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Abstract

In an automated market for electronic goods new problems arise that have
not been well studied previously. For example, information goods are very flexi-
ble. Marginal costs are negligible and nearly limitless bundling and unbundling
of these items are possible, in contrast to physical goods. Consequently, produc-
ers can offer complex pricing schemes. However, the profit-maximizing design
of a complex pricing schedule depends on a producer’s knowledge of the distri-
bution of consumer preferences for the available information goods. Preferences
are private and can only be gradually uncovered through market experience.
In this paper we compare dynamic performance across price schedules of vary-
ing complexity. We provide the producer with two machine learning methods
(function approximation and hill-climbing) which implement a strategy that
balances exploitation to maximize current profits against exploration of the
profit landscape to improve future profits. We find that the tradeoff between
exploitation and exploration is different depending on the learning algorithms
employed, and in particular depending on the complexity of the price schedule
that is offered. In general, simpler price schedules are more robust and give
up less profit during the learning periods even though in our stationary envi-
ronment learning eventually is complete and the more complex schedules have
higher long-run profits. These results hold for both learning methods, even
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though the relative performance of the methods is quite sensitive to choice of
initial conditions and differences in the smoothness of the profit landscape for
different price schedules. Our results have implications for automated learning
and strategic pricing in non-stationary environments, which arise when the con-
sumer population changes, individuals change their preferences, or competing
firms change their strategies.

1 Introduction

Electronic goods are very flexible. In contrast to physical goods, marginal costs are
negligible and nearly limitless bundling and unbundling of these items are possible.
Consequently producers can offer complex pricing and bundling schemes that would
be infeasible for traditional commerce in physical goods. Suppose goods can be spec-
ified with a listing of A attributes, each of which can take on V > 2 values. Then,
if bundles of any number of such goods can be packaged together, there will be V4
different possible bundles. To add further complexity, there are many different pricing
structures. Considering only pricing structures that are based on the number of items
in a bundle, and not on the identity of the items, there are families of such pricing
functions with one free parameter, two parameters, and so forth. In the limit, the
most general pricing function for this problem has N parameters, where N is the total
number of different information goods under consideration. Within each family are
many possible functional forms (e.g., piecewise linear, polynomial, etc.), and different
profits can be obtained with different functions drawn from the same family.

Therefore, producers of electronic information goods have a daunting challenge:
How to explore the space of all possible bundles and price schemes to find the optimal
combination? Nonetheless, search over and experimentation with product bundling
and price structures are feasible in an agent-mediated economy, due to lower trans-
action costs. Our goals in this paper are thus two-fold: to learn something about
designing economically-intelligent agents, and to learn about the consequences of in-
teractions between today’s not-so-economically-intelligent agents as they search for
the best bundle/price niche.

It is generally true that a producer which has more free parameters to control
in pricing will be more profitable. What then is there to learn? Why not always
use unrestricted nonlinear pricing (a different, unconstrained price for every bundle
size)? It turns out that optimal pricing under more complex schemes requires more
knowledge about consumer preferences than is required for simple pricing schemes.
Learning about consumer preferences takes time; meanwhile, the firm is earning less
than the optimal profit. Furthermore, a complex price schedule may be more difficult
to explain to consumers and more difficult for consumers to evaluate so as to determine
their best response to these prices. If these costs are relatively high compared to the
additional profit the complex scheme could potentially provide, then the monopolist
is likely to settle on a simpler pricing strategy.

Uncertainty about consumer preferences affects many producer decisions. Early
papers in the economics literature studied how agents optimally choose between com-



peting opportunities of unknown reward, often referred to as multi-armed bandit
problems [Ber72, Wei79]. Agents weigh the tradeoff of gaining information by ex-
perimenting versus the cost of experimentation (such as foregone short-run profits).
The tradeoff between exploitation and exploration and the problem of how to deter-
mine the optimal sequence of actions over a period of time is a primary focus of the
reinforcement learning literature. [SB98| provides an excellent overview of this area.
Related to our paper, some authors have studied how a firm chooses a one-parameter
linear price when it faces uncertain consumer preferences[Rot74]. One author shows
that with incomplete learning, the optimal linear price may never be reached[GLS84].
We have looked at an information economy environment in which there is some simple
learning by both producers and consumers [JOKMMng].

There is also an extensive economic literature on how a firm can use multi-
parameter pricing schedules to extract greater surplus when the distribution of con-
sumers is known, but individual identities are not (or the firm is not allowed to tailor
individual-dependent prices). See [Wil93] for a thorough overview. [MR84] present a
method for deriving the most profitable unconstrained nonlinear pricing scheme when
consumers are differentiated by a single taste parameter. Most papers on related top-
ics assume that the distribution of consumer valuations are known by the firm. One
exception studied the tradeoffs between maximizing current profits (exploitation) and
charging lower prices in early periods to learn more about the consumer population
[BOY4].

Multiagent learning has become a popular research topic; examples of recent re-
search include the works collected in [Sen96] and [WS96]. [VD98a] examines the
problem of modeling other agents and discusses conditions under which this sort of
modeling is useful.

