent calculates its own bidding strategy, based on local information. Single-
resource auctions, as in the ascending auction protocol, are further distributed in
that allocations for each good can be computed separately.

6. ASCENDING AUCTION

We define the ascending auction protocol for the general discrete resource
allocation problem. Separate auctions determine prices for each of the goods.
Agents submit successively higher bids to the auctions, and auctions immediately
report price quotes to all interested agents upon receiving a bid. We allow that
agents and auctions operate asynchronously, that is, we impose no bound on the
relative times that agents take to compute and send bids, or auctions to compute
and send price quotes. Nor do we assume any ordering on bid actions, other than
explicitly stated. (As a consequence of this asynchrony and flexible ordering, the
protocol is nondeterministic.) When the bidding stops (i.e., the protocol reaches
quiescence[42]), each auction allocates its respective good to the highest bidder
at the price the agent bid, or the good is retained by the seller if there are no bids.

6.1. Bidding Rules
At any point in time, thebid price in the auction for goodi, denoted�i, is

the highest bid in the auction thus far. If auctioni has received no bids,�i is
undefined. Auctioni’s ask price, denoted�i, is �i + �, for some fixed�, if �i is
defined. Otherwise, the ask price isqi.

The ascending auction rejects any bid less than its ask price. Agents are not
allowed to withdraw bids. An agent may replace its bid with another, but the new
bid must be at least the current ask price. These rules guarantee that prices do not
decrease and that the bidding process terminates.

6.2. Agent Bidding Policies
When an agentj enters the market, it bids the ask prices for the set of goods,

X , that maximizes its surplusHj , based on the current ask prices (breaking ties
arbitrarily). As other agents continue to bid, agentj may lose some of its bids.
When this occurs,j bids the ask price on the set of goods that maximizes its surplus,
assuming that it can obtain the goods it is currently winning at their bid prices.
For the single-unit scheduling problem, whenever an agent is not already winning
a bid, it simply bids the ask price for the single good that maximizes its surplus at
the ask prices. If no good would provide it with a positive surplus, then the agent
“drops out” of the auction. For the general multi-unit variable-deadline problem,
the surplus-maximizing bids can be computed by a straighforward algorithm in
O(n(log n+Kj)) time.

This bidding strategy is quite simple, involving no anticipation of other agents’
strategies. For the single-unit problem, such anticipation is unnecessary, as the



12 WELLMAN, WALSH, WURMAN, AND MACKIE-MASON

TABLE 2.

A multiple-unit problem (Example 6.1).

Name Job Length Deadline Value

Agent 1 2 2 $20
Agent 2 2 3 $8
Agent 3 1 3 $2

agent would not wish to change its bid even after observing what the other agents
did. This is called theno regretproperty [3], and means that from the agent’s per-
spective, no bidding policy would have been a better response to the other agents’
bids. The no-regret property doesnot hold, however, for the ascending auction
in the multiple-unit scheduling problem, regardless of the bidding strategy [3]. In
general, an agent might perform better, for example, through accurate prediction
of the other agents’ behavior. In the absence of a basis for prediction, however,
the simple strategy proposed may indeed be reasonable.

6.3. Analysis of the Ascending Auction
Let pi denote the price fori. Under the ascending auction rules, when the

protocol reaches quiescence,pi = �i if defined, otherwisepi = qi.
It is possible that the ascending auction can determine prices that differ from an

equilibrium of a multiple-unit scheduling economy by arbitrarily large amounts.

Example 6.1. The bid increment is� = $1 and the reserve prices are zero.
The agents are described in Table 2.

Although there are many equilibrium price sets (one of which isp1 = $8,
p2 = $8, andp3 = $1), the ascending auction may not find an equilibrium.
Agent 2 could bid up good 3 until�3 > $2 while it and agent 1 both bid up the
prices on 1 and 2. The reader can verify that any equilibrium must have agent 3
winning good 3 at a price no greater than$2.

In the multiple-unit scheduling problem, the ascending auction can produce
allocations that are arbitrarily far from optimal.

Example 6.2. There are two agents as shown in Table 3. Reserve prices
areq1 = $1 andq2 = $9, and the bid increment is� = $1.

If agent 2 places its bids first, it will bid $1 for 1 and $9 for 2. Agent 1 will then
bid $2 for 1. The bidding will stop with good 1 allocated to agent 1 and good 2
allocated to agent 2. This solution has a value of $3 yet the optimal solution, with
2 unallocated, has a value of $12. It is easy to see—by increasingq2 andv2 by the
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TABLE 3.

A multiple-unit problem (Example 6.2).

Name Job Length Deadline Value

Agent 1 1 1 $3
Agent 2 2 2 $11

TABLE 4.

A single-unit problem (Example 6.3).

Name Job Length Deadline Value

Agent 1 1 2 $6
Agent 2 1 3 $7

same amount—that the ascending auction can produce a solution that is arbitrarily
far from optimal.

