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ABSTRACT

The effect of motion on the altitude distribution of atmospheric density
has been determined. It has been shown, in particular, that for vertical
waves moving with increasing velocity along its direction of propagation and
for %E-vz << 1, the density is given by
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where v is the velocity of the waves. Other terms have the usual significances.

The three terms on the right-hand side correspond to density variation
due to gravity, temperature, and the motion in the atmosphere respectively.
The relative magnitudes of the three terms at 100 km altitude has been ob-
tained and it has been found that for v = 22 m/sec the variation of density
due to the above type of motion is one-tenth of that due to temperature. The
vertical components of the wind (Edwards, H. D., et al., JGR 68, 3021 (1963),
and the dominant gravity waves (Midgley, J. E. and H. E. Liemohn,JGR 71, 3729
(1966)), are 6 m/sec and 1 m/sec, respectively, and are small to affect the
altitude distribution of atmospheric density at 100 km.
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The distortions of trails of long-enduring meteors (Liller and Whipple,
1954; Greenhow and Neufeld, 1959), and chemiluminescent vapor released from
rockets (Rosenberg and Edwards, 1964; Kochanski, 1964), and barometric oscil-
lations of atmospheric pressure are certain illustrations of motions in the
atmosphere. Winds blow through the atmosphere with speeds which may approach
100 m sec™l or more and having wind shears of about 0.0k sec™1, Also, the
atmosphere is subjected to tides having 2Lk-hour and 12-hour periods of which
the semidiurnal component is stronger. 1In this note the effect of motion on
the altitude distribution of atmospheric density is considered.

For a motion through the atmosphere, the momentum equation and the equa-
tion of continuity should hold. Neglecting the effects of viscosity and the
rotation of the earth, the former can be written as

Dv
P = = pg +t VP
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or
v > ->
-\P 3 + pov V%) = pg + Vp
where
p = atmospheric density
P = atmospheric pressure
v = velocity
In the steady state
> ->
-o(vV)v = pg +7Vp

_ pgg+(;ga+392+zéz> (1)

Therefore for a constant motion the density distribution, as expected,
is not affected. The equation of continuity, given by
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becomes in the steady state
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Broadly speaking, the effect of motion on the atmospheric density profile

can be obtained by considering four specific cases.

Case 1. Horizontal waves along x or y direction with increasing velocity along
their direction of motion, for example

vy = Vv £ 0, Vy =y = 0; gzﬁ # 0, other derivatives are zero.
X

Applying the continuity and momentum equations we have
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Therefore in addition to the hydrostatic equation (5), Egs. (3) and (L) are
obtained. Equation (4) shows that the pressure or density along the y-direc-

tion remains constant.

To obtain the density profile let us consider the equation of state



where

T

atmospheric temperature
m = mean molecular mass

k

Boltzmann's constant

Equation (3) then becomes
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which gives the density profile along the direction of x.

Combining Egs. (5) and (6), we obtain the altitude distribution of density,
namely
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Case 2. Horizontal waves moving along x or y direction with incre%sing
velocity along z direction, that is v = vy, Vy = Vg = 0; 2¥x # 0,
other derivatives are zero. An example of this case is z

the wind in the mesosphere.

Applying the continuity equation (2), we have

ox
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Since v#0, Jp/dx = O that is, p remains unaltered along the direction of mo-
tion. Again, Eq. (1) becomes
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Therefore, in addition to the hydrostatic equation, these equations show that
the pressure or density along the x or y directions remains constant. Applying
the equation of state (6), we get in this case the usual equation of altitude
distribution of density, namely

_ - mg , 10T
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Case 3. Vertical waves along z direction with velocity increasing along x
direction that is vy = vy = 0 and v = v, #0, dv,/dx #£ 0

0 = pig + 3 QB + 3 QE + % QE
X oy dz
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Again from the continuity equation
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Since ov/dz = O and v # 0, we have 3 /dz = 0. From the equation of state (6)
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28.3x1.67x10"24xglg 2
1.4x10"16

= 33°K/km at 100 km

Therefore, in order that the pressure may satisfy the hydrostatic equation
while keeping the altitude distribution of density constant, a very high
temperature gradient is required. As such a high gradient is not present in
the atmosphere (35°K/km at 100 km) this case is of little importance.

Case EJ Vertical waves along z-direction which increase as they move, that is
vx = Vy =0, vz =V, GVZ/BZ # 0, other derivatives are zero.

In this case the equations of continuity and momentum become
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Equation (14) reduces tc the hydrostatic equation if v or its derivative in
the vertical direction is zero.

Combining Egs. (11) and (14), we obtain
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Integrating
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If v=20
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Again if dv/dz = 0, Eq. (14) becomes
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Therefore for both conditions BV/BZ = 0 and v = 0, the altitude variation of

o remains unaffected.

In Eq. (15), the first term under the sign of integration corresponds to
the density variation due to gravity, the second term to that of temperature
variation and last term due to motion in the atmosphere. To consider the
relative magnitudes of these terms let us consider their values of 100 km

where
g = 949.2 cm/sec®
T = 208.1°K
m = 28.3x1.6x10"24gn
I - 2.95x10"5%/cm
oz

we then have
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Therefore, for v = 22 m/sec the variation of density due to the above motion
will be one-tenth of that due to temperature. Information of the vertical
motion in the atmosphere is meagre. From movements of vapor trails, Edward,
et al., obtained that at about 100 km the vertical component of the wind
velocity is 6 m/sec. Again the vertical wavelength of the dominant gravity
waves 1s about 12 km up to about 100 km and then steadily increases with
altitude. The period of these waves is about 200 minutes (Midgley, J. E. and
H. B. Liemohn, JGR, 71, 3729 (1966). Therefore, the vertical velocity of the
dominant gravity waves is about 1 m/sec. These velocities are too small to
affect the altitude distribution of atmospheric density.

To obtain the change of velocity of atmospheric particles due to heat
input and conductivity, consider the energy equation given by
k oT - =
—LE (= +79T) = q+ F(ANT) - PV-¥ (16)
(7-1)m Ot

where

Q = heat production in the atmosphere
= n(0)K(A)Eg(A) where n(0) is the concentration of 0;K(A)
absorption coefficient and Ey(A\) ultraviolet energy flux

Ae = thermal conductivity of the atmosphere (Nicolet, 1960)
= 1.8x102T1/2 where T is the abs temp (Nicolet, 1960)

v = ratio of specific heat

Expanding the above equation, we have
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Assuming that the velocity is directed in the vertical direction, we obtain at
thermal equalibrium OT/dt = O, the gradient of vertical velocity given by
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To obtain the magnitude of dv'/dz, consider 100 km altitude where

P = 3.1 dynes/cme

T = 208.1°K

p = S.lxlo-log/cm5

m = 28.3x1.67x10 24 em
n(0) = 5xlollcm"5
x(A) = 10" Tep?
Eo(A) = 1 erg cm™@sec™l

Q = 5x107° g/cmisec

he = 1.8x10PT1/2 - 1.8x10Px(208.1)12 = 2.6x107 g/em sec deg (Nicolet)

y = 1.k

AT/dz = 2.95%1072°K/cm
and

FPT/322 = 2.2x10710°K /en?

For v! = 1 m/sec and 10 m/sec, - ov'/dz is lo7x10'6 sec™! and 5“5x10'5 sec™d
respectively and are small enough to be neglected.
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