In this paper we use analytic methods to derive optimal prices under pricing
schemes of varying complexity for a model with complete information. We measure
the increase in profits as more parameters are controlled by the monopolist. We
show that the majority of the gains take place as we move from 1 to 2 parameters.
Simulations are used to explore a dynamic model in which the monopolist is uncertain
about consumer valuations and thus learns the optimal prices gradually and perhaps
imperfectly. The analytical solutions provide a benchmark for the maximum profits
that could be attained by the firm in steady-state. These simulations provide a
means of measuring the costs of a more complex scheme. As the complexity of a
pricing schedule increases, it takes longer to learn, but in some cases, particularly
that of two-part tariff, the transitional profits are still similar to those of the simpler
pricing schemes, due to the shape of the profit landscape. We also see that mixed
bundling tends to perform more poorly than two-part tariff, despite their identical
steady-state profits. We find that the choice of learning methods, and the choice of
initial conditions, strongly affect the speed of convergence, but more importantly for
our purpose, affect the magnitude of foregone profits during the learning period.



2 Agent Behavior With Complete Information

In this section we present our model and analyze consumer and producer behavior
when there is no value from learning. This allows us to present an hierarchy of
complex price schedules and to separate their differing abilities to produce profits
from the costs and benefits of learning. In Section 3 we introduce an opportunity to
learn, and then study the interaction between learning and pricing choices.

In our model a monopolist produces N items (articles) in each period. Consumers
have identical a priori subjective distributions of beliefs over article values. The
marginal cost of duplicating and delivering any item is zero. The offered price schedule
is denoted by a function 7'(Q)) specifying a payment 7 for a set () of delivered articles.
Consumers may not read all articles that are delivered (e.g., when they receive a
subscription or bundle).

2.1 Consumers

For reasons discussed in Section 2.2, we assume all consumers face an identical price
schedule. Each consumer chooses to receive a set (); that maximizes her value net of
the payment 7(Q;).

To make consumer agent behavior more concrete, we follow a convenient model
of consumer preferences for information goods proposed in [CS99]. When N items
are offered, a consumer has a strictly positive value for only a proportion k; < 1.
Suppose these positively valued items have values distributed uniformly from 0 to w;.
Consumer ¢ ranks these items from n = 1 to k;N with n = 1 being her most highly
valued good. Then, (in expectation) the value of the nth best article is given by

o) (1)

For convenience, we assume hereafter that consumers value articles exactly at their
expected values, given by (1). Consumer i’s surplus from reading the n* most
preferred articles is the aggregate value less any payments made to the producer,

" (ki wi) — T(Q;), where Qf = {ji|j; < n*} for the article indices j; defined
over the list reordered by descending value for consumer %.

For this paper we further limit consumer heterogeneity by assuming that the value
of the most preferred article for each consumer (which will generally be different
articles) is the same, so w; = w Vi. Consumers differ through their k;, which are
distributed uniformly between 0 and k. The probability density of article values is
thus f(k) = 1/k. Someone with a higher k; values a greater portion of the available
items and also values each equally ranked item at a higher level than someone with a
lower k;. To simplify the analysis in Section 2.2 we assume quantity is a continuous
choice variable for the consumer.! Our simulations in Section 3 respect the integer
constraint.

'We have calculated the exact solution for two of our price schedules and found that the continu-
ous approximation was not very good for a market with ten articles, but was quite close for N = 100
articles.



For these consumer preferences, the socially efficient outcome would be for each
person to consume k; N items. This would yield a surplus of wkT”‘N to each person

for a total value of “”fTN for the entire population. A firm that could observe each
consumer’s k; could perfectly price discriminate by making a take-it-or-leave-it offer
tailored to each individual and extract this entire surplus. This serves as a baseline
for the maximum profit that a monopolist could earn.

We elsewhere studied the dynamics of an agent market in which consumers are
incompletely informed and thus try to learn the parameters of the article value dis-
tribution [JOKMMng]. In future work we will introduce multiple producers, so that
consumers dealing with one producer may be able to learn, at a cost, whether other
producers have better offerings.

2.2 Producers

We assume that producers cannot track individual consumers across transactions,
and further that the producer is either unable to observe the number of articles read
by a consumer, or to gain any advantage by using such information. We choose these
somewhat idiosyncratic assumptions so that an informed producer can do no better
than offer all consumers the same price function, rather than delve into the complexi-
ties of price discrimination. In addition, in this paper we wanted to limit producers to
“model-free” learning; that is, trying to learn profitable strategies without an explicit
model of consumer preferences. There are several motivations for this. A producer
will generally not know the true model generating consumer preferences, and might
find it too expensive or error-prone to try to estimate the model. Or the environment
might be changing sufficiently quickly (through consumer exit and entry, preference
changes, and shifts in the pricing strategies of other producers) that the producer is
never able to learn enough about the form of preferences to be useful. Our assump-
tions limit producers to trying to learn the shape, or even just the peak, of the profit
landscape that derives from consumer preferences, without discovering the underlying
preferences.?

For now we assume that producers know the distribution of consumers’ k;’s.?
There is nothing to learn, and both preferences and production costs are indepen-
dent over time, so the problem simplifies to a once and for all determination of the
profit maximizing price schedule. The same schedule will be offered in all subsequent
periods.

Since consumers are anonymous and they believe the value of each article is drawn
from an identical distribution, the producer’s optimal behavior is to base prices solely
on the number of articles purchased, g, for a price schedule T'(¢). The most general
form of this schedule would be to set an independent payment T for every possible

2We plan to explore model-based learning in subsequent work. First we will need to make the
environment more complex. Our stationary environment with linear preferences permits a smart
producer to learn everything in just one transaction period if the number of articles consumed is
observable. Of course, such powerful learning possibilities are not realistic.