If we restrict each agent’s requirement to a single time slice, then by Theorem 4.2
an equilibrium exists. However, the ascending auction protocol is not guaranteed
to reach an equilibrium even with this restriction.

Example 6.3. The bid increment is� = $1. The reserve prices areq1 = $4,
q2 = $3, andq3 = $3. The agents are described in Table 4.

It is possible that agent 2 may bid first, for 2. Then�2 = $4. Agent 1 will
then bid $4 for either 1 or 2. If it bids for 1 then the bidding will stop and agent 1
will win 1 for $4 and agent 2 will win 2 for $3. But sincep2 = $3 < p1, agent 1
would maximize its surplus by demanding 2 at the final prices. However, the
bidding rules prohibit any readjustment towards an equilibrium. The auction does
not allow agent 1 to withdraw its bid for 1, and hence the final allocation violates
condition 1 of the definition of equilibrium.

It is not hard to see that the potential failure to reach equilibrium can be
demonstrated for any positive value of�, no matter how small. Nevertheless,
unlike the multiple-unit problem, we can bound the distance from the equilibrium
price vector by��, where� = min(n;m).

Theorem 6.1. For the variable-deadline, single-unit scheduling problem, the
final price of any good determined by ascending auction protocol will differ from
the unique minimum equilibrium prices by at most��.
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Proof. Demange et al. prove this result for the ascending auction protocol in
an exchange economy where buyers want no more than a single item from a set

of available goods [7]. Such is the case for the single-unit scheduling problem.

Consider again Example 6.3. The solution shown has a value of $16. If agent 1
had received good 2 and agent 2 had received good 3 then the value of the solution
would be $17, which is optimal. However, the solution can be suboptimal by only
a bounded amount.

Theorem 6.2. The ascending auction protocol with a given� produces a so-
lution to the variable-deadline, single-unit scheduling problem that is suboptimal
by at most��(1 + �).

Proof. Let f be the allocation reached by the ascending auction andf� an
optimal allocation.pi is the price found fori in the ascending auction, andp�i the
unique minimum equilibrium price fori (recall that Lemma 4.1 and Theorem 4.2
established that a unique minimum price vector exists and supportsf�). Let
ei = p�i � pi. From Theorem 6.1 we know thatj ei j� ��.

Let F andF � be the set of goods allocated inf andf�, respectively. The
degree of suboptimality is

v(f�)� v(f) =

0
@X
i2F�

?

qi +

mX
j=1

vj(F
�
j )

1
A�

0
@X
i2F?

qi +

mX
j=1

vj(Fj)

1
A

=
X

i2F�

?
nF?

qi �
X

i2F?nF
�

?

qi +

mX
j=1

vj(F
�
j )�

mX
j=1

vj(Fj): (1)

In the single-unit problem, an agent bids for the good that maximizes its surplus.
In the solution allocation, this surplus must be at least the surplus it would get
from any other good at the ask price, otherwise the agent would have bid for that
good instead. In particular, it is at least that it would get from its good inf� at the
ask price. Therefore, when the ascending auction stops, aggregating over agents,

mX
j=1

vj(Fj)�
X
i2F

pi �

mX
j=1

vj(F
�
j )�

X
i2F�

�i

�

mX
j=1

vj(F
�
j )�

X
i2F�

(pi + �);
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since�i � pi + �. Rearranging, and using the facts thatF n F � = F �
? n F? and

F � n F = F? n F
�
?, we have

mX
j=1

vj(F
�
j )�

mX
j=1

vj(Fj) �
X
i2F�

(pi + �)�
X
i2F

pi

=
X

i2F�nF

pi �
X

i2FnF�

pi +
X
i2F�

�

=
X

i2F?nF
�

?

pi �
X

i2F�

?
nF?

pi +
X
i2F�

�: (2)

Goods unallocated inf must have prices equal to their reserve prices,X
i2F?nF

�

?

pi =
X

i2F?nF
�

?

qi: (3)

Goods unallocated inf� must have minimum equilibrium prices equal to their
reserve prices, X

i2F�

?
nF?

p�i �
X

i2F�

?
nF?

(pi + ei) =
X

i2F�

?
nF?

qi: (4)

Substituting (2), (3), and (4) into (1) gives

v(f�)� v(f) �
X

i2F�

?
nF?

(pi + ei)�
X

i2F?nF
�

?

pi

+

0
@ X
i2F?nF

�

?

pi �
X

i2F�

?
nF?

pi +
X
i2F�

�

1
A

=
X

i2F�

?
nF?

ei +
X
i2F�

�:

The total error is maximized whenei = �� for all i 2 F �
? nF?. Since there can

be at most� goods inF �
?nF? andF �, this yields an upper bound on the total error:

��(1 + �).