3In Section 3 we use simulation methods to analyze a model with incomplete information, in
which the producer does not know k, or any individual’s k;.



quantity, ¢ = 1,..., N. However, N may be large, and for various reasons producers
may find it unprofitable to set such a large number of price schedule parameters. For
example, consumers may object to the complexity of the price schedule and may pur-
chase less, possibly even switching to a different producer. Further, when we introduce
uncertainty about consumer preferences so that the producer must engage in learning,
the dimensionality of the profit landscape will be the same as the dimensionality of
the number of pricing parameters; search over an N-dimensional landscape may be
too costly in time and resources to justify such a complex price schedule. Therefore,
we explore producer pricing behavior when it limits itself to functions expressible
with small numbers of parameters. For each price schedule we derive the optimal
parameter choices for the producer, and evaluate the resulting profits, consumers’
surplus and social welfare (sum of the prior two measures).

2.2.1 One Parameter Pricing Models

The two most familiar pricing models in practice have only one parameter: linear
pricing (a constant price per item), and subscription or bundling (one price for the
entire bundle).

a) Pure Bundling
Bundling has recently received substantial attention for information goods [BB99,
CS99]. The price schedule is:

B 0 : ¢g=0
0={ p | 430 @
Profit is _
k
= P, / F(k)dk (3)
ks
where k, = 222 the lowest k; that will subscribe. For lower k;, the value of the

wN ’
bundle of N items ([F" u(n,k;)dn) is not enough to cover the price of the bundle.

k, is defined by [i*" u(n, ks)dn = Pg.

Taking the derivative of profit with respect to Pp and setting it equal to zero yields

the profit-maximizing bundle price of w’“N .k = £ Profit equals “¥. Consumer

2 8
3“”“N respectively.

surplus and social welfare are wkN and

b) Linear Pricing
An alternative one-parameter model is linear pricing. Consumers pay P4 for each
item they choose to receive. Thus, the price schedule is:

T(q)= Pag : ¢>0. (4)

Facing this marginal price of P4, each person will choose their optimal number of
articles (n}) so that p(n},k;) = Pa. Then, n}(k;)) = k;N(1 — £4). Profit to the

monopolist is: ~
k P
1= PA/ EN(L— 22 f(k)dk (5)
0

w
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Maximizing profit yields Pj = 3. Consumer surplus and social welfare under linear
pricing are “’1E—6N and =5

Profit equals ’”ETN, which is the same as for pure bundling. However not all pricing
schemes of the same complexity yield the same profit. For example, if k; were uni-
formly distributed between k£ and k£ (where £ > 0) then pure bundling would attain

higher profit than linear pricing.

3wkN
6

respectively.

2.2.2 Two Parameter Pricing Models

a) Two-Part Tariffs
Under this pricing scheme, consumers pay a subscription fee (F'), and a per article
price (P4) [Oi71]. Thus, the price schedule they face is:

_ 0 : ¢g=0
T(q)_{ F+Pyqg : ¢>0 (6)
Profit will be: _ N
% k P,
M="F [ fk)dk+ PA/ EN(L— “2)f(k)dk (7)
ks ks w
where ks, = %. The proﬁt—ma)fimizing subscriptii)n fee is F' = 2“;E7N and the
per-article charge is P4 = %. k} = £, and profit is *28¥. Note that this profit is

18.5 % higher than the profits from the one-parameter pricing schedules we analyzed
above.

b) Mixed Bundling

With mixed bundling, consumers can choose to buy individual items at P4 each,
or N items for Pg. Separate purchase is preferred by consumers who want fewer than
Py /Py articles, otherwise bundling is preferred. The price schedule is:

0 : =0
Tla) = { min[Pyq, Pg] : Z >0 (®)
Profit will be:
=Py [ NG = P+ 2y [ pk1a00 o)

2Ps . k. is defined as the k; for which the consumer surplus attained
N[2P,—-4]

from buying the bundle is exactly equal to the consumer surplus from buying articles
separately instead. Individuals with k; > k. will buy the bundle. Everyone else will
purchase (fewer) articles on an individual basis.

s ek 2w x __ 8wkn x _ 2k : 4wkN
Profits are maximized if py = 5%, P = *7", and k] = 5° . Profit will be =2=.

Notice that this is the same as the profit attained under two-part tariffs.

where k. =




2.2.3 N Parameter Pricing Model: General Non-Linear Pricing

The most general pricing strategy is for the producer to choose a price for each possible
quantity, without restriction (except that 7°(0) = 0, since the consumer always has
the option of exiting the market. Maskin and Riley provide a method for calculating
the optimal continuous non-linear pricing strategy [MR84]. The intuition is this:
a profit-maximizing producer wants each different customer type (k;) to purchase a
“constrained” quantity ¢;(p;) at price T'(g;). Let some customer type k; choose to buy
¢: and pay T(q;). Call the value this consumer would get from an incremental unit
Ai. Now suppose there is another customer with k5 > k;, who also chooses to buy
q1. By definition, this customer gets value from the next unit Ay > A;. Therefore,
the producer would make a greater profit by offering ¢; + 1 at T'(¢;) + A where
A1 < A < Ay the second customer would prefer to purchase ¢; + 1 but the first
customer would not. Thus the problem can be stated as one in which the producer
sets prices to induce each customer to purchase its profit-maximizing quantity, subject
to the self-selection constraints that ensure a consumer of type k; dose not want to
purchase the intended quality for any other k; # k;. The function is found from
solving a system of differential equations. To conserve space, only the results are
provided here.*
We obtain the following optimal unrestricted, nonlinear price schedule:

w [7 (4EN +(F—1)g = A2F'N + 7)V4E'N + 7) — 4F'N?1n q*’“(z’“N“’“gq)“ Slha

4(k — 1°kN
(10)

v = qk-1) (11)
A = ik —1). (12)

This yields profit, welfare and consumer surplus of

E'Nw(2 -2k — (1+k)Inl)

Iyg = 13
v T (13)
—2 - -2 =3 -
k' Nw(1lk —8 — 4k  + k" +2(2+k)In =)
SWyr = T k (14)
CSyr = SWxr —1Ilng (15)

For example, when & = .7 profit with non-linear pricing is 32% higher than either of
the one-parameter models.