Computing the clearing and price quotes is trivial in the ascending auction.
Communication costs dominate the run time, which can therefore be measured
in terms of the bids required. Because bids increase by a fixed increment, the
number of iterations is inversely proportional to�. Hence, in choosing the value
for �, we trade off solution value for communication efficiency.
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We have shown that the simple bidding policy is reasonable for individual
agents, and produces allocations with desirable system properties in the single-
unit problem. The results do not provide strong support for this simple policy
in the multiple-unit problem. Other strategies, such as jump bidding—where
an agent bids in large increments for sets of goods to signal its willingness to
aggressively pursue that set—may provide potential advantages to individuals or
the system. However, it is an open question as to whether there exists a policy for
the ascending auction (or any complete protocol) that always finds (within some
tolerance) an equilibrium when it exists.

6.4. Incremental Auction Closing
In the basic version of the ascending auction mechanism, we close the auctions

simultaneously, once the bidding process reaches quiescence. In a variant, we
close one or a few at a time, reopening the bidding process after each close.
Once an auction closes, the commitment of the winning bidder to buy the good is
finalized, and the price paid constitutes a sunk cost. This may cause the bidder
to reassess its decisions about other goods, and bid in auctions it had previously
dropped out of.

Example 6.4. Reconsider Example 6.2, with agents described by Table 3,
andq1 = $1 andq2 = $9. As pointed out above, the ascending auction may reach
a solution with good 1 allocated to agent 1 for $2 and good 2 allocated to agent 2
for $9. This solution has value $3.

If we close the auction for good 2, then agent 2 treats its payment as sunk, and
so now values good 1 at $11. Therefore, with bidding on good 1 reopened, it will
clearly outbid agent 1. If we instead close good 1 and reopen bidding on good 2,
nothing changes.

In this example, the resulting allocation has value $11—still suboptimal, but an
improvement over the original allocation. Indeed, it can be shown that incremen-
tally reopening bidding on the last good can only improve solution value. With
one good left, the agents value the good according to its marginal contribution to
overall value, and so the situation is as for a single-good English auction.

It is also easy to see that incremental auction closing can have no effect in the
following cases:

1. For single-unit problems, sunk costs are irrelevant, and so no agents bid in
reopened auctions.

2. If the allocation represents a price equilibrium, no agent will change bids
after auctions are closed.

Thus, in situations where the ascending protocol is known to work well, we do
not expect that incremental closing will degrade quality. In general, however,
reopening bidding after some auctions close can have positive or negative effects.
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TABLE 5.

Reopening bidding after one auction closes can degrade solution quality (Example 6.5).

Name Job Length Deadline Value

Agent 1 1 3 $5
Agent 2 3 3 $12

Example 6.5. Consider two agents as described by Table 5. Let reserve
prices beq1 = $8 andq2 = q3 = $2, and the bid increment be $1. After the initial
bidding process, the ascending auction may reach a result where agent 1 obtains
slot 3, and agent 2 obtains slot 2, at prices of $2 each. At this point agent 2 drops
out, as the minimum cost to complete its job would exceed its value. The value of
this solution is $13.

If we close auction 2, agent 2 treats this cost as sunk, and now compares the
incremental cost favorably to its job’s valuation. It then may enter bids on goods
1 and 3 at $8 and $3, respectively. However, agent 1 will rebid, offering $4 for
good 3. The result at this point is a solution with value $5. This is the final result
if we close auction 3. If instead we close auction 1, then agent 2 will again reopen
bidding in light of the sunk cost, this time ultimately winning, for a solution value
of $12.

It is clear from the examples above that changes in solution quality depend
critically on the order that auctions close. Unfortunately, in general we cannot
tell which order will be advantageous, without knowing the agents’ private infor-
mation. Consider Example 4.1, with� = 0:5. It might well result with identical
prices for both goods, at prices 1.5, with one agent winning each. Closing the
auction in which agent 1 is winning would lead to an improvement after sunk
costs are discounted, whereas the other would not. However, there is no way to
tell which this is, based solely on the quiescent state.

7. COMBINATORIAL MARKETS

The ascending auction performs well for single-unit allocation problems. At
the end of Section 3 we note that the single-unit restriction is only one sufficient
condition for existence of a price equilibrium. However, even when equilibria
exist for a multiple-unit problem, the ascending auction may not find one, as
shown by Example 6.2. Further, as Example 4.1 demonstrates, many scheduling
problems cannot support allocations with any price equilibrium.

In light of these limitations, several have proposedcombinatorial auctionmech-
anisms, where agents submit bids for combinations of goods [2, 4, 17, 29, 31, 43].
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Such mechanisms operate in a variety of ways, typically calculating allocations
and prices as a function of bids for all the combinations. Prices may refer to
individual goods, or to entire bundles.

One of the drawbacks of combinatorial auctions is their potential computational
complexity. Withn goods, there are2n combinations, which can entail complex
calculations for both the agents and the mechanism. Typical formulations of the
mechanism’s computational problem are NP-Complete, but may admit heuris-
tic search procedures effective in practice in certain environments [8, 32]. As
Rothkopf et al. [31] point out, moreover, restricting the set of allowed combina-
tions can preserve computational tractability.

We pursue a strategy similar in spirit to the restriction approach, presenting a
reformulation of the problem that extends the price system in a controlled way,
without admitting an exponential number of markets. The reformulation expands
the class of problems solved by price equilibria, and suggests corresponding
auction protocols for determining these prices.

7.1. Problem Formulation
As in the original formulation, we posit

� G, a set ofn discretebasic goods, and
� A, a set ofm agents, and? representing the seller or null agent.

Rather than impose a price system over the basic goods, however, in the revised
combinatorial formulation we introduce an expanded set ofmarket goods,G0. A
market good is a pair,(y; z), denoting a bundle ofy time slots no later than timez.
More specifically, this bundle contains the time slotz (i.e., the basic good indexed
z), and an indeterminate set ofy � 1 slots strictly beforez.

The configurationG0 consists of all(y; z) pairs such that1 � y � z � n, and
y � l. The price system for this formulation assigns prices to all

Pl
i=1(n�i+1) =

l(n � l
2
+ 1

2
) = O(ln) market goods inG0. We denote the price of(y; z) by

p(y; z). We generally require that prices bemonotonein the number of time slots,

for all y � y0 � z; p(y0; z) � p(y; z): (5)

A solution is defined as in the original formulation, a mapping from basic goods
to agents. Amarket allocation, � : G0 ! A [ f?g, is an assignment of market
goods to agents. Let�j � f(y; z)j�((y; z)) = jg denote the set of market goods
allocated to agentj. We say that a market allocation� is consistent witha solution
f if f gives each agent what it is promised by�. That is, for allj 2 A, k � n,

jGk \ Fj j =
X
i�k

�
y if (y; i) 2 �j

0 otherwise:

whereGk � f1; : : : ; kg is the set of basic goods with index less than or equal to
k.
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Note that although a scheduling agentj obtaining a market good(y; z) cannot
be sure exactlywhichtime slots it will receive, its utility is completely determined
by whether it obtains enough time slots to finish its job, and if so, by what deadline.
Specifically, the valuej achieves by using market good(y; z) is

v0(y; z) �

�
v
k(z)
j , wherek(z) = minfkjdkj � zg if y � �j

0 otherwise:
(6)

LetY (�; d) denote the number of slots guaranteed by deadlined by a set of market
goods�, andY (�) � Y (�; n) =

P
(y;z)2� y the number of slots guaranteed

overall. The maximum surplus thatj canensureby purchasing market goods at
pricesp is given by6

H 0
j(p) � max

�

2
4max

d
v0(Y (�; d); d)�

X
(y;z)2�

p(y; z)

3
5 : (7)

Definition 7.1. [temporally consistent prices] A monotone price functionp

is temporally consistent7 if

1. For ally � z � z0, p(y; z) � p(y; z0).
2. For ally0 � z0 � z; y = y0 + y00 � z, p(y; z) � p(y0; z0) + p(y00; z).

Lemma 7.1. If p is a temporally consistent price function, the maximum
surplus can be achieved with an allocation containing at most one market good,

H 0
j(p) = max

�
0;max

z
[v0(�j ; z)� p(�j ; z)]

�
:

Proof. Letd and� be the deadline and set of market goods, respectively, max-
imizing the surplus term in (7). Ifd > 0, eitherY (�; d) � �j or all applicable
prices are zero. In the latter case, or whend = 0, the lemma is satisfied trivially.
Thus, let us supposed � Y (�; d) � �j . The value of the goods received is then
v0(�j ; d). With temporally consistent prices, any� ensuring this value must cost at

leastp(�j ; d).

7.2. Equilibrium and Efficiency

Definition 7.2. [combinatorial price equilibrium] A market allocation� is
in equilibriumat pricesp iff

6Note that agents have a chance of doing better—or worse—by purchasing goods withy > �j and
higherz values.

7Cf. the related notion of temporal consistency we observe in equilibria of the original formulation,
by Theorem 4.3.
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1. For all agentsj, maxd v
0(Y (�j ; d); d)�

P
(y;z)2�j

p(y; z) = H 0
j(p).

2. For all(y; z), p(y; z) � minfB�Gz:jBj=yg

P
i2B qi:

3. There exists a solutionf consistent with� such that

(i) for all j,
P

(y;z)2�j
p(y; z) �

P
i2Fj

qi;

(ii) for all (y; z)such thatjGz\F?j � y,p(y; z) � minfB�Gz\F?:jBj=yg

P
i2B qi:

We call any solution serving the role off in the definition above animplementing
solutionfor �.

The first, central requirement for equilibrium is that agents maximize surplus
at the given prices. Here we dictate that the allocations the agents get maximize
their surplus given the market-good prices.