4The details of the derivations are available from the authors on request.



Pricing Scheme Number of Parameters Profit CS  Welfare
Pure Bundling 1 875 4375 1.3125

Linear Pricing 1 875 4375 1.3125
Two Part Tariffs 2 1.037  .449 1.486
Mixed Bundling 2 1.037  .281 1.318
Block Pricing 3 1.094 328 1.422
Non-Linear Pricing N 1.152 216 1.368
Perfect Price Discrimination 1.75 0 1.75

Table 1: Example of one-period complete information results: Optimal profit per good with w = 10,
N =10,and k=.7

2.2.4 Summary of Results for Static Model

We calculate a numerical example to illustrate the relationships between the various
pricing strategies. Suppose that w = 10, N = 10, and k = .7. In Table 1 we report
the resulting profits, consumers’ surplus, and social welfare.® We report in the last
row the results if the producer knew how much each consumer valued each specific
article, rather than just the values as a function of the number of articles. In this case
of perfect price discrimination the producer would charge each consumer a different
price for each article (thus the price schedule would have the number of consumers
times N parameters); this provides a benchmark for the maximal profit possible if
the producer could obtain perfect information.

3 Incomplete Information: Simulations of Agent
Behavior

The analytical results we have just presented identify which price schedule a pro-
ducer should choose given that it has complete information about the distribution
of consumer preferences. In this setting, a profit-maximizing producer will set prices
to maximally ezploit consumers. In real life, however, a producer seldom knows ev-
erything about consumer preferences. With incomplete information, each period of
pricing and consumer purchasing may reveal information that enables the producer to
update and improve his estimate of the consumer preference distribution. Generally,
the producer’s one-period profits will be higher the more accurate is his estimate.
Therefore, pricing decisions now serve two functions: exploitation and exploration.
In general, the prices that extract maximal expected profit from consumer in the
current period (given on the producer’s current beliefs) will not provide the maximal
improvement in the estimate of the preference distribution for use in future pricing
decisions. Thus, there will be a tradeoff between exploitation and exploration. For
this reason, we now explore how producers might learn about preferences through a
dynamic sequence of price-purchase interactions with consumers. In particular, we

5We include results for block pricing, an intermediate case with three parameters, though we did
not include the derivation above to conserve space.



examine how much profit is accumulated over time when the producer follows different
learning methods on price schedules of varying complexity. Different exploitation-
exploration strategies will tend to converge at different rates, but also will yield
different accumulations of profit during the learning phase.

One important consideration is how much the producer knows about the structure
of preferences. In at least some situations, knowledge of the true preference model can
be used for better and faster learning. For example, we can show that if the producer
knows consumer preferences are generated according to Chuang and Sirbu [CS99],
then it need take only one period of purchasing to discover the true parameters of
the preference distribution, and thereafter the producer can set the optimal prices for
exploitation without further investment in exploration.

In practice, a producer will not know the exact functional form of the consumers’
preference model(s). In one extreme case, if the producer has no prior knowledge of
the structure of preferences (other than that demand is decreasing in price), it will
have to adjust the parameters of its pricing schedule based on the apparent correlation
between prices and the profit signals it receives.

Whether the producer is trying to learn the structure of consumer preferences (to
thereby derive the profit landscape) or to learn the profit landscape (or even just its
peak) directly, there are any number of potential learning algorithms. In this paper
we experiment with two off-the-shelf learning systems: a neural network trained using
Quickprop (a back-propagation method) [Fah88] and a simplex linear programming
approach to multi-dimensional hill-climbing known as amoeba [WHP92]. In a com-
petitive environment, of course, a producer might find it advantageous to develop a
learning algorithm customized to the problem at hand. Our goal is not to discover
the best learning algorithm, but to understand the tradeoffs between learning and ex-
ploitation that occur across range of pricing structures, and to compare these results
between two common algorithms.

However, learning can be confounded if the consumer population evolves (through
exit and/or entry), or if consumer preferences change, especially if a producer is
only able to sample the consumer population infrequently (for example, based on
a journal that is issued quarterly). In such “moving target” multiagent learning
problems[VD98b, HW98|, some amount of residual error in what is learned is un-
avoidable. For such problems, we expect that strategies that learn faster, albeit
ultimately less accurately or completely, may be favored. Likewise, strategies that
perform well despite errors in the estimation of preferences should be favored. We hy-
pothesize that pricing schedules with fewer parameters can generally be learned more
quickly. It is less clear whether there is a systematic relationship between price sched-
ule complexity and the robustness of its performance while learning. To explore these
questions, we have designed experiments that assess learning speed and robustness
while learning for a variety of learning methods and pricing structures. We measure
both the convergence rate and the average profit per agent per period prior to con-
vergence, in order to begin characterizing important design tradeoffs in developing
pricing schedules and agent learning capabilities for automated agents representing
producers in an information economy.
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3.1 Simulation Method

In these experiments, we generated a population of 1000 consumers with Chuang-
Sirbu valuations as described above. We constructed a monopolist producer which
attempted to learn the optimal parameters for each of the five schedules described
above using the two different learning algorithms. The producer had no explicit
knowledge of the consumers, such as the items they purchased or the fact that they
fit a Chuang-Sirbu valuation model. It merely chose a set of parameters and observed
a resulting profit signal.