The conditions relating market prices to reserve prices are complicated by the
indeterminate relationship between market and basic goods. We require that the
price of a market good be at least the minimum consistent reserve price, else the
sellers would not part with the constituent basic goods. For market goods actually
allocated, we require the price to exceed that of basic goods comprising it in a
consistent solution. And when a market good could be satisfied by basic goods
unallocated in this solution, the reserves of those goods define an upper bound on
its price.

Example 7.1. Reconsider Example 4.1, with parameters illustrated by
Table 1, and zero reserve prices. Although no price equilibrium exists for the
original formulation, we can support the optimal solution with a combinatorial
price equilibrium. Letl = 2, and consider pricesp(1; 1) = p(1; 2) = 2:1, and
p(2; 2) = 2:9. The allocation�1 = f(2; 2)g, �2 = ; can be implemented by
the solution giving agent 1 both basic goods, which satisfies the combinatorial
equilibrium conditions at these prices. Note that no combinatorial equilibrium
can support any other allocation.

Unlike in the basic configuration, however, combinatorial price equilibria are
not necessarily efficient.

Example 7.2. Consider an extension of the previous example, described by
Table 6 (with zero reserve prices). The problem has a basic equilibrium, withp1 =
p2 = 1:6, and agents 2 and 3 each getting one of the slots. This optimal solution
is also supported by the combinatorial equilibrium pricesp(1; 1) = p(1; 2) = 1:6,
andp(2; 2) = 3:2. However, the nonoptimal solution where agent 1 gets both
slots is also in equilibrium, at pricesp(1; 1) = p(1; 2) = 2:1, andp(2; 2) = 2:9.

Moreover, the degree of suboptimality is not usefully bounded—even without
reserve prices. We can extend Example 7.2 to obtainn-agent problems where
equilibrium solutions are a factor ofn � 1 worse than optimal. On the positive
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TABLE 6.

A problem with both optimal and suboptimal combinatorial equilibria.

Name Job Length Deadline Value

Agent 1 2 2 $3
Agent 2 1 2 $2
Agent 3 1 2 $2

side, optimal solutions supported by price equilibria in the original formulation
are retained (albeit not uniquely) in the combinatorial formulation.

Theorem 7.1. If in the original formulation,f is in equilibrium at pricesp,
then in a combinatorial formulation withl = 1, the allocation�((1; z)) = f(z)
is in equilibrium at pricesp(1; z) = pz.

Proof. Let f be the implementing solution for�. For the case ofl =
1, the surplus maximization criterion and conditions comparing prices to re-
serve prices are identical to those in the original formulation (Definition 4.1).8

Lemma 7.2. If � is in equilibrium at temporally consistent pricesp, then the
market allocation̂� defined by

�̂j =

�
; if Y (�j) < �j

f(�j ;minfd : Y (�j ; d) � �jg)g otherwise

is also in equilibrium at these prices. Moreover, iff is an implementing solution
for �, then the solution̂f defined by

F̂j =

8<
:

; if jFj j < �j
Fj if jFj j = �j

argmaxF�Fj :jF j=�j
P

i2F qi otherwise

has the same value asf .

Proof. By Lemma 7.1, each agent can maximize its surplus with a single mar-
ket good of the form specified for̂�, with surplus no less than that obtained from�.
Since� is in equilibrium, the surplus must beexactlythe same. The implementing
solution for�̂ is f̂ , obtained fromf by deleting the minimum-reserve-price extra-
neous goods (if any) from each agent’s allocation. By construction, if these goods

8We can extend this result to allowl > 1, by setting prices for combinations to the maximum
allowable by temporal consistency.



22 WELLMAN, WALSH, WURMAN, AND MACKIE-MASON

really are extraneous, they must have zero reserve prices, and by temporal price
consistency the third condition for equilibrium (Definition 7.2) must hold for�̂ and
f̂ . By the same token, deallocating goods with zero reserve prices has no effect on

solution value.

Definition 7.3. [monotone reserve prices] A scheduling problem exhibits
monotone reserve pricesiff qi � qi0 for all i � i0.

Lemma 7.3. If � is in equilibrium at monotone pricesp for a scheduling
problem with monotone reserve prices, then� is also in equilibrium at temporally
consistent priceŝp, defined by

p̂(1; 1) = p(1; 1)

p̂(1; z) = min(p(1; z); p̂(1; z � 1)); 2 � z � n (8)

p̂(y; z) = min(p(y; z); p̂(y � 1; z � 1) + p̂(1; z)); 2 � y � z � n:

Proof. The transform described lowers prices only when an alternative way of
achieving the same task value exists, hence it provides agents no opportunity to
improve their surplus. By monotone reserve prices and the anchoringp̂(1; 1) =
p(1; 1), the reduction in single-unit prices (8) does not violate the restriction that

goods be priced above their minimum reserve.

By Lemmas 7.2 and 7.3, and given monotone reserve prices, we can restrict
attention to allocations of at most one market good per agent, at temporally
consistent prices.

Theorem 7.2. If G0 is a market configuration for a scheduling problem with
monotone reserve prices, andl � maxj2A �j , then there exists an equilibrium
allocation that is optimal forG0.

Proof. Let f be an optimal allocation with all unallocated slots as early as
possible, and no extraneous slots allocated. That is, ifi 62 F?, then the solution
obtained by removingi from the allocation is not optimal, nor is the solution
obtained by swappingi and i0, for any i0 2 F?, i < i0. Define the market
allocation�j = f(jFj j;maxi2Fj i)g if Fj 6= ;, �j = ; otherwise.

Construct a version of theassignment problem[15, 18] as follows. The set of
source entities to be assigned,S, consists of agents, the seller, and a dummy seller
for each unallocated good:

S = A [ f?g [ f�iji 2 F?g:
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These entities are to be matched with a target set,T , consisting of goods assigned
in the optimal allocation (including nulls), one for the seller agent, and unallocated
slots:

T = f�j jj 2 Ag [ f?g [ F?:

Agents inS have preferences for elements ofT based on their value functions, with
value for market goods given by (6), for single (unallocated) slots as if a single-
unit market good, and zero value for null goods. Sellers inS value elements of
T based on reserve prices, accordingqi to (unallocated) sloti,

P
i2Fj

qi for j’s
market good in the optimal allocation, and zero to null goods.

The assigment that maps agentj to �j , ? to ?, and�i to slot i is clearly
an optimal solution to this problem; any superior assignment would correspond
immediately to an improved allocation to the original problem. As Koopmans
and Beckmann [15] (and many subsequently) have shown, it follows that this
assignment can be supported by a set of prices such that each source entity gets
at least as much surplus from the target element it is assigned as from any other.
Leonard [18] further shows how to construct the lowest prices supporting this
allocation.

To obtain our combinatorial price equilibrium, we start with these lowest prices
supporting the optimal assignment. Note that these prices must satisfy temporal
consistency (Definition 7.1), since any violation would provide a way for a source
entity to improve its assignment. We can then assign prices to the remaining
(not allocated) market goods to be as great as possible, while preserving temporal
consistency. Ifp(1; 1)has not been defined,we set its price at some arbitrarily large
value exceeding all agent valuations.9 Starting from(1; 2), we price the as-yet-
unpriced market good(1; z) atp(1; z � 1). Continuing from(2; 1), for unpriced
(y; z) we setp(y; z) = min(p(y; z � 1);miny=y0+y00 p(y

0; z) + p(y00; z � 1)).
In addition to ensuring temporal consistency, this pricing procedure ensures that
no unallocated market good can be obtained more cheaply than it could have
been through purchasing target elements of the assignment problem. Since these
elements are priced in an assignment equilibrium, we know that the agents would
not prefer to choose an alternative. Thus, the first condition for combinatorial
price equilibrium (Definition 7.2) is established.

The conditions on prices compared to reserves are ensured by including the
seller agents in the assignment problem. Any market good assigned to an
agent must have been priced higher than the sum of its reserve prices (con-
dition 3(a)). And since the prices supporting the assignment of unallocated
slots to the dummy sellers are the lowest possible, with the seller? assigned
zero surplus, the prices of unallocated slots must equal their reserves. There-
fore, by temporal consistency, no market good achievable through unallocated
slots can be priced above ths sum of reserves (condition 3(b)). Finally, the

9We could also cap this and other values to ensure that no good is priced at more than a good
necessarily comprising a superset of its time slots, without changing the argument.
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second condition is also ensured by the method of pricing unallocated slots

and market goods, and of maximizing prices subject to temporal consistency.

7.3. Combinatorial Auction Protocols
In future work, we intend to define and analyze combinatorial protocols analo-

gous to the ascending auction. A straightforward implementation of this protocol
is not well-defined for the combinatorial case, as basic goods may be assigned to
various market goods. Accordingly, we must define allocation and price quote
policies as a function of combinations of bids for alternative goods, not just indi-
vidual market goods. Such protocols have been proposed for the case of general
combinatorial bidding by Parkes [28] and Wurman [43]. We also plan to inves-
tigate adaptations to this scheduling problem of other mechanisms proposed for
combinatorial settings [2, 4, 29].

Since combinatorial auctions can support suboptimal equilibrium solutions, it
can be disadvantageous to open combinatorial markets when equilibria exist in
basic goods. A natural approach would be to start with markets in basic goods,
and open combinatorial auctions only if the protocol does not reach equilibrium.
We can apply this incrementally, progressively increasingl until an equilibrium is
reached. Of course, this presumes we have a way to detect equilibrium states, or
at least some indication of whether opening additional combination markets will
be beneficial.