We make no claim that these learning methods are optimally efficient; it would
seem reasonable to assume that gains in performance could be achieved by either
introducing explicit knowledge about the construction of the consumer population or
by tuning these algorithms for use the specific problems. However, the purpose of
these experiments is not to show how quickly a given algorithm can learn a particular
schedule, but to show how these schedules behave as they are being learned.

While amoeba is always attempting to hill-climb and therefore has no explicit
decision to make about whether it needs to acquire more information, a producer
using the neural network must decide whether to use its currently optimal solution
or to explore further. This decision was made by exploring with probability pJ; 22‘3)‘;@,
where found is the number of samples seen so far and possible is the number of
possible integer price schedules. The producer could modify this by pruning known
parts of the profit landscape; for example, if a set of parameters yielded zero profit,
increasing one parameter while fixing the others will also yield zero profit, and so
that part of the space need not be explored. This choice of exploration strategy is
not necessarily optimal; the point was to choose a simple strategy and hold it constant
across the different schedules.

In these experiments, as in the analysis above, k; was drawn from U[0, 0.7]. wq was
fixed at 10. Experiments were conducted for both N =10 and N = 100 goods. The
producer was given 200 iterations to attempt to learn the optimal pricing parameters
for this static population.

In order to produce a balanced comparison of amoeba and the neural network on
the different price schedules, a uniform search space was selected. For each pricing
parameter, an upper bound much larger than the optimal value was chosen. For
example, in linear pricing with wy = 10, the upper bound was set at 25, where the
optimal value is approximately 6.3. The neural net randomly chose points from this
space when exploring, reducing the bounds when areas of zero profit were found. The
amoeba algorithm began with a simplex at the origin and at the point specified by the
upper bound. This provided both algorithms with approximately equivalent search
spaces.

3.2 Results: Learning Complexity and Transitional Profits

Figures 1 and 2 show our results for the neural network and the amoeba hill-climber,
respectively, on the five price schedules when N = 10. Each line, for a different
price schedule, indicates the average cumulative per-period (per-article, per-customer)
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profit for that schedule. For example, the value of about 0.65 for mixed bundling at
iteration 10 in Figure 1 mean that over the first 10 iterations, profit averaged 0.65 (so
cumulative profit is approximately 6.5). Higher lines indicate schedules which have
been more profitable to date.

With neural net learning, mixed bundling performs extremely well. It has the
highest profits of any schedule for about 100 periods, and thereafter is close to the
leader, two-part tariff. Contrary to our expectations, the one-parameter schedules
didn’t perform particularly well, even during the learning phase. Their initial explo-
rations lead to a substantial profit drop for 20 periods; after period 10, either or both
of the two-parameter schemes nearly always dominate. Nonlinear pricing, which has
the highest profit potential, performs very badly, getting stuck at a unit profit of about
0.6, only about 40% of the maximum possible. Note that the rate of convergence is
not a good measure for comparing price schedules, since it does not reflect the qual-
ity of the final solution. For example, nonlinear pricing converges quickly to a local
optimum, and thereafter obtains very poor profits.

The amoeba results are notably different. The one-parameter schemes (linear
pricing and pure bundling) perform quite well for the first 30-40 iterations. Then
the two-parameter schemes overtake the simpler schemes and head to a much higher
average profit level. Amoeba also does much better with nonlinear pricing. As pre-
dicted, learning for the more complicated scheme is slower, and its cumulative profits
are much lower than the other schemes for the first 400-1000 periods, but once the
algorithm begins to converge on a solution its performance is swift and durable. Since
amoeba converges more quickly and finds peaks that are closer to the global optimum
than the neural network does, its results seem more useful for this experiment. The
qualitative results are clear with amoeba: simpler schemes with lower profit potential
nevertheless outperform more complex schedules during the early stages of learning.

The experimental results for the neural network and amoeba when N = 100 are
shown in Figures 3 and 4. Increasing the number of goods from 10 to 100 helps
to smooth out the profit landscape and actually improved the solution quality for a
number of the schedules. For example, as the number of goods increases, the two-
part tariff landscape is smoothed out. Also, it contains an easy-to-climb hill, and
many non-optimal values have relatively high profit, making exploration less costly.
Additionally, there are no large chasms, making it easy to move between optima.
Contrast this with mixed bundling, in which two large valleys separate the optimal
solution from the solutions for linear pricing and pure bundling. Because of this,
even though these two-parameter schedules have the same potential optimal profit,
the two-part tariff performs better on average after learning is complete®.

For the most part, increasing the number of articles that may be transacted rein-
forces the results discussed above. Amoeba learning again finds higher profit levels,
and the qualitative results are consistent across schedules.

In Figure 4, the one-parameter schedules are much more profitable during the
learning phase, but after about fifty periods the more complex schedules dominate. 7

6Recall that the plots show results averaged over several runs with randomized starting values.
The global peak of the mixed bundling landscape was found less often than that of two-part tariff.
"The unconstrained nonlinear schedule has N = 100 free parameters now; amoeba was not able
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Figure 1: Cumulative profit per article, per period, per customer (N = 10, neural
net)
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Figure 3: Cumulative profit per article, per period, per customer (N = 10, neural
net)

The pattern is less systematic for neural net learning, but the results are qualitatively
similar.

Note that the learner was able to find more optimal solutions for each of the
schedules; this is presumably due to the flattening of discontinuities in the profit
landscape.