8. GENERALIZED VICKREY AUCTION

The preceding analysis characterizes the performance of multiple ascending
single-good auctions for the scheduling problem, and the prospects for combinato-
rial auctions. Neither is guaranteed to produce optimal solutions to all scheduling
problems. Another mechanism, the Generalized Vickrey Auction (GVA) [35],
does find efficient schedules for all of our problems. Although the main results
are not new, we briefly present the GVA because it takes an important place in
our spectrum of mechanisms for scheduling. We also provide a new result—
stronger properties for the GVA in a particular class of scheduling problems—and
an observation on the computational complexity of decentralization.

The GVA is a direct revelation mechanism (DRM), and thus is not a price system.
Rather, it computes overall payments for agents’ allocations that sometimes, but
not always, translate into meaningful prices for individual goods. If agents play
Bayesian-Nash or dominant strategies, any desirable choice function that can be
implemented by a mechanism can be implemented by a DRM, so the appeal of
this type of mechanism is quite powerful.10 The GVA can implement optimal
solutions for multi-unit scheduling problems, as well as extended versions of the

10Specifically, the GVA is a DRM relying on dominant strategies in the class of Groves [10] and
Clarke [5] mechanisms. Green and Laffont have shown under rather general conditions that when
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problem involving, for example, multiple jobs or externalities (i.e., values for one
agent that depend on the allocations obtained by other agents).

8.1. Bidding Rules
Recall thatvj is agentj’s actual utility function. Each agent announcesv̂j , its

alleged utility function. The circumflexes are used to indicate that the agent is not
constrained to be truthful, that is, it may be thatv̂j 6= vj . The auction knows the
reserve values,qi. After receiving the bids, the GVA returns an allocation, and a
vector of positive or negative payments to be made to the agents.

8.2. Allocation Rules and Optimality
Recall that a solution is a mappingf , and the value of a solution is given by

v(f). The auction mechanism:

1. Computes a solution,

f� = argmax
f

X
i2F?

qi +

mX
j=1

v̂j(Fj): (9)

2. Computes payments to agents,

Vj �W�j(f
�)� Pj(v̂�j); (10)

where

W�j(f
�) =

X
i2F�

?

qi +
X
s6=j

v̂s(F
�
s );

Pj(v̂�j) = max
f

X
i2F?

qi +
X
s6=j

v̂s(Fs): (11)

TheW�j component represents the total reported value for agents other thanj at
the solutionf�. The residual paymentPj could be any function of other agents’
reported valuations. However, we restrict attention here to the formula (11).

Given this allocation rule, truthful bidding of the utility function,v̂j = vj , is a
dominant strategy [35]. The GVA computes the optimal allocation based on the
bids, and since all bids are truthful, the allocation is globally optimal.

Example 8.1. Consider the setup of Example 7.2 (Table 6). If the agents
truthfully report their value functions, the auction mechanism finds an optimal

agents have quasi-linear preferences, the only efficient social choice functions that are implementable
in dominant strategies are those that are implementable by Groves-Clarke mechanisms [9].
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solution: f�(1) = 2, f�(2) = 3. It then calculatesW�1 = 4, W�2 = 2, and
W�3 = 2. Agent 1 receives total value0+ [4�P1], agent 2 receives2+ [2�P2],
and agent 3 receives2 + [2 � P3]. Agents are willing to participate (that is,
vj(Fj)+Vj � 0) as long asPj � 4 for j 2 f1; 2; 3g. Using (11),P1 = 4 (agent 1
pays $0),P2 = P3 = 3 (agents 2 and 3 pay $1), and the mechanism has a net
revenue of $2.

Recall that on this same example, the single-good ascending auction protocol
does not guarantee convergence, and the combinatorial scheme admits inefficient
equilibria.

8.3. Limitations on the GVA
A mechanism isindividually rational if no agent can be worse off from par-

ticipating in the auction than had it declined to participate.11 A mechanism is
budget balancedif the net payment over all agents is nonnegative. Generally,
these, along with optimality, are the properties we desire when agents play their
equilibrium strategies in a mechanism. However, Groves-Clarke mechanisms are
not always guaranteed to be budget-balanced: they may require an outside in-
jection of resources (subsidy). Further, even when a social choice function can
be implemented with a budget-balanced Groves-Clarke mechanism, we cannot
guarantee that rational agents will agree ex post to participate in the allocation.

For our scheduling problem, we can show that itis possible to obtain all three
desirable properties if the mechanism designer knows the reserve values,qi, for
each time slot. The payment functionVj(pj) from (10) and (10) transfers to agentj

the net value increment to all other agents that results fromj’s participation in the
auction. Agentj’s only effect on others is that it may get time slices that others
desire, so its participation always makes other agents weakly worse off. Thus,
Vj is nonpositive for allj, and the auction mechanism runs a surplus. In this
situation the GVA is essentially an ideal mechanism for the scheduling problem,
if the computational cost is not too high (see Section 8.4).

Theorem 8.1. If the GVA uses the payment functionW�j � Pj then the
individual rationality constraint is satisfied and the net monetary payments to the
auction mechanism are nonnegative.

If instead theqi are the private information of seller agents, then the mechanism
needs to elicit this information to satisfy all of the desirable properties. Myerson
and Satterthwaite [26] proved that no mechanism can obtain more than two out of
the three desired properties for bilateral exchange problems.

11Individual rationality can be defined in three different ways, depending on how much information
has been revealed to the agent before it must commit to its participation decision. We limit our
discussion to the strongest form,ex postrationality, which implies voluntary participation even after
all agents know the proposed allocation.
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Example 8.2. [Bilateral exchange] Suppose there is one buyer, who has a
single-unit job with deadline 1 and valuev. Let the seller be an agent, with reserve
valueq1. Supposev > q1. The GVA would induce truthful reporting ofv and
q1, give the good to the buyer, require the buyer to payq1, and payv to the seller.
Although the mechanism is individually rational and would produce the optimal
allocation, the auction would run a deficit ofv � q1.

In any case, it is easy to show that for all scheduling problems in our class, it is
possible to achieve any two out of three of the desirable properties.

8.4. GVA Computation
For a general problem, the heart of the GVA allocation mechanism requires

the auction to solve a possibly complex (e.g., nonlinear, nonconvex, integer-
constrained) optimization problem multiple times. As a baseline for computational
efficiency, we note that Neapolitan and Naimipour [27] show that a simple central-
ized greedy algorithm solves the single-unit, fixed-deadline scheduling problem
optimally, in time�(m lgm). The GVA mechanism must solve multiple opti-
mization problems to process the bids: one to determine the optimal allocation,
and one for each agentj with its bid removed to determinePj . For a single-unit,
fixed-deadline problem we can use the centralized algorithm for each optimiza-
tion, with a total runtime of�(m2 lgm). Thus, inducing preference revelation
(and thereby obtaining full optimality) via straightforward implementation of the
GVA raises computational cost by a factor ofm.

If we remove the single-unit restriction, then any centralized algorithm that can
solve the scheduling problem optimally can solve the Integer Knapsack problem.
Hence the multiple-unit scheduling problem is NP-Complete.12 By the preceding
argument, distributing the multiple-unit problem via the GVA contributes a factor
of m to the computation.

9. DISCUSSION

We have presented two auction mechanisms—ascending single-good markets
and the GVA—that can compute optimal or near-optimal solutions to the single-
unit distributed scheduling problem in a computationally efficient manner. The
multiple-unit problem is significantly more difficult and entails a sharper tradeoff
among solution quality, computational efficiency, and the degree to which the
mechanism is decentralized. The computation performedby the ascending auction
is trivial, and can be distributed by goods. However, we cannot guarantee the

12Thus, solving it optimally is strongly believed to take time more than polynomial in the size of
its description. However, the problem is pseudo-polynomial since dynamic programming solves it in
time polynomial in the sum of all agent values (which, however, is exponential in the encoding of these
values).
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quality of solutions produced by this mechanism for the multiple-unit problem.
Combinatorial auctions support equilibria in cases where single-good markets do
not, but may also admit suboptimal solutions. It remains to be seen whether
we can design mechanisms for combinatorial auctions that produce desirable
outcomes for plausible agent behavior. The GVA always finds the optimal solution
and implements it in dominant strategies, but must in general solve multiple
combinatorial problems, and may require a subsidy when seller reserves are not
known.

The three categories of mechanisms investigated here can be viewed on a
spectrum,

single-good$ combinatorial$ direct revelation

where the mechanism’sscope of concernincreases as we move to the right. To-
ward the left, the overall mechanism decomposes into sub-mechanisms, where
each sub-mechanism has a limited scope (i.e., subsets of the resources, ultimately
singletons). For large-scale systems, we suspect that this decomposition is essen-
tial, as no single designer will even be aware of all of the resources of interest to
some of the agents. Even when we imagine that all concerns are covered (as for
direct mechanisms), the very use of monetary payments suggests that there exist
some other concerns not included (else what use is money?), assumed separable.
Thus, we suspect that mechanisms operating at all points of the spectrum will play
a role in computational markets for complex allocation problems.

We view this work as a first important step in developing a broad framework for
using markets to solve distributed scheduling problems. In order to move forward
we must identify broader classes of scheduling problems and design associated
mechanisms for which we can effectively predict agent behavior and analyze
resultant protocols. We do not expect to find a single mechanism that reaches an
optimal equilibrium in all situations where such equilibria exist. Instead we aim to
produce a suite of mechanisms that collectively cover a broad range of problems.
Ideally, we would like to be able to choose a mechanism for a given problem and
know that it will reach an optimal solution when one would be supportable, or
else perform acceptably in some other respect when this is not possible.
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