3.3 Summary of Simulation Results

The amoeba learner experiments support our predictions: simpler pricing schemes
perform better during the phase of high exploration; when learning is nearly complete,
exploitation dominates and the higher-dimensional schemes perform better. However,
the learning phase may be quite long, depending on the complexity of the schedule
and the frequency of observable transactions. In particular, exploration is slow for
the most general scheme, nonlinear pricing.

These results suggest that if an environment is changing significantly at moderate
frequencies, a producer might be better off using a simpler scheme which has lower
potential profit but is more robust to uncertainty. The results also suggest that more
sophisticated agents might try to use statistical modeling to endogenously switch
between simpler and more complex schemes, depending on indicators of stability
and their progress in learning the current schedule. Although we have not modeled
this phenomenon yet, the idea is suggestive of the variety of special promotions and

to search the resulting 100-dimensional space in an acceptable amount of time.
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Figure 4: Cumulative profit per article, per period, per customer (N = 100, amoeba)

trial prices that are used when new products are introduced to speed up exploration
without sacrificing too much profit.

Our results also indicate the sensitivity of performance to the choice of learning
method. We discuss this more fully in the next section, noting now only that in these
experiments amoeba typically found better results than the neural net. Further,
although it is not directly obvious from the plots, we discovered that with rather
craggy profit landscapes (especially for N = 10), the results are rather sensitive to
the choice of initial conditions. This suggests that there is some value to incorporating
more aggressive nonlocal exploration when a candidate solution seems to have been
found.

One of the more interesting and less expected results is the performance gap be-
tween schedules with the same dimensionality and the same potential profit. In an
environment which contains uncertainty and learning, the smoothness of the profit
landscape is an important determinant of effective complexity; it is harder to get con-
sistently good results on a craggy landscape; cf. two-part tariffs vs. mixed bundling
in Figures 5 and 6.

A number of recent papers have ignored uncertainty regarding the distribution
of consumer preferences and advocate forms of mixed bundling for its exploitative
performance; our results suggest that when exploration is important, two-part tariffs
(and perhaps other two or more parameter schedules with smooth landscapes) may
be superior.
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Figure 5: Exact profit landscape with N = 10 and two-part tariff pricing
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Schedule | % of opti- | optimal optimal % of opti- | optimal optimal
mal reached | profit profit possi- | mal reached | profit profit
(NN) reached ble (NN) (amoeba) reached possible
(NN) (amoeba) (amoeba)
Linear 97.4 1.1228 1.1598 99.7 1.1763 1.1813
Pure 99.6 1.183 1.1886 99.9 1.2028 1.2035
Two-part | 89.0 1.2638 1.4064 99.6 1.6374 1.6429
Mixed 84.0 1.2719 1.5124 96.8 1.5823 1.6344
Nonlinear | 56.2 0.9643 1.7172 98 1.7634 1.7885

Table 2: A comparison of the performance of neural net (NN) and amoeba over the different pricing
schedules for N =10

4 Learning approaches in dynamic electronic com-
merce environments

The two optimization techniques studied in this section are instances of two fun-
damentally different approaches: model-based (exemplified by the neural net) and
model-free (exemplified by amoeba).

Note that, in this section, we take the term “model-based” to mean that the
learner constructs an approximation of the functional relationship between pricing
parameters and profits. As in the rest of the paper, the learner makes no attempt
to represent consumer preferences directly. In contrast, a “model-free” technique is
one which alters pricing parameters so as to maximize profit without retaining any
information about the structure of the function being optimized.

Model-based techniques such as that used by the neural net comprise two steps.
First, a model of the entire profit landscape is estimated from an observed series of
price schedules and resultant profits. Second, this model landscape is used to predict
expected profits for a large number of proposed price schedules, and the schedule for
which the model predicts the largest expected profit is chosen as the (approximately)
optimal one. In general, a model-based approach would appear to have the advantage
that optimization can be done in “virtual” time, i.e. once the model has been learned,
the method can explore a vast number of possible price schedules without risking the
loss of real time or real money. On the other hand, a large number of data samples
may be required to learn the model in the first place, so overall the method may be
expensive and slow. Furthermore, model-based optimization is likely to fare poorly if
the learned model is insufficiently accurate in the vicinity of the peak — a problem
to which the technique is vulnerable because it strives for a good global fit to the
entire landscape rather than a good localized fit to the peak. This study provides
some evidence for both of these effects: relative to the model-free amoeba method,
the neural net took longer to reach a plateau, and this plateau was generally less
optimal than what was attained by amoeba, as is seen in Table 2.

Also compare the craggy landscape shown in Figure 5 to the estimated landscape
produced by the neural net in Figure 7. In Figure 7, we can see that the peaks and
fissures that are a part of the two-part tariff price schedule have been replaced within

18



::E\\ES\E\\E\
\\&&&&N/Nmmmxmm&“v\kE/s
:\\\\S“&&\\\\\\\\\\\\

;E: )

EE

/‘§§ \//
:§§§
&“&s\“\&ﬁ:\%\\\\\\%
i

\“““““““§§§§

EE\\\\\\\\\\ssss\s
s\s\s\ss\\\\\\\sss\\\
7 \§§S&““““\\\\\\\\\\\\\\\\
\\@mw%\s il
i

ss§§§§§~\§§=§E
§§§§§

§‘

it

:sss:

\:\Es i

/i

iy
:sis\\
\% il m\\\isé\
il

Iy 7
i

,:

:&%\ssé
i
Iy

\E\\\E\\:S\SS
:S
U ) :S iy
.

iy
:
:3:

&E 4
:

> >
§§§s§§
sss\\ss§§=\\“§“u“u“u““\\“““““»\N“Nmmmmmmmmw“w&n&ﬁa\iﬁ\
:§§§S
\\sssss:s\“»\“““w&ummwwmmm\“mNmu““@Rﬁ\\uﬁ»ﬁ&&u@&SS&:
\S\\SSS\\ :E
i \‘ssss:s%s&ss
§sg@\“ﬁ““»\g\\“N&““g““a&&§“\§§§§
\SSt\:\\\ssSSSS:E\sS\\\\\\\\\\E\ES\\\\S‘S\E\s
iy Uy U ‘SaaatEES\S\\\\E\
\\\\“““&&“““““““§§§§§\sz
\\\p\\s\\\\\\\s&ﬁ&\o\%
:E\S\:\\&:EEE:EE\\\E\
\§““““““§§§s§~
53::::S:E:E:EE
:,\:\\\S§§:\\
s§g\:s\s\:::\s il
::,\EEES\E::\\\E:E
&\,\,ﬁﬁ%\
,E,\:\ﬁﬁiz
§§§
s\:i\,siss
i

i ! iyt 7 I 1
:\\\:\\\“s“\\\\&“§§§\ﬁ\s \\\\\\ss‘\‘%s:

il sss:

Iy

sss h

iy :ss(s‘ssss‘\

i iyl \Essss

\u \u\\\\“s\s‘\::
ss:

\\\\\\\\\\\\\\\\\\\\\\\\\t
ss=§§ss_sssss

s§\\\sss\s\ss\:ss

\\\\:\\\s§§§§§

\\g\g§§§

I
iy \\: \:~ i: fhss!
\\g:““\§i§\ﬁ“\i“\sﬁ%
::&&5\3\\:\5

EE

W
tt.

il 4
::s&““&»\“»@@e 7
..s&a&s\t%\\\s\i
s\\:\\\:\:ss§\\\:§\§\§\\s\\s\\s\\s‘

s\\‘\\‘\\\\‘\\\\‘sss\ss

filh

7
! Il
sa\§s§§§§s$

5:
\s:\:\\\:\::\\ss\\ss§§§\§§\

s\\\%\s

il
i
Iy

i

I ‘:\\\s=§§=§§§§§
gsg§sﬁ%ﬁﬁ““\“\“&?s:§§§§\
s\\ss§\s\sssss§\§§=s\\\\\sstss§§s
\s\s\s\s\\“\&s§§\=§s

i

“h
:SEE

iy E\SS\\:\S\S\S
iy 7

! us i
:355:

s§§s§§§.,
\\:\\\:s\\\§\§\\ss\§§E\S=s§§§\§§

§§§§§§§§§s

.\:=§s§s=s§§§§§§
Essss

7
7
!
:s\\\\s\\é\\\\s@w
\\\\\\\.
§\\
7
3\\
Iy “ i
\3\aS\S‘:\S\\\\\E\S\““““““““““““““\\“W
\\\E\\SS\S\\ "
\\‘SSSEQ\E\SS\S
E\\\\S\\E\t\:\: E\E\\\
\\\gs‘“\\yﬁ%
:\::\:s\\s::\s\s\\§S§§§§s
\\\E:EE\: 7
-
\sszs‘\ss\s‘\‘ :E\ssss\ _ 2
\\:\Esssssss s§§§§§ /) i# o
\\:\EEE:ESE ESEE:S: \\\\\\\$ .
\§“““m\&\\“\‘“\‘“\“\‘“\“\\g§g L
§§§§§§ s\\\\\\:.
éssiss \‘\§§§ \\\\\\ .\«\
sss\\si ss\sé\‘ 7 .
E:Es é\\s\\\ \& . _
\Essg sss? 7 \\\
il i 7 :\\\ \\..&
il “\w\\\\\s \\\\\\\\\w\\\\\\\\\ _
\\w

\\E\S\\SE\\S:‘S\\S:E:SESSSSSSS
EES\::\\\:\\\\S " 0 I
\Eg§\s\s§\“\@ﬁ§“““§§§§s
SSSS\S\SESS\

7
7
0 Yy %
§§§ 5
7
i
S@w\\\s
Uy

yy

iy
5‘
ss: %
7
7
il 2
s\\&\ .

\s\\\\»\
\
‘ss“\\\\\\“\\\

33 p
:E

il

§\EESS§§Sss

\‘sss

7
§ .

\\s\

s\\ 7

§§\ /)

Iy /)

\‘\M\§§\
::SS‘\%S as\\

2

. \\\\\\\\\$$=
7 \\\.\\w\“\s\\ss&w
.\\\\\\\\\\\\5\\3:&
.\\\ $$§:,§:
/ 7 il
!
\\\\\\
7 i
@\ §§
Q\\\

\“\m\\\\\\\s\\
) \\w\

.s:...:

iy
.N.N.M.
iy
:...
febiy
i
7
\ss §s==..
7 §§=§=.. o
7 §§s= gt iy
7 s‘s s:
\\\\\s‘s“s‘sza ot
\.
&1& sss 0
) 7 §: ss._.....
\\\\\\\\\\\\\ sss :s:::. i
/ i iyl
. \
7 s ] sss.
/ \\\@\\\\\s\\& ;:\5%%___._.___
\\i\ 7 i i s._:
i§§ \\““\~\\\____\_.d__.___.___
7 7 7 7 il
7 \i\ il i
il i il il /
7 i 7 il i
§§§
il il

5
1.
5
0.

Profi

ing
icin
ric
iff p
i

ar

art t

-p
0
tw
d

an
10
N =
ith

W
e
ap
dsc

lan

fit

ed pro
T

lea

t—

e

1 n

ra

u

Ne

7
e
igur
Fig

19



the neural net by an overly smooth landscape, leading to a loss of some optimal
solutions.

In contrast, model-free approaches such as amoeba make no attempt to establish a
functional relationship between prices and profits. Amoeba single-mindedly seeks the
optimal price schedule without retaining any information about the portions of the
profit landscape that lie beyond the borders of its ever-shrinking simplex. Ultimately,
amoeba comes to rest at or near a peak (almost always the global peak in these
experiments), but knows nothing of its environs. In the problem studied here, this
ignorance is not a liability because no other force can dislodge it from the peak: the
landscape is static since consumers are fixed in their preferences and their behavior
and there are no competitors which can shift the producer to a different point in the
landscape.

While amoeba appears to outperform the neural network for this specific prob-
lem, it would be premature to conclude that model-based techniques are inferior to
model-free ones. There are two basic reasons why further exploration of model-based
approaches ought to be encouraged.

First, the neural network is only one of a great variety of model-based techniques,
and has not been tuned for this particular problem. Training methods other than
Quickprop might allow faster training with less data. Off-the-shelf Quickprop is very
generic, and what we have been referring to as the “model” it learns is nothing
more than function approximation using sigmoidal basis functions. These might be
replaced with basis functions that are more appropriate to the application at hand.
Also, there is no a priori reason why the algorithm must minimize the error over the
entire landscape; it could be altered to minimize the error at the landscape’s peaks,
at the cost of a loss of resolution of lower parts of the landscape.

A more sophisticated approach to modeling might apply domain knowledge and
analysis to formulate a more useful and appropriate model. It might prove advan-
tageous to model the consumer preferences rather than the profit landscape itself,
particularly if the number of parameters that define consumer preferences is smaller
than the number of parameters defining the price schedule. This requires inverting
the profit signal and possibly some auxiliary information such as the distribution of
the number of purchased items to estimate the consumer preference distributions.

Learning consumer preferences and then deriving the profit landscape might be
faster than directly learning the profit landscape, perhaps due to the lower dimen-
sionality and/or greater smoothness. In preliminary experiments, we have used such
an approach to infer the distribution f(k) very quickly and accurately, resulting in an
excellent approximation to the profit landscape. After developing an accurate model
of the profit landscape with a very small number of real data samples, we applied
the amoeba technique to find a near-optimal point in the landscape in wvirtual time,
followed by further iterations of amoeba in real time to quickly reach an absolute
optimal price schedule. However, deriving a model of the profit landscape from a
model of consumer preferences can be risky unless the consumer preferences (or at
least their functional form) are characterized faithfully. If, for example, a producer
believed that preferences took a negative exponential form, when in fact they took
the linear Chuang-Sirbu form, the producer might be able to learn the best param-
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eters and pricing structure for the assumed preference distribution quickly, but with
exploration could discover that higher profits were possible, and thus might start a
more lengthy process of exploration to discover the functional form of preferences,
rather than just the correct parameters for the incorrect “known” form. As in the
simpler model we studied, there would be a learning period, and a trade-off between
exploitation and exploration.

A second reason to encourage further exploration of model-based approaches is
that the situation studied here is not truly representative of the complex, dynamic
environments in which we expect producer agents to operate, and model-based ap-
proaches may prove to be advantageous in such environments. A more global knowl-
edge of the landscape is likely to be helpful in dealing with shifting consumer pref-
erences, and is probably essential in dealing with competitors, who are continually
trying to knock one another off of the peak in an endless game of King of the Hill.®

Finally, it should be noted that model-free and model-based approaches might
be complementary. If model-free techniques prove to be generally faster in their
convergence, but fragile in the face of competition that drives the producer off of a
local peak, then one could quietly train a model of the entire landscape in parallel
while the model-free optimizer is being used to seek a good price schedule. Once
a reasonable model of the landscape has been developed, the model-free optimizer
can start using the model rather than real-world data, resulting in a tremendous
optimization speedup.

5 Conclusions and Future Research

We have presented a hierarchy of pricing schedules for the complex space of electronic
goods and studied their performance using analytical methods for the steady state
and simulations to determine their dynamic behavior. We find that most of the
improvement in schedules comes with the move from one-parameter to two-parameter
schedules. More complex schedules can provide some additional profit at equilibrium,
but it is not clear that this small increase is balanced by the longer time needed to
learn these schedules. The simpler schedules are also appealing from a more practical
point of view; they are easier for a consumer to understand, and consequently it is
easier for the consumer to participate. All of these results are based on the assumption
that consumers will always act to maximize their surplus. Our continuing research
questions the effect of consumers who are unable to determine how many goods to
buy (because the schedule is too complex), or who act strategically to exploit the fact
that the producer is exploring.

Another area of future research involves the introduction of multiple producers
or changing consumers. In this case, the optimal set of prices will change over time,
and both the pricing schedule and the producer’s learning algorithm will need to be

8For example, each time a competitor changes its price schedule and attracts a different set
of consumers, or consumers switch between producers to do their own exploration, the effective
population of consumers (and thus the distribution of preferences and the resulting profit landscape)
facing the first producer will change.
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robust to these changes.

A third area of future research includes the introduction of consumer modeling
into the learning process. If a producer has access to some information about the
consumer’s valuations, it may be able to learn the optimal set of prices more quickly
and therefore increase its profits. The question remains open as to what sorts of
consumer knowledge are realistic for a producer to be able to infer, given that real-
world producers seem to need large amounts of data to do a reasonable job of modeling

consumers.
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